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Abstract. We consider a dilute classical gas in a volume ε 1Λ which tends to Rd

by dilation as ε->0. We prove that the pressure p(ε~1Λ) is Cq in ε at ε = 0
(thermodynamic limit), for any qeN, provided the boundary dΛ is Cq and
provided the Ursell functions un(x1,..., xn) admit moments of degree q and have
"nice" derivatives.

1. Introduction

In a recent paper [1], Pogosian derives the asymptotic expansion of the pressure
p(ε~1Λ) in the thermodynamic limit ε->0, up to order d in ε,

p(ε 1Λ) — a0(Λ) + a\(Λ )ε + + ad_ ±(Λ )εd 1 + ad(Λ )εd + rd(ε, /I )εd

for a dilute gas in /I a J_d or /I c Ud. The remainder satisfies

Oflogε"1) in general
0(1) d = 2
0(ε) if Λ c Zd or /I polyhedron in R*

The hypotheses on dΛ are the natural ones, the hypotheses on the interaction
potential are rather complicated and are not optimal. The proof is based on the
Mayer expansion and extensive use of Taylor expansions.

The present paper extends the above results and simplifies the proofs, for
volumes ε~M c (Rd with dΛ smooth. We prove the absence of logarithms (as
conjectured by Pogosian), and extend the expansion to all orders. The order d
(dimension of space) has nothing special to it when the interaction is smooth, which
we assume, as Pogosian does in his proof if we understand it correctly. It is clear
however that strong singularities in the interaction potential would show up in the
expansion at some order in ε depending on the dimension. We do not know whether
a jump discontinuity in the Ursell functions (e.g. square hard core potential) would
spoil the expansion at all.
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Our hypotheses on the long range behaviour of the potential are the minimal
hypotheses for the absolute convergence of the sums and integrals which define the
coefficients of the expansion in the limit ε = 0.

It is well known that a0(Λ) and a^Λ) are proportional respectively to\Λ\ and
\dΛ\. Pogosian has shown (for A smooth):

a2(Λ)κ $H(x)dx,
dλ

where H(x) is the mean curvature at xedΛ. We remark that the two point Ursell
function does not contribute to a2(Λ):

εd f
OΓ1/

where R~x denotes the normal curvature in a plane normal to dλ at xedΛ, and the
average is taken over the orientation of the normal plane and over xedΛ. This
explicit formula assumes rotation invariance, and is valid only for the two point
function. General results and formulae for the n-point integral are given in Theorem
2. In general aj(Λ) will be a finite sum (not just one term as above), where each term is
factorized into a potential dependent factor times a volume dependent factor.

Corollary 1 combines Theorem 2 with the Mayer expansion for the pressure, at
small enough activity. Corollary 2 extends the results to the whole analyticity region
in the activity, assuming bounds on the truncated correlation functions; it also gives
recursion formulae for the expansion in ε of the average number of particles in
volume ε~1Λ.

Theorem 1 is the hard core of the paper, which we now explain in words. (The
reader interested in final results might now go to Theorem 2 and corollaries).

The idea of our derivation is to write a Taylor expansion around ε = 0 of
p(ε~lΛ). This will involve of course computing derivatives of that quantity. These
derivatives will be expressed in terms of various integrals containing derivatives of
the Mayer functions. Explicit expressions for these integrals will be determined by
recursion over the order of derivation in ε. Due to the presence of ε~1 in the function
p(ε~ 1A), derivations in ε will produce terms which are apparently singular in ε = 0. It
turns out that under our regularity hypothesis these singularities cancel. This
compensation is performed explicitly by using integration by parts over the space
variables. Therefore a typical term in the Taylor expansion of p(ε~ M) will be a sum
of integrals with some variables being integrated over the domain A, and the
remaining variables over the boundary dΛ oϊΛ. One can observe that two scales are
present in the problem: the fixed scale of Λ, and the varying (large) scale ε"1. This
implies that the integrands can be regarded as functions of the space variables x on
the one hand and of y = ε~*x on the other hand.

