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Abstract. It is shown that a method previously given for constructing
representations of the Virasoro algebra out of representations of affine Kac-
Moody algebras yields the full discrete series of highest weight irreducible
representations of the Virasoro algebra. The corresponding method for the
super-Virasoro algebras (i.e. the Neveu-Schwarz and Ramond algebras) is
described in detail and shown to yield the full discrete series of irreducible
highest weight representations.

1. Introduction

In a recent letter [1] we described a method for constructing representations of the
Virasoro algebra out of representations of affine Kac-Moody algebras. The
Virasoro algebra occurs as the algebra of the conformal group in one dimension,
or, in the form of two commuting copies, in two dimensions. Thus it is of
importance in physical contexts where two-dimensional conformal invariance
plays a crucial role, such as string theories or the behaviour at critical points of
two-dimensional statistical systems [2, 3]. The Virasoro algebra is defined by the
commutation relations

lLm,Ln-] = (m-n)Lm+n+^m(m2-l)δm^n, m,neZ, (1.1)

where c is a central element, i.e. [Ln, c] = 0, so that c is assigned a numerical value in
any irreducible representation. In this paper we shall be concerned with unitary
representations of this algebra, that is representations satisfying the hermiticity
conditions,

ti = L-n, (1-2)

and, more particularly, highest weight representations, that is ones in which all the
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states can be generated from a highest-weight state \h} satisfying,

(1.3)

(1.4)

An irreducible highest-weight representation is specified by the pair of numbers
(c, h). It is easy to show that [3], in this case, unitarity requires

c^O and h^O. (1.5)

Unitary representations exist for all values of (c,h) with cΞ^l and h^O, but
Friedan, Qiu, and Shenker (FQS) [3] showed that the only values of (c, h) with
0 ^ c < 1 which might correspond to unitary representations are

m

and

u = h

(1.6)

4m(m+l) ' (1.7)

[We could extend the range of ^ up to m but this would only repeat one of the
\m(m— 1) values above because the substitution p->m — p and g-»m + 1 —g leaves
Λp,β(c) unchanged.]

Our construction [1], which generalises an earlier approach [4], is based on
the affine Kac-Moody algebras, g9 h, associated with a compact Lie group G and a
subgroup H. For each unitary representation oϊg, and induced representation of h,
we obtain a representation of the Virasoro algebra. All the values of c
in the discrete series (1.6) can be obtained either with G = Sp(m— 1),
H = Sp(m - 2) x Sp(l) or with G = SU(2) x SU(2) and H being the diagonal SU(2)
subgroup (and using suitable representations of g in each case). These construc-
tions should be thought of as complementary. We shall use the second point of
view here, and show that it gives all the values ofh given by (1.7). This demonstrates
that the values of (c,h) listed by FQS do indeed correspond to unitary
representations.

Friedan et al. [3, 5] also analysed the representations of the two supersym-
metric extensions of the Virasoro algebra, the Ramond [6], and Neveu and
Schwarz [7] algebras, defined by (1.1) together with

m+r, (1.8a)

. s , (1.8b)

where m e Z and either r,seZ [Ramond case] or r,seΈ+\ [Neveu-Schwarz
case]. They found that the only possible unitary highest weight representations, i.e.
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representations generated from a state \h} satisfying (1.3), (1.4) and

Gr\h) = 0, r > 0 , (1.9)

are characterised by (c,h) where either c^f, h^O or

m(rn + 2)

and

— 1 ,
2)J

= 2,3,... (1.10)

-4 + f.
where p = 1,2, ...,m—1 andg = 1,2, ...,m + l.Herep —g even or odd corresponds
to the Neveu-Schwarz and Ramond cases respectively, with ε = 0 or ^ correspond-
ingly in Eq. (1.11).

A construction giving all the values of c in the discrete series (1.10) was sketched
in [1]. It is described in more detail in Sect. 3. In Sect. 4 we demonstrate that it too
produces all the corresponding values of h in Eq. (1.11), completing the
classification of unitary highest weight representations of the Neveu-Schwarz and
Ramond algebras.

