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Abstract. We investigate the connections of the Gibbs measures, which appear
in Euclidean Field Theory, and the corresponding partial differential equations
of Classical Euclidean Field Theory.

1. Preliminaries

Let & denote the family of bounded open sets A C R? with piecewise %", for some
n=1, boundary dA. Let %, be a countable base of Z, i.c.

Fo:={A}nenCF such that for every nelN,4,CA,,, )
and VAeZ dn ACA,.
For ACR? we denote A°:= RA\A.

Let (2,%) be a standard Borel space. We assume that in X there is a
distinguished family of g-algebras of local events {X,} ,. #, Which generates ¥ and
is compatible, i.e.

A A, € F:A,CAy = 2, C2y, . 2)

For any open set Q C R we define the o-algebra X, as the o-algebra generated by
{Z,:AeF,ACQ}. For arbitrary set Q CR? we define

Zo:={(125:0 open, 020} . 3)
In particular we have the family of s-algebras {Z ..} ,.# With the property
A, Ay e F A CAy = 2 sCL 0. 4
We define the o-algebra at infinity by
.= AQf 2 g o)
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For AZR? A, denotes the set of bounded X , measurable real functions on (Q, X).
If A=R* we will write A= W..

By .# we denote the set of probability measures on (2, X). For pe.# and a
measurable function F, by u(F) or simply uF we denote the expectation value of F
with a measure u. The conditional expectation of F with respect to a o-algebra 2,
associated to a measure u is denoted by E, (F|X").

We will write

WF,G):=puFG—uFuG. ©)
For pe M, if
VAeF VFel,, E/(F|Z,)eW,y,, W]
we say that u has the local Markov property, and if
VOQCR! VFeWU,, E/(F|Zy)eWUy 8)

we say (eventually restricting to the sets Q with sufficiently smooth boundary) that
u has the global Markov property and we write € GMP. The global Markov
property imply the local one, but the converse is not true in general (e.g. [7, 20]).

A local specification ([5, 12, 16]) is a family & : = {E ;c} ;. », Which consists of
functions

E;.:QxX-[0,1], 9
such that
i) VAeF Ywe, E4(-)e M,
il) VAe F VFeU, E (F)eU,.,
iii) the compatibility condition holds i.e.
Ay, A, e F: A CAy = E5(FE4:G)=E 45(FG) (10)
forany Ge, FeW,.. 0

A local specification § ={E .} ,. » is called Markov if it fulfills the following
condition, which can be essentially written as (cf. [14]):

VAeF YFeW ,E (F)eU,,. (11)
The set of Gibbs measures for & is defined by
YGE):={uec M:NAeF UE ;e=p}. (12)

The set of its extremal points [i.e. the set of those Gibbs measures for & which have
no nontrivial convex decompositions in %(&)] is denoted by 0%(&).

2. The Ground Specifications and the Ground Gibbs States

Let 7 be a Fréchet space of real functions on R? such, that 2 CZ C # densely and
continuously, where 2 is ¥ with the usual topology [19] and s is a Hilbert
space. Let 7 be the topological dual of 7. Let 4 be the Borel g-algebra of subsets
in g’ generated by (7', 7) topology.
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Let U be a #°(IR), real function bounded from below. For A € # and n e 7, by
(DZA we denote a (weak) solution of the Dirichlet problem, which is formally given

by: (— A +m2) $A(x) + UD(@A(x)=0 , for xed, (13)
P24(x) =n(x), for xed, (14)

where U™ denotes first derivative of U. We assume that U is such that the classical
problem (13), (14) has a unique solution. If a @ fulfills (13) for all x € R we will say
that @ is a global solution of this equation.

Let us assume that there is a Borel set QC7 " such that for each € Q the
problem (13) has a unique solution ®* € Q. Let us define

:i=3nQ. (15)

The following proposition follows easily from the above deﬁmtlons (for U
considered in Sects. 3 and 6)

Proposition 1. The family
& :={Ej}sews
where
E}d{-):=0g4 (") (16)

is a local Markov specification on the standard Borel space (2, X). The set of all
extremal Gibbs measures for this & is given by

09(8)={1=04: @ is a global solution of (13)}, 17
and we havepue %) = ueGMP. O

We call the specification & defined in Proposition 1 the ground specification
and the elements of 0%4(&) the ground states for the system with local interaction U
(we will also say shortly: for interaction U).

