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Abstract. We consider a dilute classical gas in a volume ¢~ ! A which tends to R?
by dilation as ¢—0. We prove that the pressure p(e " !A)is C?in ¢ at e=0
(thermodynamic limit), for any geN, provided the boundary dA is C? and
provided the Ursell functions u,(x,, ..., X,) admit moments of degree q and have
“nice” derivatives.

1. Introduction

In a recent paper [1], Pogosian derives the asymptotic expansion of the pressure
p(e"1A) in the thermodynamic limit ¢ —0, up to order d in ¢,

pe™rA)=ag(A)+a(A)e+ -+ as_(A)e? ! +aA)e? +r e, A)e?
for a dilute gas in A = Z or A = R”. The remainder satisfies

O(loge™!) in general
Irae, A)| <4 0(1) d=2
0(e) if A< Z? or A polyhedron in R

The hypotheses on 0A are the natural ones, the hypotheses on the interaction
potential are rather complicated and are not optimal. The proof is based on the
Mayer expansion and extensive use of Taylor expansions.

The present paper extends the above results and simplifies the proofs, for
volumes ¢ !A = R? with A4 smooth. We prove the absence of logarithms (as
conjectured by Pogosian), and extend the expansion to all orders. The order d
(dimension of space) has nothing special to it when the interaction is smooth, which
we assume, as Pogosian does in his proof if we understand it correctly. It is clear
however that strong singularities in the interaction potential would show up in the
expansion at some order in ¢ depending on the dimension. We do not know whether
a jump discontinuity in the Ursell functions (e.g. square hard core potential) would
spoil the expansion at all.
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Our hypotheses on the long range behaviour of the potential are the minimal
hypotheses for the absolute convergence of the sums and integrals which define the
coefficients of the expansion in the limit ¢ =0.

It is well known that a(A) and a,(A) are proportional respectively to |A | and
|0A|. Pogosian has shown (for A smooth):

a,(A) =~ | H(x)dx,
in

where H(x) is the mean curvature at xedA. We remark that the two point Ursell
function does not contribute to a,(A):

& lf 2dxdyUz(x —y)=bo|A| + b, |0A| + &3b;{R™%),, + 0(c*),
(e”"A)
where R ™! denotes the normal curvature in a plane normal to 0A at xedA, and the
average is taken over the orientation of the normal plane and over xedA. This
explicit formula assumes rotation invariance, and is valid only for the two point
function. General results and formulae for the n-point integral are given in Theorem
2.1In general a{A ) will be a finite sum (not just one term as above), where each term is
factorized into a potential dependent factor times a volume dependent factor.

Corollary 1 combines Theorem 2 with the Mayer expansion for the pressure, at
small enough activity. Corollary 2 extends the results to the whole analyticity region
in the activity, assuming bounds on the truncated correlation functions; it also gives
recursion formulae for the expansion in ¢ of the average number of particles in
volume ¢~ 1A.

Theorem 1 is the hard core of the paper, which we now explain in words. (The
reader interested in final results might now go to Theorem 2 and corollaries).

The idea of our derivation is to write a Taylor expansion around ¢=0 of
p(e~*A). This will involve of course computing derivatives of that quantity. These
derivatives will be expressed in terms of various integrals containing derivatives of
the Mayer functions. Explicit expressions for these integrals will be determined by
recursion over the order of derivation in &. Due to the presence of ¢! in the function
p(e~ ' A), derivations in ¢ will produce terms which are apparently singularine = 0. It
turns out that under our regularity hypothesis these singularities cancel. This
compensation is performed explicitly by using integration by parts over the space
variables. Therefore a typical term in the Taylor expansion of p(¢ ~*A) will be a sum
of integrals with some variables being integrated over the domain A, and the
remaining variables over the boundary dA of A. One can observe that two scales are
present in the problem: the fixed scale of A, and the varying (large) scale ¢ . This
implies that the integrands can be regarded as functions of the space variables x on
the one hand and of y =&~ 'x on the other hand.

