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Abstract. Infinite-dimensional sets of integrable cases are found for the
equations of a rigid body rotation around a fixed point in an axially symmetric
potential field and also in more complicated fields in the presence of some
symmetry of the rigid body inertia tensor.

1. Introduction

Rotation of a rigid body around a fixed point in some potential field is described by
the Lagrangian system determined on the Lie group SO (3) with the Lagrangian

Here Ik are the eigenvalues of the inertia tensor, ω is the angular velocity vector,
with components ωk, Q is the orthogonal matrix, with elements <2*, determining the
position of the rigid body, F(Qj ) is a potential function. The classical integrable
cases of a rigid body dynamics [1] have the following common properties: firstly
all of them depend on some finite and not great number of parameters, determining
the special forms of the potential function V(Qlj) and special values of the inertia
tensor components Jfc, and secondly the dynamics of trajectories of the corre-
sponding integrable Hamiltonian systems is a linear winding of two-dimensional
invariant tori T 2.

The present work is devoted to construction of new cases of integrability for the
equations of a rigid body dynamics, depending on an infinite number of
parameters which determine the form of the potential function V(Qlj). A number of
geometrical methods are used connected with the existence of the maps

S3—^->SO(3)--^S2. (1.2)

The map / is the universal covering, the map g is the fibration, its fibres are
circumferences S1; Sn is an n-dimensional sphere. The composition of the maps
g of is the known Hopf fibration. Due to the presence of the maps / and g (1.2), it is
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possible to connect the integrable Lagrangian systems on the Lie group SO (3) with
the integrable Lagrangian systems on the spheres S3 and S2.

There are two classical integrable systems on the spheres Sn: the Jacobi
geodesic flow on the ellipsoid [2, 3] (and also under the influence of a linear force of
some special form) and the Neumann mass point dynamics on the sphere Sn in a
potential field with an arbitrary quadratic potential [4], for modern development
see [5-8]. An infinite-dimensional set of integrable Lagrangian systems on the
sphere S2, generalizing the Neumann system, was found in [21]. In recent
preprints [33, 34] a "recursive description" was done for infinite families of
integrable potentials on ^-dimensional quadrics. In Sect. 3 of the present work we
obtain the explicit formulae for the integrable potentials (which may be
polynomials of an arbitrary even degree or entire functions), having important
applications for n = 2, n = 3 in a rigid body dynamics, see Eqs. (3.27), (4.21), (5.8).

New integrable cases of a rigid body dynamics, constructed in the present
work, are found on the base of three different constructions connected with the
maps (1.2), for three types of the rigid body inertia tensor: spherical (Jt = J2 = / 3),
symmetric (Iγ=l2^I3), and an arbitrary one (i^ + i^ + Ja)-

2. Rotation of an Axially Symmetric Rigid Body
in a Newtonian Field of an Arbitrary Remote Object

In [10] the theorem was proved about the integrability in Liouville's sense of a
rigid body rotation around fixed center of mass in a Newtonian field of an
arbitrary remote object. Also the explicit formulae were obtained [11] describing
the rigid body rotation in the terms of the Riemannian theta-functions of four
variables θ(zuz2,z3,z^), restricted on the Prym variety. In this section we show
that for an axially symmetric rigid body (/x = J2) the new integrable case [10,11] is
connected with the classical Neumann system on the sphere S2 [4] and with
Clebsch's case of integrability [12] for the Kirchhoff equations. Because of this
connection it is possible to describe the dynamics of the axially symmetric rigid
body in terms of Riemannian theta-functions of two variables θ(zί,z2).

The problem under investigation is equivalent to the study of a rigid body
rotation around a fixed point in a Newtonian field with an arbitrary homogeneous
quadratic potential, which may be reduced to the diagonal form

φ = \ (axx\ + a2x\ + a3xj).

Here xu x2, x3 are the coordinates in the resting system of reference F. Let S be a
moving reference frame related to the rigid body, its basis vectors coincide with the
principal axes of the rigid body inertia tensor, so Iίk = Ikδik. Denote α, β, γ the unit
basis vectors of the resting reference frame F, as given in the moving frame S. The
Lagrangian (1.1) takes the form

2L = Ixωl + I2ω\ + I3ωj -a1(I1xi + I2a
2

2 + / 3α|)

\ + l2β
2

2 + hβϊ) - a3(Ixy
2 + l2y\ + I3y

2). (2.1)