2. Unitary Representation of the Virasoro Algebra

The methods of constructing representations of Virasoro algebras given in [1, 4]
start from the Virasoro algebras one can construct from affine Kac-Moody
algebras. If g is a simple Lie algebra,

[Ta,Tb'] = ίfabcTc, (2.1)

written in a basis in which the structure constants fabc are totally antisymmetric,
the associated affine Kac-Moody algebra g takes the form

K , Tn

6] = ίfabcT^+n + krnδabδm, _„, (2.2)

m,neΈ, where k is a central element (and so is assigned a numerical value in any
irreducible representation). We shall be concerned with unitary highest weight
representations oϊg also, that is representations in a positive definite Hubert space
satisfying

1f = Ttn, (2.3)

and with the representation space generated from vacuum states Ψ satisfying

Tn

aΨ = 0, n>0. (2.4)

The central element k is quantised in multiples of \\p2, where ψ is a long root oϊg.
The integer 2k/ψ2 is called the level.

From g can be constructed [8] a Virasoro algebra Un defined by

19 — v ° Ta Ta ° Π Sϊ
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where the normal ordering operation is defined by

lTn

aTlnl=TlnTn

a if n^O, (2.6)

and

β = k+\c%. (2.7)

Here cg

ψ denotes the quadratic Casimir operator for the adjoint representation of g,

fabcfabd = cβ

ψδ
cd. (2.8)

The L9

n satisfy (1.1) with c taking the value

Clearly if we start with a unitary representation of g, this provides a unitary
representation of the Virasoro algebra.

If g is semisimple there is a central element kt in g for each simple factor gt,
l^i^ΛΓ, of #. Then

Un= Σ 1$ (2.10)
i=ί

is a Virasoro algebra with central element

The main idea in [1] was to consider not only an algebra g but also a
subalgebra hdg. We label the basis for g so that the first dim/z generators form a
basis for h. In this situation we have two Virasoro algebras L% Lh

n and we
can consider their difference

Kn = Un-Ll (2.12)

which satisfies the Virasoro algebra with central element

c = c9-c\ (2.13)

and commutes with /z,

[ K w , 7 ? ] = 0 , l^α^dim/z, (2.14)

m,neZ. It is not difficult to see that a unitary highest weight representation of g
provides a unitary highest weight representation of Kn and so, necessarily,

cg^ch. (2.15)

Let us now consider what are the possibilities for highest weight irreducible
unitary representations of g. (For reviews see [9-11].) In such a representation the
vacuum states Ψ satisfying (2.4) form a finite-dimensional irreducible represen-
tation of g = {T£) whose highest weight λ must satisfy

\a λ\^k (2.16)
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for all roots α oϊg, which is assumed simple for the moment. This taken, together
with the condition 2k/ψ2eΈ, is a necessary and sufficient condition for the
existence of an irreducible unitary representation of g. This representation can be
labelled by (2h/ψ2, λ). If g is not simple, the irreducible representations of g can be
constructed from those of gb where the gt are the factors of g.

In [1] it was remarked that the values of c in the discrete series (1.6) could be
obtained by taking g = su(2)©su(2) and h to be the diagonal su(2) subalgebra. The
su(2) (affine untwisted) Kac-Moody algebra can be written in the form

ra,??] = iWG + I ,+ jmδΛδm,.n, (2.17)

and then ψ2 = ίΛt follows that JV e Έ for a unitary highest weight representation
and is the level of that representation. Such representations are labelled by (JV, I)
where I is the highest helicity (i.e. the largest eigenvalue of T= Γo

3) for a vacuum
state Ψ. We shall call this the level JV, spin / representation; condition (2.16) implies
that 0^2l^N. A level JV representation of su(2) gives rise to a Virasoro algebra
with central element

If we construct a representation of g for $ = su(2)φsu(2) by taking a level JV
representation of the first factor and a level 1 representation of the second factor,
we obtain a level JV -f 1 representation of the diagonal h = su(2). Thus Kn given by
Eq. (2.12) has a value of c, given by (2.13),