Remark. All the above is obviously fulfilled if we take as Q the set €, but for our
pourposes it is not sufficient. Note also that in general if Q contains elements which
are not simply the functions, then here (14) has symbolic sense. We will consider
this case more precisely in Sects. 3 and 6. Further it will be also clear why we have
chosen such names for & defined by (16) and elements of 0%4(&). O

3. The Free Euclidean Fields: Their Ground Specification
and Ground Gibbs States

Let us consider the Classical Euclidean Field Theory given by the equation
(=A4+m*)P(x)=0 18)

in the space R? (with m>0 if d<2). It has been proven in [14] (extending works
[1, 2]), that the associated Dirichlet problem

(—4+m*) P (x)=0 , xe4,

19
Pol(x)=n(x), xeA (19)
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has, defined in a unique way, a solution in any AC# open with a boundary
condition # from some Borel set QC 2. (See [14] for details. Note also, that in this
work the case of more general elliptic operators is considered.) Hence we have

Proposition 2. There exist the ground (Markov) specifications &° for Classical
Euclidean Free Field Theories. The extremal ground Gibbs states for these
specifications are given by all solutions of (18) through the definition in (17). All these
extremal Gibbs measures for &° have the global Markov property. [

Let for A€ %, A%1 be the [selfadjoint in L,(A)] Laplacian with Dirichlet
boundary condition on 04 (e.g. [6]).

Let
G =(—A"+m?)! (20)
with m>0 if d<2. For f>0 we define the measures pu"; by
pope = exp(= 3B f1121,04) 21)
where
IAI2 a0 = T F(0) GO (x, ) f(y) dx dy (22)
for supp(f)CA.

We also assume that on 2 ,. the measure (21) coincides with §,, o. Forally € &/,
for which the Dirichlet problem (19) has well defined solution Y34, we define the
measure

Ejo(F) = 0,5(F (@ + ¥7)). (23)

One can prove (e.g. [14, 2]) that the family &3 : = {E .} s » Where E . are given
by (23), forms the local Markov specification on some standard Borel space (2, X),
with QC2'. We call &} the free (local) specification at inverse temperature . [We
would like to add an obvious remark, that if one has constructed the local
specification by (23) on some Borel set Q, C %, then we can also define by (23) the
specification on the set

{(Y+Q,}Co,
where ¥ fulfill (18), and so we have no 4 priori restrictions on the growth of # at
infinity.]
Let
G:=(—A44+m?! (24)

where 4 is the selfadjoint Laplacian in L,(R?Y) with D(4) > 45 (R?) and m > 0ifd £2.
Let

112 1= f(x) G(x, ) f(») dxdy. 25

Then for any global solution ¥ of classical free field equation (18) the measure
defined by

py, e’ =exp(—=3 B fI12 1 +iP(S)) (26)
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is the extremal Gibbs measure for free specification &9, which has the global
Markov property. The set of the measures py 4 given by (26) is exactly equal to
0%(&7), see [8].

For any unbounded open set Q C R? the conditional expectation with respect to
Z e associated to uy 4 is given by the following measure:

Ey, (e 200 (1) = Ede, g€ ) :=exp(—=3 B~ fI12 1,00 +i¥72(f),  (27)

where f € 2, P22 is a unique in a set of py, ;-measure one solution of the Dirichlet
problem in Q with boundary data #. We have that

e n=i+¥, pypgac, (28)
hence
PR=pRLY, (29)
where P22 is defined in [14] as a solution of (19) which is unique in the sense that
for uy-a.a. je &,
PP= I;r? Y’foﬁ = 1;%1 piens (30

(with x, the characteristic function of A). This essentially means that P22 is
independent of behavior of 77 outside 9Q.

We can easily see, using (21)—(27), that the following proposition holds (in
which convergence of measures means convergence of the characteristic
functional):

Proposition 3.
&) 6° 31)
in the sense that for any A€ F,neQ,
Ele s Owyp » (32
where E'. , is given by (23), and
My, 555" Oy, (33)

as also for any unbounded open set Q CR*

Ebe g Opsos (34)

p—©
i.e. in the limit as the temperature B~ goes to zero, the local structure of Euclidean
Free Field Theory is exactly prescribed by the free ground specification &° and all
possible Gibbs measures (as also their properties) are exactly prescribed by the set of
ground states for &° (and their properties). [

Now it is “obvious” why the states uy 4 are extremal (for £7) and why they have
the global Markov property, since it is obvious for elements of 04(£°). By this
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remark we want only to stress the importance of further investigations of
connections of the theory of Gibbs measures and theory of partial differential
equations, particularly of the connections of (extremality and) the global Markov
property with the locality property for the equations of more general type (13).

Furthermore we will investigate these problems: The present paper is
concerned with the investigation of local aspects of the connections between
theories mentioned in its title in the context of Euclidean Field Theory.

