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Abstract. In the presence of competing relativistic formalisms for interacting
particle dynamics, a model-independent axiomatic approach is proposed for
the study of the following asymptotic aspects of relativistic classical particle
dynamics: the definition of the scattering operator, scattering angle and time-
delay, and the specification of a general functional interdependence between
the objects so defined.

I. Introduction

Non-relativistic (i.e. Galilean) scattering theory is usually presented as a com-
parison, in the asymptotic region, between an interacting-particle dynamics and a
free-particle dynamics, with both dynamics cast in the same canonical formalism.

To pursue that approach in the relativistic (i.e. Poincare) domain however
involves some drastic modifications that are required by the Currie-Jordan-
Sudarshan no-go theorem [1]; this result asserts, in essence, that the usual
Hamiltonian formalism, when coupled with relativistic invariance, allows only
free-particle dynamics.

The problem of formulating a relativistic dynamics that allows for interactions
has been investigated actively over the last few decades [2], and several models
have recently appeared [3]. In contrast with the compelling character of the
models studied in the non-relativistic domain, the specific assumptions involved in
the relativistic models that have been proposed are often difficult to motivate,
interpret or derive unambiguously from general physical principles.

This situation suggests exploring those asymptotic aspects of the dynamics
that are dictated by relativistic invariance and should thus hold independently of a
detailed description of the intermediary dynamics. We focus in this paper on the
scattering of two classical relativistic particles.

Our contribution is twofold: (i) we take full advantage of the fact that actual
scattering measurements only involve asymptotically free particles (which the
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usual Hamiltonian formalism describes well); (ii) we investigate kinematic
quantities (e.g. scattering angle and time-delay) and relations among them, the
existence of which does not require at all a Hamiltonian formulation of non-trivial
intermediate dynamics that would be prohibited by the no-go theorem.

In Sect. II we isolate a geometric structure that captures the minimal
requirements to be imposed on a classical particle-system in Minkowski space; in
the framework so provided, we formulate an asymptotic completeness condition
that leads directly to our definition of the scattering operator S. We also analyse in
this section some of the restrictions imposed on S by the requirements of Poincare
invariance.

These restrictions are discussed further, in Sect. Ill, to determine when S can be
expressed as a functional of two relativistic invariants; in this context, a relativistic
generalization of the notions of scattering angle and time-delay appears naturally.

Finally we make contact, in Sect. IV, with the traditional non-relativistic
iS-operator theory, and with some of the existing relativistic models where a
specific intermediary dynamics has been proposed. This shows that the general
axiomatic approach presented in this paper has both predictive power and non-
trivial realizations.

II. The Scattering Operator S

In order to emphasize the model-independence of the approach followed here, the
notions of particle, of particle system, and of asymptotic completeness are
introduced as geometric concepts.

A (relativistic, spinless, classical) particle is identified as a world-line, i.e. as a
one-dimensional, time-like, connected, and infinitely extended, submanifold y{k) of
the Minkowski space-time (M, g). A (relativistic) n-particle system is then identified
as a collection Γn of n-tuples y of world-lines such that

g\_y~\eΓn VgeG and VyeΓM, (II. 1)

where y = (y(1),y(2), ...,y(w)) denotes an arbitrary element of Γn; g denotes an
arbitrary element of the Poincare group G; and g[y~\ denotes the transform of y
under g, implemented by the natural action of G on (M, g).

The introduction of the notion of asymptotic completeness is an adaptation of
the intuitive idea one has from the usual non-relativistic theory; in the relativistic
case however, it is important to stress the operational role played by the possible
observers.

An instantaneous observer w at a point meM is identified as a g-orthogonal
basis {eί,e2,e3,e4} of the tangent space [4] TmM to M at m, satisfying the
following conditions: (i) g{eb et) = + 1 for i = 1,2,3 (ii) g(e4, e4) — —c2 (where c is
the speed of light); and (iii) e4 is future-pointing.

Given w, there exists a unique geodesic coordinate system ψw on M, defined by

ψw:m'e M\->(x, t) = (xl9 x2, x3, t) ί

Tmwwei = d{ = dv., i= 1,2,3,
(Π.2)
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In this coordinate system, the line element of the metric g is given by

ds2 = dx\ + dx\ + dx\ - c2 dt2. (II.3)

For any two instantaneous observers w and W, there exists a unique element g
of the Poincare group G that transforms w into w'. This being said, we need not
explicitly write, in the sequel, the identification of M with R 4 under ψw.

