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Abstract. The Euclidean massive Gross-Neveu model in two dimensions is
just renormalizable and asymptotically free. Thanks to the Pauli principle,
bare perturbation theory with an ultra-violet cut-off (and the correct ansatz for
the bare mass) is convergent in a disk, whose radius corresponds by asymptotic
freedom to a small finite renormalized coupling constant. Therefore, the theory
can be fully constructed in a perturbative way. It satisfies the O.S. axioms and is
the Borel sum of the renormalized perturbation expansion of the model

I. Introduction

The Gross-Neveu (or Mitter-Weisz) models in two dimensions (in short the GN 2

models) are among the simplest physical field theories which are asymptotically
free, hence are among the most obvious "laboratories" to investigate the
perturbative behavior of non-abelian gauge theories in four dimensions, and non-
perturbative phenomena like spontaneous symmetry breaking [1,2]. They are
models of JV-component fermions (with JV^2), with a quartic interaction;
therefore their graphs are topologically the same as those of the familiar Φ4

bosonic theories.
Although the models discussed by Gross and Neveu were massless, and their

paper [2] was mostly devoted to the discussion of chiral symmetry breaking and
dynamical mass generation, the massive version (i.e., with non-zero bare mass)
makes perfect sense. In contrast with the massless case these massive GN2 theories,
while still asymptotically free [1], should have a purely perturbative content (by
this we mean that all the physics of the model could be extracted from ordinary
perturbation theory). Therefore, they are the simplest candidates for a rigorous
construction of a renormalizable field theory, and it is slightly surprising that they
were not often presented as such by "constructive field theory." (Of course these
models are only two-dimensional; we remark also that the case JV=1, which
corresponds to the massive Thirring model has been solved by means of the sine
Gordon transformation [3].)
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In this paper we construct the Schwinger functions of the models by "brute
force", relying on the asymptotic freedom of the model and on the existence of a
non-zero bare mass to get a small parameter of expansion. An outline of the
construction can be found in [4] (although the bare mass flow is not correctly
discussed there). In fact it is not harder than the construction of planar — gΦ\ field
theories [5-7] and is certainly easier than the control of infrared Φ\ [8,9], since
there is no "domination" or large fields problem. Its main interest is to prove on a
"physical" example that asymptotic freedom is truly an effective tool, which like
superrenormalizability provides rigorous control over the continuum limit of a
quantum field theory. The recent construction of a hierarchical version of (non-
planar) — gΦ\ (but without physical positivity) [10] had the same motivation. All
these results make us confident that asymptotic freedom will control in the same
way the ultra-violet limit of four-dimensional non-abelian gauge theories,
although the technical problems related to gauge invariance have not as yet been
solved.

The organization of this paper is as follows: in Sect. 2 we introduce the model
and the notation, we establish its perturbative renormalizability and we show,
using Gram's inequality on determinants, that the bare unnormalized perturb-
ation expansion of the model with infrared and ultraviolet cutoffs is absolutely
convergent, no matter how large the bare coupling is. Therefore, the unnormalized,
unrenormalίzed Schwinger functions in a finite volume, with finite ultra-violet
cutoff, are entire functions of the bare coupling. Although the proof is extremely
simple and certainly known to many experts on fermionic theories, we feel that this
marvelous fact will never be over-emphasized.

In Sect. 3 we introduce first a single cluster and Mayer expansion. It allows us
to perform the infinite-volume limit and to show that the normalized, unre-
normalized Schwinger functions with an ultra-violet cutoff still have an absolutely
convergent perturbation expansion for small enough bare coupling (depending on
the cutoff). Since there are ultraviolet divergences in the theory, the radius of
convergence shrinks to zero as the ultra-violet cutoff is removed. To push further
the analysis, we introduce a phase-space expansion, with momentum slices 1, M,
M2,..., Mρ, M being a fixed integer, and cubes of corresponding size as in [9], and
we repeat the cluster and Mayer expansion in each slice.

Now in Sect. 4 starting with a given bare coupling and the correct ansatz for the
bare mass1, we can reshuffle the bare expansion into a "partly renormalized"
expansion with effective coupling constants, masses and wave function constants
which depend on the highest slice of momentum entering a vertex or flowing
through a line. The transformation from bare to effective couplings is a
renormalization group transformation, controlled by the first orders of perturb-
ation theory. Let us remark at this point that for us "partly renormalized"
expansions are more than a tool; since they lie at the right point between bare and
renormalized expansions, we think that they should become the modern way of
using perturbation theory (see also [5-7]). We call them PRPSE (partly
renormalized phase space expansion).

1 We thank K. Gawedzki and A. Kupiainen for explaining the importance of this point to us
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In Sect. 5 we prove that this partly renormalized perturbation expansion is
absolutely convergent, uniformly in the u.v. cutoff Mρ, provided the bare coupling
λρ is positive and chosen according to the formula obtained by retaining the first
orders of perturbation theory:

ρ y\ where /(ρ, Q = - β2(LogM)ρ + (β3/β2)Logρ + C,
(1.1)

C being a large enough positive constant.
Moreover, as the ultra-violet cutoff is removed, the limit of the Schwinger

functions which are the sums of this expansion does exist.
In Sect. 6 we investigate further the theory built in this way. We rewrite the

partly renormalized expansion into an expansion in which the two-point
subgraphs are "fully renormalized," and the four-point subgraphs are "partly
renormalized;" therefore this expansion is expressed in terms of effective coupling
constants and of renormalized mass and wave function constants. We prove that
this expansion, with an u.v. cutoff, is still absolutely convergent, but now for any
complex bare coupling in the disk of radius /(ρ, C)~ \ as announced in [4]. This
expansion, although of a somewhat mixed nature, is a beautiful tool, which could
have been in fact taken as our starting point; it allows a particularly simple
verification of the Osterwalder-Schrader axioms, and it allows also to identify the
theory with the Borel sum of the (fully) renormalized expansion of the model, with,
e.g., B.P.H.Z. subtractions at 0 external momenta (this expansion is expected to be
divergent, due to the presence of ultra-violet renormalons).

Let us summarize what emerges at the end of our analysis as our recipe to
compute the Gross-Neveu model in terms of Feynman amplitudes:

Take two values C and m (C large), and sum up all connected Feynman
amplitudes of the theory on a lattice of mesh M~Q or with a momentum cutoff Mρ

of Pauli-Villars type and vertices λρ, where λρ is defined by (1.1), and the two-point
subgraphs are renormalized according to the BPHZ prescription (actually in this
case this prescription is particularly simple: you don't even need to know about
forests to use it since proper two point subgraphs never overlap). Although this
was not obvious at first sight, tremendous cancellations occur at each order, so
that the sum is absolutely convergent. Let now ρ tend to infinity; your sum
converges to a continuum theory satisfying the axioms.

Finally, let us remark that our PRPSE, as well as the closely related formalism
of [7], can be easily adapted to the construction of non-renormalisable theories,
with fixed point close to the origin (see [11, 12]). For instance the construction of
the Gross-Neveu model with propagator (p + m)/{p2 + m2)ί~\ which mimics
dimension 2 4- £, is certainly possible and was not included here only because of
lack of energy. Even somewhat harder problems like the construction of the GN3

model at large JV or the dynamic mass generation in GN2 at large N seem within
reach of our methods.

During the preparation of this paper, we learned that Gawedzki and
Kupiainen had obtained results which overlap strongly with ours [13].
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II. The Model

1. Notations

In this paper any unimportant numerical constant will be called 0(1).
The massive two dimensional Euclidean G N 2 model is a theory of N

component fermionic fields (N> 1), the lagrangian density being:

L(ψ, ψ) = xp(iζ$ + m)ψ - λ{ψ • ψ)2 (2.1)

with ψ ψ= Σψa'Ψa> Λe letters a,b,... will be used for spinor indices and take
a,a

the value 0 or 1 the letters α, α'5... will be used for fermionic indices and take the
values 1,..., N. Since they are largely irrelevant to our analysis, we will forget them
most of the time. In (2.1), we will perform a mass, a coupling constant and a wave-
function renormalization; as will be explained below, the wave function re-
normalization which shows up in perturbation theory will turn out to be finite. In
(2.1) m is the mass and the parameter ζ will be called the "wave-function" for short.

In the rest of the paper A will denote a compact square box in R 2 , of area \A\,
with integer side size, and some specified boundary conditions (which will be
irrelevant). We pick a number M > 1, and consider the sequence of energy scales 1,
M, M 2 , . . . , M ρ ; the parameter ρ is the index of the ultra-violet cutoff. We choose a
cutoff of Pauli Villars type [so that we can easily factorize the propagator as in
(2.8)],

rie(P,m,ζ)

Γ\ (2.2)

where the constants J1 are uniquely determined by (2.2):

•(l-m.7l6M2e+20,

•(l-m_7l6M2δ+2£;),
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The fermionic propagator with momentum cutoff ρ and bare mass and "wave-
function" mρ and ζρ is:

where our conventions for y matrices are:

Ί o\ /o Γ

The normalized 2p-point Schwinger function (with cutoffs ρ and A) is:

ρ. (2.5)

(These functions are in fact distributions and should be smeared against test-
functions.) The unnormalized Sch winger function S2PfΛ>ρ h a s a perturbative
expansion:

= Σ ί d2

Xl...d
2χn[(λβγ/n\-] Σ ...

n = O,.. ., oo A aί,bi

yp,cp

 X l ,αi Xl,b1'"
Xn,an

 Xn,bn\ ^ β)

zp,dp

 Xl,aι Xl,br'-Xn,an

 Xn,bnj

where ZΛtQis the normalization, λQ is the bare coupling constant, the indices α, b, c9

d take the value 0 or 1, and we use Cayley's notation for determinants

" i > e ) = d e t ( C e i e > ( - t > j ) ) . (2.7)

Also we decompose the fermion propagator in two parts:

Cρ;a,b(
χ -y) = ί AQia,b(x-t9 mρ? ζβ)BQ(t-y9 mρ, ζρ)d2t (2.8)

with

Aρ(p,m,0 = (ζJ + m)& + m2y\p2 + M2Q + 2y\p2 + l6M2Q + 2yίM

(2.9)
and

Bρ(pm,g = J5>ρM-9ρl2(p2 + 4M2ρ + 2y1(p2 + SM2Q+2y1. (2.10)

In the rest of the paper it is convenient to consider the A and B terms as "legs,"
or, with some abuse of language, as "fields." We remark indeed that a propagator is
made of two "legs" and also the contraction of two fields ψ and ψ.

2. The Perturbative Renormalizability

In this subsection we show that the theory is perturbatively renormalizable. It
seems indeed that this has been checked only to lowest orders in [2],

Let us write the Schwinger functions as integrals over the anticommuting
(Grassmann) field variables xp and ψ:

z})^ Σ ί{λerinmWci{yϊ)...ψCp(yp)ψdp{zp)...
n

^i) ίί (ψ-ψ)2(x)d2x\ndμβ(ψ,ψ), (2.11)
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where, by definition of the gaussian measure dμρ:

ί Ψa(*) Ψb(y)dμρ(ψ, ψ) = Cρ;atb(x-y).

Lemma 2.1. The counterterms of the theory are of the form:

Ψa}2, Σψa'Ψa, aΐld Σψa(i$a,b)ψb ( 2 1 2 )

Proof It is similar to Furry's theorem. By power counting the counterterms of the
theory can only be quadratic or quartic in the fields ψ and ψ. We consider first the
quartic case (coupling constant renormalization). In any graph we can define
chains of fields: at a given vertex we will say that two fields are in the same chain if
they belong both to the same scalar product Σψa'Ψa i n the quartic term
{Σ Ψa' Ψa}2 a t the vertex; we will also say that they are in the same chain if they are
joined by a propagator.