We denote q(ί) the unit vector along the symmetry axis of the rigid body inertia
tensor (corresponding to the eigenvalue I3). Position of the rigid body in the frame
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F is determined by three Euler angles θ, ψ, φ, θ is the angle between vectors q(ί) and
β (the nutation angle), ψ is the precession angle, φ is the angle of the rotation of the
rigid body around the symmetry axis q(ί). The vector q(ί) has the following
coordinates in the resting frame F:

q2= — sinθcosi/;, q3 = cosθ. (2.2)

The Lagrangian function (2.1) for an axially symmetric rigid body acquires the
form

(2.3)

In consequence of Eqs. (2.1)—(2.3) the Lagrangian L1 does not depend on the angle
φ, therefore the corresponding momentum pφ is the first integral of the Lagrangian
system

3L/30 / ( θ ) (2.4)

The Routh function L2 = L1—pφφ, written in coordinates of the vector q(ί)
((q, q) = 1) has the form

where the matrix elements of A are Λij = (I3 — Iί)aίδij. The Lagrangian L2 for
pφ = 0 coincides with the Lagrangian of the Neumann system [4] on the sphere
S2.1 In the general case pφ Φ0, the corresponding Lagrangian equations have the
form

Iίq=-Aq-pφ(qxq) + λq, (2.6)

where the multiplier λ is determined so that

I2

at
,2-(q»q)=(

The term —pφ(q x q) in Eq. (2.6) describes the forces, analogous to the Dirac
monopole action [13] on the electric charge and arises from variation of the term
pφxp cos θ in the Lagrangian (2.5). The investigation of the "generalized Dirac
monopoles" arising from the study of Lagrangian structure of the Kirchhoff
equations, led to the discovery in the works [14,15] of multivalued functions and
multivalued analogy of the Morse theory.

Integrability of Eq. (2.6) in Liouville's sense and in terms of the Riemannian
theta-functions of two variables θ(zί,z2) on the level pφ = 0 follows from that for
the classical Neumann problem [4]. For pφ + 0, Eqs. (2.6) coincide with the
equations, arising in the completely different problem - the dynamics of the
travelling waves of the magnetization vector in the Landau-Lifshitz equation.
These equations are shown [16] to be equivalent to the Clebsch case of
integrability for the Kirchhoff equations. Equations (2.6) by the map

(HM^qxq-JΓ'/yi (2.7)

are transformed to the equations

M = qχ/-Mq, q-qxM, (2.8)

1 Therefore the investigated system has also homoclinic orbits [31]
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which describe the special Clebsch integrable case on the surface level of the first
integral (M, q) = — Iϊ 1pφ. We derive the explicit formulae describing dynamics of
the system (2.8) in terms of the Riemannian theta-functions θ(zί9 z2) [17,18]. The
Hamiltonian H and the Clebsch integral J 4 have the form

(2.9)

ί q).

We denote s1,s2,S3,s4 the roots of the equation /(s) = 0

/(s) = [s2-s(Tr(/1~M)-2H)-J4]2-4/Γ2^(s-/rM1)(s-/ΓM2)(s-/1"M3).

We introduce the Riemannian surface Γ determined by the equation

y2 = P(z), P(z) = z(z - d2) (z - d2) (z - d2) (z - d2d2d2), (2.10)

where the parameters dί,d2,d3 are defined by the equalities

HI/ 777—, I I I/ 777—^ ΓΪ
Γ(S3)

(2.11)

The genus of the surface Γ is g(Γ) = 2. Formulae [18], describing the dynamics of
trajectories of the system (2.8) look as follows

= . fl|>J (ZQ + UQ θ[mk\ (w0) - g[rj (w0) θjmJ (z0 + U p

* θ[nj ( z + U ί ) β [ p J ( w ) θ [ n j ( w ) θ [ p j (z + Uί) ' l ' }

Here the theta-functions θ[x\(zuz2) and the vector U are determined by the
Riemannian surface Γ, the characteristics rk9 mk, nk9 pk depend on mutual positions
of the roots of the polynomial (2.10), constant vectors zo,wo are determined by
initial conditions, see [18].

The formulae (2.12) determine the Euler angles 0, ψ dependence upon time t
due to Eqs. (2.2). One can find the Euler angle φ dependence upon time t
integrating Eq. (2.4).