For any choice of w, a world-line γik) can be parametrized by t:γ(k)

= {(xik)(t),t)\telR}. In particular, the locus of a time-like geodesic y(

o

fe) satisfies

j
for some (x(k), *;(/c)) ε T R 3 - R 6 | (II.4)

with | | ι ; ( ; c ) | | 2 < c 2 . J
Consequently, the one-particle system ΓQ consisting of all time-like geodesic paths
can be identified with an open subset of TR 3 ; this identification is, of course,
observer-dependent but is nevertheless a relativistically covariant characteriza-
tion. Alternatively, one can identify in the usual way ΓQ with the "phase space"
Γ*R 3 by choosing a mass m:

(x, υ) e TR3f-+(;x, p) e T*R 3 ,

/ IMI2V1/2

with p = ί l - J ! i i J
(115)

The identifications corresponding to different instantaneous observers are related
to one another by canonical transformations of T*R 3 that define [5] an action of
the Poincare group G on Γ*R3. The ten generators of this action are the functions

Kj: (x, p) e T*R 3 - R 3 x R3h->/φ;, p) e R (II.6)

(with j = 1,2,..., 10) given by:

(II.7)
,p) =(xxp)i, with i= 1,2,3,

:,p) = H(x,p)Xi, with i= 1,2,3.

While the identification of Γ*R 3 with ΓQ1 is observer-dependent, it induces an
observer-independent symplectic structure on Γo

x, than can be canonically
recovered, given m, from the symplectic structure of Γ*M. We will nevertheless
choose to work with the explicit realization of Γo" by Γ*R3 π. In particular, the two-
particle system Γ0

2 consisting of all couples of time-like geodesic paths is similarly
identified with T*R x Γ * R ^ T*R 6 upon choosing two masses m(1) and m(2). This
again leads to a canonical action Φ of the Poincare group G, acting now on T*R6,
with generators

2
/ (1) (1) (2) n(2)\__ Y ίί-(feYγ(fc) n( f ch Πl X)

KΛX >p ,x ,p ) — 2s κj \x >P ) \ιι'Q)

with7 = 1,2,..., 10; and κf> given by (II.7).
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Let F(Γ*R 6 ) denote the Lie algebra of smooth, real-valued functions on Γ*R 6 ,
with Lie product given by the usual Poisson bracket {.,.} (on T*R 6 ), obtained

2 3

from the canonical symplectic form ω = Σ Σ &vt) Λ dxψ on T*R 6 , which we

shall use throughout (see e.g. III.5). The ten functions κj9 given in (II.8), span a Lie
sub-algebra of F( T*R 6 ), isomorphic to the Lie algebra L(G) of the Poincare group
G; we denote by

K : ξ eL(G)\->κξ e F(T*R 6 ) (II.9)

the corresponding injection of L(G) into J F ( T * R 6 ) , from which the momentum
map [4] can be recovered.

ΓQ describes a system of two non-interacting particles. In a sense made precise
by the no-interaction theorem [1], Γ0

2 is the only two-particle system for which
T*]R6 can be used in this way as a state space: the dynamics of an interacting two-
particle system Γ2 cannot be described, in a canonical Hamiltonian manner, on
T*1R6. Our purpose is to show that T * R 6 nevertheless remains useful for the
description of scattering.

A two-particle system Γ2 is said to be asymptotically complete (with respect to
an observer w) if the subset D Q T*R 6 , defined by the conditions (i) and (ii) below, is
open and dense in T * R 6 ; x = (x(l\p{l\x{2\p(2))eD if and only if:

(i) There exists exactly one γ = (ya\γ(2))eΓ2 for which one has, as ί-> —oo,

(k)(t) - x{k) -|| x(k)(t)

at

where k = 1,2 y{k) = {(x{k\t), t) \ t e R} and

x p(k)c2t ||

(ii) For every y appearing in (i) there exists
j " , p ^ , xψ,pψ) e Γ*1R6 for which one has, as ί-> + oo,

(11.10)

(11.11)

exactly one

(11.12)

where k = \,2; and

tii-{. —Ίj|p-j- II c ~τ~ \_m j c j . îi.ijj

Note that if Γ2 is asymptotically complete with respect to one observer w, then it is
asymptotically complete with respect to all observers; hence our definition of
asymptotic completeness is observer-independent and thus refers to an intrinsic
property of the system Γ2. Its meaning is intuitively clear: for almost all couples of
geodesic paths y_=(y (i ),y ( 2 ))e/ϊ )

2

5 there exists a unique couple of interacting
particles y = (y{ί\y{2))eΓ2

9 such that y{k) converges to y{ϊ} in the remote past;
moreover there exists a unique couple of geodesic paths y + =(y(+}, y{2)) e Γ0