If we consider a 4-point function, the external fields can obviously be divided
into two pairs, each containing one field ψ and one field ψ, that are at opposite ends
of a chain.

Now let us expand each propagator (f + m)/(p2 + m) as the sum of
(PoJo + m)lip2 + m) a n d Pιyi/(p2 + m)l since y0 is diagonal and y1 is antidiagonal,
the external fields of a chain have different indices a and b if and only if there is an
odd number of y/s in the chain. Moreover, by parity considerations if the zero
momentum value of the graph is non-zero, it contains an even number of y0 and
y/s. By construction, apart from the two chains connecting the external fields, the
diagram consists of closed chains, each of which contain an even number of y/s.
Therefore, the only two possibilities for the two chains connecting the external
fields are:

- An even number of y/s in each chain; the corresponding counterterms is then of
the desired form {Σψa' ψa}

2l
- An odd number of yx's is on each chain; the corresponding counterterms are of
the form ψaψbψaψb or ψaψbψbψa, a + b. By permutation:

ΨaΨbΨaΨb = ~ ΨaΨbΨaΨb = 0 , ™ d ψ
a
ψ

b
ψ

b
ψ

a
 = ~ ΨaΨaΨbΨb • (

2
 13)

Thus in the first case the counterterm vanishes, and the second case, if we add

the terms ψaψaψaψa which are zero by permutation, it can be reexpressed as

Σ ΨaΨbΨbΨa

= —{Σψa'Ψa}2- Therefore, the quartic counterterms are of the
α,&Φα

form announced at least for the case of one colour. For the case of more than one
colour, the divergent part of the terms which are not of the form (ψψ)2 cancel in
pairs using appropriate combinations; this is because this divergent part is the
same as for the massless theory of which the propagator is odd. It remains to prove
the Lemma for the quadratic counterterms. But for the mass term, only the chain
connecting the external fields can contain an odd number of y/s, and this
possibility would give 0 by parity considerations onpί. The remaining possibility
is an even number of yx's in the chain, which gives a counterterm of the form
Σψa'Ψa- Finally for the wave-function term the argument is similar to the mass
term and we leave it to the reader.
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The terms with four fermions which are not of type {ψψ)2 are convergent and
will not be renormalized. The terms with two fermions which are not of type ψψ or
ψ$ψ vanish at zero momenta and so are renormalized by construction.

3. The Convergence of the Bare Unnormalized Series

Gram's inequality tells us that:

^(x)dx) |^ Π ll/tll2 Wΰth (2-14)

If we apply this inequality to the r.h.s. of (2.6) we obtain:

Z})l^ Σ ί d2x1...d
2xl(λβγ/n\-]...

n A

ί Σ I | β β ; α l l 2 ) Γ . Π \\Aβ;Ci\\2\\BQidi\\2, (2.15)

where

β;a 2 [ b A - ' • -' ' j

the same formula is true for B. Therefore:

n

and we have proved:

Lemma 2.2. The unnormalized Schwinger functions S2PfΛ>ρ({y}, {z}), in a finite
volume A and with a finite ultra-violet cutoff Mρ are entire functions of the bare
coupling λρ (i.e., analytic in the whole complex plane), for any (finite!) value of the
bare mass mρ and wave-function ζρ.

Thanks to the Pauli principle, the radius of convergence of the expansion (2.6)
is therefore infinite, in contrast with the case of bosonic theories like Φ4 in any
dimension, where the radius of convergence of the unnormalized and unre-
normalized Schwinger functions with cutoffs is zero.

4. The Approximate Renormalization Group Flow

We want to discuss in elementary terms the flow of the bare constants λρ, mρ, and ζρ

under a "renormalization group" transformation which integrates the momenta in
the ρ th slice. For the moment the reader may take it as a purely heuristic analysis,
which will be justified rigorously by the next sections. By parity considerations, the
mass renormalization is only logarithmic. Although there exist, at any order,
infinite (logarithmically divergent) mass and wave function perturbative re-
normalizations (i.e., corresponding to divergent graphs of the two-point function),
after asymptotic freedom is taken into account, only the mass renormalization
generated by the "tadpole" (linear in the coupling constant) leads to non-trivial
effects. Indeed any other two-point graph has at least 2 vertices, hence, by
asymptotic freedom, has a "convergent logarithmic power counting" at large
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energy. We remark that planar — qΦ% theory was more complicated in this respect
since for any two-point graph the mass renormalization was quadratic and infinite
even after renormalization group improvement.

Taking into account the most divergent graphs, the renormalization-group
equations tell us that, at lowest orders in λρ [1,2]:

(2.17)

mβ-1 *me{\ -y(LogM)(λjζ 2) + O(λ2)} , (2.18)

ζβ-^ζβ{l +y2(LogM){λjζlf + O(λ3

e)}, (2.19)

where β2 = — 2(JV — l)/π is negative, as is characteristic of an asymptotically free
theory, and y = -(2N- l)/π, y2 = (2N- l)/(2π)2 [1,2]; one defines β3=y3 + 2y2,
β3 = 2(N — ί)/π2 has been computed in [23], and so y3={N —f)/π2.

It is therefore elementary to compute the following asymptotic behavior ofλρ, mρ,
and ζρ for large ρ, starting from finite values λ0 positive, ra0 and Co:

) - 1 , (2.20)

Q (2.21)

ίQ^L (2.22)

where C, m, and ζ are three constants, which parametrize the theory; the constant
m simply fixes the energy scale of the problem. (We may choose the system of units
so that it has the value 1.)

Remark. Since there is an overall scale invariance (ζ-+l, m^m/ζ, λ^λ/ζ2), it is
convenient, without any loss of generality, to choose ζρ = ζ= 1 in (2.22) and (2.1).
We will always assume from now on that this choice has been made.

Our initial strategy [4] was to construct the G N 2 model by summing the bare
series, since this would allow a particularly clear verification of the axioms (see
Sect. IV). This is unfortunately not possible in this simple form since the mass flow
(2.21) gives a renormalized mass of order 1 only for positive λρ chosen according to
(2.20). We found after an elementary analysis that the ansatz (2.24) for mρ will
always give a finite non-zero mass m0, which is necessary for our last cluster
expansion in Sect. Ill to converge. Therefore, it is not the usual bare series, but the
bare series with mass renormalization which has a radius of convergence
corresponding to asymptotic freedom, as announced in [4]. (Of course it
corresponds to a bare theory, but with a /^-dependent ansatz for mρ, which is
therefore more complicated than (2.21); one can check by an elementary analysis
that this /Independent ansatz is asymptotically of the form:

mρ = m {1 - DS2(LogM) + /(ρ, CWQYN~ ^ ^ ^ . (2.23)

We remark that for λe = f(ρ, C)~\ (2.23) is asymptotic to (2.21).
Therefore, the final ansatz under which we will work is the following

ρ

1 ) , (2.24)

C ρ =l (2-25)
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Then we will prove that under the condition \λρ\ ̂  /(ρ, C)1, C large enough, the
perturbation series in λρ converge absolutely (and uniformly in ρ)5 and we will use
this result to construct a two parameter family of theories, parametrized by C and
m, and relate it to the renormalized perturbation series in the usual BPHZ Scheme
of subtractions at 0 external momenta, where the BPHZ renormalized parameters
/lren, mren, and ( r e n are complicated (but finite!) functions of C and m.

III. The Phase Space Expansion and the Thermodynamic Limit

1. The Cluster Expansion for the Theory with Fixed u.v. Cutoff

In this subsection we will work at fixed u.v. cutoff Mρ, hence under the simplest
possible ansatz

mQ fixed; ζρ = l (3.1)

for the bare mass and wave function of the theory. We will prove that the bare
expansion for the normalized functions S2Ptρ with fixed ultraviolet cutoff, which are
the limits of S2PfΛ>ρ

 a s Λ tends to R 2 , has still a non-zero radius of convergence
(which depends of the ultraviolet cutoff Mρ). One can obtain this result with a
single cluster and Mayer expansion which we present now as a simple pedagogical
example (we will perform in the next subsection a sequence of cluster expansions,
one for each scale of momenta 1, M, .. . ,M ρ , as in [9] and call "phase space
expansion" this more complicated expansion).

Let us consider the lattice D of the squares A in A, centered on Έ2, and having
unit side. The set of pairs of different squares {A, Δ'}, A' + A oϊΌ is called B. To each
such pair b we associate a link variable sb9 0 ̂  sb ^ 1, which we use to expand the
coupling between A and A'\ but we introduce the sb dependence on the "legs" Aρ

and Bρ of (2.8) in order to preserve the symmetric form of the determinant (2.7) and
Gram's inequality. Hence we define:

AQ({sb}, x,y) = Γ Σ XAWXAW + Σ sbXb(x, y)] AQ(x, y) (3.2)

with χb(x, y) = χΔ(x)χΔ (y) + χΔ'(x)χA(y)
We have AQ({s}9x9y)\s=1=AQ(x9y) and \AQ({s}9x9y)\^\AQ(x,y)\. We define

also the obvious equivalents for the B fields. The propagator Cρ({s}x, y) is defined
by replacing Aρ and Bρ by Aρ({s}) and Bρ({s}) in (2.8), and S2PtΛte({s}) is defined by
replacing Cρ(x,y) by Cρ({s}x,y) in (2.6)-(2.7). Also the gaussian measure
corresponding to the propagator Cρ({s}x, y) is called dμρ({s}).

The cluster expansion that we use is similar to the one used in [8] slightly
simpler than the "tree" expansion of Brydges, Battle, and Federbush (for a review
see [14]) but not as powerful, it is nevertheless sufficient for theories with
exponential decay of correlations as here. We will try to be both self-contained and
reasonably brief. To compute S2PtΛtρ we apply inductively, for each "bond" b, a
Taylor formula to first order in sb to S2p^Λίρ({s}). More precisely let Ib and Jb be
defined by:

IbF({s}) = F({s})Sb = 0; JbF({s})= } (dF({s})/dsb)dsb. (3.3)
o
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Then the cluster expansion may be written symbolically as:

S — S I — ΓT (Ί 4- J "IS (itV\ Π AΛ
^*2p,Λ,ρ VJ2p,Λ,ρ\sb= lVbeB I I \1b ' u bJ*J2p,Λ,ρ\\:iJ) \ J 7

Let us compute:

(d/dsb) det (J ̂ ρ({5}, tti - t)BQ({s}9 t - t^Λ)

• (d/dsb) [f ^ρ({5}, u i 0 - ί)ΰρ({5}, ί - t J d ί ] , (3.5)

or with the field notation:

{d/dsh)\ Y[ ψ(Ui) YJ ψ(Vj)dμρ({s})
i j

= - j (dCρ({s}x, y)/dsb)δ/δψ(x)δ/δψ(y)

• Π Ψ(μd Π ψ(υj)dμρ({s})dxdy. (3.6)

We remark that since Λρ({s}) and Bρ({s}) are linear in each variable sb, a given
propagator can be derived at most twice. Now we expand (3.4):

n (h+jb)s2p,A,e({s})= Σ• ( π h)(n jb)s2i,A;β({*}), (3.7)
beB HCB \bφH J \beH J

and we say that two squares A and A' of D are connected if there exists a link from A
to zΓ through bonds of H. (Remark that in contrast with the "tree" cluster [14]
there might be loops in H.)