In Sect. 4 we define and investigate the local specifications & with interaction
U at temperature S~ ', in the case of models of two dimensional Euclidean Field
Theory. We will show that [in the sense as in (31)] &} 4=z> 6°. Using this result
we propose in Sect. 5 a definition of Euclidean Field Theory with interaction U
associated to Classical Euclidean Field Theory given locally by the family of
corresponding Dirichlet problems (13) or equivalently by the ground local
specification &Y. Section 6 is devoted to investigation of ground specifications &Y
in d-dimensional Euclidean space. We expect that our investigations can give some
new light on the existence problem of Euclidean (Scalar) Field Theory in space of
dimension d =4.

In the second part of this work we will also show the existence of Gibbs
measures yi,, ; for the specifications &}, their extremality and the global Markov
property [the proof of the later property is not finished in the P(¢), case] proving
validity of a conjecture we state in [20].

It is very natural from the physical point of view and very important to
consider the families of local specifications &} at different § with interaction U and
the associated Gibbs states. In particular our investigations make more clear the
similarities of theory of phase transitions in statistical mechanics (e.g. [17]) and in
Euclidean Field Theory (e.g. [9, 6]).

4. The Specifications and the Ground Specifications
for the Euclidean Field Theory in Two Dimensions

Let ., be the space of regular measures p on (&, %) in the sense that

“eqv(f)é celiisi (35)
for some C>0 and

WAN:=alG*fll, +bIG*fIE, +3 1 fI2, (36)

with arbitrary constants a,b>0 and some p=4. Note that a,b,C, and p can
depend on p.

It can be proven (see e.g. [1, 20]) that for any u € ., there exist the solutions
Yo4(x) of Dirichlet problem (19) for p-aa. ne%’ such that
‘P%A(x)eLr(,u)(@Ls(A, dx) for any 1<r, s< oo for all bounded open 4CR? with
piecewise €' boundary, i.e. A€ Z.

Let for Ae F

Udop+¥i:= £:U(go+ oy, p(x) dx, (37)
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where : :, ; means the normal ordering with respect to a free measure p, , with
some mass m>0, and a real function U of the following types:

2n
— polynomial A ¥ aq', neN, a,,>0,
i=1

— trigonometric 4 [ cos(ag + 8(a))do(), (38)
— exponential 4 | exp(ag)do(a).

[do(x) means a nonnegative finite — or only finite in trigonometric case — measure
supported in (— 2]/7?, 2]/;) and 1>0.]

The function U 4(¢ + P2) is well defined in L,(u3%;)® Ly(1) — for any y € .4, and
any 1 <r, s< oo in the polynomial case, and at least for r, s =2 in the last two cases —
as the limit (in adequate space) of a sequence of functions U ,(¢, + P57 defined on
all &' x &’ [where @4x):=@(h(- —x)) with some h,€ D, h,——+> 5].

We define the local Markov specification &5 ={E .}, for a field with
interaction U and at temperature ! by

e PUA@TEINE (1 o)

by == o e (39)
on a standard Borel space (2, %), where , is a Borel set such that
2,.c U @, (40)

ueMy

where for any p € .4, Q, is a Borel set of p-measure one, on which the function ¥2*
is defined (at each point ne Q).

We assume, and it can be realized, that Q, is chosen sufficiently large, i.e. such
that the compatibility condition (10) for a specification is fulfilled.

Having & defined on some Q, C.%” we can define it also on the sets {¥' +Q,}
C2’, where W fulfills (18).

Let Q2 be a Borel set {¥ +Q2,} CZ’, with ¥ fulfilling (18), and let 2~ denote the
o-algebra of Borel sets in Q. From now on we consider the specification &5 on the
standard Borel space (€2, X). (For mathematically precise construction of specifi-
cations for random fields cf. [14, 15].)

Let 7 be a solution of the Dirichlet problem (13) in a volume 4 € #. We can
write (13) in the form of the Hammerstein equation

P2(x) = W34 — | GP4(x, y) U@ (y))dy = Pir(x) — G4+ U@ (v).