2, such
that y{k) converges to y{k) in the distant future.
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Given an asymptotically complete two-particle system Γ2, the scattering
operator Sw is defined, for every observer w, by

By construction, this map is injective and densely defined in T*IR6. The invariance
of Γ2 under the Poincare group G ensures that Φg(D) = D for all geG, where Φ is
the action of G, with generators given by (II.8). For the same reason, we also have

(Π.15)

and

Sd[w] = ΦgoSwoφg^i MgeG. (11.16)

From (11.15) and (11.16), it follows that

S9[W] = SW = S V g e G . (11.17)

Hence to every asymptotically complete two-particle system Γ2 is associated an
observer-independent, densely defined, operator S: T*]R6-> T*IR6 that commutes
with Φ.

Remarks, (i) From the definition of asymptotic completeness, combined with the
time-reversal invariance of Γ2, we have S(D) = D, i.e. the space of "owί-states" and
the space of "m-states" coincide, (ii) On physical grounds, we cannot expect that
D = T*R6 in general. From non-relatiυistic two-body scattering, we know indeed
that the S-operator may not be defined for some "head-on" collisions with specific
values of the internal energy of the system [6, 7], nor in certain cases where the two
particles have zero initial relative velocity; note that, in both of these situations, the
internal angular momentum is zero. In the relativistic case, this is expressed by the
vanishing of the Pauli-Lubanski four-vector (W, W^), the definition of which is
recalled in (III.2) below, (iii) The length (with respect to the Lorentz metric g) of
this four-vector is one of the Casimir invariants of the Poincare group G.

These remarks motivate our assuming, in the sequel, that all scattering
information on the systems we want to consider can be obtained from the
restriction of S to the open, G-stable, dense subset D of T*IR6, the elements of
which are the points of T*IR6 at which the length of the Pauli-Lubanski vector field
is different from zero. This is a mathematically convenient assumption although it
might, at first sight, seem somewhat overly restrictive from a physical point of
view: it excludes all "head-on" collisions, even those for which there is no
"trapping." This assumption will nevertheless cause no practical limitation on the
theory, since we will assume throughout that the map S is smooth.

III. The Scattering Angle θ and the Time-Delay τ

Our study of the relativistic scattering operator S introduced in the preceding
section will take advantage of the structure described in the following lemma
concerning the open and dense, G-stable domain D in T*R6, on which S is defined.
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Lemma 1. Let Φ be the action of the Poincarέ group G on T*IR6, with generators
{Ph H, Ji9 K(\i= 1,2,3} given in (II.8); let Cx and C2 be the two Casimir invariants
of G:

C2 = H2-c2\\P\\2 = M2\ J

with

(W,W4) = (-HJ + KxP,cJ P); (1112)

and let

Then Φ defines a foliation of D, the leaves of which are orbits of Φ, labeled by the
values of the Casimir invariants Cx and C 2.

Proof. The key to the lemma is to show that the orbit 0(a0) of Φ = {Φg\geG}
through an arbitrary point α0 e D is identical to

D(ao) = {aeD\Ck(a) = Ck(ao)l k = l , 2 } . (ΠL4)

The manifold D(a0) is 10-dimensional, by virtue of the implicit function theorem
and of the functional independence of Cx and C2 [i.e. the fact that dC^a) and
dC2(a) are linearly independent 1-forms on TaD for every aeD~\. Since Cx and C2

are Casimir invariants, 0(a0) is a submanifold of D(a0). The tangent space 7^O((2O),
to the orbit O(a0) at α, is spanned by the values Xj(ά) of the 10 vector fields Xj
determined by XjJω = dκp i.e.

6) and VaeD; here, as before, ω is the canonical symplectic form on
T*1R6. To prove that the orbit O(a0) is 10-dimensional, and thus coincides with
D(α0), it is sufficient to prove that the vectors {Xj(a)\j = 1,2,..., 10} are linearly
independent. Since the action Φ is transitive on O(α0), it is sufficient to prove the
independence at any conveniently chosen point of the orbit O(α0). We know that
each orbit intersects the center of mass manifold

Hence, it is sufficient to prove the linear independence of {X/α) | j = 1,2,..., 10} for
every a e DCM. To see that this is indeed the case, it is sufficient to note that, with

and α^eR (/ = 1,2,...,10),

fc=l,2;i=l,2,3 (IΠ.7)

implies ^. = 0 V/= 1,2,..., 10. D
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The proof of the preceding lemma suggests that the study of the scattering
operator S may take advantage of the information already contained in the center
of mass manifold DCM. We now prove that S is indeed fully determined by its
restriction to DC M.