3. Integrable Lagrangian Systems in the Euclidean Space,
on the ft-Dimensional Ellipsoids and Spheres Sn

1. Let us consider a family [33] of the Lagrangian systems in the Euclidean space
Rn + ί with the Lagrangians of the form

L=li,(xd2-V(x0,-,Xn), (3.1)
2i = o

which admit the separation of variables in the Hamilton-Jacobi equation after
transformation to the elliptic coordinates and therefore are integrable in
quadratures. The elliptic coordinates M O , . . . ,M B in Rn+1 are defined from the
equation [2],

n χ2 TJ (7\ n n

Σ — — - 1 = - ~rγ, U0(z)= Π (z-uj), A(z)= Π (z + β,), (3-2)
j=o o

Σ rγ, U0(z) Π
A(z) j=o
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where α0,..., an are some constants (at φ α7) and z is an arbitrary parameter. After
reduction to the common denominator A{z) and equating the coefficients at
zn + 1~k(k= 1, ...,n + 1) in both-hand sides of Eq. (3.2), we receive the relations

&(**..•>**)= Σ x2jσk(a)+ Σ (-lyαtσ^Xα)). (3.3)
v=0 \ i=l )

Here σk(y) is the elementary symmetric function of variables y of degree fc,
σo(y) = 1. In particular we find from Eqs. (3.3),

Qo(x) = Xo + .. +xi, Gi(*) = *i(<0 Σ 4 - Σ αvxj,
v = 0 v = 0

β2(x) = σ2(α) Σ xj-σ^α) £ «v*? + Σ α?x?, (3.4)
v=0 v=0 v=0

β3(x) = σ3(α) £ xj-σ2(α) £ flvxv

2 + σ i(α) £ «?*?- £ «?*?
v=0 v=0 v=0 v=0

The Lagrangian (3.1) in the elliptic coordinates is determined by the formulae

'•-&•*-"• "-ϊ^
The corresponding Hamiltonian system and the Hamiltonian H look as follows

Pj = - SH/duj, ύj = dH/dpj,
(3.6)

1 n

H(Pp M i ) = o Σ gj ιv] + V, Pj = gjύj.

The Hamilton-Jacobi equation for the generating function S(μ0, . . . , « B ) ^ 0 ) . . . , ηn)
has the form

(

Proposition 1. The Hamilton-Jacobi Eq. (3.7) and the Hamiltonian Eqs. (3.6) are
integrable in quadratures if the potential V(u) is defined by the formula

where f{z) is an arbitrary entire function of z with constant real coefficients and the
integral is taken around an infinitely distant circle in the complex plane. The
potential V(u) is the entire function of the symmetric variables σί9 ...,σn + 1 and the
Euclidean coordinates x0,..., xn. If the function f(z) is a polynomial of degree N,
then the potential V(x) in the coordinates xo,...,xnisa polynomial of degree 2N + 2.

We introduce the polynomial Pn(z) = ηoz
n +...+ηn. From the residue theorem

one receives

η° 2πifU0(z) jhu'oW
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Analogously for the potential (3.8) one obtains the representation

n f(u)un+ί

V(u)= Σ J J

In consequence of this formulae the Hamilton-Jacobi Eq. (3.7) acquires the form

Equation (3.9) has the following solution:

n uj ( f(7\7n+ΐ _ p /_\\ 1/2

S K , . . . , ^ , . . . , ^ Σ I ΊΛ(Λ ) dz. (3.10)
j=oo\ -2A(z) J

The generating function (3.10) determines the canonical transformation by the
following formulae

Pj -2A(uj) J
' (3.11)

ζ f c~ % " 2 A S (-2A(2)(/(z)z-+1-P11(z)))1/2 '

As follows from Eq. (3.7) the Hamiltonian Eqs. (3.6) in the canonical coordinates
ξk9 ηk have the form

Therefore the dynamics of trajectories in the coordinates pj9 uj is integrable in
quadratures after inversion of the transformation determined by Eqs. (3.11).

One can find the expressions of the first integrals in terms of the variables pj9 Uj
from the system of linear equations,

η o u n

j + η 1 u n

j - 1 + . . . + η n = f(uj)un

j

 + 1 + 2 A ( u j ) p ] , j = 0 9 . . . 9 n .

The integrals ηk are quadratic functions of the momenta pj.
To prove the last part of the Proposition 1, we use the formula

= 0\ Zj k=ί

(3-12)

Assuming in the integral (3.8) \z\ > 1 one obtains that the potential V(u) is the entire
function of the variables σ1?..., σn+x and coincides with the coefficient at z ~ί in the
Laurent expansion determined by Eqs. (3.12). Hence we find that if the function
/(z) is a polynomial f(z) = co + c1z+ ... + cNzN, then the potential V(u) is also a
polynomial and looks as follows:

...). (3.13)
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One can obtain the form of the potential in the Cartesian coordinates x0,..., xπ

from Eqs. (3.12)-(3.13) after a substitution of the expressions (3.3) of the symmetric
functions σk(ύ) in terms of the second-order polynomials <2k_ x(x). In [19] a quartic
potential was pointed out for which the problem of the dynamics of n interacting
particles on a straight line has n involutive first integrals. This potential may be
included in the family of the potentials (3.13) as the simplest case determined by the
conditions ck = 0 for all k ̂  2.

