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Abstract. The self dual condition in superspace is analysed for N = 1, 2,4 super
Yang—Mills theories. A complete solution of all the constraints in terms of a light
cone superfield J is presented, where the only equation that J satisfies is a SUSY
generalization of the Yang equation. By reduction of that equation we obtain
various two dimensional SUSY models. We introduce the associated linear
problem in terms of J, whose integrability condition gives us back the super
Yang equation and allows us to obtain the Kac—Moody algebra structure of the
theory.

Introduction

Self-duality conditions and self-dual Yang—Mills fields have been studied exten-
sively in relation to the non-perturbative approach to quantum field theory. They
provide finite action solutions to the field equations, e.g. instantons and in lower
dimensions, monopoles and solitons. The solvability of these non-linear systems is
related to the existence of a linear problem whose integrability condition provides
the original non-linear equations. This problem has been extensively analysed in the
literature, also in relation to other mathematical properties such as the Painlevé
property and the associated infinite-dimensional symmetries [1,2,3]. Recently, a
great deal of interest has been given to the supersymmetric extension of Yang—Mills
and gravity from the unification point of view and the finiteness of the associated
quantum theories, in particular N =4 super Yang—Mills. Consequently, it is
important to analyse the supersymmetric extension of the self-dual Yang—Mills
fields [4,5,6] and the lower dimensional reductions like SUSY chiral theories,
SUSY Sine Gordon, which have already been considered [7]. The linear problem
associated with SUSY Yang-Mills has been tackled by Volovich [8] and used by
Devchand and L.-L. Chau [9] to analyse the infinite symmetries of the field
equations. However, the solvability of these non-linear systems has not yet been
proved, so that a detailed analysis in terms of the component fields is therefore in
order. A first step towards the solution of this problem is to consider the super self
dual Yang-Mills (SDSYM) equations and their relation to the dimensionally
reduced supersymmetric versions. In Sect. 2, we discuss SDSYM in the most general
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framework, including theories with central charges. In Sect. 3 we solve explicitly the
SDSYM conditions in terms of a light cone superfield which satisfies the
supersymmetric analog of the Yang equation. In Sect. 4, we look at possible
reductions to lower dimensions and compare them with the known supersymmetric
version already studied. Finally, by analogy with SDSYM we can obtain the linear
problem associated to the SDSYM equations, and from it, using the H-Transform
method, we can analyse the group structure of the infinite parameter symmetry in
the various theories under discussion.

Section 2. Self Duality in Superspace

In this and the next section we consider the self dual supersymmetric [9,10,11]
Yang—Mills (SDSYM) equations. We obtain a formulation in terms of a light cone
superfield J(x, 6, §) which is a natural generalization of the J-formulation of self-dual
Yang—Mills (SDYM) [4, 5, 12] equations. The formulation is therefore manifestly
light cone supersymmetric. It is then straightforward to deduce from this the
superfield linear problem whose integrability conditions yield the SDSYM equ-
ations. The Kac-Moody algebra follows directly from this linear problem.

We take (x 6% &%) as the coordinates of the grassmannian supermanifold, x* are
the even coordinates 6% = 07 the odd ones. The index i represents the number of
supersymmetric generators realized in the theory.

We may work in Euclidean superspace. In that case 6% and & are not related by
complex conjugation as in a Lorentz superspace. In Euclidean superspace one may
however use hermiticity under the unitary involutory operator of Osterwalder and
Schrader [13]. The superfields are then expressed only in terms of 6% and &* as one
has for the Lorentz superfields. We may instead consider the Lorentz superspace. In
that case one may impose a self duality condition provided that one considers a
complex gauge vector for the Y-M potential [11]. In terms of the geometrical objects
that means one considers complex superfields. We follow this approach here. It is
clear how to obtain the corresponding results in the Euclidean superspace [14, 24].
The self duality condition for SYM was first considered in [25] and more recently in
terms of supercurvatures in [10, 11].