(41)
(We will show in Sect. 6 that for interesting U Eq. (41) has a solution.)
Now let us change the integration variables in (39) as follows
p=¢—G** UD(P1), (42)

then using the fact that
Ay — G U@}
dpg’s(9)

=exp (ﬁ(ﬁ(U‘“(d)f;A))— g U (@32 1,3,1), (43)
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we have
ﬂgAﬂe_”(U"(“’”'g" G UD@IN) —eUD@IN (g 4 PO _ G045 UD(PI4)

n — > n n
EidF)= e BUAW IR =GOAUM@]Y) ~ o D@F4) 4 4’)
and using our assumption (41) we can write (44) in the form

—_ A
By Holge T F (o + 83 45
W)= e ()
Ho,p

where we have written
¥ (o, D)= £ (e, @) ()

P= £ HU (@ +@3(x)) — U (23" (x) — (U@ (x)) ; ,(X)dx.. (46)
In order to investigate the  dependence of (45) let us observe the identity
Uy = ity D= 1), @)
which is the simple consequence of definition (21) of u3?; for any §>0.

Using (47) we can write (45) in the form

04, — BV 4B~ 120, D -1/2 oA
usle BV A(B @, Py )F(ﬁ / (p+@" )

he(F) = e BY (B~ 170, ®,0%) (48)
It is sufficient to consider the functions F of the form
F(p)=é*V, feg. (49)
Then
F(B~ 120+ @)= (010 04 (50)
and because f~'2¢(f) 5> 0 as the function on 2’ pointwise, so
F(B~ 112+ @5 =5 F(97%) (51)

pointwise and so in L,(u3"), for 1<p<co.
Now heuristically, we have

BB 0, 0= 02 s wB@iy + 3 BT gt e
G 20" (UR(@), (52)
hence we can expect, that at least in L,(u*
eTHYABT 0D o o hie? 0D (53)

if the right-hand side is uJ” integrable.
Combining the relations (48)~(53) we can conclude that (writing E. ,for E. to
show explicitly the dependence on f):

Elye j(F) 552> 0050 (F) . (54)
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From that we can write that
(5’,‘,’ —— &Y, (55)

p— o0
i.e. in the limit as the temperature §~ ' goes to zero the local specification & with
an interaction U converges to the ground local specification &Y (for the same
interaction U).

We will investigate now the limits (52) and (53) in the particular models. We will
see that (52) is easy and we have convergence in L,(u3") with at least p=2 (and
arbitrary 1 <p < oo in the polynomial case). The harder, but more interesting case
is (53). We will see that there are polynomial interactions, for which this limit
cannot exist in the form (54) for all boundary conditions (as should be expected
from the presence of phase transitions).

The Case of Polynomial Interactions. Let

2n
Ulg=4 Y aq*=iP(q), a,,>0, Ai>0. (56)
k=1
In order to prove that
BYA(B™ 20, 90 = 32 07 s (UR(@7Y) (57)

in L, (43", for any 1 < p < oo, using representation of polynomial as in (52), we need
only to show that

G

<o (58)

for all 1 <k<2n (it follows from hypercontractive estimates, see e.g. [6]). But by
our assumption (41) (we will verify this in Sect. 6) the functions U®(®4(x)),
1<kZ2n, are in L,(A, dx) with 1 <r < co, hence (58) holds (e.g. [6]).
Now let us consider the convergence (53). Because of (57) we need only to show
that
'u(ﬁ)Ae~pﬂ‘VA(ﬂ‘ 12¢, 5% ) <C<o (59)

for a constant C>0 independent of f=1, and some p>1. However we cannot
expect that (59) will be fulfilled in general since

,ugAe‘% 107 (UD@1))
cannot be finite for an arbitrary semibounded polynomial P(q) and an arbitrary
boundary condition . We now show that if

AP?Ng)> —m?, (60)

then (59) holds independently of 2. [Let us note that (60) can be fulfilled for any
semibounded polynomial if 4 is sufficiently small.]
Let m?> =m?—2¢>0 (with some 0 <& <1) be such that

UP(q)=AP?P(q)> —m>. (61)
Since

Ko" exp(r3(ii® +2): ¢ : (1)) <0 (62)
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for r 21, r(M?+¢)<m?, so it is sufficient to prove that for any s>1, there is a
constant C, independent of f=1 such that

15" exp(—spv, 4B~ 0, Py <Ci <0, (63)
where s i
v, p):=7"(q,p)+3(M" +e)q". (64)
Let us denote ¢ (x):=o(h(-—x)) with h e2’, h(z)=1 for z<x and
he—=5> 1, and ¢,: = o, (x)*. For simplicity let N=2n=degP(q). We need the
following lemma:
Lemma 1. There are positive constants y, D(®7*), C(®*) all independent of f21

such that
Bre (B~ @,, B2Y) > —D(PIM) N, (65)

and for any s=2
”ﬁve,A(ﬂ_ 1/2§0m 453’1) - ﬁ”e, AB” I/Z(P» ‘pZA) ”Ls(ug‘ ) < C(‘pf;A)SN/Z k7. (66)

From this lemma the bound (63) follows by Nelson’s original arguments (see [11]).
This ends the proof of (59) in the case of polynomial interactions.