Evidently the second-order terms in the two first summands in the polynomials
(3.13) [after a substitution of the expressions (3.3)—(3.4)] can be made arbitrary
(diagonal) by choosing the constants ao,...,an,co,c1 in such a way that the
coefficient cί is arbitrary small. Therefore if the coefficients c2,...9cN are also small,
the potentials (3.13) describe the integrable perturbations of degree 2N + 2 for the
system of n -f 1 harmonic oscillators on a straight line. The terms of the greatest
degree in the polynomials V2N+2(x0, •••>**) have the form

The found class of the "integrable" potentials V(x) (3.8) [in particular the
polynomials (3.13)] is closed under addition.

2. We consider a family of integrable Lagrangian systems with the Lagran-
gians of the form (3.1) on the ellipsoid defined by the equation

Σ — = 1, α v φ α μ > 0 . (3.14)

In the elliptic coordinates (3.2), Eq. (3.14) acquires the form uo = 0. Therefore the
function U0(z) on the ellipsoid takes the form

U0(z) = zU(z), U(z)= Π (z-uj). (3.15)

The Lagrangian (3.1) on the ellipsoid (3.14) in the elliptic coordinates (3.2) has the
form (3.5), where7 = 1, ...,w. The Hamilton-Jacobi Eq. (3.7) acquires the form

(dSV

Proposition 2. The Hamilton-Jacobi Eq. (3.16) and the corresponding Lagrangian
system on the ellipsoid (3.14) are integrable in quadratures if the potential V{u) is
determined by the formula

where f(z) is an arbitrary entire function with real coefficients. If f(z) is a
polynomial of degree N, then the potential V(x) in the Cartesian coordinates
x0,..., xn is a polynomial of degree 2N + 2.

The proof is similar to that above. The polynomial Pn(z) is replaced by the
polynomial Pn_ί(z) = η1z

n~1+η2z
n~2 +... +ηn. The generating function S(u,η)

has the form
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The final formulae for the "integrable" potentials F(x0, ...,xn), Eqs. (3.13)—(3.3),
remain valid without any changes (at wo = 0).

For f(z) = 0 (Y(x) = 0) the generating function (3.18) defines the integration of
the geodesic flow on the ellipsoid [2, 3]. For f(z) = 1 we have from Eq. (3.13),

V2(x0,...,xn) = x2

0 + x2

ί + ...+x2

n-σί(a). (3.19)

This integrable case was also found by Jacobi [2]. For f(z) = co + c1z, we obtain
from Eqs. 3.13)—3.3) the quartic potential

σ1(a) Σ K~ Σ αv*ί , (3-20)
v=0 v=0

which determine integrable dynamics of a mass point on the ellipsoid (3.14). The
polynomial potentials V2N+2(

χ) (3.13)—(3.3) determine the infinite-dimensional set
of integrable cases of dynamics of a mass point on the ellipsoid (3.14).

3. For construction of integrable Lagrangian systems on the sphere Sn, defined
by the equation Qo(x) = xl + x\ +... +x2 = 1, the special elliptic coordinates
ul9 ...,un [2, 6] are useful, which are determined from the equation

n γ2 TJ(z) n n

Σ , U(z)= Π (z-Uj),A(z)= Π (z + av). (3.21)
j=i v=o

After reduction to the common denominator A(z) and equating the coefficients at
zn"fe(/c = 0, ...,n) in both-hand sides of Eq. (3.21), one obtains the relations

σk(u) = (-l)«Qk(x0,...,xn). (3.22)

The Lagrangian (3.1) in the elliptic coordinates (3.21) on the sphere S" is
determined by the formula [6],

. (3.23)

The corresponding Hamilton-Jacobi equation has the form

+V.η,. (3.24)

This equation is analogous to Eqs. (3.7), (3.16). Therefore Proposition 2 is
completely applicable also for the integrable Lagrangian systems construction on
the sphere S", the potential V(u) is determined by the formula (3.17). The
generating function S(u, η) has the form

S(uu...,un,ηu...,ηn)= Σ / o/Γ dz. (3.25)
j=l 0 \ 2AZ) J

After the canonical transformation PpUj-^ξ^ηj^ip—h ύi) determined as follows

= d^ =

Pj duj

dS _ 1

^ " 2

2A(uj) J
J (3.26)

2 A Jo(2^(z)(/(z)z"-Pπ_1(z)))1/2 '
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the Hamiltonian system [corresponding to the Lagrangian (3.23)] takes the
simplest form

& = - A i , ήk = O, ξk(t)=-tδkl+ck.