We define the self duality condition for SYM as

*Fab = %8abchCd = iFab5 (1)
where F,, is the supercurvature tensor. This condition, together with the supercur-
vature constraints which define the SYM multiplet determine a self dual on-shell
multiplet. Clearly the 6 = 8 = 0 component of (1) is the self dual condition for the
helicity 1 field component. This condition implies the field equation for that field and
by sypersymmetry it also implies the field equation for all the other components of
the supermultiplet.

The constraints which isolate the N =1 SYM multiplet [15] are

F,z=0, (2a)
Fy=0, (2b)
F,;=0. (20)
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All the curvatures are given in terms of the chiral superfields W2 and W2.
The constraints for N =2 SYM [16] are

Fip=0, F)=0, F,=0, i=12 (3)

All the curvatures are given in terms of the chiral superfields, W and W.

The constraints of N =4 SYM [17] are the same as (3), butnowi=1,2,3,4. The
curvatures are all given in terms of 6-plets of SU(4) W¥ and W¥. For N =1 and
N =2 SYM the supermultiplets defined by (2) and (3) are off-shell, while for
N=4 SYM they yield field equations. We may also consider a central charge
extension of the supersymmetric (SUSY) algebra [18, 19, 20]. In this case one
realizes the algebra in a superspace with additional bosonic coordinates zV. In
particular if we consider only one central charge generator, the superspace now has
coordinates (x4, 0% 7, z). In this case there are additional constraints to isolate the
off-shell SYM multiplet.

For N =2 SYM with one central charge [19] in addition to (3) we must impose

DIGIW =0
2,59W =0. 4)
The internal indices i and j are raised and lowered with USp(2) metric &".
For N = 4 SYM with one central charge [23] we have to impose in addition to (3)
the traceless conditions
aGWi=0, o'W,;=0, (5)

where o is the USp (4) metric.

The basic supermultiplet W4 is now a 5-plet of USp(4). We have relaxed the
usual reality condition one imposes in SYM and instead we now impose the self
duality condition (1).

Let us consider first the multiplets without central charges. From the Bianchi
identities one obtains for N =1,

Fopy=351(2,0u5 W’ + D647 WB, (6)
and similar expressions for N =2 and N =4 SYM in terms of W, W and WY, W,;
respectively.
The self duality condition (1) then implies
D W =0. (7)

Further use of the constraints (2) yields 2,W; = 0, which together with the chiral
character of W;, 2,W; =0 imply

W, =0. ®)
An analogous argument shows that

W =0 ©)
for N=2SDSYM and

Wi =0 (10)

for N=4SDSYM.
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For the multiplets with central charges one may show [23], also by the use of the
Bianchi identities, that

—_1 f=d = ik 4 = a= gy kgy |
Fab_160{ab yJa 9o'zk@y'll/Vc +O—by’ Oq 90& @v Wclk}'

We consider the N =4 case, the N =2 gives analogous results.
Again the self duality condition implies

DD py W = 0. (11)

We then consider a partial gauge fixing in the theory, 2*0,4,, = 0.

We are then left with gauge transformations d4,= 2,4, which arez independ-
ent only, 9,4 = 0. Moreover A, now transforms as a curvature. We introduce then
W4 = W4 — 244 4,. It can then be shown that (11) implies 6,W" = 0. The theory is
now exactly [23] the N = 4 SDSYM without central charges, W¥ being the 6-plet of
SU (4). We thus regain the same result (10). We have now to analyse the physical
content of the other multiplet WB, W or W4 for N=1,2 and 4SYM. One may
directly proceed as in ordinary self dual YM theory from (1) by introducing light
cone variables in Minkowski space or Yang variables in Euclidean space. One then
obtains the usual expressions for the components of 4,, now in terms of superfields,

A,=D"19,D, A,=D"10,D,
A;=D"'9;D, A_=D"'3_D.
Defining the superfield j = DD !, we get
0,7 0,/)+0-(j~ 04 j)=0. (12)

This superfield equation is equivalent to several component equations which are not
independent. In fact we have to take into account constraints (2) and (3) which relate
the different components of j.