Taking JV = O, 1,... gives the sequence of Eq. (1.6).
Our aim now is to show that from such representations of Kn we can obtain all

the values of h given by Eq. (1.7). To do this we decompose the level (JV, 1)
representation of g with respect to fix V, where V denotes the Virasoro algebra
{Kn}. We shall show that the representation obtained by taking the (JV,/)
representation of the first su(2) factor and the (1, ε), ε = 0 or \, representation of the
second su(2) factor decomposes into the direct sum of representations
(N\Γ)x(c,h)oϊ fίxV,

0(JV+l, i [4- l])x(c,/ ι M (c)) , (2.20)
q

where c is given by Eq. (2.19) p = 2/ + 1, so that 1 :g p :g JV + 1, and the sum is taken
over q such that p — q is even or odd, depending on whether ε — 0 or ,̂ and 1 ̂  q
^JV + 2. This gives all the values required. Note that this implies that the
representation (JV, I) x (1, ε) of g is finitely and simply reducible in terms of fix V.

To establish (2.20) we introduce characters for the algebras we are studying,
though it turns out that we shall only need to make a very limited appeal to the
theory of characters. Essentially all we need are the Kac-Moody formula [9] and a
formula for the characters of the Virasoro algebra [12], but we shall explain these
as we develop the argument.
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We define the character χNJ for the level N spin / representation of the su(2)
Kac-Moody algebra by

χNJ(z,θ) = tr(zL<>ewτ3o). (2.21)

In the level 1 case, where ε = 0, \, there is a rather explicit formula for χx ε which
can be deduced from the vertex operator construction of these representations [13,
14]. An account of this and its relation to string theory is given in [15]. Because
these representations can be constructed irreducibly in a Fock space defined by the
annihilation and creation operators am acting on momentum eigenstates |y>,
y/j/2eZ + ε, where

[αm,αJ = m<5m)_Λ, rn,neZ, (2.22a)

α;L = α_m, αw |y>=0, m>0, (2.22b)

p\y>=y\y>, a o = P , (2.22c)

with

L 0 = i p 2 + Σ « - A , T=p/]/2, (2.22d)

we have

xUz,θ)= Σ ^V^πO-zT1. ( 2 2 3 )
meZ+ε n=l

To obtain the characters for other representations of the su(2) Kac-Moody
algebra we need to resort to the Kac-Weyl formula, of which some explanation is
given in Appendix A. In the su(2) case this gives the expression

χNtl(z9θ) = ΔNtl(z9θ) ft {\-zT\^-zneiθr\\-zn-ιe'iθy\ (2.24)
n = l

where the numerator

ANΛ(z,θ) = zl(l+l)/λ Σ z

λn2 + i2l + ί)n{ei(l + λn)θ-e'iil + 1+λn)θ} (2.25)
neZ

with

λ = N + 2. (2.26)

We can regard Eq. (2.25) as defining a function for all values of N and /. With this
extension, it is straightforward to establish directly the symmetry properties

AN,ι + λ(z,θ) = ANtλ(z,θ)9 (2.27)

AN^ι_1(z,θ)=-AN,ι(z,θ), (2.28)

which follow from the symmetry of characters under the action of the Weyl group
of g.

The other character formulae we need are those for representations of the
Virasoro algebra. The character of the representation (c, h) is defined by the trace

χlh(z) = tr(zL°). (2.29)
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For the discrete series of Eq. (1.6), (1.7) these have been given by Rocha-
Caridi [12],

00

ώω^^ωπo-zr1, (2.30)
n= 1

where
Δ™q(z)= Σ {za™«{n)-zβ™«{n)}, (2.31)

neZ

with

~λ- (2.32b)

These expressions follow from the general results of Feigin and Fuchs [16] on the
structure of Virasoro algebra representations. For a proof and discussion of these
results see [17].