Lemma 2. Let D and DC M be defined as in Lemma 1. If two diffeomorphisms S1 and
S2 of D satisfy

Sioφg = ΦgoSi MgeG ( i = l , 2 ) , (III.8)

Sί(a) = S2(a) V α e D C M , (III.9)

then SX=S2 on D.

Proof. We already noticed, in the proof of Lemma 1, that every orbit of Φ
intersects D C M . Hence, for each α e D , there exists some geG such that
ao = Φg-i(a)eDCM. We have then, upon using (III.8) and (III.9):

SM = S^g(a0)) = Φg o S^αo) = Φg ° S2(a0) = S2(Φ0(ao)) = S2(a). D

In the remainder of this section, we study the conditions under which the
relativistic scattering operator 5 is uniquely determined by two real-valued
functions on D that are constant on each orbit of Φ. By Lemma 1, these functions
thus depend only on the two Casimir invariants C1 and C 2 ; one of them will be
seen to be the CM scattering angle Θ, while the other will be interpreted as the CM
time-delay τ.

Theorem 1. Let D and DCM be as in Lemma 1; and let fA and fB be the R3-valued
functions defined on T*IR6 by

fA(x(1\ p ( 1 ) , x(2), p ( 2 )) = £ ( 1 V 1 ) - £ ( 2 V 2 ) , (III. 10)

\ (III.ll)

ikψc4}1/2. (111.12)

Let finally S be a dίjfeomorphism of D satisfying

φgoS = Soφg MgeG, (III. 13)

KξoS = κξ \/ξeL(G). (III. 14)

There exists then a unique pair of functions

θ:D^tO,2π) and τ :D-+IR (111.15)

satisfying

θoφg = θ and τoφg = τ VgeG, (111.16)

and such that, on the center of mass manifold DCM,

^ ^fBoS, (111.17)

W
(111.18).
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Proof. Let α = (x ( 1 ) ,p ( 1 ) ,x ( 2 ) ,p ( 2 ) )eί) C M . We have then

1
(111.19)(1) χ (1)

with E{k) as in (III. 12). Let further ά = S{a\ i.e.

(M) £(1) Λ(2) Λ ( 2 ) \ _ O / V ( 1 ) n ( l ) v (2) r i(2)\ ΓΓTT 9ίΎl
yJί ,jf/ ,Λ ,j[/ J — ίJ^Λ , p , Λ , p J . ^ 1 1 1 . Z<Uy

From (III. 14), we have κJ{ά) = κj(ά) (withj = 1,2,..., 10), and thus: α e D C M , | |p ( 1 ) | |
= | |p ( 1 ) | | , i ( 1 ) x p ( 1 ) = x ( 1 ) x p ( 1 ) φ 0 . Consequently, there exists θ(α)e[0,2π) such
that

The desired transformation property (III. 18) follows then straightforwardly
from the definition (III. 11,12) of fB, the condition (III. 14), the fact that a and a
belong to DC M, and the relation (111.21) just established.

Note further that any vector A e R 3 such that A x p{i) = x{ί) x p ( 1 ) can always
be written as

A = cos [0(α)] x ( 1 ) + sin [θ(a)\ x ( 1 ) x -fjjfi- + φ ) p ( 1 ) . (111.22)

Equation (111.20), and the immediate consequences we drew from it, thus imply
that x ( 1 ) can be written in the form given by (111.22). We use again the fact that a and
a belong to DC M, and the definition (III. 10,12) of fA, to show that the desired
transformation property (III. 17) follows directly from (111.22) with τ determined by

We have thus established the transformation properties (III. 17) and (III. 18),
and the existence of θ and τ on DCM. We still have to prove that θ and τ can be
defined everywhere on D, and satisfy (III. 16).

To complete the proof of the theorem, notice that a e DCM and g e G with
Φg(a)eDCM imply that g e SO(3), the rotation group generated by {Jt\i = 1,2,3}.
From the relations (111.21) and (111.22 with A = x{ί)), together with the invariance
(III. 13) of S under Φ, one obtains

θ o Φg(a) = θ(a) a n d τ <> Φg(a) = τ(a),

V ^ G S O ( 3 ) and all α e D C M

(compare with III. 16). Together with the fact that every orbit of Φ intersects DC M,
(111.23) ensures the existence and uniqueness of an extension of θ and τ to D, subject
to the condition (III. 16). •

The functions θ and τ, appearing in Theorem 1, play a central role in the theory.
Mathematically, as a consequence of (III. 16) and of Lemma 1, they are functions of
the Casimir invariants only. Physically, θ is readily interpreted as the center of
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mass scattering angle, and we now indicate how τ is to be viewed as the center of
mass time-delay.