Proof of Lemma 1. The second statement easily follows from the fact that »,(q, p)
does not contain terms of degree less than two and the fact that cD‘,’,A(x) € L,(A,dx)
for A€ % and any 1 <p <o (see Sect. 6). The proof of the first statement is based
on the ideas of [3]. Under the assumption (61), we have that the function

N
Vo= va(qa p)sE 0= kgz aqu (67)
with a, =a,(p), fulfills

d d?
7)O(qap)q=0=0a —Uo(%l’)q:o:O’ _27)0(‘1917)=U(2)(41+P)+m2>0-
dq dq (68)

Writing

1 N1 1
vo(q, p)= N_> ayq" + R <N-2 aNqN+aqu> +ayq*, (69)

and observing that

N5 wd"+ad 2zl (70)
for
N-2 _1
lgl= (lal + 1N %, (71)
an
we have
1 NS 2
vo(g, p)= ayg' + 2 lgl"+azq (72)
N-2 k=3
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for

1
a2 | max_ <N~2);—N(lak|+1>ﬂzcw>g1 . (73)

3<k=N-

On the other hand, for |g|< C(p), we have

Leg?zt——slgf, 3<ksN. 74
28q =2 C(p)k—2|q| s = _N ( )
Hence for any g€ R we have
N
Us(qa p)g k§2 bqulk’ (75)
with
€
= = = <
by=ay, by=a,, b N3O 2 3Zk<N. (76)
Let now g=pB"2¢,(x), then we have

N k2] o , e
B:vda,p); =B (vs(q, p)+ <k§z a 3, b "Cfcq"‘21> —58 1cx> (77)

with oy ; some combinatorial factors. From that, using (75), we obtain

N [k/2] o
ﬂ : vs(ﬁ— 1/2(pm p)O gﬁ kzz ﬂ~k/2 <bk'¢xlk + a; ‘21 ak,jc{cq)ﬁ 21) - %ECK . (78)
= j=
We have also

k

k 2 iok—2j la,|> N/2
bkl(prcl +ak jgl (xk,jck(px g -D n’]‘an T k—2j (CK+ 1) (79)

Tl

with D a positive constant independent of k and c,.
Since from definition (67) |a;| = ¢((Ip| + 1)V %), and from (73) C(p) = 2(|p| + 1),
so using (76) we have
k

s way
max — - <D,(pl+1) >, Nz4 (80)
K 2

(where 2<k<N and 15j< [g] and D, is a positive constant). Combining
(78)~(80) with p=®J*(x) and f=1, we obtain -
Bro a(B™ 1P @52 —ND, | (1954(x)|+1) 2 dx-c}>. (81)
A

Here it is important that the left-hand side of (81) is independent of =1 and
finite, since ®J4(x) e L (A, dx) for any 1<p<oco. O
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The Case of Trigonometric Interactions. Let

U(q) =4[ cos(aq +9(x))do(%) (82)
with do(a) a finite measure supported in (—2]/5, 2VE). We have
ﬂ —k/2+1

BYAB™ 0, 0 =4: 07, (UP@)) + 3 0" (UM(@}1), (83)

2 k!
where the series converges in any L, (u3"),1<p<oco for sufficiently big f=1.
Hence one can see that (83) goes in L,(u3") (for any 1<p<0) as f—o0 to
3197 (UP(9)).

As before, in order to prove (53) in the case under consideration it is sufficient to
prove the bound

pgte BT AB R0 < C < oo (84)

for somer >1 and a positive constant independent of f = 1. We need to assume that
Af dlo(@)] o <m?<m?, (85)

because only in this case

#?)Ae—% 192 (URN@4)) < (86)
Since
u‘(’{‘er%ﬁ'z 0P o 87)
for any r=1, r-m?* <m?, so for (84) it is sufficient to prove that
NgAe—SﬂvA(ﬂ*‘/2¢,¢»’i‘)<C< ©, (88)
where
Bos(B™12, 00 = B 4(B~ 20, 85 + 3% ¢ 5 04 (89)

ands= ;—1—1, and a constant C >0 is independent of = 1. The estimation (88), and

so the convergence (53), follows by [10, Theorem 37 with the use of the following
lemma:

Lemma 2. Under the condition (85) we have
Boa(B~ Py, D51 2 — 3% Al e — 34T dlo(@)]o? | Ale(1+e*F7 %) 1 (90)
and Visp<oo 3,21 VB2 p,,
1Bea(B™ 2@y, By*) =B a(B~ 20, B 1 ugr) < C(PFH) P17 91D
with the positive constants C(P2*), 6 and y all independent of f=p,. O

Remark. On the right-hand side of (90) we have the lower bound, which contains
-1.,2

the term proportional to (Ink)k* with z= 7]

. Since ff— o0, so z—0. This,
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together with the fact that C(®2%), 6 and y on the right-hand side of (91) are
independent of f=f, makes possible to use the arguments of [10,
Theorem 3]. O

Proof. Under the condition (85), the function «(g, p) has the properties (68), and so

»(¢q,p)20. 92)
Since

LB (B 2(x), 674(x)) ; =P (B™ 0 (x), ¢7(x))

I' 1a2c,c

+pAfde(@)(e 2 —1)cos(B™2up,(x) +aBiA(x) + 8(x) — $’c,,  (93)

so using (92), we have

B~ la%e,
pu(B P oux), 934(x)) ; 2 — grite — 3 4] dle(@)a’c,(e 2+, (99
Hence by integration in volume A we get (90).
In order to prove (91) we use the elementary formulas
_ Lo d? _
BYAB 0, 0= B dsy | dsy 5 U a0t 02, 99)
2

and

BY 4B 20, 23— BV 4B 0, D7) = I dt LG (e +(1—1)p,).95"
(96)
together with the fact that the integrations as well as diiferentiations with respect
to s; and ¢ can be interchanged with integration with the measure u?, as well as the
fact that the integral with the measure p3* of the products of U (8™ '/s;¢ + %)

can be explicitly computed. The proof can be carried out exactly as the proof of
Theorem 3.1 in [10]. O

The Case of Exponential Interactions. Let
U(g)=AJ do(2)e* )

with >0 and dg(x) a probability measure supported in (— 2[/' ZW) The
convergence (52) can be proven (as in the trigonometric case) in any L,(ud?),
1=<p< oo (see Lemma 3 below). Note that now we have

Ui (x)) =4[ do(0)a® ™" > 0. (98)
We need only to prove that
e 28V 4™ 0.0 < C < 0 (99)

with a constant C >0 independent of f= 1. This inequality follows, by use — as in
[4, p. 394] — of Nelson’s original arguments [11], from the following lemma:

Lemma 3. For interaction (97) we have
BY 4B 200 By 2 — (G4 | dx do(w)a’e® P)c, , (100)
A
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and for any 1<p<oco there is f,=1 such that for any f=p,,
1 BY (B0 §4) — BV 4B 2, DIHP S C(PF )17, (101)
with the positive constants C(®@"), y independent of p=f,. O
Proof. Since for any g€ R,
el—1—-q=0, (102)
so with

-1,2
g=ap 19,00 P (103)

B~ taZe,

: Bn//(/g— I/Z(PK(X), @ZA(x))(:) — ﬂ/”‘ dQ(OC)emD’?A (x)(e— 2 ell“ 12a¢,(x)

we have

+1= B g (x)) = PA do(@) " et — 1 — ) — (11| de(@) ™ V?)c,
2 ~(Afde@ e Wa)c, (104

After integration over x € A, we get (100).
Let us now prove (101). We have

1S BV (B~ P, BN — BV 4(B~ 0, DI

B —n/2+1
> L @h— " (U™(9))

nz2 n!

ﬁ -n/2+1
é(Z = (p—1)"*
n>2 n!

oA ?
=Ho

LQk— 0" (U™(P)1)) 2),,’ (105)

where in the last step we used the triangle inequality together with hypercontrac-
tive estimates. Using
[UP(@4(x))| £ (2)/7)" U(824(x)), (106)

we have (e.g. [6]), that
“ L= 0" (U(2))

=" U(@F) |y k™ (107)
2

with the positive constants ¢, and some s> 1. From (105) and (107) we get for all
Bz=B,>pc*:

1 BV 4B 2 @3) = BV 4 (B~ 1200, DI S(CB) U (PG| as) 5™
(108)
with a constant C(f,)>0. This ends the proof of (101). [

We end the proof of convergence (55) of the sequences of local specifications for
Euclidean fields with interactions given by the real 2 functions U. In each case we

assumed that
UP(q)> —m>. (109)

As we will see in Sect. 6 this condition is also connected with uniqueness of the
solution @24 for a given boundary condition #.
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Remark. Let us also note that under the condition (109) it is easy to prove the
analogue, as in the present paragraph, (as well as the other) results in the case of
Euclidean fields on the lattice Z? for any d=>1 (see [21]).