A set Γ of one or more squares of D will be called a "vacuum polymer" (0-
polymer) (see [14,15]). Let us define BC(Γ) as the set of those subsets H of B such
that each bond in H joins two squares in Γ and altogether they connect all squares
of Γ. Using the field notation as in (3.6) we define the "activity" K(Γ) of a 0-polymer
Γ:

K(Γ) = J Σ (Πh)(ΠJb) Σ (V/n! if 0/3. ψ)2]" dμρ({s})
HeBc{Γ)\bφH J \beH )n=l,...,oo [Γ j

(3.8)

or, with the determinant notation of (2.6):

= Σ (λβγ/n\ ί d2

Xl...d
2xn Σ (Ylh)(YlJb

n=l co Γ HeBc(Γ) \bφH J \beH

(3-9)
Xl,bl 'Xn,an Xn,bn

with

111. \

(3.10)

The sums in (3.8)—(3.9) start at n = 1 since we do not want to consider "empty"
polymers reduced to a single square without fields, whose activity would be 1. if Γ'
is a set of squares of D plus some (possibly not all) of the external variables yb z^
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localized in these squares, we call it an external polymer (e-polymer) and define its
K{Γf), by introducing in (3.8) the fields corresponding to those external variables
(starting now the sum over n at n = 0). One has by a standard counting argument

for any family of disjoint polymers with [j Γ = Λ, and therefore using (2.6),

(3.4M3.7), and (3.9):

s2p,ΛJ{y},M)= Σ o π κ(Γ), (3.H)
ΓD{y,z} ΓeΓD{y,z}

where the sum is performed over the set ΓD{y, z) of all sets made of disjoint
polymers (vacuum or external) such that any external variable y or z is contained in
exactly one of them. (Two polymers, vacuum or external, are called disjoint if they
have no common squares and are called "overlapping" otherwise.) The symbol O
stands for the sign required to permute the external variables of the K(Γ)'s to their
order in S2PiΓiβ({y},{z}).

We are ready to perform now a Mayer expansion, i.e., to rewrite (3.11) in a
suitable form to perform the division by the normalization ZΓρ and to compute
the normalized Schwinger functions $2p,Q

= 1™ S2p>Γjβ/ZΓ>ρ. First we introduce

the notion of a "Mayer graph." It is a finite (ordered) sequence M = (Γ1?.. .,Γp) of
polymers (0- or e-) which is linear in the external variables (i.e., for any such
variable y there is at most one polymer Ft in the sequence M which contains y). We
may index a Mayer graph by the set of all external variables present in its polymers
and speak of a 0-Mayer graph, of a ({)/}, {z})-Mayer graph, etc.... The integer
p = p(M) is the length of the Mayer graph. It is also useful to introduce the set C(M)
of all pairs (iJ)l^i<j^p(M). The Mayer graph is called disjoint (respectively
connected) if, for l^i<j^p, /]n/} = 0 (respectively if, for l ^ i < j ^ p , there is a
chain of "overlapping" polymers in the Mayer graph, (1] = /^,/^), (Γi2,Γi3),...,
(Γikl,Γik = Γj), joining Γt to /}). The "amplitude of the Mayer graph is defined as:

K(M) = Γl/p! Π K(Q\ (3.12)

Then we may write in (3.11) the constraints ΓnΓ' = Φ, for two polymers Γ and
Γ' in Γ{y, z} in terms of a two-body repulsive potential V, defined by V(Γ, Γ') = 0 if
Γ and Γ' are disjoint and V(Γ, Γ") = + oo if Γ and Γ' are overlapping. Therefore
(3.11) may be written (since all polymers in a disjoint Mayer graph are distinct):

S2p,Λ9β({y}Λz})= Σ OX(M)
disjoint ({y}, {z})-Mayer graphs M

Σ OK(M) Π e~V{Γ^\ (3.13)
({y}, {z})-Mayer graphs M (i,j)eC(M)

since the product in (3.13) is 1 if M is disjoint and 0 otherwise. The Mayer
expansion consists in writing e~V( Γί'Γj) = (e~V{Γi'Γj) — l)+l and in expanding

π e-v(rurj)== Σ π ιe-virι,rj)_ί-]t ( 3 1 4 )

JCC(M) (i,j)eJ
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The result of this expansion is well known [14,15]. A subset J in (3.14) defines
subsequences of M which are the maximal ones that are connected by the "bonds"
of J. These subsequences may again be considered as Mayer graphs but, in
contrast with M, they are connected Mayer graphs [otherwise the corresponding
contributions in (3.14) vanish]. The (truncated) "amplitude" KT(M) of a connect-
ed Mayer graph M is simply T(M) K(M), where Γ(M) is an explicit com-
binatoric factor:

Γ(M)= Σ Π [ β - F ( Γ " Γ j ) - l ] , (3.15)
JeJτ(M) (i,j)eJ

JT(M) being the set of all subsets of C(M) connecting M into a single component
[14]. Therefore, the result of the Mayer expansion may be expressed as a sum over
"super-Mayer graphs" which are finite sequences of connected Mayer graphs and
which, again, are linear in the external variables (i.e., each such variable appears at
most once in one single Mayer graph of the sequence). Super-Mayer graphs may
therefore also be indexed by their external variables. The "amplitude" K(β) of a
super-Mayer graph S = (M l 9 ...,MΓ) is simply Γl/r! Π ^ Γ (M f c )Ί and (3.13)
takes the compact form: L k=i,...,r J

S 2 p , ^ ( M , { z } ) = Σ OK(S). (3.16)
({>>}, {z})-super-Mayer graphs S

Although this is not obvious at first sight the normalization ZΓQ is directly
factorized in (3.16). Indeed super-Mayer graphs may be reordered to put, in the
sequence, their external Mayer graphs first, and then their 0-May graphs. With a
little trivial use of multinomial coefficients, (3.16) becomes:

z})= Σ o π j Σ κτ(M)\
Ω = {ωχ, ...,ωm} i=l,...,m [Mωt-Mayer graph J

Σ l/»!( Σ KT(M)\",
n = 0,...,oo (M0-Mayer graph J

where the sum is taken over partitions Ω of all external variables into p subsets
ω 1 ? . . .,ωm . In (3.17)

ZA.Q = Σ l/n!{ Λ Σ Kτ(M)γ
H = O , . . . , O O [Mv) -Mayer graph J

is factorized, and therefore:

S2p,A,e({y},{z})= Σ O Π { Σ KT(M)\. (3.18)
β = {ωi,...,ωm} i = l , . . . , m [Mωι-Mayergraph j

Moreover, one can easily verify that the usual truncated (normalized) Schwinger
functions are just given by the case, where the partition Ω in (3.18) is trivial:

p β Σ κ\M). (3.19)
M ({y}, {z})-Mayer graph

Lemma 3.1. The expansions (3.18)—(3.19), for fixed bare mass mρ? as power series
in λρ have a non-zero radius of convergence rρ(Λ,mρ), which satisfies:

) M 1 0 = C β . (3.20)
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This bound is uniform in A. The thermodynamic limits of S and Sτ exist, uniformly in

z}), (3.21)} p , J
Λ-* oo

Sτ

2pJ{y}, {z}) = Km Sτ

2p,ΛJ{y}, {z}). (3.22)
A-"* oo

Therefore as power series in λQ these normalized functions have a nonzero radius of
convergence re(me)9 satisfying rQ(m^(C^~ι.

Remark. The ρ-dependence of the bound (3.20) on r~ * is in fact very sloppy and
will be greatly improved in Theorem IV. 1 below, using the phase space analysis of
the next sections [and choosing mQ according to (2.24)]. In what follows, K will be
used for a mρ-dependent constant.

Proof Let \Γ\ be the number of cubes of the lattice D in a polymer Γ. By the
convergence criterium of [14] (which uses the Battle-Federbush theorem on tree-
probability measures, the translation invariance of K(Γ) and Cayley's theorem on
the number of trees with given coordination numbers), the lemma follows from
these two statements:

i) K(Γ) is analytic in λQ (in the whole complex plane). (3.23)

ii) For \λo\^K'M~10ρ, one has Σ \K(Γ)\e{Γι< 1. (3.24)

Remark. This convergence criterion is rather sharp. With easy combinatoric
arguments which do not use Battle-Federbush theorem, one could replace
condition (3.24) by a weaker one, still satisfied in our case, where the theory is
massive and the correlation decay exponentially at infinity.

Let us prove (3.23)-(3.24) for Γ 0-polymer, the proof for Γ external polymer
being similar. From the explicit formula for AQ and Bρ one gets easily:

sup{\Aβ({s}, x9 y)|, \Bβ({s}9 x9 y)\} S 0(l)M^2e~^x^2, (3.25)

Let us prove first (3.23). We call Δ1,...,Δq the squares of Γ. In (3.9), for n > q(q —1)/4
we can bound the sum over H e BC(Γ) by a factor 2qiq'1)/2 and, by (3.5) and (3.25),
the action of the derivations d/dsb ϊorbeH by 0(\)qiq~1)/2 (2n)qiq~ υ M3ρ[q(q~1)]/2

times a reduced determinant, at most 2n by 2n, which can be evaluated by Gram's
inequality as in Sect.2.3. The factor l/n\ in (3.9) is therefore preserved, and the
analyticity of K(Γ) and Ke(Γ) follows.

To prove (3.24) let us bound the "choice" of Γ = {Δ l 5 . . . , Δq}, such that 0 e Γ,
using the decrease of A and B at large distance (3.25) due to the bare mass of the
theory. For any fixed H e BC(Γ) we write (recall from now on that the sum is over
0-Γs):

Σ |K(/> | r |=Z<* Σ Σ Σ ,
ΓBO q ΓsO HI,...,Kg HeB c (Γ)

Π [(l \n*ln ! f //2Yl" /72vι< 1 / l
ί=l,...,q [ Λ j \& f̂f y \ftεfl

/-I γ l v ^ vίf
c l ,«i A l , b i # " A « q , a n nq,bn (3.26)
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with n = Σ wf. Keeping Au...,Aq and H fixed, we compute the action of the

derivations on the determinant by (3.5). We can choose (paying with a factor
whether a given d/dsb, b = {Ai9 Δ3}, in (3.24) derives a leg A(xι

Pί, t) [or B(t, xι

pj] or
derives a let A(xj

p, t) [or #(f, xj

p )], with ί G ̂  in the first case and t e At in the last
case. For each given Δ{ we call β t (respectively St) the set of different derivations
d/dsb, b = {Au Aj}9 of the first type (respectively of the second type); it has g. = |Q.|
elements (respectively s£ = |S£| elements), with Σqι= Σsi — \H\ The sum over

i i

HeBc(Au...,Δq) can be replaced now by a sum over the g/s, such that
U{Qt} e BC(J l 5 . . . , Aq). To compute the derivations d/dsb for beQtwQ can choose
with a factor 24"1 qt\ which legs of the n{ vertices in Ai are associated to which
derivation (since there are 4 legs per vertex). These legs are called "derived" legs.
Then we have to choose the "underived" legs (joining teAj to xk

PkeAk) which
complete "derived" legs into full propagators. Let us call r{ the number of such
"underived" legs and define rk= Σ r{. Paying with a factor 24"k we can choose rk

j

and the total set of these rk "underived" legs. Paying with a factor rk\/Y\ r{\ we
j

choose which of these rk legs belong to each r[. We have also to "pair together" in a
square Aj the s ; "derived legs" of the second type with the tj= Σ ri "underived

k

legs." Derived legs can be paired together (this corresponds to differentiating a
propagator twice) but underived legs cannot, hence Sj —1-3 is positive and even, and
the number of possible such pairings is bounded by 2SjSj\. Finally, we bound the
remaining determinant by Gram's inequality, as in (2.15). We obtain the following
bound, which uses (3.25):

Σeq Σ Σ 0{iγ
q Γ s O nί,...,nqIΣnι = n

Σ Π K V M! ί <fxi

1...d
2xli

sup (Γ Π
beH

Σ \rklUίe'^^(φll}ί0(l)M^2Λ-^)9 (3.27)
Z \ J J J

where, for b = [Δi9Aj}9 δ(b) = δ(ij) is defined as inf {mQ-d(x9y)/2}. To
xe Δi,yeΔj

simplify this expression, we use first the multinomial theorem and the fact that
Σ e ~δ ( J t k ) is uniformly bounded by K. Then, since all bonds b in Qt (respectively

j=l, ..,q

in S^ are different, half of them are at least at a distance O(X)q]12 (respectively
O(l)5?/2] oίΔb and therefore it is easy to prove that st\ qtl Π e~m/3^Kqi+Si.