Let us consider what (2.20) is equivalent to in terms of characters. Because the
T for fi is the sum of the T's for the two su(2) factors in g, and because

(2.33)

where Un, ί= 1,2, denotes the Virasoro algebra for the two su(2) factors of g, the
decomposition (2.20) implies

i ) ( z , % M (2-34)

with c, h, p, q specified as in Eq. (2.20). On the other hand, if Eq. (2.34) holds we can
use it to decompose the given representation of g into irreducible representations
of fix V, because from it we can successively isolate highest weight states for the
algebra fixV, that is, states Ψ{m satisfying

J (2.35a)

(2.35b)

W (2.35c)

To do this we look for the lowest powers of z on the right-hand side of (2.34). These
will be a sum of terms of the form

where L—\{q — 1). Such a term indicates the presence of highest weight states Ψj^1

with j — L and a representation (JV 4-1, L) x (c, /z) of /z x F. Removing the states of
this representation corresponds to subtracting the term

χN+1Λk-1)(z,θ)χlh(z) (2.37)

from (2.34). Proceeding inductively in this way one establishes (2.20).
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It remains to prove (2.34) using the expressions (2.23)-(2.25) and (2.30)-(2.32).
Because the denominators match, it is equivalent to

{q^1}(z,θ)Δl+

q

2(z). (2.38)

Our strategy in proving this is to rewrite the left-hand side of (2.38) as a sum over
functions ΔN + ί)j(z, θ), multiplied by functions of z only, and then use the symmetry
properties (2.27), (2.28) to bring j into the appropriate range that \{q — 1) goes over.
Using (2.25), this left-hand side equals

m)θ _e-ί(l+l+λn + mm (2 39)

meZ + ε neTL

Now put m' = I + m — n so that m'eΈ + ε', where ε' = 0 or \ as I -f ε e Έ or ΊL + ̂ . Then

l + m + λn = m/ + (λ+l)n (2.40a)

and

λn2 + (2l+\)n-{-m2 = (λ+\)n2 + (2m/+l)n + (m/-ΐ)2. (2.40b)

Thus

ί Σ zm2eimθ)ΔNtl(z9θ)= Σ zAΔN+Um,(z,θ), (2.41)
[meZ + ε J m'eZ + ε'

where

A = /(/+l)/λ-m/(m/+l)/(λ+l) + (m /-O 2 . (2.42)

Now put

m^-iλ+lJM + V, (2.43)

where M e Z and 0^Γ^λ. Also put

p = 2 I + l , q = 2V+l (2.44)

so that p,qeΈ, l^q^2λ+\, l^p^λ—l and p — ̂f is even or odd as ε = 0 or \.
Then

4 = < β ( M ) , (2.45)

as defined by Eq. (2.32a). Using the periodicity property (2.27), the character
becomes

Σz<^M)X. (2.46)
M J

If we use the reflection property (2.28), substituting (λ +1) for λ here, together with
the relation

< , ^,ί(M-l), (2.47)

we obtain the right-hand side of Eq. (2.30), thus completing our proof.
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3. Construction of the Super-Virasoro Algebras

In this section we describe in more detail the construction, sketched in a special
case in [1], of operators satisfying the super-Virasoro algebra of Eqs. (1.1) and (1.8).
The framework within which we work is again that of the Kac-Moody algebras g, h
associated with the Lie algebras gDh. We shall take g to have the form g = hτξ&hv,
where hτ and hv are isomorphic, and h is their diagonal subalgebra, i.e. the form
used in the last section with h = sn(2) to obtain all the discrete series represen-
tations of the Virasoro algebra.

The representations of hv that we shall use will be defined in fermionic Fock
spaces [18] built up from fermionic fields in the adjoint representation of h; for hτ

we can use any highest weight unitary representation. In this situation, the
Virasoro algebra

Kn = Un-Lh

n (3.1)

can be extended by fermionic generators Gr, satisfying

(3.2)
\^ /

and

where either r.seΈ or r,seΈ+^, consistently, thus giving the Ramond and
Neveu-Schwarz algebras respectively.