For example for N =1 we notice that by choosing the supersymmetric gauge
A;=0 and using that F, = 0, which is a consequence of W;=0 we obtain D,4,=0.
A, is a chiral superpotential in that gauge. This implies the chirality of j. However
the different components of j are still not independent and we must further
analyse (1) and (2) to completely solve this problem. We observe that the §=0=0
component of (12) is the Yang equation for the helicity 1 self dual component. We
now proceed to explicitly solve the whole set of constraints.

Section 3. N =1 The Explicit Solution

The solution of (2a), flatness in the a-grassmannian direction, is A, =e *D,e".
Analogously the solution of (2b) is A4, = e~ “D,e" (2c) is a conventional constraint,
which allows us to obtain A, in terms of A4, and 4,.

V and U are complex superfields, in the adjoint representation of the gauge
group, which we cannot constrain further from the conditions (2).

After imposing the supersymmetric gauge condition 4, = 0, the gauge freedom
of the theory reduces to a pre-gauge transformation e’ —e~ 4'e’%e !, where A | is a
chiral superfield D,A; =0, and a gauge transformation with parameter



Self Duality in Super Yang—Mills Theories 381

A,:D;A,=0. We now proceed by using light-cone coordinates. We denote by

=1/{/2 (xX°+x?), x' (i=1,2) the even coordinates and by 0" =6", 6~ =62,
6" =0', 6~ =06? the odd ones. The light-cone supersymmetric subalgebra has
generators Q ., =(I1, Q), in terms of the original supersymmetric generators Q,,
where [T, =3y,y_and I[1_ =%y_y, are the spinor projectors, y, = 1//2 (y° F y?).

It is known that SYM can be explicitly expressed in the light cone gauge in terms
of light-cone superfields [21,22]. The theory is not Lorentz covariant but it is
manifestly supersymmetric under the subalgebra generated by Q.

We may now use the Wess—Zumino gauge as in [21] to obtain

V™ 0%, =00 p(x, 0" )+ 00 P(x,07)+ 00 C(x,0%,07%),

where 07,0~ are the complex conjugates to 6% and 6, ¢(x,0%) and ¢(x,0") are
independent superfields, which depend only on the odd variables indicated. In the
process we have fixed completely the gauge.

We proceed now to solve (8). It is convenient to introduce the left-handed
coordinates x,™ = x™ + i0c™. We rewrite V as

V(x™ 6% 5) = V(x,™ — iBc™8,0%F) = V(x,™ 6% F) — i0c™P0,, V(x,™, 0% %)
=070 p(x,"07 )+ 00 F(x,"07)+0"0 U(x,",0%,0%),

where
U(x,,0%,0%)=C(x.,0",07)+ 070" (i0p +idp — (0/0x *)C),0 = 0/(0(x* +ix?)).
The light-cone covariant derivatives are D, =0, +2i0" (8/ox*), D, = —0,,
where 0, =0/00" and 0, =d/08*. They satisfy the algebra {D+, )=

—2i(d/dx*). We may finally make a shift in the ¢ superfield. We consider
AXT 0N =Plx; —2i010%, x; ,xt,0M).
We obtain
V(x™ 0409 =0"0"p(xr, 0"+ 0 0 Ar, 0N+ 070" U(xr,0%,0"),

where ¢ and 4 are light-cone chiral superfields D, ¢ =0, D, 4 = 0. The expressions
for W, and W_ in terms of the covariant derivatives are

W,=-D,A—0"(D,D, U, +2id¢)+ g0 [D.(O"4),¢]
—070"[D.¢,D.("A)]—0"0"6"[D.D,¢,A]), (13a)
and

W= _D‘+U+2i9+5;,—2i€+9+5+52+9‘<2i5U+2"§+5+5U_2"fbci‘¢>

+9(07[D. (@@ U)¢]—0"[¢,D. (@ H]I—-0"[¢,D.(67V)]).  (13b)
From (13a) and (8) we obtain
D, A=0, (14)
hence
Ax™ 0= A(x ", x'L). (15)
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The usual assumption in SYM is that (8/0x*)4 =0 implies A =0 by means of a
boundary condition. We thus have 1 =0.
Equation (13a) then yields