Lemma 2 deals with the derivation with respect to ¢ of such integrals. Lemma 3 is
an identity from differential geometry which is used to exhibit cancellations of
singular terms in the integration by parts (see for example [3] for the method of the
moving frame). As explained above, our main result follows by recursive applic-
ations of Lemma 2.
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2. Results

We first give a local result (Theorem 1, where the n-point function is anchored at
x; =0), then a global result with detailed formulae (Theorem 2), which we apply to
the Mayer expansion for the pressure (Corollary 1); Corollary 2 deals with the
number of particles, with hypotheses bearing on correlation functions rather than
on Ursell functions.

Theorem 1. Let A = R% 0€0A, 0A a C" hypersurface. Given integers n = py = 1, let
U(Xgs oy X3 Vasenrr V)€ CH(OA)PP ™ x APTPO x R~ D)

Let 0<qg<inf(k,r—1) and suppose that all derivatives D*u of total order
0 < |a| = q satisfy

)4
dyz---danzllyjI‘“ID“u(syz,--.,8y.,;yz,---,yn)l <c<w

€ taA)P T U Ay TP

for all e€[0,¢,], for all p with po < p < n, and for all {q;} with

)4
q;20, ;qj§q+loc|+p—po-

Suppose moreover that the above integrals are convergent as any |y;|— + o,
uniformly in the other variables (specially &).
Then the function
In,po(8)= j dyZ"'dynu(syZD"‘98yn;y2’~--9yn)
oo Tk tay P

isCilate=0.

Remark 1. 1f we assume 0A of class C" only near the origin, we can conclude that
I, »,(€) is the sum of a C? function and an 0(¢?) function.

Remark 2. The function u is required to exist on a much wider domain than is
necessary to define the integral I, ,,. The reason for this is that the domain of
integration has a singularity at ¢ =0.

The next three lemmas will be the basis of the proof of Theorem 1 and also shed
some light on its formulation.

Lemma 1. Let A = R% 0€dA, A a C" hypersurface, let n(z) be the inner normal to
OA at z. Then there is a function Q:0A x R?— R, homogeneous of degree 2 in the
second variable and C"~? such that

e %z'n(z) = Qz,y)|,_,1,

Proof. There is an ¢ independent neighborhood V of 0 in R? such that

1) If zedA NV, then zteVVite[0,1].

2) If xeV, the orthogonal projection P(x) from x onto JA is differentiable in V,
and the vector x — P(x) realizes the shortest distance between x and 0A.

Let y be a C* function from R? to R™ such that y = 1 on some neighborhood of 0
and y =0 outside V.



4 P. Collet and F. Dunlop

We define a function Q?(z, y) by

z-n(z)
2|2

0¥(z,y) = (1= x@)lyl>

This function is C"~! in z and quadratic in y. Moreover, if z¢V,

Z'n(Z) = Q(Z)(Z$ y)'y:e_lz‘
For zedA and te[0, 1], let

g(t) = P(tz) n(P(t2)) x(t2).
This function is well defined for any zedA, and any t€[0, 1]. From g(0) = 0, we have

1 1
g(1) = g X(t2)P(t2) Dipz)(DPy,(2))dt + g P(tz) n(P(2))Dy.(2)dt

(the term DP-drops out).
From P(0) =0, we have if tzeV,

t
P(tz) = [DP,(z)dt
0
We now define a function Q)(z, y) by

0z, ) = j}dtx(rz)idwaz(w-an(,szP,,(y))

1 t
+ g dtDXzz(y)(,[ dtDP (y) n(P(tz)).

Notice that by the star-shape of V, Q") is well defined for any z in A, since tzeV
implies tzeV for any t€[0,¢t]. Q™ is obviously C"~2 in z and quadratic in y.
Moreover

g(1) = P(z) n(P(2)) = z.n(z) = Q"(z, 2).

The result follows if we set Q(z, y) = 0z, y) + 0¥z, y).