Lemma 2 deals with the derivation with respect to ε of such integrals. Lemma 3 is
an identity from differential geometry which is used to exhibit cancellations of
singular terms in the integration by parts (see for example [3] for the method of the
moving frame). As explained above, our main result follows by recursive applic-
ations of Lemma 2.
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2. Results

We first give a local result (Theorem 1, where the rc-point function is anchored at
x1 = 0), then a global result with detailed formulae (Theorem 2), which we apply to
the Mayer expansion for the pressure (Corollary 1); Corollary 2 deals with the
number of particles, with hypotheses bearing on correlation functions rather than
on Ursell functions.

Theorem 1. Let A a (Rd, Oeδ/l , dλ aCr hypersurface. Given integers n^p0^l,let

Let 0 ̂  q ̂  inf(fc, r— 1) and suppose that all derivatives DΛu of total order
0^ |α| ^q satisfy

\ dy2 d
(c ldλ)p~lx(ε~lΛf~p 2

for all εe[0,ε0], for all p with p0^p^n, and for all {#,-} with

Suppose moreover that the above integrals are convergent as any l y / l - ^ + oo,
uniformly in the other variables (specially ε).

Then the function

^.pofc) = ί ^2 dynu(εy29. . . 9εyn; y29... 9yn)
(ε-1dΛ)p°-1x(ε-1Λ)n-po

is Cq at ε = 0.

Remark I. If we assume dΛ of class Cr only near the origin, we can conclude that
/„ po(ε) is the sum of a Cq function and an 0(εq) function.

Remark 2. The function u is required to exist on a much wider domain than is
necessary to define the integral /π>po. The reason for this is that the domain of
integration has a singularity at ε = 0.

The next three lemmas will be the basis of the proof of Theorem 1 and also shed
some light on its formulation.

Lemma 1. Let A c= [Rd, Oe<M, dΛ a Cr hypersurface, let n(z) be the inner normal to
dΛ at z. Then there is a function Q: dΛ x Rd -» R, homogeneous of degree 2 in the
second variable and Cr~2 such that

Proof. There is an ε independent neighborhood V of 0 in Ud such that
1) If zed/1 nK, then z£eKWe[0, 1].
2) If xeK, the orthogonal projection P(x) from x onto dΛ is differentiable in 7,

and the vector x — P(x) realizes the shortest distance between x and dΛ .
Let χ be a C°° function from Rd to 1R4" such that χ = 1 on some neighborhood of 0

and χ = 0 outside V.
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We define a function β(2)(z, y) by

This function is C7"1 in z and quadratic in y. Moreover, if zφV,

z-n(z) = Q<2\z,y)\y=e-iz.

For zeδλ and ίe[0, 1], let

This function is well defined for any zed A , and any ίε[0, 1]. From g(0) = 0, we have

0(1) = \χ(tz)P(tz) DnP(tz)(DPtz(z))dt + \P(tz) n(P(tz))Dχtz(z)dt

(the term DF-drops out).
From P(0) = 0, we have if tze V,

0

We now define a function β(1)(z,j;) by

β(1)(z, y) = ]dtχ(tz)ldτDPτz(y) DnP(tz}(DPtz(y))
o o

+ }dtDχtz(y)\dτDPτz(y)'n(P(tz}).
o o

Notice that by the star-shape of K, β(1) is well defined for any z in 3/1, since tzeV
implies τzeV for any τe[0,ί], β(1) is obviously (7~2 in z and quadratic in y.
Moreover

0(1) = P(z\n(P(z)) = z.n(z) = β^z, z).

The result follows if we set Q(z,y) = Q(1\z,y) + β(2)(z,y).
Q.E.D.