Therefore the dynamics in the variables pp Uj is integrable in quadratures after
inversing the transformation determined by Eqs. (3.26). The formulae for the first
integrals ηk in terms of the variables pp u} can be obtained from the system of linear
equations

The form of the "integrable" potentials V(xQ,...9xn) in the Cartesian
coordinates xθ9...9xn is determined by Eqs. (3.12), (3.13), where instead oίσk(u) it is
necessary to substitute, according to Eq. (3.22), the polynomials ( — ΐ)kQk(x).

The classification of the two-dimensional natural Lagrangian systems inte-
grable by the Hamilton-Jacobi method was done in [20]. The class of the
"integrable" potentials V(ul9...9u^ on the spheres Sn in the special case n = 2
coincides with the "integrable" potentials on the two-dimensional sphere S2, found
in [21], where their explicit forms were received in so-called "spherical-conical"
coordinates. We indicate the formulae for these potentials in terms of the Cartesian
coordinates xo,xux2, which follows from Eqs. (3.12), (3.13) at n = 2,

oo N

V(xo,xux2)= Σ Σ {-l)kcN+k^Ck

Nσ«-kσ\,
N=ίk=0

2

Σ αvx?, (3.27)
v = 0

2 2

a2) Σ <V^+ Σ avxv
v = 0 v=0

Here Ck

N = N\/k\(N — k)\, the constants ck satisfy the condition that the series
00

f(z) = Σ cmzΐn i s convergent at all values of z.
m=0

Remark 1. The separation of variables for the Lagrangian (3.1) in the elliptic
coordinates is possible if the potential V(u) has the form

n F(u)
V(uo,...,uJ= Σyy^Γ. (3.28)

j=oUo{uj)
However the formulae for the potentials (3.28) in the Cartesian coordinates
xθ9...9xn include radicals, in contrast with the potentials (3.8), (3.17) which are
analytical functions in Cartesian coordinates and include the polynomials of all
even degrees.

4. Integrable Cases of the Equations of a Rigid Body Rotation
in an Axially Symmetric Potential Field

Rotation of a rigid body around a fixed point in an axially symmetric (for example
central) potential field is described by the Lagrangian system on the Lie group
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SO (3) with the Lagrangian,

ίf | i (4.1)

where the "Poisson vector" q(ί) has the following components (in the rotating
frame S)

(4.2)

The angular velocities ωu ω2, ω 3 have the following expressions in terms of the
Euler angles θ,φ,ψ [1]:

nφ + θcosφ ω 2 = ΐ/>sin0cosφ —0sinφ,

The precession angle ψ is the cyclic coordinate for the Lagrangian (4.1). The
corresponding momentum pψ is the first integral of the Lagrangian system

pψ = dL/dψ = I1ωιqί + l2ω2q2 + I3ω3q3 = (M, q). (4.4)

The Lagrange equations (4.1) in terms of the coordinates of the angular
momentum vector M and the Poisson vector q are as follows:

M = M x ω + qx3F/3q, q = q x ω . (4.5)

Equations (4.5) for a constant value of the first integral (M, q) = pψ = const are the
Lagrangian equations on the two-dimensional sphere S2, their Lagrangian is the
Routh function (this fact was first noted in [22] and was used for the proof of the
existence of closed trajectories in [23, 24]) and has the form

2

γ=L — pψ\p = \ Θ2(I1 cos2 φ + I2 sin2 φ) + \ I3φ

2 sin2 Θ(IX sin2 φ + 1 2 cos2 φ) + 2/3 cos2 θ

Minkowski noted the geometrical sense of the Lagrangian Lx.