Q.E.D.
Lemma 2. Formulae for I, (e) and its first derivative:
I, (e)=¢ - Datr=t [ dxy ... dXx,u(Xy,. .. Xp; 8 1Xgs.0s € 1X,)
@AP " IxA""P
d -(n—1)d+p—1 cg 1
d_I""’(g)=8 [ dxyeeedx,v(xy 567 xyee)
& @AP~Txanr

n
—(n— ¥ a1
+ Z e (n 1)d+l’jdx2...dxpdxj j dxp+1...dxj...dxnwj(xz...,g xz...),
j=p+1 (aA)P An—p—l
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where
P 0
0(Xgs s Xg} Vasee s V)= — 3 Q(xf’yf)<"f'a_“
=2 Vi
P n ou
+ ), (@ —= DHE ) n)u+ 3, yy5—
=3 j=2 " 0X;
and

Wi Xas oo X3 Vasenes V) = O(x;, y;)u.
where Q(x,y) is defined in Lemma 1 and H(x)) is the mean curvature as defined in
Lemma 3.

Proof. The formula for I, ,(¢) is obvious from the definition. We now compute

%I,,,,,(s) [—(n—1)d+p—1]e~ o DarP=2[y...

n 0
— ) gmnmDdtpm3 | dxy o dxy X ——WU(X,, ..., X587 X5, 00,87 1X,).
j=2 @AP~1xA""P 6
In the last term, notice that for 2 <j<p, ¢~ 'x; belongs to ¢ 'dA. However the
function u is defined and differentiable in a much larger domain, this is why the

above formula is true.
Let us first consider j = p + 1 in the last term. Integration by parts on A gives

n 0
Y oetmvatees dxz~-dx,,x,~-(a—u)(x2---xn;e-1>.c2~-e-1xn)
j=p+1 @AY " IxAmT? Vi

—(-1)d+p-2
=(n—p)de” " Vitrp | dx,--dx,u
@AY "1 xAmTP

+

+
i=

8—(n—1)d+p—2 J’ d ..d

X Xj 7 (3
1 @A~ 1x AP

M=

+ Y gm0V [y, dxdx; [ dxpyqceedXgeeedx, (€T 2 nu.

j=p+1 (@A) APt

+

Let us now consider j < p. From Lemma 3 below we have for x;€0A4 and y;=¢™ 'x;,
. 0
V(T (x,u) = T (x ,)-% e T, (x,) + (d — 1) + (d — DH(x,)(x;nu.
j
Integration by parts on A then gives

_ i g~ (1~ Dd+p=3 | dx,--dx, X ou

. nj a
j=2 (@AY~ 1xAn—P

=— ie“"‘”‘””” [ dxyee [ (x,) +(x ‘nyn; 3 ]

i=2 @AP~IxAnP
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ou

p
= — Z 8_(”—1)d+p_1 j‘ dxz...dxnli(s_zxj-nj)nj.ay_._
J

j=2 @AY 1xaP!

—(d— DH(xus™ (x;n) —e™" ij(x,-)-%]

+(p—1)d—1)e " D¥*e=2 [ dx,..-dx,u

(@AY~ Ix AP
For later purposes, note that if x;e0A, then du/0x; is tangent to dA at x;. Therefore

ou ou

e 1T, (x)—=¢"1x;—.
x{x) 0x; i 0x;

Collecting all terms gives Lemma 2. Notice the cancellation of the singular terms (as
¢—0) proportional to '

g=(n=Dd+p-2 [} dxy...dx,u(x,,..., X5 1%,,...,6 7 1x,). Q.E.D.
@AY "1 xAmTP

Lemma 3. Let T,(x) be the orthogonal projection of the vector xeRY, defining a point
xe€0A, onto the tangent plane at xedA. Then

dive"T(x) =d — 1 + (d — DH(X)xn(x),

where H(x) is the mean curvature of OA at x, defined with the inner normal n(x) as
follows: if eq,...,e,_1,n(x) is a moving frame at xedA [3], then

d—1
((d — DH(x)) = n(x)- lzl deey).
Proof. Let the 1-forms o, be defined by
oe) =0y, k=1,...,d—1l=1,...,d—1

so that

-1
dx= Y o,
1

a-1
de, = 1—21 de(e)o,

d-1d-1

dO’k = l=zl llgl (del(ell)'ek)O',A 0';.