Lemma 2. Formulae for Inιp(ε) and its first derivative:

_ J dx2'"dxpdXj J
J = P+1 (5/l)p /I"-P
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where

i (d-
j=2 j=2

and

..,χn;y2,...,yj = Q(χP yj)u.

where Q(x,y) is defined in Lemma 1 and H(XJ) is the mean curvature as defined in

Lemma 3.

Proof. The formula for /Πjp(ε) is obvious from the definition. We now compute

f dx2...dxHXj ι4x29...9xH;e-lx29...9ε-l

Xά
-lxΛn-p °yj

In the last term, notice that for 2^j^p, ε~lXj belongs to s~1dΛ. However the
function u is defined and differentiable in a much larger domain, this is why the
above formula is true.

Let us first consider j ^ p + 1 in the last term. Integration by parts on A gives

- Σ ε-("-1)d+'-3 f

2 J dx2-"dxnu
(dΛ)p~lxΛn~p

2 f dx2'-dxΛXj'^-u
j = P+l (dΛ)p-ixΛn-p dXJ

+ Σ β-("-1)d+l> f dx2-dxpdxj J dXp+ι . d*Γ dXlfc-2

Xfnϊu.
J = P+1 (dλ)p Λn~p~l

Let us now consider; ̂  p. From Lemma 3 below we have for XjεdΛ and yj = ε" 1

Xj\

divc

x°;(TXj(xj)u) = TXj(xj)-^- + ε- * TXj(xj)-^ + (d- l)u + (d- \)H(Xj)(xfnjlu.
ΰXj oyj

Integration by parts on dλ then gives

_ £ ε _ ( n _ 1 ) d + p _ 3 j dx^ dx.xj ^-
J = 2 (dΛ)p-lxΛn-p °yj

- - V p-(«-i)rf+P-3 f Ax . JY τ /γ v— -μίv w ^n •—- L ε J «x2"'^«Mx/^^ Λ +v^ ^nj
J=2 (dΛ)p-lxλn-p L ^j ^jj
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= - Σ β-*-
j = 2

-(d-

J dx2.-dxnu.
(dΛ)p~lxλ"~p

For later purposes, note that if XjedΛ , then du/dxj is tangent to dΛ at x^ . Therefore

_ ι , v <?w _ 1 δw
ε X T (x .)•-— = ε ^/-r-.J ' dx7

 J 3x7-

Collecting all terms gives Lemma 2. Notice the cancellation of the singular terms (as
ε -> 0) proportional to

ε-(n-1)d+p-2 j ^2...^Mw(x2?...5Xπ;ε-ιχ2>...)ε-ιXf|). Q.E.D.

(dΛ)p 1xΛn p

Lemma 3. Lei Tx(x) be the orthogonal projection of the vector xelRd, defining a point
xedΛ, onto the tangent plane at xedΛ. Then

divcovT(x) - d - 1 + (d - l)H(x)x-n(x),

where H(x) is the mean curvature of dΛ at x, defined with the inner normal n(x) as
follows: ifeί9...9ed-l9n(x) is a moving frame at xedΛ [3], then

1=1

Proof. Let the 1 -forms σk be defined by

so that

d-l

de =

i
d-l

d-l d-l
dσk= Σ Σ

1=1Γ=1

The co variant divergence on dΛ is defined, appropriately for integration by parts on
dΛ9 as

div™T(x) = dΣ(-)k-1d{(ek'T(x))σί Λ .- Λ σk Λ - Λ σ^/σ, Λ - Λ σd,
fc=l

where Γ(x) could be replaced by any vector field in the tangent plane.
The proof of Lemma 3 is a straightforward computation, following the rules of
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exterior differentiation and using

dek(el)-el + de^-ek = d(ek eύ(ed = 0.

Proof of Theorem 1. By induction over q, consider first

4 = 0, fc = 0, r = l .

In a neighborhood of the origin, the equation for dΛ may be written

X = (ZΛ(X),X),

where zλ(\) is a C1 function of xelR^"1 and

= O, ι̂(0) = 0.