In the context where g = hτ@hv, with both hτ and hv being represented by
fermion fields (in the latter case in the adjoint representations) there are a number
of super-Virasoro algebras that can be constructed. Of these, the supersymmetric
extension of Kn is the least expected. We shall discuss these constructions and their
significance elsewhere [19]. Here our objective is to show that for /z = su(2) the
Km Gr algebra produces the full discrete series of representations of the Ramond
and Neveu-Schwarz algebras.

To construct the representation of hv that we need we introduce dimh fermion
fields

H(z)=ΣbyZ~r, l:gα:gdim/ι5 (3.4)
r

where the sum is over either reΈ(Ramond [R] case) orreΈ+\(Neveu-Schwarz
[NS] case), and the fermi oscillators satisfy

{ba

r,b
b

s} = δabδr^s, (3.5a)

&«|0> = 0, r > 0 , b? = ba-r. (3.5b)

In the NS case the vacuum |0> is non-degenerate, whilst in the R case the vacua
form a representation of the Dirac algebra b%, l^α^dim/z. We define fermion
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normal ordering by

:ba

rb
b:=ba

rb
b

s, r < 0 , (3.6a)

= -bb

sb
a

r, r > 0 , (3.6b)

= έ P £ « L r=o. (3.6c)

The representation V£ of hv is defined by

n ^ ) = Σ Kaz~n= - ~fabc :Hb(z)Hc(z): . (3.7)

From this it follows that [4]

Wa Vb~\ = ίfabcVc , +υmδabδ (3 8Ϊ

where v=\ch

ψ. Thus we have a (reducible) representation of hv^h of level c^/φ2.
For /zΓ we take a highest weight irreducible representation labelled by

(2k/ψ\λ),

ΣTn

az~". (3.9)

Then the Virasoro algebra Kn is defined by Eq. (3.1) where

L\z) = Lhτ(z) + Lh"(z) = T^TΓT-; o Ta(z)Ta(z) °o + J7_°0 Va(z)V(z) °, (3.10)

and

1
L ( Z ) 2(fe + 2t;)

It has central element

2(k + v){k + 2vy (3.12)

From Eq. (2.14) it follows that

(3.13)

and it is natural to seek super-Virasoro operators Gr which also commute with h.
Candidate building-blocks for G(z) are Ta{z)H\z) and

\ : V\z)H\z): = - 7 :fabcHa(z)H\z)Hc(z):. (3.14)
3 6

Straightforward calculation shows that

G(z) = Σ Grz~n = lυ(k + υ)(k + 2υ)~]~^2 \kTa{z)H\z)- ^:Va(z)Ha(z

provides a supersymmetric extension of Kn satisfying (3.2), (3.3) and commuting
with h.
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The construction we have given in this section can be applied to any Lie
algebra h, using in its adjoint representation and any representation of h^ fιτ. One
can equally regard this as an irreducible representation of the super-affine Kac-
Moody algebra based on h [20]. However, we have found no underlying reason for
the existence of this particular super-Virasoro algebra. For further discussion
see [19].)

4. Unitary Representations of the Super-Virasoro Algebras

To find the whole of the discrete series of unitary representations we use the
construction of the last section in the particular case in which h = su(2). For the
su(2) Kac-Moody algebra hτ we use the level JV, spin / irreducible representation,
whilst for hv we must use the adjoint fermion representation described in Sect. 3.
This is a level 2 representation which in the NS case decomposes into spin 0 and
spin 1 irreducible components, with highest weight states |0> and £>*_ 1/2|0>, whilst
in the R case the vacuum can be taken to be 2-fold degenerate, and then the
representation will be an irreducible level 2, spin \ representation. From Sect. 3, it
follows that, acting on the resulting representation space for g, we have an su(2)
Kac-Moody algebra h and the super-Virasoro algebras s = {Kn, Gr}. Thus we can
parallel the discussion of Sect. 2 by decomposing the resulting representations oϊg
with respect to hxs. The central element in s obtained in this way is [1]

providing the whole of the discrete series of values of c. We need to show that we
also obtain all the corresponding values of hpq listed in Eq. (1.11).