The covariant divergence on dA is defined, appropriately for integration by parts on
0A, as

-1
dive'T(x)= Y (=) 'd{(ex T(x))oy A = AL A -+ AGa_1}/01 A - A Gy,
K=

where T(x) could be replaced by any vector field in the tangent plane.
The proof of Lemma 3 is a straightforward computation, following the rules of
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exterior differentiation and using
de,(e) e, + defe) e, = d(e, e)(e) = 0.
Proof of Theorem 1. By induction over g, consider first
q=0, k=0, r=1.
In a neighborhood of the origin, the equation for A may be written
x = (2 5(x), X),

where z 4(x) is a C* function of xeR?~! and

0
2a0)=0, —-2,0)=0.

The equation for yee™'dA will then be

We,y) = (e "z ey), y).
The uniform convergence of the integral defining I, , (¢) means that for any n >0,
there exists a ball B < R? such that for all e€[0,¢,],

Po

In‘po(s) - j dy, - 'deodeo+ 10 dynl;[

B @ TP xem Ay Ry

dyey;)
dy;

'u(y2(89YZ)r"'9ypo(8’ypo)’ypo+1’-'~ayn) <’7/29

where ¢, is such that ¢, B is contained in the neighborhood of the origin as above.

The integrand is continuous in e€[0,&,], ¥2,..., Yo, €R "N B, Ypor1,..., VuEB
and is therefore  bounded by a constant. The characteristic function of
(6"t A)"~Pois also bounded. The dominated convergence theorem then implies that
I, ,(€) is continuous at &= 0.

We now proceed by induction over gq. If Theorem 1 is valid up to q — 1, it will be
valid up to g if we can apply it to (d/de)l,, ,,(¢). We only have to check the hypothesis
for v and w; in Lemma 2.

The hypothesis

)4
;qj§q+!a|+p—po,

enters as follows. Each derivative in ¢ requires one moment (hence g), except when a
derivative of u with respect to y; is taken (hence |a|), or when the dimension of the
integration domain decreases by one (hence p — p,). This concludes the proof of
Theorem 1.

Theorem 2. Let A <R, A compact connected, and 0A of class C". Let
U (xy,%s,...,x%,) be a C* function of x,,x,,...,x,eR?, symmetric under permutations
of X1,...,X,, invariant under simultaneous translations of x,,...,x, Let 1=q=<
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Min(k + 2,r) and suppose that all derivatives D*u, with respect to x,,X5,...,%, of
total order 0 £ |a| £ Max(0, g — 2) satisfy u,(0,y,,...,y,)eL}(R"~V9), and

[ dx, f dyy -+ dyy [T D0, y2s .,y < € < 0
04 TMOA—x P T xEeT A —x) T 2
for all €€[0,¢,], for all p with 1 £ p<gq, for all {q,,...,q,} with
q;20 V),
g; =1 if j>p,

n
;q;§q+lorl+p—1~

Suppose moreover that the above integrals are convergent, as any | y;|— co, uniformly in
the other variables (particularly ¢ and x,). Then the function

Le,A)=¢ [ dx -dx,u,x;,...,X,)
@Ay
is C?in ¢ at ¢ = 0. Moreover

In(O’A)=|A| I dyz"'dynun(()’yl""’yn)EIA'CO(un)s
(Rd)n—l

d n
%In(OaA)__— - !dxl _‘l dyZ"'dyn<;(yj—xl)'n1>un(x17y29---9yn)