When two particles move uniformly along straight lines, they have a time of
closest approach. In a scattering process, we denote the time by t _ (respectively t+)
for the m-state (respectively for the owί-state). The time-delay is then operationally
defined as the quantity (t+ — £_). In a relativistic framework, the time-delay is an
observer-dependent quantity. We compute it now in the center of mass frame. Let
(x ( 1 ),p ( 1 ), x(2\p{2)) be the m-state; ί™ is then determined by the equation

^ | | x ( 1 ) ( ί ) - x ( 2 ) ( O I I 2 - O at t = tCM, (111.24)
at

c2t
where

c^t
v(k)ί+\ v(k) J r#) h 1 1 ΠΎT ΊZ\
x yi) — x *ln(jcjP K—A>^ {LLL.ZJ)

Hence

- 0 . (11126)

Upon using the definition (III.6) of the center of mass manifold, i.e.

(l) ι (2)_Λ ΆnΛ p( lU l ) ι p(2L(2)_Λ ΠΛΛ Ίlλ

we obtain, from (111.26):

χ(k)(tcMyp(k) = Q k=l,2; (111.28)

and thus, upon substituting in (111.25):

v(fc) . n(fc) p(k)

\\p II c \\p I I '

The value of ί+M is similarly computed from the ouί-state S(x{1\p{1\ x{2\p{2)).
From the definition (IΠ.10-12) of fA and fB we have, in the center of mass

frame:

Upon comparing

JA JB

UB\\2

(111.29)

2r2 τ ( f e ) r\

H \\p{k)

and (111.30),

fCM

II c
we

' 2 l lp ( k ) l l
have:

/A'/B

2Cβ/.|- ( Π L 3 1 )

Similarly

+ 2c2 | | / B oS | | 2 '

Finally, from (III. 17-18):

(fA°S)-VB°S) = LJB 2τc2

II/B°S| | 2 \\fB\\2 +Me
2 '
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Since H = Mc2 on DC M, (IΠ.31-33) give:

τ = t™-tCM, (111.34)

i.e. τ is indeed to be interpreted as the center of mass time-delay.

In Theorem 1 we assumed that the scattering operator S not only commutes
with the action Φ of the Poincare group G on T * R 6 (see III. 13), but that it moreover
preserves the generators of this action (see III. 14). When 5 is assumed to be a
canonical transformation, the supplementary assumption (III. 14) however is an
immediate consequence of a general conservation law, akin to the Jacobi theorem
[4], We have indeed the following result.

Lemma 3. If S: T*R 6 -*T*IR 6 is a symplectic dίffeomorphίsm of D, and if S°Φg

= Φg°S for all geG, then (κξ ° S) (a) = κξ(a) for all ξ e L(G) and all aeD.

Proof. Choose ξeL(G), and let {exp(λξ)\λeΊR} CG. Since S commutes with the
action Φ of G, we have, for all feF(T*WL6) and all aeD:

γλf{Φe,v{-λξ) o S o Φexp{λξ)(a))\λ=0 = 0, (IIL35)

L e {/° S, κξ} (a)- {/, κξ} (Sa) = 0. (111.36)

Since S is symplectic, this implies

{f^KξoS-1- κξ} (Sa) = 0. (111.37)

Since (111.37) holds for all fe T * R 6 and all aeD, and since, moreover, S(D) = D
and D connected, there exists cζ e 1R such that

(κξ o S) (a) = κξ(a) + cξ VaeD. (111.38)

Notice now that for each κ 3 in (II.8) there exist i and I such that

{*„*,} = *,. (ΠL39)

We therefore have, from (ΠI.38-39):

(111.40)

Cj = 0 V/=l,2,. . . ,10, and thus cξ = 0 VξeL(G). D

It follows from Theorem 1 and Lemma 3 that every symplectic scattering
operator satisfies (III. 17-18). In the remainder of this section, we determine the
necessary and sufficient conditions on θ and τ for S to be symplectic. We will see, in
particular, that the scattering angle θ and the time-delay τ are expressed in terms of
a single function φ of the Casimir invariants Cx and C 2 (defined in III. 1-2).