D.D,U+2id¢=0. (16)
From (13b) and (8) we obtain
D,U=0, 17
6U——‘2;¢—ig[¢,U]=0. (18)
ox
After using {D,,D,} = — 2i{(d/0x™), (16) reduces to
—6—U =0¢ (19)
oxt T

Equations (17), (18) and (19) are the self dual SYM equations.
The left member of (18) has the structure of a curvature in the (x! — ix?) and x~
directions. Taking into account (17) we get

¢=J"1dJ, (20a)
_ 0
U=J ——J, (20b)
ox
where
JO,07) = j(x]) + 07 Y (x]) 21
is a light-cone chiral superfield.
From (19) we obtain
0 0 .
— Jl=00J" 22
P (J 6x‘J> aJ~1a)). (22)

This is the light-cone supersymmetric generalization of the J-formulation [4] of
SDYM.

Equation (20) corresponds to the left J-formulation. The right J-formulation is,
by similar arguments

p=Jo"J 1, (23a)

J -1
U=Jo—=J"", (23b)
a-%(J-aj—_J-l) =3(JOJ Y. (23¢)

The component equations can be directly evaluated. From (22) we obtain (using
I =i 0Ty,

0.(j7ro-j)=0(j ")), (24a)



Self Duality in Super Yang—Mills Theories 383

and
O (jTro_y—j YTt )=0(j" a0y —j i1 aj). (24b)

Equation (24a) is the usual self dual equation in the J-formulation when we rotate
x%—ix% Equation (24a) represents the evolution equation of the two bosonic
degrees of freedom

Qj= —jo.j *0-j+joj~*-0j, (25a)
while (24b) is the evolution equation for the two fermionic degrees of freedom

Ov=—jo,j 0 y+jo,(j )i~ 0_j+joj~ -0y —jo(j~"y)j~"dj. by
25

We may now extend (21), (22) to N =2 and 4.

From (12) we know the equation for the spin 1 component field. We now find a
light-cone supersymmetric equation for an N = 2 or 4 light-cone superfield J(x, 0 ")
whose 0% =0 component, j(x), satisfies the 6 = § = 0 equation of (12) [22].

The superfields are now

Jx, 0" =j(x) + 0Ty (x)+ 070 p(x), N=2,
J(X,BH):]'(X)“‘9+i¢i(x)+(6+6+)[ij]¢[ij]+(9+6+9+3)1X1
+0Y076%0%eC(x), N=4.

The only light-cone supersymmetric equation which satisfies the above require-
ment is again (22). Hence (22) is the field equation for the independent degrees of
freedom for the self-dual SYM theories for all N. In addition we have found explicitly
the superpotentials in terms of J(x,6") for the N =1 theory.

We note that we have not given a complete proof for N = 2 and 4 that J(x, 0%
satisfying (12) gives a Lorentz—covariant theory. This was ensured for N = 1 by our
method of solving the constraints. We have not done that for N =2 and 4 due to
their considerable complexity; we would need to do that or something equivalent to
it to fully justify our claim for J(x, 6%").

Section 4. Reduction to Lower Dimensional Systems

Following [3] we wish to dimensionally reduce the self-dual SYM equation (23) to
the supersymmetric analogue of various well known nonlinear systems in two
dimensions.

First let us consider the reduction to the Sine~Gordon equation. We take the
superpotentials dependent only on 2 coordinates, x* and x~. Making the same
ansatz as in [3], but now in terms of light cone superfields

i 0 i 0
A— +s _,9 == i 3’ * - =TA 5 3
(x X ) 4ax- ¢G A+(x ,X ,0) 4ax+¢a >

w0 e _ if 0 e
Ay(xt, x ,6)—§<e+i¢/2 0 ) AfxF,x ,0):E 2 g
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with y=x, +ix, and j = x; —ix,, we get, after solving (23),

0,0_¢d(x",x~,0)= —sind(x",x,0). (26)

In terms of the component fields of ¢ = B+ 6" 1 we obtain
0,0_B= —sinB, (27a)
0_0,A= —B 'sinB-A (27b)

Equation (26) allows us now to obtain directly the generalization of the associated
linear problem, and the corresponding Kac—Moody algebra. We analyse these
problems in the next section.