We summarize these ideas in

Proposition 4. In two dimensional Euclidean space the local specifications &j of
Euclidean Field Theory are homotopically equivalent to corresponding ground
specification &Y of Classical Euclidean Field Theory. O

Remark. Here the homotopic equivalence means that there is a path in the space of
specifications (defined by the continuous paths (54)), which connects &} and &Y.
We see that the Markov property of specifications is a homotopic invariant in the
considered cases.

5. Theory of Gibbs Measures and Euclidean Field Theory

Itis known (see [16, Sect. 4.3]), that any probability measure u on the space (27, %)
is a Gibbs measure, i.¢. there is a local specification & on (2, %) such, that u e 4(8).

From our considerations in preceding sections, it follows, that the following
definition is natural:

Definition 1. A field theory defined in Euclidean region by a probability measure u
on the space of distributions (2’, %) is associated to the Classical Euclidean Field
Theory with local interaction U if and only if u e (&) for some >0, and

U U
Ep 5526

where &V is the ground specification for U. [

Remark. It is expected that from the existent theories also @3 fulfills this definition
with adequate families £§ and €Y. [

Let us note that a priori there can exist totally different families &}
homotopically equivalent to the same ground specification &Y. This is connected
with the analogous phenomenon as in classical mechanics, where there can exist
nontrivially different Lagrangians (and so Hamiltonians and other conserved
quantities), which give the same equations of motion. This fact —interesting in itself
—can also have important application in the construction of a nontrivial model of
Field Theory.

If we accept Definition 1, then the first question on the way to finding any field
theory representable by a probability measure is: does there exist any ground
specification on (27, )? Note that we have defined a free ground specification &°
or equivalently the set of solutions ¥J* of the Dirichlet problems for free field
equation (19) for a set Q2 C 2’ of boundary dates #, such that € C Q and u(Q) =1 for
any regular probability measure p on (2, ). [A more restrictive definition of the
regularity of measure than (35) is needed in higher dimensions.] If we want to give
an answer to the above stated question given &° we should consider the
Hammerstein equation

Bi4(x) = P3A(x) = [ G™(x, y) UNDFA(y))dy .

We will discuss this equation in the next sections.



426 B. Zegarlinski

6. The Dirichlet Problems for Equations of Classical Euclidean Field Theory

Let the dimension of Euclidean space be d=2. (The case d>2 will be discussed
elsewhere.)

LetAe % .Let ‘I’ZA(x) be a unique solution of the Dirichlet problem in A for the
free Euclidean field theory:

(—4+m)HPA(x)=0, xed; PH(x)=n(x), xeA (110)
with n € 2'. Recall that the function

2" x A3 (1, x)— PI(x) (111)
is well defined for pu-a.a. n € 2’ for any regular probability measure p on (2’, %) and
ITZ5AC Lot a0 £y < 00 (112)

for any 1<r,s<o0.
In this paragraph we consider the Dirichlet problems in A € & for the classical
Euclidean field theory with interaction:

(—A+m)BAx) + UN@A(x)=0, xed; &M4x)=n(x), xeA,
113)

where U is a real at least 2 function bounded from below. We consider (113)in the
sense that for a given solution ¥4 of (110), we look for @24 such that

£ = 2 (x) — (%) (114)

is a function on R? identically equal to zero on A° and €* on A.
We will be interested in the case, when U(@)*(x)) € L,(A, dx). Then (113) is
equivalent to the following Hammerstein equation:

(%)= Po4(x)— | G*(x, ) U@ (y)dy , (115)
we can write (115) in the form
&)=~ fl G*4(x, Y UG + P dy=T(E (%) . (116)

(Note that the operator T depends on ¥2* as also on other parameters of U. If it
will be needed, we will denote this dependence explicitly.)

Before solving (116), let us make some remarks on the uniqueness of its
solution. Suppose that there exist two solutions &2 and {2 of (116). Then their
difference

8¢ =& (117)
fulfills the equation
<( —A4+m?) +i dsUP(sE(x) + (1 — ) {34(x) + ‘Pf,"(x))) 0&(x)=L,06¢(x)=0.

(118)
From that we see that if

YgeR, U (q)>-—m?, (119)

then 6&(x) =0, since in this case the selfadjoint linear operator L, in L,(4, dx) has
no zero as an eigenvalue.
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Now we will show in each interesting case of U separately, that a solution of
(113) exists.