The integrations are over unit cubes. The sum over nu...,nq such that Σ ^ = n is
bounded by 2n+q. Since any derivation d/dsb ϊorbeH applies to at least one leg A
or B, since these legs are derived at most once, and since there are 4 half
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propagators per vertex, we see that there are at least \H\/4 vertices in Γ; since n ̂  1
in (3.9), we have in fact rc^sup{l, |iϊ|/4}. Therefore, we obtain:

Σ \()\S Σ (2e)β Σ Σ {0{\)M2%)n

ΓsO q ΓΘO n£sup{l,|H|/4}

Σ •{ Π {[KM2ψ Π e'2mi3]\.
Giju{Qi}eBc(Δu...,Aq) \i=l,...,q beQi JJ

(3.28)
We have for any ί e [1, q]:

ΣίίKM^ Π e \ <: \KM2ρ ( Σ e~δ{iJ)l3\]qi

Qi\ beQi J I \j=\ q )\

(3.29)

Moreover, for any H e BC(A l 5..., Aq) there exists a permutation σ of [1, g] such
T-r e-W/3<^|H| e-^σ(^

(Hint: pick a tree of H and "turn around the tree" using triangular inequality as in
[16].) Combining this fact with (3.29) we get from (3.28):

^Σ(2ey Σ Σ
q ΓBO n^sup{l,|ff|/4}

% (3.30)
σ

Finally, since Au...,Aq are distinct, we can bound the sum over Γ by l/(q— 1)!
times the independent sum over A2,...9Aq with 0 G Z 1 1 fixing Av This sum is
controlled by the exponential decay of (3.30), the total number q! of permutations σ
being controlled by the factor 1/(^—1)!. Since q^\H\ + l and |H|^4n, we have
finally:

Σ \K(Γ)\e^S Σ (KMί0%)\ (3.31)

which achieves the proof of (3.24), hence of Lemma 3.1, if:

2. The Phase-Space Expansion

We introduce momentum slices, one for each scale of momenta
1,M, ...,M fe, ...,Mρ, as in [9]. For short, we identify a momentum slice with its
"index" k. More precisely we write: ηρ(p,mρ,ζρ)= Σ ηk(p,mg9ζQ) with

0 r f e ^ l : *=o,...,ρ

• l(p2 + M2k + 2 ) (p2 + 4M2k + 2) (p2 + SM2k + 2)

- (p2 + M2k) (p2 + 4M2k) (p2 + 8M2 f e)] ~ 1 , (3.32)
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where this defines Qk(p,m,ζ) which is a polynomial of sixth order in p. Also we
define

Cβ.a.t(x-y)= Σ Ck

a<b{x-y),
fc = O,.. . ,ρ

with C\th(x-y)=[A\th(x-f)Bk(t-y)d% where Ak and Bk are defined by

•l(p2 + M2k+2)(p2 + 4M2k + 2)(p2 + 8M2 ί t + 2) (p2 + M2k)(p2 + 4M2ί£)] " i ,

Similarly we write

lk
Bk(p) = M2 t(p2 + 8M2k)(p2+l6M2k)y1. (3.33)

%= Θ t\ Ψρ= Θ Ψk O 34)
k = O,...,ρ k = O,...,ρ

the independent anticommuting variables ψk and φfe being distributed according
to the gaussian measure dμk of covariance Ck. Any external field ψ(y) or ψ(z) is also
decomposed as in (3.34); therefore any external variable y or z has an associated
index k{y) or fe(z); the external variables with index k are written yk or zk for short.
Also any vertex has 4 "fields" of given (possibly different) indices hooked to it. We
define the index of the vertex as the highest of these 4 indices. More precisely we can
write the interaction with cutoff Mk in volume Γ as:

Vk(O=ί\( 0 ψKx))( 0 ψ(x)\\2d2x, (3.35)
r LV' = o,...,/c J\i=o,...,k j \

and write V\Γ) = Vk{Γ)-Vk_γ{Γ). We need to develop Vk as:

κk(Γ)= Σ ίv^Wv^Wv^Wv^W^^. (3 36>

fc

where the symbol Σ means that fcf ̂  fc, Vi e {1,2,3,4} and 3i 6 {1,2, 3,4} such that
k~k.

Let us introduce Dfe, the lattice of squares in A of side M~\ with centers of
M'k Έ2; the lattice Όk is a refinement oϊ Όk_1. By the standard multinomial
theorem, we may localize each vertex in a cube of the lattice corresponding to its
index. If Δρ(Γ) = {(fc, zl) | fe G [0, ρ], zl e Dfc, zl e Γ} to "localize" means simply to
write:

ΣίλβVβ(nT/nl= Σ Π {lλβV
k(A)Tk'Δ)Kk,Δ)l}. (3.37)

n n{k,Δ) (k,J)eΔ

For each scale fe, from fe = ρ to fe = 0, we will perform first a cluster expansion
relatively to the squares of Όk, then a Mayer expansion of type (3.16)—(3.17); this is
now a relatively standard technique [8-9]. Since the notation is heavy, we will just
formalize the first two steps, then indicate how the final result can be described. At
each scale these expansions are similar to the ones defined in detail in the preceding
subsection, except that "connectedness" between two squares A and Af of Dk can be
created either by a derivation d/dsb, beBk = {pairs of squares of DJ, or by "Mayer
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graphs" of higher index, containing fe-frequency fields localized in these two
squares. Therefore, let us introduce some new definitions: at scale k the "true k-
external variables" are the true external variables of indices ^.k; the fields of
indices < k hooked to vertices of index ^ k will be called "low frequency variables"
("l.f.v."). More precisely, a low frequency variable of scale k is a field ψk, (x) or w(x),
with k'^k—l, together with the specification of an element of \ρ\Δk _ x: the square
of localization of the vertex corresponding to x.

At scale ρ the ρ-polymers Γ are made of the following list of objects: a set of
squares of Dρ, (whose union is called Γρ), plus possibly some of the true ρ-external
variables in them (called yρ(Γ), zρ(Γ))9 plus a set of low-frequency variables of scale
ρ, called LFV(Γ). We call N(Γ) the total number of external variables of Γ (true
external variables plus low frequency variables). The low frequency squares (l.f.s.)
of Γ are defined as the squares of D ρ_ 1 V . . , D O containing the l.f.v. of corresponding
index (therefore, each such square has to contain at least one of the squares of Γ in
Dρ). The set of low frequency squares of Γ in Όk is called LFSk(F).

The amplitude of such a ρ-polymer Γ is computed by a formula similar to (3.8),
but with Vρ replaced by F ρ, and the constraints corresponding to the l.f.v. LFV(Γ):

κρ(Π=J Σ Σ (Π h)(Π Jb) Π Ψρ(yρ(Π) Π Ψρ(zρ(Π)
HeB§(Γ) n(ρ,Δ)\bφH ) \beH )

' Γ Π l(λρ)V%A)r^/n(ρ, zj)!l dμ%{s}), (3.38)
IΛQΓQ JLFV(Γ)

where B?(Γ) is obviously the set of subsets of Bρ{ = {pairs of squares of D J
connecting together all squares of Γ, and the constraint |L F V (r) means that in the
expansion (3.36) over all frequencies of Π VQ(Δ)n{Q'Δ\ the set of l.f.v. obtained is
precisely LFV(Γ). Then we can write: ΔeΓ

S2p,Λ,β= Σ Σ ίdμβ-i Σ OKΰ(Mβ)
k(y), k(z) n(k, A),k£ρ-l disjoint ({ye, zQ}) - ρ-Mayer graphs Mρ

• Π Ψm(y) Π Λ ) Π {ί(λΰ)V\Δ)r^/n(k,Δ)\},
fc(y)^e-l fc(z)^ρ-l {k,Δ)eAe-i

(3.39)
where the ρ-Mayer graphs Mρ are finite sequences of ρ-polymers Γ, and KQ(Mρ) is
defined as in (3.12). LFSfe(Mρ) [respectively JV(Mρ)] is defined as the union of the
corresponding LFSk(Γ) [respectively the sum of the corresponding JV(Γ)'s].

After the Mayer expansion, one obtains ρ-super-Mayer graphs
Sρ = (Mρ i, ...,Mρr), "linear" in the ρ-external variables with amplitudes Kρ(Sρ)

= Γl/r! Π Xj(Mρ k)Ί[withXρ

τ(M)ΞT(M).Xρ(M), Γ(M) defined as in (3.15)], and

L k J
corresponding definitions of LFV(Sρ), LFSk(Sρ), and JV(Sρ). Then:

Σ Σ ίdμβ-i Σ OKρ(Sρ)
k(y),k(z) n(k,A),k^ρ~l ({yβ,zβ})-ρ-super-MayergraphsSe

• Π Ψm(y) Π ΨHz)(z) Π

(3.40)

The (ρ — l)-polymers Γ will be made of a set of squares of Dρ_ γ (whose union is
called Γρ_ J, plus some of the (ρ — l)-external variables in them, plus the ρ-Mayer
graphs Mρ in the super-Mayer graph Sρ such that LFSρ_ χ(Mρ) is contained in Γρ_ l 5
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plus a set of low frequency variables of scale ρ — 1, LFV(Γ). One should remark that
in the (ρ — l)-cluster expansion, two squares A and A' of D ρ _ x can be linked either
by an explicit derivation d/dsb, b = (Δ, A') e Bρ_ 1? or by a ρ-Mayer graph which has
l.f.v. of index ρ — 1 both in A and A'. Therefore, the formula for the amplitude of a
ρ — 1 polymer Γ is more complicated than (3.38):

b<=H

•Γ

Σ
), zQ(Γ)}) — ρ-super-Mayer graphs Sρ connecting the fί-components of Γβ - i

Π e
J LFV(Γ),N(Γ)

where the sums are performed over set of bonds H which are pairs of squares of
Γρ_ 1? but which do not any more connect necessarily Γρ_ l 5 and over super-Mayer
graphs Sρ which have their (ρ — l)-l.f.v. in Γρ_ x and which "achieve" the connection
of Γρ_v This means that given J7, the connected components of Γρ_x linked by
bonds of if [called //-components in (3.41)] are themselves connected together by
Mayer graphs of Sρ.