oA ®Ey!
= —|0A|C,(u,) if u, is rotation invariant, where

Re, , ={xeR%(x — x,)'n; 20},

0 ifn=2
d2
10, =
€ —3n—1) [dx; | dy, | dys---dy,
am R @,
((p2 = x4)Dny(y, — x1))<;(}’j - xl)'”l)“n(xl V255 V)
=+3mn— 1)( [} dxH(x))Cz(u,,) if u, is rotation invariant,
A
where
Ri~! = {xeR%(x — x,)'n; =0},
and
Cy(u,) = _f dJ’2(J’2_x1)2 I dys"'d}’n<;(yj'_x1)'”1>“n(x1a)’2"‘y':),
Ry ®, .2

a3 n—1
Fln(O,A)= 4 a,[‘dxl _[ dy, j dJ’3"'d}’n((J’2—xl)'Dnl(J’z—xl))z-

RESY O (RETT2
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{(1 + (2::()’,' - x1)'"1)<"1'b%>}“n(x1,,\’2: s Vn)

_wa£dxl [ dydys | Sd-V4'”dyn((Y2"xl)'Dnl(h—xl))-

4 ®E 1> ®, )~

“((y3 —x1)-Dny(ys — x1))(2::(Yj —X1)'ny )“n(x1 2 VaseesVn)

= (n— 1)< [} dx<H2 —%Z;f ))C3(u,,) if n=2 or 3 and u, is rotation invariant,
oA - '

where K is the gaussian curvature.
Proof. I,(¢,A) can be put in the form

Lie, A)=¢e "D [ dx, ... dx,u 0,6 (x; — x,),...,6~ (x, — x,)).
A
We then compute, using integration by parts as in the proof of Lemma 2:

il,,(a,A) =—g 7D [ dxyeedx, Y (67 (X — xq)ny)
de A x A" 2

'un(o, & 1(x2 - xl)s ceey & l(xn - xl))’
where n, is the inner normal to dA at x,. Lemma 2 can now be applied to give

2
d—zl,,(s,A) =—(n—1e @7 [ dx L dx, (67X, — X4)ny)
de (6A)2x/1""1

-(Z::s“ Yx;— xl)-n,>u,,(0,e‘1(x2 — X))y 8 (X, — x1)).

So far, it has not been necessary to compute any gradients with respect to variables
on the boundary. This explains why the hypotheses in Theorem 2 are slightly milder
than in Theorem 1.

We now give a general recursion formula:

Lemmad4. For q =3 we have

i Min(g.n)(p — 1)!
—I(e,A)=— |dx T le-t—1d+p-1
de? (& A) a& ' 5 (n—p)
dx,---dx,F% (x, "'xp;ﬁ_l(xz—xl)"-a_l X, —x,))
@AY IxpmP
with
F3 (1 Xp3 Y27+ Vi)
= Gy ¥isxaroxps T i ‘ny Ju O )
=YUp 1>v2 payZ .Vp,ayz ayp Zyj 1 " ’yz yn'

The operators G4 are defined recursively by

0
G%(xl;xzhvz;@):Qxl(xz,)’z), G%EO

-
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where Q,,(z, ) is defined as in Lemma 1 (where x; =0) and

0 I}
Gitt 1Xg Xy Vgt Yy —
P (xl X XpsYa -+ Yp y, @y,,)

P 0 0
= ,-Z‘z{ —0lx;, yj)”j'a_yj +(d—1)H(x)n;y; + a_xj‘y’}

.Gg(.; ’,).}. Qxl(xp’yp)qu_l(.; ceep ey ees),

so that GY(x,---Xx,;¥,:-:y, (0/0y,)---(0/0y,)) is a polynomial in {y;}; and
{n;-(0/0y;)}; with coefficients continuous functions of x, - x,€0A. The order of G¢
(i.e. the degree in {0/dy;};) is at most g — 2. The total degree of GZ in {y;}; (counted
positively) and {0/0y;}; (counted negatively) is at most g+ p — 1.

Proof of Lemma 4 and Theorem 2. The proof is now straightforward, using Lemma 2
and Theorem 1.