The equation for yeε~1dΛ will then be

The uniform convergence of the integral defining Intpo(ε) means that for any η > 0,
there exists a ball B a Ud such that for all εep^εj,

>p0+1 - ' yn) <η/29

where εί is such that ε^B is contained in the neighborhood of the origin as above.
The integrand is continuous in εe[0, εx], y2, . . . , ypoe(Rd~ x n B, ypo+l9...9 yn<=B

and is therefore bounded by a constant. The characteristic function of
(ε~ 1 Λ)n~po is also bounded. The dominated convergence theorem then implies that
/M>po(ε) is continuous at ε = 0.

We now proceed by induction over q. If Theorem 1 is valid up to q — 1, it will be
valid up to q if we can apply it to (d/dε)Intpo(ε). We only have to check the hypothesis
for v and w, in Lemma 2.

The hypothesis

enters as follows. Each derivative in ε requires one moment (hence q\ except when a
derivative of w with respect to yj is taken (hence |α|), or when the dimension of the
integration domain decreases by one (hence p — p0). This concludes the proof of
Theorem 1.

Theorem 2. Let A a Ud, A compact connected, and dΛ of class C . Let
un(xι 9 X2 9 j xn) be a Ck function ofx^ , x2, . . . , xMelRd, symmetric under permutations
of x !,..., xn, invariant under simultaneous translations ofxί9...9xn Let l ^g^
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Min(fc + 2,r) and suppose that all derivatives Daun with respect to x1,x2,...,xn of
total order 0 ̂  |α| ̂  Max(0,q - 2) satisfy un(Q,y2,... j j JeL^R01"1)d), and

J dy2...dyn'l\yj\v\D*un(Q,y2,...,yn)\<c<co

for all εe [0, ε0], for all p with I^p^q9 for all {q2,...9 qn} with

β^o v/,
qj^l if ;>p,

Suppose moreover that the above integrals are convergent, as any | y/ 1 -»oo , uniformly in
the other variables (particularly ε and xj. Then the function

= εd J dxι—dxn un(xv , . . . ,xw)

is Cq in ε at ε = 0. Moreover

In(0,Λ) = \Λ\ I d.

TεWΛ)=- J dy2—dya

<+)"-'

^Un) I/MB is rotation invariant, where

= +i(n— 1)1 I dxH(x) \C2(un) ifun is rotation invariant,

where

and

Γ V

Σ(yj-χJ'nι }un(χι,y2'~yά

c/ε3 1 S dy2 J
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ι J dy2dy3 f
-

.
4 δ/l (Rj -i)* (<+r3

I J dx[ H2 — -- — -K I }c3(un) i f n = 2or3 and un is rotation invariant,
\dΛ \ 3d— I JJ4

where K is the gaussian curvature.

Proof. /π(ε, Λ ) can be put in the form

A"

We then compute, using integration by parts as in the proof of Lemma 2:

^/,M)= -ε-<"-1)d f dx^.d
-

where n1 is the inner normal to dΛ at x l β Lemma 2 can now be applied to give

j dxl9...9dxn(ε~2(x2-xi)'n2)

So far, it has not been necessary to compute any gradients with respect to variables
on the boundary. This explains why the hypotheses in Theorem 2 are slightly milder
than in Theorem 1.

We now give a general recursion formula:

Lemma 4. For q ̂  3 we have

dq Mm(q,n)(n _ n|

"£ dΛ p=2 (n — pμ

J dx2>~ dxnF
q

p,n(xι - xp; ε
(a/i) p " 1 χΛ"~ p

with

d d
= Gq

p lXl>9χ2...x 9y2...y — ...