The characters of the adjoint fermion representations, as defined by (2.20), can
be written down directly using their Fock space construction,

x f M H Π (l+zn'ί/2){ί+zn-1/2eίθ)(l+zn-1/2e-iθ), (4.2)

and

χf(z,0) = z3 / 1 6(e i θ / 2 + e~ίθ/2) Π (\+zn)(l+zneίθ)(l+zne-iθ). (4.3)

Here we have used the fact that for this representation [4], Lg(z) is the same as

Using the Jacobi triple product formula

Π ( l-x")( l+x"" 1 w)(l+x7w)= Σ x W ' V , (4.5)
n=\ neZ

we can rewrite these characters in the forms

oo /\Λ-Z

n~ll2\

Xf(z,Θ)=Σ zll2m2eimθ Π , „ (4.6)
meZ n=l\ 1 ~Z J
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and

V ({±4) (4-7)

If we denote these representations of su(2) by (2, NS) and (2,R), as we have just
remarked,

(2,NS) = (2,O)®(2,1), (4.8a)

(2,Λ) = (2,i). (4.8b)

In order to repeat the argument of Sect. 2, we also need to know the characters
of the discrete series of super-Virasoro algebra representations. For the re-
presentations (c,hpq) of Eqs. (1.10), (1.11) these are given by [17]

oo (\ . -n-l/2\

£fo) = iΓ,0OΠ , „ (4.9)

and

GO / ] I z « \

;£*(*)=ίΓ β ω* 1 / 1 6 Π T ^ Γ K (4.10)
« = i \ 1 — z /

where l ^ p ^ m — 1, l^gg^m+1 and p — q is even in the NS case and odd in the R
case. The functions Γ™q(z) are defined by an equation similar to (2.31),

Γ™q(z)= Σ { Z ^ ' ^ - Z ^ ' ^ } , (4.11)
mεZ

where

and

We can now establish the identity

\ — V/I (7 f)\ΓN + 2(7Λ (ά 1 V\
mεZ+ε J -~ . ^

where the sum over q is over values lying in the range 1 ̂  q ̂  N -h 3 and with
p — qe2Z + 2ε, using exactly the same sort of manipulation that were used in
Sect. 2 to prove Eq. (2.38). Thus it follows that

XN,i(p-i)(z, θ)χ%(z, θ)= ΣXN + 2t±{q-i)(z> %f,fc(^) 9 (4.14)
a

where F stands either for NS or R, h = hPtq(c)9 c is as in Eq. (4.1) and the range of q is
as in Eq. (4.13) with ε = 0 in the NS case and & = \ in the R case. By the same
arguments used in Sect. 2, Eq. (4.14) implies the decompositions

;lq-lΊ)x(c,hpJc))F, (4.15)
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where (c,h)F denotes the appropriate representation of the NS or R super-
Virasoro algebras, as F = NS or R, and the rest of the notation is as in Eq. (4.14).
This provides the whole of the discrete series of unitary representations of the
super-Virasoro algebras and establishes the unitarity.

5. Comments

In this paper we have established the existence of the full discrete series of
representations of the Virasoro and super-Virasoro algebras starting from
irreducible representations of the (affine untwisted) su(2) Kac-Moody algebra. In
[1] we based our construction on the representations of this algebra which could
be constructed using NS or R fermion fields transforming under spin \ or spin 1
representations of su(2). We did not show that all the values of h given by Eqs. (1.7)
and (1.11) could be found in this context (thus leaving the existence of all the
discrete series representations still in doubt) but in fact they can [17].

Another approach to the construction of Virasoro algebra, but not super-
Virasoro algebra construction, described in [1], was to use the inclusion

Sp(n-l)xSp(l)cSp(n), (5.1)

and this can also be used to obtain all the representations for the Virasoro algebra.
This approach has interesting applications and it will be described in [17].
Altschuler [21] has verified that within this latter construction the Ramond
vacuum yields the eigenvalues hpp and hpp^x (l^p^m— 1).