We need to introduce some notation. For / e F ( T * R 6 ) , we denote by Xf the
Hamiltonian vector field defined by XfJω = df, where ω is the canonical
symplectic form on T*IR6:

df df df δf) απ4i)
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The flow of a (globally integrable) vector field X is written {F?\te R}, and we use
the notations expX (respectively exp/) for Ff (respectively expXj). We now
investigate the form of the scattering operator S in cases where it can be written as
S = exp φ with φ a function on T * R 6 satisfying

where

φ(a) = ΦiCM, C2(a)) Vα e D,

φ: (x, y) e R2^->φ(x, y)eR

(111.42)

(111.43)

is a smooth function on R 2 , and C 1 ? C2 are the two Casimir invariants defined in
(III. 1-2). In these cases, S is symplectic and commutes with the action Φ.

In the forthcoming computations, we use the following simplifying notations
(valid VαeD):

a) and c2(a) = C2(a),

(IIL44)
dc1

 ι

Note also the following identities

(111.45)

Hence, if S is of the form

with

φ e F(T*R6) such that (IIL42) holds,

then

(111.46)

(111.47)

Lemma 4. The scattering operator S is of the form (111.46) if and only if the
following two conditions are met. (i) S satisfies (III. 17-18); and (ii) the scattering
angle θ and the time-delay τ satisfy the relations

ll^ll _ dφ

Me2 ~ 3 ( | | W\\ I Me2)'

Λ, 2 dφ

αΠ.48)

φ, φ 1 ? and φ 2 are defined as in (111.44).
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Proof. One first verifies, by a straightforward computation, that, for any smooth
function / : Γ*IR6->IR3 satisfying

{fi,Jj} = *tjkfk with i, j ,fc=l,2,3, (ΠI.50)

one has, for all aeDCM:
Xcι»(f)(ά) = (δ/f)(ά), (111.51)

where δj is defined for all ψ: T*IR6->]R3 by

(δjψ) (a) = - 2ψ(a) x J(a). (111.52)

In particular, if the smooth function / : T*]R6->IR3 satisfies

/(α) J(α) = 0 VαeD C M , (IΠ.53)

(111.51) reduces to:

VαeD C M . \ (111.54)

?Γ \f) (α) = (-1)"+ ^

Notice, in particular, that fA and / β in (III. 10-11) satisfy the condition (111.53).
With 5 satisfying (111.46), we have upon using (111.47):

fB°S = (fBo Qxpφ2XC2)

We now restrict all the forthcoming equations to D C M ; upon using the explicit form
(111.10—11) of fA and fB9 one computes

fA o exp φ2XC2 = fΛ + 4φ2c
2fB,

r- , Γ (IΠ.56)

Upon inserting this in (III.55) and using (III.54) one finds:

(111.57)

The "if part of the lemma then follows from the comparison of (III. 17-18) and
(IΠ.57-58). The converse implication is obvious from the above discussion,
together with Lemma 2. D

Theorem! Let S:D-+D(C T*R 6 ) be a diffeomorphism such that ΦgoS = Soφg

Vge G, then S is symplectίc if and only if it is of the form (111.46), i.e. S = exp< ,̂
where the smooth, real-valued function φ depends on aeD only through the two
Casimir invariants Cί and C2 of the Poincarέ group G.
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Proof. If S satisfies (111.46) it is symplectic. To prove the converse note that if S is
symplectic, Theorem 1 and Lemma 3 establish that S satisfies (III. 17-18). From
Lemma 4 we know that it is sufficient for our purpose to prove that (IΠ.48-49)
holds. Furthermore, since S is symplectic, the following 1-form β is closed:

β = S*α-α, (111.59)

where a is the canonical 1-form

α= Σ P(k)'dxik\ (111.60)

and S*α is defined by

S*α = £ (p(k) o S) (rfx(fc) o S). (IIL61)
k=ί

From the definition of DC MCDcT*]R6, one verifies that DC M inherits from
(Γ*IR6, ω) the structure of a symplectic manifold; since S is symplectic on D and
maps DCM into itself, its restriction to this symplectic manifold is also symplectic.
Upon using (III. 17-18), one then evaluates the corresponding restriction of β to
TDCM; one finds that, for every vaeTaDCM:

β(υa) = dηiυj - {θ(a) (dc\l2) (va) + τ(α) (dcψ) (υa)} (111.62)

with

2 Γm(/c) 2η2

,7 = cί/20 + 4 / 2 τ - Σ ^ / c r ~ τ (IIL63)

Since β is closed, (IΠ.48-49) now follow immediately. D

IV. Discussion

Having obtained, in the preceding sections, the general structure of the classical
relativistic scattering operator S, we want now to touch briefly upon the following
three problems: (i) the non-relativistic limit; (ii) the connection with quantum
scattering cross-sections computed, in the usual manner, to lowest order of
perturbation; (iii) the actual construction of non-trivial realizations of the
scattering theory delineated in the main body of the paper.