The same approach allows a reduction to a SUSY version of the Liouville
system,

0,0_ W(xy,x_,0%)=exsx-07), (28)

Another possible reduction is the SUSY chiral models in 2 dimensions. We require
the superfield J to be a function of x*,x~ and the odd grassmannian variables.
The final reduction that we look at is the reduction to a SUSY generalization of
the Ernst equation of General Relativity.
Taking the same ansatz as in the non-supersymmetric case [29, 3] we obtain

oI 10,0) + -;-(J- 19,) + 04J ~10.J) =0, (29)

J being a light-cone 2 dimensional superfield.

We give a detailed analysis of this system in [26]. In particular we discuss a
supersymmetric extension of the Geroch group and of the known Bicklund
transformations.

The components of the J superfield in (23) are complex fields. However in the
reduction procedure from 4 to 2 bosonic dimensions we may use a reality condition
on the superfield based on a Majorana condition on the two dimensional spinors.

We wish to compare the above two dimensional light-cone supersymmetric
models with some of the known [30] supersymmetric models.

We do it explicitly for the Liouville system. Analogous results follow for the
relation between the other models.

The action for the SUSY Liouville model [28] is

I={d*xdf,d0,(—3i®DD D+ e?), (30)
where
O=¢p+i0,f,  +i0_Yy_+i0,0_F=0Q(x,0,)+0_y(x,0,). (31

2(x,0,) and y(x,0,) are now light-cone superfields.
The light-cone algebra is given only in terms of

D,

=30, +i6,0,, {D,,D,}=2id,.

The transformation law for 0(x,0%) and its components under a SUSY
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transformation are
0N =¢"D,Q, 6p=icTY, oY, =¢e0,0.

We may now substitute (31) into (30) and perform the §_ integration. We are left
with the following light-cone superfield action

I=[d*xd0,{32D,0_Q2—%iyD,y+e%y}. (32)

The field equations are the known ones [28] rewritten in terms of £ and y,
D,0_0Q= —e*y, (33a)

iD,y=e% (33b)

¥ is an auxiliary superfield. It can be evaluated explicitly in terms of . From (33b)
x = — 071D, £2-e?). The independent propagating components are thus members
of a light-cone superfield 2, and the symmetry between these components is only a
light cone SUSY. This is the well-known relation between the off-shell SUSY of the
action and the light-cone SUSY of the propagating degrees of freedom.

In our reduction procedure (28) we end directly with a non-linear system in terms
of the light-cone propagating modes. The action for the SUSY non-linear model we
have is

I=[d*xdf,(—wd,0_w+e**). (34)
The field equation is
0.0_w=e*>, (35)
In terms of components
wo=¢+0.y, 0.0_¢=2e", (36a)
0,.0_y=e*y (36b)

Equations (33) and (35) both describe propagating spin 0 and spin £ fields with the
same propagating kernel, 0, d_, in terms of light-cone superfields 2 and w. The
explicit self interaction terms are different; however, the systems may still be related
by a field redefinition, though we have not been able to determine this.

The known Béicklund transformations for the non-SUSY Liouville model are
easily generalizable. As an example we consider

v Jw

= 1/2(w+ m’), 37
ox'y 0x, Te (37a)
o' 0w o
67= —5;'——261/2((” w), (37b)
which yield as integrability conditions
0,0_w=e* (38a)

or

0,0_w =0. (38b)
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From (38b) and (37) we obtain the general solution of (38a)
o :1ln|:6+F(?_ G]
27 (F+G? [
where
F=Fx"0")=f(x")+0" 1, (x"),
G=G(x,0")=g(x")+0"y_(x").
In components
W= %ln l:?}{!-ag_)zgjl +6, [agj;: + aa—‘Xg- — 2(X(+fi g;)J 39)

The bosonic component is the known solution of (36a), while the fermionic
component is the new solution for its SUSY companion (36b).