Corollary 1. Let A = R% A compact connected and 0A of class C'. Let

UX1, X050 X)) = Y, [T (e7#P2=x)—1), 8))]
Geg(xy,....X,) (X,x")EG
where g(x,,...,X,) is the set of graphs connecting x,,...,x, by two body unrepeated
links (x, x"), and where the potential @ (x, x") depends only on the distance | x — x'| and
is stable and regular for moments up to 2q — 2:
VneN,¥(x,,...,x)e(RY)", [T + |x;— x;|)2~2[e P 2xx) — 1| < e"PPa
i<j

and
fax(1 +|x|)?2"2|e" 2200 — 1] < C(B).
Rd

Suppose moreover that e~ ? %% is C* in x with k = Max(0,q — 2) and

dd
e B20.0| < o

dx|x|?t*
RN P

for12a<q—2.
Let the pressure p(¢~*A) in the volume ¢~ *A be defined by

Bl Alpe A) = 3 2 [ dvy o dryilens .. x)
A=l g
and the activity z be such that
z<ePB(C(B) .
Then the pressure p(e " *A) is C?in ¢ at ¢=0.
Proof. 1t is sufficient to prove

p
dy2 o d.Vn];[ijiqleaun(Os Yo yn)l < n!enﬂBqu(ﬂ)n(l + n)dq (2)

(e 1AP T x(e~ AP
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for some d, and all n, for all {g,,...,q,} and « and ¢ as in Theorem 2.

We replace u, by the Mayer expansion (1) and apply the derivatives. Leibniz’s
rule leads to O(n™) choices of differentiated links. We now consider one such choice,
so that at most (q + 1) links are differentiated.

We then note that every y; is connected to y, by a succession of links y,, y, and
replace |y;| in (2) by the bound

ly;l = H(l + |y —nl),
where the product runs along the path from y; to y,.

We are now in a position to apply the Kirkwood Salsburg equation with the

kernel

(1+ [y =y~ 2100 — 1)
for all links except the g + 1 prescribed differentiated links. The bound (2) is then a
standard result [2].

In Corollary 1, it was assumed that the activity z was small enough, but the result
should be valid in the whole domain where the pressure is analytic in z, assuming
bounds for the truncated correlation functions rather than for the Ursell functions.
This requires a resummation of the expansion in z*, and will be easier to formulate in
terms of the average number of particles N(z,e *A) or in terms of the average
density

n(z,e 1A)=e 1A I“IN(z,e‘lA)=ﬁza%p(z,s‘l/\)

=y (n—Z——l)'lA |"1,(e, A) if z small.

n=1
Let pA(x,---x,) be the m-point truncated function at activity z in volume A. For
small z, we have

0 Z"
p':l‘('xl "'xm)=zm Z n_' jdyl "'dynum+n(xl"'xmyl"'yn)'
n=0MN 4n

When x,€dA, let e *(A —x,) and ¢~ (04 —x,) be the transforms of A and 9A
under a scaling of amplitude ¢! and center x, . We can now formulate Corollary 2:

Corollary 2. Under the hypotheses of Corollary 1, the average density i(z,e~ ' A) is C*
ineate=0and
q

d? _
E—qﬁ(zﬁ_l/‘):—l/ﬂ lfdxl Y f dy,---dy,
€ oA

P=2¢"! (@A —x) !

0 0
Gp(‘xlaxl +8J’2,~--,xp+8yp,)’z yp,ayz ayp)

P -
'{(;J’j”’h) % l(A—x‘)(’hyz “Yp)

+ f de+1(yp+1‘n1)/’;_+l§A—xl)(le’2"'yp+1)}’

s A —xy)

where G is defined in Lemma 4.
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Suppose now that for all €10, g,[, i(z, ¢~ 1 A) and its q first derivatives with respect
to ¢ have an analytic continuation to a domain D containing the origin and are bounded
uniformly in e€]0, g[.

Then i(z,e *A) and p(z,e *A) are C%in ¢ at ¢ =0 for all zeD.

Proof. The first part of the corollary is just a computation. The second part follows
from Vitali’s theorem. Note that the formula given in the first part is meant to be
used for bounding the derivatives of 7i(z,e "' A) when using the second part of the
corollary.
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