After the ρ — 1 cluster expansion we perform the (ρ — 1)-Mayer expansion and
obtain (ρ - 1)-Mayer graphs and (ρ - l)-super-Mayer graphs, etc.... At the end of
the O-Mayer expansion, we obtain O-super-Mayer graphs which are "linear" in the
true external variables. The normalization ZΛρ can be factorized at this stage and
^2P,Λ,ρor ^2P,Λ,ρ computed as in (3.18)—(3.19). Then the thermodynamic limit can
be performed just as in Lemma 3.1. From now on, for simplicity, we will work only
in this thermodynamic limit, hence on the normalized functions S2p,ρ and SlPtβ

defined in (3.21)—(3.22). Let us recall that these functions are defined, for λQ small
enough, by the phase space expansion, which by Lemma 3.1 is an absolutely
convergent expansion in powers of λQ. Indeed by identification order by order, the
sum for instance of the O-Mayer graphs linear in all external variables with total
number of vertices n in the phase space expansion must be equal to the sum of the
ordinary Mayer graphs with n vertices in the single Mayer expansion, and also to
the sum of all connected Feynman graphs containing n vertices and all the external
variables; since these three expressions are the nth order of perturbation theory for
the truncated Schwinger functions SlPfQ. The reader may therefore think of the
Mayer graphs as just a reorganization of Feynman graphs in a way which exhibits
the cancellations between them responsible for convergence of the bare perturb-
ation series. It is also useful to remark that the sum of the fe-Mayer graphs at a
given order with a prescribed set of external variables ("true" or "low-frequency")
is the same quantity as the sum of the connected Feynman graphs of same order
and same set of external variables, with propagators Σ Cj instead of Cρ. In

j = k,...,ρ

particular it is translation invariant, and does not depend on the particular choice
of the lattice of cubes D. In the next section we will perform one last reorganization
of the perturbation expansion: the phase space expansion will be reshuffled into a
"partly renormalized phase space expansion" (PRPSE), expressed in terms of
"effective constants." It is the crucial step, since in contrast with the previous ones,
it involves combining together different orders of the ordinary perturbation
theory, to define the effective constants. (In fact, in the way we define it, it involves
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infinite (but absolutely convergent) resummations of some pieces of perturbation
theory.) This PRPSE is the tool which allows us to improve sloppy estimates like
those of Lemma 3.1, and to achieve our construction.

Let us include some comments on the interest of the PRPSE; it lies "between"
the bare and the renormalized expansion since the divergent graphs are
renormalized (i.e., combined with their counterterms) if and only if their internal
momenta are higher than their external momenta. It is easy to verify that this is
precisely the case, where the renormalization is "useful," i.e., where it has a positive
net effect (see, e.g., [16]). Therefore, the PRPSE is optimal from the point of view of
getting sharp estimates; the only price to pay is that it is a power series in an infinite
number of "effective constants" instead of a single one. Since it lies "in between,"
the PRPSE can be obtained equally well from the bare or from the renormalized
expansion; in the first case (which is the strategy used in this paper and for example
in [9]) one adds the "useful" part of the counterterms to the bare expansion to
partly renormalize it and one subtracts this same "useful" part from the bare
constants to get effective constants; in the second case (strategy followed for
example in [6]) one simply absorbs the "useless" part of the counterterms in the
coupling constants by adding it to the renormalized constants, again obtaining the
same expansion in terms of effective constants.

IV. The Renormalization

1. The "Partly Renormalized'" Expansion

We will now transform the phase space expansion of a given Schwinger function
into a "partly renormalized phase space expansion" (in short PRPSE). This is done
inductively, replacing after the fcth Mayer expansion in the preceding subsection
the amplitudes of all the "fc-quadrupeds" and "fe-bipeds" by the sum of a
"renormalized amplitude" and of a "counterterm." At each scale fc we define the "fc-
quadrupeds" Qk (respectively the "fc-bipeds" Bk) as the fc-Mayer graphs with N = 4
external legs all low frequency variables (respectively with N = 2), which are of the
type (ψ'ψ)2 [respectively {ψ'ψj] (see Lemma2.1), and which have at least one
internal leg of frequency fc. For simplicity we may forget from now on to
distinguish between ψ and ψ when it is unimportant. Let us again sketch the first
step, then give the general induction rule.

The amplitude KT

Q(QQ) of a ρ-quadruped Qρ is defined using (3.38) and K^(Qρ)
= X T(M)Kρ(M); the 4 external fields will be called ψkί(xι), ty^feX Ψk3(

x3)>

Ψk4(
x4)i a n d w e recall that xl9 x2, x3, and x4 are integrated over their localization

squares, called Aί9 A2, A3, and z14, which in this case are in Dρ. Note that some of
the xf's may coincide, since different external fields may be hooked to the same
vertex, and some of the A{s may also coincide. We define:

Kl Λ(Qβ), (4.1)

Σ δQι

β, (4.2)
Qe/OeΔ,
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where in (4.1) the "amputated activity" Kρ'
A(Qρ) is defined by suppressing in the

definition of Kρ(Qρ) the product of the external fields ψkί(
χ

1)ψk2(x2)ψk3(
x3)ψk4(

χd
We recall, again, that in (3.38), hence in (4.1), xt is integrated over its localization
square At. By translation invariance, δλρ is independent of the choice of z and of the
origin 0 in (4.2). We remark that in Fourier space, δλρ is the sum of the values of the
ρ-quadrupeds at 0 external momenta, this is the most usual prescription in order to
renormalize theories with a non-zero bare mass. By (3.19) we see that in the usual
language of perturbation theory, δλρ is exactly the sum of the connected 4-point
Feynman graphs at 0 external momenta and internal propagators in the slice ρ.

The renormalized amplitude Kρ'
R(Qρ) is defined by:

{ Σ δQ!ρΨki(xdψk2(

) Σ ΣΓΠ^O
I ί=i,...,4 jΦi ir<j

•,(χj)-ipk}(χd)\nyk](χr)]\, (4.3)

where again our convention is that the integration signs for the x/s are hidden in
the formulas for Kτ, KT'Λ, and δQρ. The differences ψk(Xj) — ψk(

xi) a r e

systematically written as "gradients" acting on the external fields:

1

Ψkj(xj) ~ Ψkjfrd = J dθ(xj ~ xd' Fψkjl
xi + θ(*j ~ xj] > ( 4 4 )

and after integration with respect to dμkj, the gradient will act on the correspond-
ing "legs" A or B.

Similarly we define, for any ρ-biped Bρ, counterterms δBρ for the corresponding
contributions to the mass and wave function renormalizations, and a re-
normalized amplitude Kρ'

R(Bρ% which has two gradients acting on its external
fields (this requires some easy algebra similar to that of Lemma 2.1), and we define:

λe-1=λe + δλe; mQ-1=me + δme; ζρ^ί=ζρ + δζρ, (4.5)

where δmρ and δζρ are defined by formulas similar to (4.2).
With some easy combinatoric checks, one can rewrite now the formula (3.40)

expressing the phase space expansion after the ρ t h step with the following rules:
- all the ρ-quadrupeds and ρ-bipeds are renormalized, i.e., their amplitude is

replaced by the renormalized amplitude (4.4);
- the interaction [(λe)V\Ay]n{k>Δ)/n(k,A)\ [see (3.37)], k<ρ, is replaced by

k

ρ

- the gaussian measure dμQ^^ corresponds now to an effective propagator:

C*_ i(p) = %- i(p) • iζβ- i(p)|> + m e- MVίCl i(p)p2 + mρ

2_ Ml, (4.6)

where

and
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[Hint: to find formula (4.6) for the effective propagator, we remark that after
renormalization of the ρ-bipeds, one is left with an expansion with propagators
Cρ-ι which are dressed with arbitrary numbers of mass and wave function
insertions. The dressed propagator C*_ 1 is therefore the sum of the geometric
series:

which is nothing but (4.6).]
We can now rewrite C*_ 1 = C*ρ~ 1 + C*_2, with:

and generalize inductively this analysis to any slice k. We obtain the full PRPSE,
which is identical to the phase space expansion of the preceding section with the
following rules:

- all the quadrupeds and bipeds are renormalized, i.e., their amplitude is
replaced by the renormalized amplitude;

- the interaction l(λQ)Vk(A)Yik>A)/n(k9A)\ [see (3.37)], fc>ρ, is replaced by
ί(λ)Vk(A)r^/(KA)lί(λk)V(A)r/n(KA)l

- the propagator in the slice k is no longer Ck but C*fe(p), defined as:

C*k(p) = ηk(p) • ίζk(p)$ + mk(p)mi(p)p2 + m2

k(p)l, (4.7)

where

ηβ- t(p))+ Σ
k<i<ρ

and

™*(p) = wρ(l - η Q - i(p)) + Σ imlnlP)~ηi-i(p)ϊ] + rnkηk(p) .
k<i<ρ

As expected, λk, mk, and ζk are defined inductively by the formula:

k = λk + i+δλk+1; rnk = mk + 1+δmk + ί; ζk = ζk+1+δζk + ί , (4.8)

where δλk+1, δmk+ί, and δζk+1 are of course given by the sum of the counterterms
corresponding to (fc+ l)-quadrupeds and bipeds, computed with the effective
couplings λk, and the effective propagators C*fe', /c'^fe+ 1.

2. The Behavior of the Effective Constants

We will study precisely the evolution of our effective constants as functions of k.
We concentrate our efforts on the coupling constant behavior [under the ansatz
(2.21)-(2.22)]. (Other approaches are possible, see Subsect. IV.3). The main
behavior of λk is governed by asymptotic freedom, but the "subleading" term also
plays some role. The next four lemmas will be proven inductively under the ansatz
(1.1) on λρ; more precisely Lemmas 4.3, 4.4, 4.1, and 4.2 are proved in this order,
successively for k = ρ, ρ— 1,..., up to fc = 0.
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We may decompose the sum (4.2) as:

δλk= Σ δQu+ Σ δQh. (4.9)
fc-quadrupeds Qu with at most 3 vertices fc-quadrupeds Qu with at least 4 vertices

Lemma 4.1

δλk = -(LogM) [ft'λl + (y f c

3 ' ρ ~(βW (LogAi))43 + 0 ( # ) ] , (4.10)

where βk2Q and yk^e are defined (using obvious graphical notation) by:

(LogΛ/)j8* β = Σ ί<Z^>d2y, (4.11)
£ i h f { i i } fe i ^

the sign R means that the inner bubble is renormalized; Furthermore the
following limits exists:

β2=\im βk

2'™, γ3= Iim 7

f c

3 '», (4.13)
fc-> oo

and β2 is the usual first coefficient of the β function, computed with wave function
( = 1 , introduced in (2.17). We remark that with the standard convention β2 is
negative, which corresponds to asymptotic freedom, hence to δλk>0 for small λk.

Proof We have, with graphical notation:

Σ
ί i , i 2 = /c,...,ρwithin

i,i2,i3,,Ϊ4 = k, . . . , ρ w i t h i n f {11,12,13,14} =

Σ δβ*, (4.14)
k-quadrupedsQfcwithat least 4 vertices

where ί12 = sup{i1? z2} e t c . ; and the symbol i?c means that the inner bubble is
renormalized if the condition inf{i35ΐ4}>sup{i l 5i2} holds; the contributions to

δλk of the graphs ^ 0—, ) 0 ^ , ̂ — ( ^ are of order M ~fc (either we

can use parity considerations or using translation invariance one at least of the
external field get a gradient and the graph doesn't contribute to δλk)
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We transform λb λh 2,λh 3 4, and λh 3 4 into λk using the recursive relation (4.8),
and keeping all terms of order at most 3 in λk. In this process, one can verify that the
counterterms necessary to replace the conditional sign Rc by a sign R in (4.14) are
exactly generated once, except for one subtlety: the counterterm when ix or i2 = ί3

or Ϊ 4 = k is missing. But it is precisely equal to (βk

2

ρ)2 and this explains the presence
of the corresponding term in (4.10). The terms of order 4 or more in λk generated in
the process and the contributions of Mayer graphs of order 4 or more may be
estimated uniformly by O(λk) as a consequence of the bounds of the next
subsection, and of the fact that

(see Lemma 4.3 at order k) (but there is no logical bug, since as remarked above, the
proof of Lemmas 4.1-4.4 is inductive).