Geometric Lemma. The Lagrangian Lγ (4.6) for pψ = 0 describes a mass point
motion under the influence of the forces with the potential V(θ, φ) on the surface of
the inertia ellipsoid

l (4.7)

in the metric, conformally equivalent to the standard one and having the form [22]

We introduce the angular coordinates 0, φ on the ellipsoid (4.7),

x2=I2

ί/2smθcosφ, x 3 = I3

1/2 cosθ. (4.9)
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The kinetic energy of the mass point, corresponding to the metric (4.8), acquires the
following form in the coordinates 0, φ:

T = [2 sin2 Θ{IX sin2 φ + I2 cos2 φ) + 2/3 cos2 0] " x

• [φ2l3 sin2 Θ{I1 sin2 φ +12 cos2 φ) + Θ2(IJ2 sin2 θ +13 cos2 0

• (Jx cos 2φ + 1 2 sin2φ)) — 2θφI3(I1 —12) sin0 cos0 sinφ cosφ] . (4.10)

One can verify by direct calculation the kinetic energy (4.10) coincides with the
kinetic energy (4.6) for pψ = 0. This fact completes the proof of the Geometric
Lemma because of the identity of two potentials V(θ9 φ) in Eqs. (4.6), (4.8).

Due to the Geometric Lemma the kinetic energy (4.10) coincides with the
Routh function for the Euler rotation of a free rigid body for pψ = 0. Therefore it is
obvious that the geodesic flow for the metric (4.8) is integrable in the elliptic
functions. The integrability in Liouville's sense was proved in [25] for the geodesic
flow for the metric of the form (4.8) in n-dimensional case.

We determine the elliptic coordinates uu u2 on the ellipsoid (4.7) satisfying the
equation

3 χ2 U(z) 2 3

v = l Z + / v A(Z) ί = 0 v=l

(4.11)

We have u0 = 0 on the ellipsoid (4.7). If we differentiate (4.11) with respect to z and
substitute z = 0we obtain for uo = 0,

l\x\ + l\x\ + l\x\ = I1I2I3uιu2 .

Therefore the Lagrangian (4.6) for pψ = 0 in consequence of the Geometric Lemma
acquires the form

ZUiU2

(4.12)
_u1(u1-u2) u2(u1-u2)

91 4A(Ul) ' 92 4A(u2) •

We suppose the potential V(uuu2) to be of the form

V(u1,u2) = uίu2

F^-F^). (4.13)
uί—u2

We introduce the momenta p1 = giύi/u1u2, p2 = g2ύ2/uίu2. The Hamiltonian
H(p,ύ) corresponding to the Lagrangian L1 ? is as follows:

^ < U > F < B 4 (4 14)
ί L Uί U2

and belongs to Liouville's type. The Hamilton-Jacobi equation

ηl9 S = S(uuu2,ηl9η2)
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has the solution, satisfying two separate equations,

( M 1 ) = - — +1/2,
M l (4.15)

u2 \όu2j u2

This solution has the form

(4.16)

The canonical transformation Pj,Uj->ξk,ηk, defined by the formulae

transforms the Hamiltonian flow under study to the simplest flow

Thus the following theorem is proved.

Theorem 1. The equations of a rigid body rotation around a fixed point in an axially
symmetric potential field are completely integrable in Liouville's sense for pψ = 0 if
the potential function has the form (4.13), where F^u), F2(u) are arbitrary smooth
functions. The explicit integration is reduced to the quadratures by the Hamilton-
Jacobi method.

The additional integral η2 has the form

, u1F1(u1)-u2F2(u2) (ΛΛQΛ

16 \u2

2Λ(Ul) u\A(u2) ' 2{uγ-u2) '

I
In the special case F1(z) = F2(z) = f(z) [35] the series /(z)= Σ cmzn

defines the entire function I the potential (4.13) is determined also by the formula

"<••••*-^'cdw (419)

and is the entire function of the Cartesian coordinates xlt x2, x3 (see Sect. 3). In
consequence of Eq. (4.11) we have

σ 2 = u 1 M 2 = ( / 1 / 2 / 3 ) - 1 ( / ? χ f + / | χ i + / i χ i )

The potential (4.19) in the coordinates x 1 ,x 2 ,x 3 takes the form [see Eq. (3.12)]

V(xux2,x3) = σ2(c0+ Σ Σ ( - l K ι - i C W - ' 4 (4.21)
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After a substitution of the relations xk = qklk~
 1 / 2 one obtains the expressions of the

potentials (4.21) in terms of the Poisson vector coordinates qk. If f(z) = co + cίz,
then the function (4.21) is the potential ct(I ^1 + I2ql + I^ql) °f the Brun
integrable case [26], coinciding with the Clebsch integrable case [12] for the
Kirchhoff equations. For f(z) = co + c1z + c2z

2, we obtain an integrable case,
corresponding to the potential

F4 = (J l β? + I2q\ + I3q
2) (c + c2(/Γ ιq\ +1 2

 γq\ + /3" ̂ D) (4.22)

If the function f(z) is a polynomial of degree JV, then the corresponding potential
V(qί,q29q3) (4.21) is the polynomial of degree 2N. The whole family of
"integrable" potentials (4.21) depends on the infinite set of parameters ck and is
closed with respect to the addition.