Appendix. The Weyl-Kac Character Formula

The aim of this appendix is to write down and motivate the Weyl-Kac formula for
the character of a highest weight unitary irreducible representation of the affine
Kac-Moody algebra, indicating that it is the natural generalisation of the Weyl
formula for the character of a unitary irreducible representation of the finite
dimensional Lie algebra g. We will show how, when g is chosen to be su(2), it yields
the character formula (2.24) used in the text.

Let λ be the highest weight of a unitary irreducible representation of g (so that it
is integral and dominant). Then the character of this representation is given by

iQ θ Π 0 -e'^Y1, (A.I)
σeW(g) α>0

where ε(σ) = detσ, W(g) denotes the Weyl group of g, and ρ denotes half the sum of
the positive roots oϊg. As W(su(2)) has just two elements, +1, (A.I) reduces to the
familiar formula

occurring in Eq. (2.36).
Both sides of (A.I) can be assigned a meaning for the Kac-Moody algebra g,

since g still has finite rank, a system of positive roots and a Weyl group W{g)
generated by reflections in real roots, which is in fact isomorphic to the semidirect
product of W{g) with the co-root lattice of g, Λv

r. For further explanation of these
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results and the notation we are about to adopt we refer to a review by one of
us [11].

The Cartan subalgebra of g, extended by derivation d= — Lo, is taken to have
basis (T\ lrg/rgrank#,k,d). In an irreducible unitary highest weight represen-
tation, k takes a fixed value, \xψ2, where x is the level, while L o exceeds its
smallest value, — <5, by positive integers. Thus it is meaningful to adopt the
following definition of the character.

χxΛ{z,θ) = tv{zWθ τ) (A.3)

with convergence expected for \z\ < 1. Formally, we can rewrite this as follows in
order to compare with (A.I),

χXί ,(z, 0) = t r {ei{θ'τ+i(lnz)d+° k)} . (A.4)

Now the Kac-Moody analogue in (A.4) of λ + ρ in (A.I) is

y = (λ + ρ,$ψ2(x + fί),S), (A.5)

where h, the "level" of ρ, is the dual Coxeter of g, and δ is yet to be determined by
comparing the leading z behaviour of the character. The action of a Weyl reflection
Sa in a root of g is, according to Sect. 8 of [11],

Sa(y) = (σa(λ + ρ + t)9 ±ψ2(x + /Γ), δ + ί(λ + ρ)2 - (λ + ρ + ί)2]/(* + h)ψ2),

where

t = na(x + h)ψ2/oc2, (A. 5)

and so is proportional to an element of the co-root lattice of g.
Thus we expect the Kac-Moody analogue of (A.I) to read

χxJz,θ) = ΔxJz,θ)IΔo{z,θ), (A.6)

where

and

= Σ z-
4 + K A + β + t ) 1- ( A + β ) 2 l / (*+ S ) v 2 Σ ε ( σ ) e ί σ ( A + ί + ί ) θ (A.7)

teΛv

r σeW(g)

π = l { α>0 j

using the structure of the root system and Weyl group of g. It follows that the
leading term in z occurring in χXyλ(z, θ) is z~δχλ(θ). Since the states of lowest L o

value form an irreducible representation of g with highest weight λ, this is as it
should be. When L0 = L9

0, given by the Sugawara formula (2.5), we know that its
value on these states is λ(λ-\-2ρ)/(x + h)ψ2 and so this must be the value of —δ.
Using this, the expression for AXtλ(z,θ) given by (A.7) simplifies to

λ x ) . (A.9)
teAY σeW(g)

Formulae (A.6), (A.8), and (A.9) constitute the Weyl-Kac formula.
For g = su(2), the dual Coxeter number /Γ= 2 and it is customary to take ψ = l

so that ρ =\. Then replacing x by JV and λ by ί, we obtain Weyl-Kac formula in the
form of Eq. (2.36).
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