One has that:

lim Σ / ( i l J i 2 ) = - j 8 2 l n M ,
k,ρ-+cc ii, i2^k, withinf {/i, i2}~k

with

i2 y

lim Σ f(iui2J3J4)=-y3lnM,
k,ρ-+ oo ii,12,13,14 ^k, w i t h i n f {iι, 12,13,14} — k

with

To prove it one uses the fact that for all p: f(iu ...Jr) = f(i1—p, ...,fr—p) up to
corrections which go to zero as ρ and the ϊs go to infinity. Then in the above sums
one can fix by translation i1 to be equal to k and there are now no more conditions
on the other fs; thus — β2 and — γ3 are equal to: (q) [the value of the
corresponding diagram (with no cutoff and no mass), where the modulus of one
momentum is kept fixed equal to q].

These are the values of the Callan-Symanzik coefficients and have been
computed for this model, see [1,2,23].

It remains to verify (4.13). Here a subtlety arises. In the definition (4.11) of βk

2

Q

the lines with indices i and k have effective propagators C*f and C*k. To relate βk

2

Q

to β2 we need to reexpress the wave function £f or ζk in terms of ζQ = 1. Substituting
the value (4.22) for ζk obtained in Lemma 4.4 into (4.11), we obtain that:

βk

2>e = β2 + δk>e + λkδ
k

3>e-lδk^ρ(-β2LogMK + 0 (4.15)

where again <53 = lim δ\' °° exists, δ3 is a constant computable in terms of y2 and β2
fe-> oo

whose precise value is irrelevant, and:
fikO(ί)k O ( l ) ( k )

(4.16)
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In (4.15) the term O(logk/k2) is an upper bound on all the terms of order two or
more in (1/fe) or (1/ρ) with possible logarithms of k and ρ arising from the
development of λk = (l/-β2k) (1 + O[(logfc)/fc]). The first bound in (4.16) corre-
sponds to the difference between the exponentially converging sum over i in (4.11)
and its limit, which gives the g-WMe-fc) term, and to the existence of a mass which
at low energy gives a correction to the scale invariance of βk

2'
ρ; this correction is

bounded by e'0(1)k. Finally, in the differences \δk>Q-δk>Q+1\ and \δk><*-δk+1>e+1\

there is, respectively, no mass and no u.v. cutoff correction, which achieves the
proof of (4.16). For this analysis, we use the "exponential decay in momentum
space" (in the separation of slices) of the PRPSE (see [16] and the next section); the
estimate on the mass correction requires also that under the ansatz (2.24) the
running mass mk remains bounded for any k up to k = 0 by 0(1), which is true by
Lemma 4.4 (again no logical loop!).

Combining Lemma 4.1 with (4.15) and a similar tedious but straightforward
analysis for the y\e term in (4.10), and remarking that the e~O(1)k term in (4.16) can
be absorbed in the OQogk/k2) term in (4.15). One obtains the following more
precise statement (always under the ansatz (2.24) and (1.1):

Lemma 4.2.

δλk = -(LogM) [β2λl + (β3 -β2

2(LogM))λl - δ3λ
2/ρ( - β2 LogM)

) ) ] , (4.17)

where by definition β3 = y3 + δ3is the usual third order term in the β- function used in
(2.17) and (2.20).

The next lemma controls the behavior of λk under an appropriate condition
on λρ:

Lemma 4.3. There exists some constant 0(1) such that if C is a positive number
satisfying C^O(l) , and λQ is defined by (1.1), then λk is positive and behaves
according to the bounds:

- jS2(LogM)fc + (βjβ2) Logk + Cβ S Ak-
ι

^-β2(LogM)k + (β3/β2)Logk + 2C. (4.18)

Proof Assuming (4.18) at order k rewrite (4.8) and (4.17) as:

+ β3/(-β2(LogM)k)
2 °^k)-], (4.19)

and (4.18) will follow from the logarithmic divergence of 1/fc, the summability of
(Logk)/k2, e"Oil){ρ~k\ and the obvious bound

Σ (\δ3\/ρ) = \δ3\(ρ-k)/ρ^\δ3\.
j = k,...,ρ

Lemma 4.4. Under the ansatz (2.21)-(2.22) and (1.1) the running mass and wave
function satisfy:

1\ (4.20)

Cfe - L = (y2/β22 LogM) [(l//c) - (1/ρ)] + O[(logk)/fc2] . (4.21)
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Proof We write a first order perturbation analysis for δmk and a second order
analysis for δζk similar to the third order analysis for δλk in (4.9)-(4.10), and the
results follows easily. For instance δζk may be estimated by:

Kk = (vM LogM)/fc2 + O[(Logfc)/fc3] + le-°^~k^/k2 (4.22)

from which it is elementary to derive (4.21).
We are ready to state our main results:

Theorem IV.l. Under the ansatz (2.21)-(2.22) and (1.1), the PRPSE is absolutely
and uniformly convergent for C positive large enough. If S2PiQ{C) are the normalized
Schwinger function sums of this PRPSE, then the limits S2p(C) = lim S2Ptρ(C) exist

ρ—• o o

and are the Schwinger functions of a non-trivial Euclidean theory satisfying The
Osterwalder-Schrader axioms.

Theorem IV.2. Under the conditions of Theorem IV.l, the limits S2p(C)

= lim S2p,Q(C) also exist and are analytic in C for C complex with R e C ^ 0(1).
Q-+ 00

The renormalized coupling constant λren(C) for the BPHZ scheme at 0 momenta
corresponding to this theory lies in a disk Dσ = {y/Re(l/Λ,) > C7}. For C large enough
and λren e Dσ, the map from C to λrQn may be inverted, and C becomes an analytic
function of λγen e Dc>, with Re C ^ 0(1). Therefore, the theory can be parametrized
now by λτQn instead of C, is analytic in Dσ, and is the Borel sum of the usual BPHZ
renormalized series in λren with renormalized mass and wave function m r e n and ζ r e n

which are finite non-zero functions of m and λren.

Remark. It should be understood that in the BPHZ prescription, the 4-point terms
which are not of the type (ψψ)2, are not renormalized (they are convergent, see
Lemma 11.1).

The proof of these two Theorems follows from the results of the two next
sections. We will prove in Sect. V that under the condition (1.1) the PRPSE is
absolutely convergent. Our estimates will be uniform in ρ. Pushing the analysis one
order further will enable us to check that the running parameters λ% mf, and ζξ.
computed with the ansatz (2.21)-(2.22) and (1.1) converge to finite values λ™, mk,
and ζk as ρ->oo. This will prove the second part of Theorem IV.l, and give a
computable expansion, (according to the criteria of [17]) for the Schwinger
functions S2p(C); they are the sums of the PRPSE, with no cutoff, effective vertices
λk and effective propagators C*fc'°°(p) defined by:

'(p)=ik(p) l£k(p)p+ro"(p)]/{Kf (p)] V + « ) 2 (p)] > (4.23)

with:

ζk

X)(p)= Σ LCΓ(rlί(p)~ίΊi-i(p))l + Cfe°̂ k(p) J (4.24)

and:

m^(p)= X [^Γ(^i(p)~^i-i(p))] + mΓ^fc(p) (4.25)
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In Sect. VI the relationship of the theory to its usual perturbative renormalized
series is analyzed and Theorem IV.2 is proved. But Borel summability is the key to
a particularly simple verification of the axioms, indeed the reader may easily
convince himself that the construction of this paper could have been repeated with
an other form of the upper cutoff ρ, for instance a lattice cutoff. The limits Sp

2'p'(C)
(respectively, Srl

2

a"lce(C)) obtained with the Pauli-Villars cutoff (respectively the
"lattice" cutoff) satisfy all the O.S. axioms except O.S. positivity (respectively
Euclidean invariance); indeed this is the only axiom violated by the Pauli-Villars
cutoff (respectively the lattice cutoff). But these two limits are equal, since they are
the Borel sum of the same series! Therefore, they satisfy all the O.S. axioms, which
achieves the proof of Theorem IV. 1.

3. Additional Remarks

There are other equivalent presentations of the results of the preceding subsection
which ultimately yield to the same continuum theory. Here are some attractive
possibilities:

- The ansatz (2.22) could be replaced by the ansatz used in [13]:

ρ (4.26)

The advantage is that the term y^λ^/ρ in (4.17) disappears. The price to pay is
the use of an ansatz for ζρ which is not constant in ρ, although in fact there is no
infinite wave function renormalization in the theory.

- One might work in the reverse order, keeping λren, mren, and £ren defined by
the BPHZ conditions fixed, and adjusting λρ, mρ, and ζρ at each step. The
advantage is that the theory is directly parametrized by renormalized constants
which, instead of our m and C, correspond to a well defined scheme. The price to
pay is that λρ, mρ, and ζρ are given by complicated formulas. A particularly
attractive possibility (see also the introduction) is to work from the beginning with
the PRPSE' of Sect. VI, hence with λρ, mren, and ζren. The only disadvantage of this
expansion is that it requires the explicit development of all the 2-point subgraphs,
and also the somewhat non-trivial use of "logarithmic" power counting (see [16]).

- One might work with truncated (at the right order!) recursion relations,
instead of full ones [i.e., not include the second sum in the definition (4.9) oϊδλjj. In
the second thus obtained, only the small Mayer graphs are "partly renormalized."
This is nevertheless sufficient to get the uniform geometric bounds necessary for
convergence, but also requires also logarithmic power counting.

V. The Convergence of the PRPSE

In this section we give, under the condition (1.1) uniform estimates on the PRPSE,
with all convergence rates being geometrical. It is in fact a rather straightforward
application of the techniques of [16], plus some use of combinatoric arguments
and of Gram's inequality similar to the detailed proof of Lemma 3.1. Therefore, we
will be rather brief. The inductive bound on the amplitudes of fc-Mayer graphs is as
follows:
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We write C*k{p) = A*k(p) B*k(p) and have the following estimate to replace the
sloppy bound (3.25):

[the analog of (3.25) would give a bound e~
Mk\χ-y\i2^ which, since ζk remains

bounded by 2 if C in Theorem IV. 1 is large enough, gives e-
Mk\χ~y\/4

 ί from n o w o n

we will skip such arguments].
- There is "horizontal" exponential decay in every momentum slice fe, between

cubes of Όk in a given fc-Mayer graph with rate corresponding to the size of the
cubes of Dfe. This allows us to replace all the mQ dependent constants K in Lemma
3.1 by true 0(1) constants.

- There is "vertical" exponential decay in the difference of the indices of a
Mayer graph and of its external legs; this is because Mayer graphs with N ^ 6 are
convergent by power-counting and Mayer graphs with JV = 4 or N = 2 are
renormalized. This has been discussed at length in [16] for the Feynman graphs of
any renormalizable theory, with particular applications to φ% and to G N 2 , so we
should not repeat the analysis, but add only a few comments.

a) The gradients of the renormalization in (4.4), when integrated with respect
to the fermion measure, will act on A or B "legs"; by translation invariance there is
at most one gradient acting on each A or B and [see (3.33)]:

sup(\VA*k(x, y)|, I VB*k(x, y)\) ̂  0(1) M5kl2e~M^χ-y^.

The gradients do not perturb either the power counting, or the Gram inequality.
Their net effect is the gain of an exponential decrease Mk~j between the scale k of
the fc-quadruped or fe-biped and the scale j of the external leg to which the gradient
applies, exactly as in [16]. By "power counting" we mean that:

which follows easily from the definition of Aj and Bj. But one has also:

|| VAj\\2 S O(l)M3jl2 || VBj\\2 S O(l)M3j/2 .