5. Integrable Cases of the Equations of a Rigid Body Rotation
with a Symmetric and Spherical Inertia Tensor

1. The Lagrangian describing rotation of a symmetric (i\ = I2) rigid body around
a fixed point has the form (2.3). We suppose the potential function depends on two
Euler angles V= V(θ, ψ). Then the coordinate φ is cyclic and the corresponding
momentum pφ (2.4) is the first integral. Let q(ί) be the unit vector along the
symmetry axes of the rigid body inertia tensor, with the coordinates (2.2). The
Routh function L2 — Lγ—pφφ has the form

^ 2 = ^ 1 ( q > q ) + I V / > c o s 0 - F ( q ) - ~ ^ . (5.1)

The Lagrangian (5.1) for pφ = 0 describes the dynamics of a mass point on the sphere
S2 in the potential field with the potential V(q). Thus to every integrable case of this
problem there corresponds an integrable case of the symmetric rigid body
dynamics for pφ = 0.

Corollary. The equations of a symmetric rigid body rotation around a fixed point in
a potential field are integrable in Liouville's sense for pφ = 0if the potential function
V(θ,ψ) belongs to the infinite-dimensional set of the potentials (3.27), where

, x2= — sinθcosφ.

The dynamics is integrable in quadratures.

Remark 2. Two maps SO(3)->S2 used in the constructions of the integrable cases
here and in Sect. 4 are essentially different. In Sect. 4 the factorization is used with
respect to the precession angle ψ, but in the construction pointed out above (and in
Sect. 2) the factorization is realized with respect to the angle of the proper rotation

φ.
Applications of the fibration S3-+S2 to the Kepler's problem were discovered

in [32].
2. The covering map

/:S3->SO(3) (5.2)
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is determined by the formulae [27]

The map (5.2)—(5.3) is also the homomorphism of the Lie groups (the sphere S3 is
the Lie group of quaternions of unit norm). Therefore the bilaterally invariant
metric on the Lie group SO (3) corresponding to the spherical inertia tensor
transforms under the mapping /* to the bilaterally invariant metric on the sphere
S3 coinciding with the standard one.

The map (5.2)—(5.3) identifies diametrically opposite points on the sphere S3\
<2}(x) = Q{(- x). The elliptic coordinates ux,..., un (3.21) depend on the squares of
the coordinates xv; thus the same coordinates w1?...,un correspond to every two
diametrically opposite points on the sphere Sn. Hence the elliptic coordinates on
the sphere S3 are also the coordinates on the Lie group SO (3). Therefore every
Lagrangian system on the sphere S3 with the Lagrangian (3.1) integrable in the
elliptic coordinates (3.21) determines an integrable Lagrangian system on the Lie
group SO (3) with the Lagrangian

L1=I0Tr(Q'ίQQ~ίQ)-V1(Qί

j). (5.4)

The Lagrangians (5.4) describe the integrable cases of dynamics of a rigid body
with the spherical inertia tensor (Iik = Ioδik) in a potential field which determines
the potential function F^βj ).

To obtain the explicit formulae for "integrable" potentials Fi(β}) we indicate
the analytical form of the two-valued transformation inverse to the covering map
(5.2H5.3)

xtxj = τ (βj + Qb, *cΛ = i etikiQί - 6}) •

Here Uj\k= 1,2,3, iΦj'Φfc. Due to Eqs. (5.5) we obtain

UQ) = Σ <fr?(β) = Ak+(l4~Λ)TrQ + \ Σ a\Q\, (5.6)

where 4Ak = ak

0 + aX + ak

2 + aX. Because of Eqs. (3.4), (3.22), (5.4) the symmetric
functions σ1(«), σ2(u), σ3(u) are the linear functions of the matrix Q elements,

σί(u)= - σ Λ α H Λ β ) , 2 ( ) 2 ( ) ί ( ) ί ( Q ) 2 ( Q ) ,

®

Let the coefficients cm satisfy the condition that the series f(z) = Σ cm^m *s

convergent at all values of the complex variable z.

Theorem 2. There exists an infinite-dimensional set of the integrable in quadratures
Lagrangian systems on the Lie group SO(3) with the Lagrangians (5.4), where the
potentials Fi(β}) have the form

oo N k

:)= 2, L L V~" V C3N-2k + ί-l^N^kσl σ2σ3 \P'*)
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Here σ 1 ? σ 2 , σ 3 are the linear functions (5.7) of the matrix Q elements,
Ck

N = N\/k\(N — k)\. The series (5.8) determine the entire function of the matrix Q
elements. If the function f(z) is a polynomial of degree JV, then the potential VX(Q) is
the polynomial of degree N + 1.