The operators Gq

p are defined recursively by
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where QXί(z,y) is defined as in Lemma 1 (where x1 = 0) and

d d

p ( d d }
= T t -Q(xi9y1)ni — + (d-l)H(x,)n1 yί + -r—'yί>j = 2 ( J Syj dXj J

so that Gq

p(x1'~xp;y2 -yp; (d/dy2) — (d/dyp)) is a polynomial in [y^j and
{nj (d/dyj)}j with coefficients continuous functions of x1 - xpedΛ . The order of Gq

p

(i.e. the degree in {d/dy^) is at most q — 2. The total degree of Gq

p in {y^j (counted
positively) and {d/dy^j (counted negatively) is at most

Proof of Lemma 4 and Theorem 2. The proof is now straightforward, using Lemma 2
and Theorem 1.

Corollary 1. Let A c Ud,Λ compact connected and dΛ of class Cr. Let

un(xl9x29...9xn)^ X Π (e~βφ(x^-\\ (1)
Ge0(xlv..,xn)(x,αc')eG

where g(xl9...,xn) is the set of graphs connecting xί9...,xnby two body unrepeated
links (x, x'\ and where the potential Φ(x, x') depends only on the distance \x — x'\ and
is stable and regular for moments up to 2q — 2:

VneN,V(x l 5...,xJe(Rr
i<j

and
\x\)2q-2\e~βφ(()>x)- 1| < Cq(β).

Suppose moreover that e~
βφ(0'x) is Ck in x with k = Max(0,<? - 2) and

fώc |x |
d* _e-βΦ(0,x)

< 00
d\x\*~

for 1 ^ α ̂  q - 2.
Let the pressure p(ε~1Λ) in the volume ε~1Λ be defined by

Σ π Γ ί dx^-dxnun(xl9...,xn)

and the activity z be such that

Then the pressure p(ε~1Λ) is Cq in ε at ε = 0.

Proof. It is sufficient to prove

ί dy2 d
- -
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for some dq and all n, for all {<?2, . . . , qp} and α and ε as in Theorem 2.
We replace un by the Mayer expansion (1) and apply the derivatives. Leibniz's

rule leads to 0(rc|α|) choices of differentiated links. We now consider one such choice,
so that at most (q + 1) links are differentiated.

We then note that every j;7 is connected to y1 by a succession of links yk9yl and
replace \yj\ in (2) by the bound

where the product runs along the path from yj to y1.
We are now in a position to apply the Kirkwood Salsburg equation with the

kernel

for all links except the q + 1 prescribed differentiated links. The bound (2) is then a
standard result [2].

In Corollary 1, it was assumed that the activity z was small enough, but the result
should be valid in the whole domain where the pressure is analytic in z, assuming
bounds for the truncated correlation functions rather than for the Ursell functions.
This requires a resummation of the expansion in z", and will be easier to formulate in
terms of the average number of particles JV(z,ε~M) or in terms of the average
density

9oz

= Σ r-^πτl Λ I " 1I»(ε> Λ ) if z small

n = ι(n— ι)i

Let Pm(χι'"xm) be the m-point truncated function at activity z in volume Λ. For
small z, we have

Pm(*i-*J = *w Σ ^fdyi-dy^+nfa-Xnyi-ya
n = on\ Λn

When jqed/l, let &~l(Λ -xj and s"1(dΛ -xj be the transforms of Λ and dλ
under a scaling of amplitude ε~ l and center x^ . We can now formulate Corollary 2:

Corollary 2. Under the hypotheses of Corollary 1 , the average density ή(z, ε " M ) is Cq

in ε at ε = 0

J
= 2 ( j- ' iaΛ-*

+.- ,L
where Gq

p is defined in Lemma 4.
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Suppose now that for all εe]0, ε0[, ή(z, ε~ 1Λ) and its q first derivatives with respect
to ε have an analytic continuation to a domain D containing the origin and are bounded
uniformly in εe]0,ε0[.

Then n(z,ε~1Λ) and p(z,ε~1Λ) are Cq in ε at ε = 0for all zεD.

Proof. The first part of the corollary is just a computation. The second part follows
from Vitali's theorem. Note that the formula given in the first part is meant to be
used for bounding the derivatives of n(z9ε~1Λ) when using the second part of the
corollary.
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