For renormalized Mayer graphs, the Gram's structure of the determinants
analogous to (3.23) is preserved, with some of the rows or columns containing
derived legs VA or VB instead of A and B. The power counting is exactly as
expected, since the factor (xj — xt) in (4.4), when multiplied by the "horizontal"
exponential decrease e~

Mk\χj-χi\ of the fc-quadruped, can be bounded by O(l)M~fe.
Combining these two estimates gives a net bound 0(\)Mj/2M~(k~j\ which
reconstructs the normal power counting M J / 2 of (5.1), plus the decrease M~{k~j)

predicted, as in [16].

b) Since the cluster expansion in Dfe contains both "d/ds" links and links
created by Mayer graphs of higher scale, one can verify that the corresponding
combinatoric factors can be controlled in the same way as in the proof of Lemma
3.1; this is easy; basically the choice of the linking Mayer graphs is controlled by
the "horizontal" and "vertical" decrease described above (see also [9]).

c) Finally, in the last scale the sum of the "O-super Mayer graphs" with n
vertices is estimated by 0(1)" [supfc{/ίJ]M and by Lemma 4.1 the last sum over n is
controlled by taking the constant C in Theorem IV. 1 sufficiently large.
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This general technique of estimating graphs is responsible for the bounds
Oμsomeinteger̂  o(Logk/k2), etc., used in various places of this paper, like
Subsect. 4.2 for instance. We will not repeat the proof in each case. We prefer to
stress now the other arguments which are necessary to complete the proof of
Theorem IV. 1.

As remarked already, this amounts to verifying that the running parameters Λ|,
mj , and ζQ

k computed with the ansatz (2.21)-(2.22) and (1.1) converge to their final
values λ™, m£°, and ζ^ as ρ-κx). This will be done by proving that these sequences
are Cauchy. We can indeed compute the difference δλξ. = λ%+1 — λρ

k, δmρ

k, and δζ%
and bound them by a summable series in ρ. To achieve this let us restrict our
attention for simplicity to δλ% the other cases being similar. It is convenient to use
gk = (λk)"1 rather than λks. Then pushing the analysis of (4.19) one step further (to
2n d order in 1/fe) one obtains [using (4.15) and (4.16)]:

{ Σ ^ρ- Σ # ρ

[\_j = k+l,...,ρ j = k+ί,...,ρ+l

+ ΓO83/J82) (Logρ - Log(ρ + 1)) - Σ (jj'l + <5 3 )M ρ

L j = k+l,...,ρ

+ Σ (yiQ+1 +
j = A + l , . . . , ρ + l

+ Γ Σ δjρ- Σ δ3/(ρ + 1)1 + [higher orders]. (5.2)
[_j = k+ί,...,ρ j = k+l,...,ρ+l J

The first difference is bounded by:

Σ \δJ'e-δj>e+1\ + δk + e/2>e+x+ Σ \δj>ρ-δj+1>Q+1\,
j = k+l,...,k-l+ρ/2 j = k + ρ/2,...,ρ

(5.3)

hence it may be bounded, using (4.16), by 0(1) e-°(1)'Qi2

9 hence by a summable
series in ρ. The second difference should be evaluated similarly by writing the
analogue of (4.15)—(4.16) for y3:

j). (5.5)

The third difference vanishes exactly. The higher orders are generated by
developping the recursion relation (4.19) up to 0{λl)\ there is a difference

Γ Σ <54(Logρ)/ρ2 - Σ ^(Log(ρ + l))/(ρ +1) 2 ] ^(Logρ)/ρ2

\J = k+l,...,ρ j = k+l,...,ρ+l J

coming from the (Logρ)/ρ2 correction to the δ3/ρ term in (4.19), and a remainder,
0(λk) term. The bound one can find on \δg%\ without taking into account the
remainder O(λl) term in (5.2) is therefore 0(1) (Logρ)/(ρ — fe)2. Finally, we include
in our analysis the remainder term, which is a sum of differences of terms of the
form gj2 fJ*e(λj)9 with fj'ρ(λj) <£ 0(1), by an analogue of (5.4). By an analogue of
(5.5) we can also prove that \f^ρ(λ^)- fhρ+nλ^e-°{1){ρ'j\ Then we may use a
simple induction. Assuming that |^ | |^O(l)(Logρ)/(ρ + l— j)2 ϊorj = ρ,...,k+l,
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we can bound the contribution \δ'gQ

k\ to \δgQ

k\ due to this term in (5.2) by:

(5.6)

and verify the induction hypothesis at order fc, provided k is larger than some
constant integer K. The K last steps then give just an additional O(l)κ

multiplicative factor in front of the bound for δgl\. Since K is a constant, this
completes the argument to all values of k.

Therefore, the continuum limit of the theory exists and is computable by an
absolutely convergent PRPSE expansion without cutoff and with running
parameters λk,mk, and ζ£°.

VI. The Renormalized Expansion and Borel Summability

In this section we will introduce the renormalized parameters in the sense of the
BPHZ scheme of subtractions at 0 external momenta [18].

First let us define the renormalized quantities Aren, mren, and ζren in terms of the
Sch winger functions constructed in Theorem IV. 1 by the BPHZ conditions at 0
momenta:

Cren(mren) ~ 2 = [( — 0 (d/dpo)Sl(C, Πί) (p)]0, θlp = 0 »

where Sl'A(p1,p2,P3,p4) is the truncated amputated 4-point function at external
momenta pu p2, p 3 , p 4 , and Sl(p) is the 2-point function at momentum p. Let us
first rescale our three parameters xren, mren, and ζren into λrjζ

2

ren, m r e n/( r e n, and 1.
We obtain an equivalent two parameter family of theories, still parametrized by C
and m, but for which ζren= 1. Let us call still λren and m r e n (with some abuse of
notations) the parameters Λ,ren/(;?en and m r e n/( r e n. Then to get the usual BPHZ
renormalized series one should "invert" the map from (C, m) to (/lren, mren).
(Basically, under the conditions of Theorems IV. 1 and IV.2, λΐen corresponds to
C 1 and m r e n to m.) We will do this in two steps. First let us reexpress the
propagator in terms of the renormalized quantities m r e n and ζren = 1 rather than in
terms of the running mk and ζk. This can be done in the PRPSE, where the cluster
expansion is modified so that the 2-point Mayer-graphs are defined whatever their
external lines; it is also convenient to define the index of a vertex to be the second
highest index of its fields. One obtains a new expansion called PRPSE' with the
following rules:

- All propagators are fixed (no running masses or wave functions any more)
and have the value [γ\ι was defined in (3.32)]:

= rfiP, r̂en> Cren
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- All two-point Mayer graphs are renormalized, i.e., their amplitude at 0
momenta is subtracted, no matter how their internal indices compare to the indices
of their external lines.

- A scale k vertex has a coupling λk (where now the recursion relation from
λk + 1 to λk involves graphs with the renormalized propagators Cren instead of the
C*fe propagators.

We start by describing the expansion as it would appear if we could work
directly on Feynman graphs. Consider the perturbation series of (for example) the
connected Green's functions in a theory with covariance ηρ(p2) (~p + mren)~* and
interaction (i.e., vertices) (λρ)(ψψ)2 + ψ( — δζf)ψ — δmψψ. If we choose δζ and δm
correctly (the choice will of course depend on ηρ, mren, and λρ) we can rewrite the
series as a new one with propagator ηρ(p2) (— $ + mren) ~ ί, vertices (λρ) (ipip)2 (but no
two-legged vertices) and having all IP I two-point functions renormalized. This is
just good old BPHZ renormalization in a particularly trivial form because it is
impossible to have overlapping IP I two-point subgraphs. Note that it is not
necessary to know the values oίδζ and δm explicitly. We now introduce a running
coupling constant. Start by decomposing each propagator into a high and a low
momentum part using ηρ = (ηρ — ηρ-i) + iΊρ-i. Next define δλρ to be the sum of the
values at zero momentum of all connected four point functions having at least
three low momentum external propagators (more generally a low momentum
external line or field or propagator of a subgraph is an external field whose index is
lower than the ones of the internal lines). Also define λρ_1 = λρ + δλρ. Next
substitute λρ = Aρ_ x — δλρ for the coupling constant at each low momentum vertex,
i.e., at each vertex attached to at least three low momentum propagators. Each
— δλρ naturally converts its vertex into a sum of counterterms that renormalize the
corresponding high momentum four point functions. This leaves us with an
expansion in which all four point functions which have at least three external lines
of index ρ — 1 are renormalized and vertices with at least three fields of index ρ — 1
have coupling constant Aρ_1 (this renormalization procedure makes no problem
because at scale ρ the four point functions to be renormalized cannot overlap: each
one has at most one external line of index ρ). We may now continue by
decomposing ηρ-ι={ηρ-i — ί7ρ-2) + ̂ ρ-2 a n d s o o n The final result is an
expansion in which

- the propagators are ( ^ - ^ - O ί - ^ + m ^ ) " 1

- all vertices have four legs; the coupling at each vertex is λk with k being the
momentum scale of the second highest line attached to the vertex

- all two point subgraphs are renormalized
- all four point subgraphs for which every internal line has momentum scale

higher than the scale of the second highest external line are renormalized.
The choice we made for the renormalization of the four point function is

somewhat arbitrary, it is the one which dresses as little as possible the four point
function and allows a computation of the coupling constant flow λi_ί=λi + δλi,
where δλt is the sum of the four point i-Mayer graphs (which are one particle
irreducible and have at least three low momentum external fields, see below).

We must keep perturbation theory inside polymers in closed form to preserve
cancellations in Gram's determinants. Therefore, to renormalize all the two point
functions, even inside the polymers, requires a new development, which is again a
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sort of Mayer expansion, allowing analysis in terms of 1-particle irreducible
objects instead of connected objects. We plan to give a fully detailed exposition of
this expansion elsewhere [19,9], but here we will give only the outline of its
construction in a single momentum slice; the generalization to all slices is then
similar to Sect. III.2.

We begin the description by considering those polymers that do not contain
mass or wave function counterterms. We should reexpress the amplitudes of the
polymers of Sect. Ill, to test the coupling between cubes at third order in sb. This
means that we replace Jb in formula (3.3) by:

+Ji + Jξ; J1

bF = (dF/dsb)\Sb = 0;

J2

b=(l/2)(d2F/ds2)\Sh = 0;

= (l/2)\(l-sb)
2(d3F/dst)dsb.

o

(6.4)

(6.5)

One term in the cluster expansion (3.13) is a product of (3.8) polymers each of which
is a set of squares. These squares are possibly connected by bonds Jb, J2, or J | .
This term can then be viewed as a graph whose vertices are the squares, and lines
are the bonds. We form a forest with

- the connected components - which have at most two low momentum fields
and no true external fields - of the graph

- the 2-point subgraphs
- the 4-point subgraphs with at least 3 low momentum external fields and

which are one particle irreducible.
We remove the disjointness constraints inductively in the natural order of the

forest. We define for each subgraph B of the forest the reduced support SB to be the
set of all squares of B that are not squares of elements of the forest contained in B.
For example in Fig. 1 the reduced support of the subgraph B' of the graph G is

Note that every square of G occurs in exactly one reduced support. We choose
an order on the set of the subgraphs which is compatible with the natural order of
the forest. We pick the smallest element Bλ of the forest, in that ordering, and we
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can write the constraint that its support be disjoint from the other reduced
supports as:

Π Π e-r« s ' \ (6.6)
AeSBι B>Bi

where -< is the natural ordering in the forest. These constraints may be removed by
writing:

Π ΓΊ <Γ^'S*'>=1+ Σ {e-v«»Si)-l} Π < Γ ^ ' S "\ (6.7)

where St = SBi and {B2,...,£„} is just the ordered set {B'lB'^BJ, {Δu ...,Δm} is
some ordering on the squares of SBί, and by definition:

(j',O>(/',0 if f>j or j'=j,i'>i

We note that in the general term of the sum (6.7) there is no longer any
constraint involving Δu...9Δj_1; that Δj must be contained in St but not any Sv for
ΐ > i (but the latter constraint is redundant because St must be disjoint from S, ) and,
furthermore, that Δj+1, ...,Δn must be disjoint from all B2, ...,Bn.