The invariance group of non-relativistic two-particle systems is the Galilei
group Go. A reasoning similar to that followed in Sect. II leads to a densely defined
scattering operator S: Γ*]R6-» T*R 6 that commutes with the natural action Φ of
Go on Γ*R6. The generators of that action are

2m(1) + 2m(2) " 2M + 2μ '
(IV.l)
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where

(IV.2)MX = m ( 1 ) x ( 1 ) + m ( 2 ) x ( 2 ) x = x ( 1 ) - x ( 2 ) ,

The two Casimir invariants are now ||/| |2and | |p | | 2 . The analogues of Lemmas IΠ.l
and III.2 hold with:

D0 = {ae Γ*1R611 + 0} . (IV..3)

If the non-relativistic scattering operator So preserves the values of all generators
of Go, one proves as in Theorem III.l that

These equations now hold everywhere on Do; the scattering angle θ0 and the time-
delay τ 0 are (again) functions of the Casimir invariants alone. When So is
symplectic, one proves along the lines followed in the proof of Lemma IIL3, that
nine of the 10 generators (IV.2) - namely Pi9 Ji9 and Kt with i= 1,2,3 - are
conserved in the scattering process; for the tenth - namely H - one can only prove,
however, that HoS = H + cH, where cH is an arbitrary constant in IR. Nevertheless,
in the non-relativistic framework, an intermediate Hamiltonian dynamics on
T*]R6 is available, and mild conditions are known [6, 7] under which the
following facts can be proven: So exists; cH = 0; and the symplectic operator So can
be written as S0 = expi/30, where the form oϊψ0 = ψ0(\\l\\2, \\p\\2) is evidently to be
determined from the interaction potential. Not only can one obtain, as a
consequence of the above, that (IV.4-5) hold, but one can moreover show that the
non-relativistic scattering angle θ0 and time-delay τ 0 satisfy

θ = 2 ψ M = ( I V * 6 )

( I V 7 )

Since we know now the general structure of both the Galilei- and the Poincare-
invariant scattering operators So and S, we are in a position to discuss the sense in
which the relativistic operator S is actually approximated, on some part of its
domain, by the non-relativistic operator So. The use of the latter is justified only
when both particles move slowly in the center of mass frame, i.e. when for both

\\pik)\\c<m{k)c2.
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When these two conditions are satisfied, we obtain from (III. 16) and Lemma 1

(IV.9)

(IV.10)

so that θ and τ are now essentially functions of the Casimir invariants of the Galilei
group Go. In that sense S behaves indeed as a non-relativistic scattering operator.

We now return to the relativistic theory. From Θ = Θ(CU C2), the differential
scattering cross-section σ is defined in complete analogy with the non-relativistic
theory [8]:

2 ήnθ dθ

where the impact parameter in the center of mass is given by

1 W2

y ,(1)112 M2c4

(ΓV.ll)

(IV.12)

Elastic cross-sections obtained in perturbative quantum field theory are of the
form (IV.ll), i.e. at fixed 0, they depend on Me2 only. The specific form of this
function will, of course, depend on the choice of the dynamics; the determination of
this functional dependence is an open challenge on which we intend to focus in a
separate publication, using the "constraints" approach followed elsewhere [2, 9]
for bound-state problems. The following particular - but explicit - realization of
the general scheme proposed in Sects. II and III is a step in that direction; this
model is given here because it proves that our scheme actually covers non-trivial
scattering situations.

To be specific, we now investigate the existence and structure of the scattering
operator in a case where Γ2 is constructed using a Hamiltonian constraint
dynamics. We concentrate on the simplest model available [9,10], a brief
description of which we first recall and then sharpen.

Let T*(M x M) be the cotangent bundle of M x M, where M is the four-
dimensional Minkowski space; an arbitrary point in the 16-dimensional manifold
T*(MxM) is denoted a = (x{ί\ p(1), x{2\ p(2)). A 13-dimensional submanifold
Ξ C T*(M x M) is defined as follows. Let m(1) and m(2) be two positive constants, to
be interpreted as the masses of the particles; Fbe a real-valued function on R; and

(IV. 13)

μ =
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Note that P, p, X, and x are now four-vectors; we write P 2 (respectively P x) for
gμvPμPv (respectively gμvPμxv). With

(IV. 14)

the submanifold Ξ is defined by

Ξ={aeT*(MxM)\Ξi(a) = O; i = l , 2 , 3 } . (IV. 15)

Note that Ξ is stable under the natural action of the Poincare group G on
T*(M x M).