The potential F x ( 0 (5.8) is the coefficient at z~1 in the Laurent expansion of the
function (3.12), where

σ1 σ2 σ3^ _ _ ) — n — ό.
z zι zό

Therefore the proof of Theorem 2 follows from the results of Sect. 3, after
application of the transformation (5.2) and the formulae (5.7).

The explicit form of some potentials Fx(β) one can obtain from Eq. (3.13),
setting JV = O, 1,2,3. In the simplest case JV = O, / ( z ) = — c 0 , it follows from
Theorem 2 that the Lagrangian system (5.4) with the potential

(5.9)
is integrable in quadratures.

Note the Lagrangian (5.4) with the potential F^β}), linear depending on all

elements of the matrix Q: V^Q)^ Σ QjBj can be reduced to the one with the

potential (5.9) by the transformation Q = S0Q1T0, where So and To are constant
orthogonal matrices. Such transformation preserves the kinetic energy form in
Eq. (5.4) and reduces the matrix B to the diagonal form2.

We consider a rotation around a fixed point of a magnetized rigid body T with
the spherical inertia tensor (Iik = Ioδik) at the presence of an arbitrary distribution
of electric charges σ(r) satisfying the conditions (ij= 1,2,3)

ί (0 ι ) 2 + (rj)2)σ(τ)d3r = 0, ί rV'(i(r)ίί3r = 0. (5.10)
T T

Theorem 3. The equations of the rigid body T rotation in arbitrary constant
gravitational, electric and magnetic fields are completely integrable in Liouville's
sense. The dynamics is integrable in terms of the Riemannian theta-functions of
three variables θ(zuz2,z3).

At the conditions (5.10) the Lorentz forces momentum equals zero (see [29]),
and the equations of the rigid body rotation acquire the form

(5.11)

where H, E, G are the constant (in the resting frame F) vectors of strengths of the
magnetic, electric and gravitational fields, μ and d are the vectors of the magnetic
and electric dipole momenta of the rigid body, vector R stands for the position of
the center of mass, m is the whole mass of the rigid body (vectors μ, d, R are
constant in the rotating frame 5), M is the skew-symmetric matrix corresponding
to the angular momentum vector M.

2 The Lax matrix was indicated in [ 19] for the Lagrangian systems with the linear potentials on
the Lie groups SO(n). Some integrable systems with quartic potentials were found in [28]
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Equations (5.11) are the Lagrangian equations on the Lie group SO (3) with the
Lagrangian

L=ho(M,M)- Σ ρjβ/, B/ = const. (5.12)
2* i, J= 1

The transformation / (5.2)—(5.3) takes the Lagrangian (5.12) into the Lagrangian

^ ί,j=o

which coincides with the Lagrangian of the Neumann system on the sphere S3 (the
matrix atj is reduced to the diagonal form by the transformation Q = S0Q1 Γo). The
first integrals of the Neumann system [4-7] are invariant under the reflection
x-> — x; therefore the integrability of the Lagrangian system with the Lagrangian
(5.11) in Liouville's sense follows from that for the Neumann system. As noted
above the elliptic coordinates on the sphere S3 are also the coordinates on the Lie
group SO (3). Therefore the integrability of the rigid body dynamics in terms of the
Riemannian theta-functions also follows from that for the Neumann system [4-7].

3. Due to the existence of the local homeomorphism (5.2)—(5.3) it is possible to
construct from every integrable Lagrangian system on the Lie group SO (3) some
integrable Lagrangian system on the sphere S3. On the basis of this construction
the integrability was proved [30] for the Lagrangian system on the sphere S3 with
the Lagrangian (3.1) having the quartic potential

1\
v= Σ (χiXj-εtjkXoχά2AkJJ+ Σ 4+4- ~ 4 Λ , (5.13)

ij kl\ £/
j k=l

where Ak, Jj are arbitrary constants. Due to the existence of the homomorphism of
the Lie groups S3 x S3-»SO(4), the integrability was proved [30] for the dynamics
of two interacting mass points on the sphere S3 (with the standard metric) in the
potential field with the quartic potential

3

v ( * , y ) = Σ ( X i y j + X j y 2

3 I
+ 4 Σχ UoJΌ

where αί5 Rj are arbitrary constants.
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