The Case of Trigonometric Interactions. Let
U(q) =] do(x) cos(aig + 9(ax)) (120)

with A >0 and do(«) a finite measure (not necessarily nonnegative). Since U in the
considered case is a bounded function, so a solution éf," of (115) if one exists, is a
bounded continuous function. Therefore we can consider (115) in the space of
bounded continuous functions €(A) on A. Since the continuous function

E-T(C) (121)

maps %(A) into a bounded convex subset of equicontinuous functions (what
follows from the definition of T in (116) and properties of U given by (120)), so from
Schauder fixed point theorem (e.g. [18, Theorem 4.1.17), we conclude that (116)
and so (115) and (113) has a solution. We have the uniqueness of the solution under
the condition

Af o2dlo()| <m?. (122)
The Case of Exponential Interactions. Let now
U(q)=4] do(@)e™ (123)

with A>0 and dg(x) a probability measure supported in (—2]/5,2]/5). [We
assume that dg(«) has no positive mass at the point «=0.)]

We are interested in such a solution of (115) for which for every regular mea-
sure g,

U @GN Ly, a0 < 0 - (124)

In this case (116) is equivalent to (113). Let us first consider the case when dg(«) is

supported in a halfline, i.e. in [0.2]/;) or (—2]/;, 0], since we will use the same
methods in analysis of global aspects. We consider only the case suppde(x)
C[O,Z]/;), because the second case is almost the same. Now under the fixed
conditions, we have that a solution ff;" of (115) — if it exists — is nonpositive and
bounded as follows

- i G(x, YUD(P () dy < §4(x) 0. (125)

[This is the consequence of properties of G(x, y) and U.] Moreover we see that
the bounded closed and convex set of functions which fulfill (125) is mapped by T
[defined in (116)] into itself. Hence by analogous arguments as in the trig-
onometric case based on the Schauder’s fixed point theorem, we have the existence
of solution £24 of (115). The uniqueness, for each A>0, in the case of U given by
(123) follows from the fact that U®)(q)>0.

The case of general exponential interaction will be considered together with a
polynomial case in the following point:

The Case of Interactions Monotonous at Infinity. For simplicity let us assume that
UD(q)> —i?> —m?, (126)
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hence we may and do assume that U'® is nonnegative. [ Because if (126) is fulfilled
we can redefine interaction by taking U +m?q instead of U® and the mass
m? —1ii* >0 instead of m? in (113). By this manner we can obtain an analogous
equation as (113), but now with an increasing first derivative of interaction.]
Using the notation (114), let us write our Dirichlet problem (113) in the form

(—4+m)EAX)+FEN ()=, xed; EAx)=0, xeA® (127)

with
F(&) (x):= UD(E) + Po4(x) — UD (P (x)) (128)

and
,fA(x) 1= U lI’;’,A(x)) . (129)

Since we have assumed that U is nondecreasing, so for any x and any real
function &(x), we have

ExX)F () (x)20. (130
Moreover since we assumed that
UD(Pi4(x) € L(4,dx), p-ae. (131)
for some s>1 and any p € .#,, so we have
IAZAC - 1,04< 0. (132)

Hence we can prove the existence of a weak solution of (113) (in the sense that
F(E) (x) € Ly 1,6(A) and (113) is satisfied in the sense of distributions on #g(A)
exactly by the method of [13] (proof of Theorem 1). In fact in the interesting cases
we have U € ¥, and since from [14] the functions ¥24(x) are harmonicin A (u-a.e.
for any pe 4,), so f,24(x) e €*(A). Hence and from the ellipticity of our problem
we have &34 € €°(A), and so 97%(x) € ¥*(A) and fulfill (131). Under our assumption
(126) we have also uniqueness.’

This ends the discussion of ground local specifications in two dimensional
Euclidean space (leaving the other cases for further investigation). [

By this we would like to close the investigation of local aspects of the
connections of the theory of Gibbs measures of Euclidean Field Theory and the
theory of partial differential equations of Classical Euclidean Field Theory. The
global aspects of these connections will be studied in the second part of this work:
We will prove the existence of measures uq, ;€ 0%(&}) for all global solutions @ of
(13) and show that they have the global Markov property as well as that they have
the representation (3.8) of [20]. We also prove that pe ;=2 0o and for any
unbounded Q CR? with smooth boundary, for u, g-a.a. n€2’, p'=1, we have
EY. (+) 5= Oogo, Where @72 is the unique — in the set yo 4 measure one —
solution of Dirichlet problem in @ with boundary data #, and E}. 4x(-)
=Eg 5(-1Z) (). (For analogous results in the lattice case, see [21].)

! For a more detailed and more general investigation of the non-linear Dirichlet problem with
distributional boundary data (113) see [22]
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