Section 5. The Kac—Moody Algebra

We may follow the known approaches to obtain the hidden symmetries of the non-
linear system: the H-transformation method or the Riemann-Hilbert transform
method [9,27].

In both cases the generalization is straightforward. We discuss here briefly the
first method.

The SUSY SDYM equations (22) can be obtained as integrability conditions for

the linear problem
Oy +A0_y+A(J ro_J)yx=0, (40)
O+ A0y +A(J ')y =0.

It has the same structure as in the non-SUSY case [12]. y is a Lie algebra valued

light-cone superfield and 4 is an even grassmannian parameter. There is also a linear

problem associated with the right J-formulation (23), in terms of a y superfield.
We consider now the following parametric transformations for the J-superfield,

8, (A = =Ty T~ ' (A), (41a)
S =A™ = 2(= A" )T~ (= A7), (41b)
T,=a"T,, T, are the generators of the Lie algebra, C¢, the structure constants. As in

the non-SUSY case J + 8,(4)J and J + 8, J are solutions of (22) and (23) respectively.
From (41a) and (41b) [12] it follows that

A8 — XS, (A
[6.00) 3,()10 = — o, Cy 220N,

o A 6(A)— A,(A)1J
(8,00, 550110 = — ,,C oA,

AL3.(4) +8,(4)1J
A=A )

(42)

[8,(A), 35(2)1J = — . B, Cs
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Expanding now in A one gets the commutation relations for the Kac-Moody
algebra:

[0, Q1] = CaaQl*,

where now
oM™= j d*xdO™tr[A,™J(x, 0)6/6J(x, 0)],
AR =60 k>0
=094, k=0
=5,R(—1k k=<0
Conclusions

We have carefully analysed S.S.D.Y.M. and its reduction in terms of physical fields
only, using a manifest light-cone supersymmetric approach. We leave for further
analysis the problem of solvability of non-linear systems following the geometrical
approach of Atiyah. The main problem still to be solved is the N =4 S.Y.M. which
we will be considering elsewhere, as well as the supersymmetric extensions of
monopole theories. In particular the extensions of Bogomolny equations seem to
arise directly from the SSD problem we have considered here.

Appendix (Notation)
The USP (2) metric is taken as

V= —gl=g; =1 ij=12 (A1)
The USP(4) metric is taken as
. 0 1 1 0
ij — h = . A
o <—I O>’W ere | (0 1> (A2)

(x4, 6%6%) are the coordinates of the supermanifold.
x* are the even space-time coordinates,

(@=0,1,2,3).

0% are the odd spinorial coordinates, where the underlined indices «,d stand for
double indices (#),(aj) respectively, with a,d¢=1,2 and i,j=1,2,... N. All spinor
variables 0, are Grassmann—Valued, with [0,,0;], =[6,,0;], =0.

In N =1 supersymmetry the supercurvature tensor F 5 is defined as the (anti)
commutator of the covariant derivatives

@A=DA+JZ/Aa (A3)

where D , = (d,, D,, D,) with D, = 0/06* + iﬁﬁogﬂ d,and D, = — 0/06” — i0%6%,0,, and
where .o/ , are the Yang—Mills superpotentials. There are similar expressions in the
N =2 and 4 cases.

For N = 1, the chiral superfields W* W* are given in terms of the supercurvature
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tensor by
Wi = %(a“)“"ﬁF apr W= %F Ll (A4)
For N =2 the field strengths are defined by the superfields W, W7,
w2 p, w0y (AS)
For N =4 there are the superfields W,;, W9,
W= —3e¥F,p WY=—5eFj (A6)

The Bianchi identities in superspace are a generalization of the usual cyclic
identity on the curvature

@AFAC+(—')a(b+C)@BFCA+(—)6(b+a)@CFAB:O' (A7)

This can be broken down into component equations; again a similar procedure can
be followed for N =2 and 4 cases.
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