In (6.7) the term containing 1 is constraint-free. We separate it into a
renormalized part and two local parts. The latter are cancelled exactly by two
corresponding terms, one containing a mass and the other a wave-function
counterterm.

We can now move onto the next step in the induction, defining a new smaller
forest for the first term of (6.7). We simply delete Bx from the forest; for the other
terms B1 and Bt are combined into a single element B\ with reduced support
Δj+1v...vΔnvSi; on this new forest we define a new order (compatible with the
inclusion relation) such that if B\ exists, it has the smallest possible index. We
repeat the operation up to removal of all the constraints.

We may now introduce a running coupling constant as in Sect. IV. We have
developed the cluster expansion up to the third order - see formula (3.4), (6.5) -
thus we can define the four point /c-Mayer graphs which have only one external
field of index lower than fc; we can then renormalize them; a vertex of index i with
effective coupling constant is of type:

ψXx) Σ λkΨ

k(xKWk{x)T . (6.8)

The net result is that high momentum four point functions are renormalized and
we end up with an expansion similar in form to that described for ordinary
perturbation theory above but expressed in terms of polymers. The only
differences with the PRPSE of Sects. Ill and IV are that the covariances are no
more effective (replace C*fe by Cjen) that, the two point functions are renormalized
independently of their external momenta and that the four point fe-Mayer graphs
with at least three low momentum legs are renormalized, this amounts to
introducing terms of type

Γ J , (6.9)

, (6.10)

with ί^p^j, (6.11)
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we shall consider (6.10) as insertions in the propagator in order to get a fixed
propagator (up to the finite mass) we write for the wave function term:

Ikίί J ik J lk>i J

(6.12)

Let

δζ=Σδζk. (6.13)
k

The terms in δζ reconstruct the bare propagator, i.e., the propagator between two
fields of indices i and j is:

e a n , (6-14)
and thus the β's and the y's are computed with the propagator

1/C(ί,™-^], (6-15)

and the only wave function insertions are of type

(6.16)

Σ 4^0(l)ln(fe), (6.17)

Σ δζk^O(\) Σ ( 4 ) ^ 0 ( 1 ) ^ , (6.18)
k>ί k>i

Σ δλp^O(l) Σ (Ap)
2^0(l)A,. (6.19)

They are the wave function insertions which were responsible for the existence of
the δ 3 term in Sect. IV.

All these insertions - (6.9), (6.11), (6.16) are small, indeed as in Sect. V we have if

This PRPSE' expansion is convergent and we have the next theorem:

Theorem VI.l. 1) For any finite values of m r e n, ζτen, there exists a positive constant
C such that the radius of convergence rρ(mτen,ζrQn) obeys:

[rρ(m r e n, CreJ] " * S ~β2(LogM)ρ + (β3/β2) LogQ + C = f(ρ, C). (6.20)

Remark. Only the correct ansatz (1.1) leads to interesting non-trivial theories in
the continuum as ρ -> oo for faster decreasing choices of λρ the theory will be driven
to a free field as ρ-+oo.

Scheme of the Proof. The main difference with Sect.V is that δζ depends on
λθ J...5λρ_ l 5 λρ; we proceed by induction on ρ, λτen being fixed, we suppose
λθ9...,λρ-ί being computed in the theory with cutoff index ρ —1 and that for

/j82)] . (6.21)
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We compute then λρ by iterating λρ = λρ_1 — δλρ. In this way we obtain λρ of step ρ
as a function of λ0, ...,λρ_ι of step ρ — 1, and thus λ0,...,iρ_x of step ρ and they
verify (6.21) for ρ' = ρ. It amounts just to substitute convergent series into
convergent series because in λρ the correction - δλρ see (4.14) - to Aρ_ 1 is of second
order and δλj contains contributions with fields of index ρ which are in λje~{ρ~j).

To prove Theorem VI.l, we need only to verify that starting with λρ as in (1.1),
the effective constants λk(λβ) computed from λρ by the analogue of the recursion
relation of Lemma 4.1 remain uniformly bounded for all k by a small constant, and
that the PRPSE' in these conditions is absolutely convergent. The result will then
follow from analyticity of a uniform limit of analytic functions.

Assuming absolute convergence of the PRPSE', to verify that the effective
constants λk remain bounded is easy; indeed it is a simple exercise to use (4.10) to
check that there is a finite constant 0(1) such that | l ρ_ 1(Aρ)| attains its maximum in
Bρ for λρ = [/(ρ, C)] " 1 if ρ > 0(1). In this case we can apply Lemma 4.3 to get a
bound on >lρ_ x starting from ρ large we repeat this argument until a finite number
of last recursion steps, which can be controlled by taking C in Theorem IV. 1 to be
large enough.

It remains to check that the PRPSE' is absolutely convergent, as was the
PRPSE, by Sect. V. We must show that the new Mayer expansion is convergent,
and that the fact that we completely renormalize the two point function doesn't
spoil the arguments of Sect. V. We can combine the "useful" part of the mass, wave
function and coupling constant counterterms to get renormalized fc-bipeds and
quadrupeds as in the PRPSE, but we have additional insertions of the "useless"
part of the counterterms (6.9), (6.11), and (6.16). The power counting of the wave
function insertion is the same as the one of a vertex of index i (because the gradient
is equivalent to two fields of index j) with coefficient λt. The mass insertion is small
like ί'M'1. The quartic insertions are small because the coupling constant remains
small. Hence the terms (6.9), (6.15), and (6.16) do not spoil the absolute convergence
of the PRPSE; in short they are controlled by "asymptotic freedom," i.e., by the
decay oϊλk as 1/fc, i.e., some sums over the indices are controlled by factors which
have only a power decay [see (6.17)—(6.19)], each such sum "consumes" an effective
coupling constant; this phenomenon is responsible for the fact that the coefficient
/?3 in Lemma 4.2 remains y3 + δ3: the insertion of (6.15) in the graph XZ___IX gives
a third order term which is the δ3 term.

Intuitively the absolute convergence of these expansions in which mass and
wave function are fully renormalized can be summarized under the sentence that
"mass and wave function, in contrast with coupling constant renormalization, do
not create renormalons."

It remains to prove the convergence of the new Mayer expansion (6.6). In (6.6)
there is only one sum

ί V>i

for each square A of each polymer (as explained above the next sum on Δ is made
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for each term relative to the square A contained in Sf). Each sum gives a constant
by square. The only difference is that S can be a two point function (in Sect. Ill it
could only be a connected component); we control the sum over Sh i.e., the sum
over the localization of S using the scaled exponential decrease of the propagators
of S: we have to be sure that a given exponential decay is used a finite number of
times. We show now that it is used at most once for this procedure.

Indeed, all the 2 point Mayer graphs which are 1 particle irreducible are
graphically 2-point connected (we mean without taking in account the Mayer links
(e~V(A'Sί) — l)~]; in ordinary perturbation theory a propagator is graphically
external to at most two IP I graphs; however, in our procedure it can be external to
more than two, because of the Mayer links: one Mayer link can link two IP I
objects B, B' which have in common a propagator with 2-point insertions giving
rise to a new term B\ see Fig. 2; to sum on the localization of B" one uses the other
propagator of B\

We recall that we defined the ordering on the subgraphs in such a way that a 2-
point Mayer graph with one propagator "used" is as small as possible; thus B' in
the argument above has its two external propagators still non-used. Therefore, one
of them can be used to sum on the localization of B'\ and we conclude that each
propagator is used at most once. For the 4-point function the convergence of the
Mayer expansion is obvious because they have low momentum legs, and so there is
no sum on their localization but only on their shape.

We are left with the verification of Borel summability (Theorem IV.2). It is done
in two steps; first verify that there is analyticity in the Nevanlinna-Sokal disk
Re(4~n)>0(l) [22], then prove a "factorial bound" on the Taylor remainder at
order n, hence the difference between the theory and the sum of the n first orders of
renormalized perturbation theory [22].

Since, as we remarked, λren is a bounded analytic function of 1/C, the first step
consists in proving that we can extend our construction for C positive and large to
Re C positive and large. But this is again no more than an easy exercise to use the
recursion relation (4.10) to check inductively that starting from λ~ι = f (ρ, ReC)
+ limC one has λζ1 - f(k, ReC) + zk, with |Rez| <: C/2.

Finally, the factorial bound on the Taylor remainder consists in studying the
bound one can obtain on the PRPSE in which at most n "useless" coupling
constant insertions have been inserted. This problem is now well understood. It
has been treated in full detail with Zimmermann's forest formalism, in [16] (see
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also [6] for a similar proof of Borel summability in α-parametric space
representation). We should not repeat again the analysis. The conclusion is that n
"useless" mass insertions can be bounded, paying an n! the mechanism is the usual
renormalization mechanism Σ M~kkn^nl0(l)n. Therefore, the Taylor remain-

k

der at order n can be bounded by n\ O(l)n\λren\
n, which is the necessary estimate

[22].
It remains to prove that the theory satisfies the O.S. axioms. Using a Pauli-

Villars, Euclidean invariant cutoff, every axiom can be checked easily on the
PRPSE' expansion except O.S. positivity (for instance the "cluster property" and
existence of a mass gap is a simple consequence of the fact that m0 is finite and non-
zero. To verify O.S. positivity, we use a lattice cutoff, (identifying the corresponding
theory with the former one by Borel summability, as explained in Sect. IV). The
theory in a finite box can be constructed using the PRPSE'; the counterterms are
then space dependent because of the volume cut-off: δm is replaced by δm(x) and δζ
by δζ(x); we have then that δm(x)^δm, δζ(x)^δζ as the cut-off tends to infinity.
Now for such a theory O.S. positivity holds in the lattice, for one plane cutting the
box into two symmetric parts. The infinite volume limit by translation invariance
satisfies therefore the O.S. positivity.

Acknowledgements. We thank F. David for calling our attention to this model, and K. Gawezdzki
and A.Kupiainen for useful discussions.
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Note added in proof. After completion of this paper we realized that the optimal way to
parametrize the theory is to use (λρ,mren, ζρ) instead of (λQ, mren, ζren) in Sect. VI, hence to use the
ansatz (1.1) for the bare coupling constant λρ and fixed bare wave function constant ζρ and
renormalized mass mren. This point of view will be developed in [19]. It is optimal because the
renormalization flow in its asymptotic regime depends of ζρ, the value of ζ at large energy, and
not of ζ r e n. Therefore with the old parametrization we had in Sect. VI to compute ζρ in terms of
Cren? which required the knowledge of λ0,λl9 ...,λρ, hence a "bootstrap" inductive argument (after
Theorem VI. 1). This inelegant argument disappears completely with the other parametrization.
(Remark that in contrast, mren remains a good parameter in this respect because the flow in the
high energy asymptotic regime does not depend of the mass.) With the new parametrization,
only Borel summability becomes slightly more complicated to check (since there are now two
bare parameters to relate to the renormalized ones instead of one).