Let ω denote the canonical symplectic form on T*(M x M); Xt (ί= 1,2, 3) be
the vector fields on T*(M x M) defined by

X, Δω = dΞi9 i = l , 2 , 3 , (IV. 16)

and 7 be a vector field on Ξ satisfying

YeSpan(Xl9X29X3),

y(S f) = 0 i = l ,2,3.

Up to a constant u e R , these conditions determine Y uniquely, namely

moreover, the flow of Y on Ξ is Poincare-invariant. Let now π(fe) (k = 1,2) be the
natural projections,

natural projections

Whenever p(1) and p ( 2 ) are time-like, two world lines y(k) (k = 1,2) in M are obtained
as the projections, through π(/c) (fc = 1,2), of the flow lines of Y in Ξ. The collection
Γj? of all couples of world lines obtained in this way is stable under the natural
action of the Poincare group on M: Γy is a two-particle system in the sense of
Sect. II.

We next will show that, under certain conditions on V, this system is
asymptotically complete.

We first note, from (IV. 18), that P = 0, where the dot (') refers to the
differentiation with respect to the flow parameter along the flow lines of Y.

Given (x(1), x{2\ p{1\ p(2)) e Ξ, consider an instantaneous observer w such that,
in the corresponding coordinate system, P = (0,0,0, P 4 ), i.e. | | P | | 2 = 0, where we
keep the notation ||,4|| for the Euclidean norm of the spatial part, with respect to w,
of a four-vector A.

In this coordinate system, the differential equations of the motion are
particularly simple; the relative motion is described by

xj= - w 2 ^ — ( | | x | | 2 ) , j = l , 2 , 3 . (IV.20)



Relativistic Particle Scattering 555

It is a particular feature of the constraints (IV. 14), chosen to define this simple
model, that Eqs. (IV.20) are of the same form as the equations describing the
motion of a non-relativistic particle in a central field of force: this is precisely what
makes the model easily tractable. Indeed the asymptotic behaviour of x, in the
relativistic model considered here, can be obtained from known results in non-
relativistic scattering theory. Specifically, for non-relativistic central force mo-
tions, suitable conditions on V are known [6] under which the existence of the
scattering operator can be established; we thus choose for the function V,
appearing in the constraints (IV. 14), a function that satisfies these known
conditions; in particular, we assume henceforth that V(r) decreases faster than r~x

at infinity.
These results ensure the existence of a complete set of asymptotically free

solutions of Eqs. (IV.20) describing the relative motion x in the present model.
Moreover, in the coordinate system where | |P | | 2 = 0, the vector field Y on Ξ

yields, in addition to (IV.20), the differential equations of motion

Together with the constraint S 2 = 0, and the fact that P = 0, (IV.21) implies that

^ej. i=W ( I V 2 2 )

are conserved in the course of the motion.
Since, furthermore, the Xj are asymptotically free, (IV.22) implies that the xf]

are asymptotically free (/ = 1,2,3 k = 1,2).
While the above argument was carried in the coordinate system where

| |P | | 2 = 0, the G-invariance of Γγ allows us to conclude that Γγ is asymptotically
complete, in the sense defined in Sect. II. This establishes the existence of the
scattering operator on an open and dense, G-stable domain D in T*IR6.

We now show that the conditions imposed on S in Theorem 1 are realized in
the particular model under consideration. We only have to show that (III. 14)
holds, i.e. that the generators of the action Φ of G are conserved in the scattering
process.

We first notice that

j (IV.23)
λj=(xxp)j/2 7=1,2,3 J

are first integrals of (IV.20), with Xj = ̂ upj (/' = 1,2,3). Upon taking into account
the choice of our coordinate system, in which | |P | | 2 = 0, we can rewrite (IV.23) in
the form:

ε=~\\p(1ψ+V(lx\\2),

j = 1,2,3.

(IV.24)



556 S. De Bievre and G. G. Emch

Moreover (IV.22) can be rewritten as

Λ1)x< 1 ) + pί»xf = | P 4 ρ J , ./=1,2,3. (IV.25)

Furthermore, recall that we are working on S, where the constraints Ξί =0 = Ξ2

imply, for k=l,2:
pf = {ίE{k)-\2 + 2μV{\\x\\2)yi2 (IV.26)

w i t h £(fc) = {||p<*> ||2 + [m<*>] 2 } 1 / 2 . (IV.27)

Upon inserting (IV.26-27) into (IV.25), we obtain the asymptotic relations

£(i)χ(.i) + E ( 2 ) ; c ( 2 ) ^ i p 4 ρ . ? j = i,2,3 , (IV.28)

valid as ||x||-»oo. The desired conclusion, namely that (III. 14) holds, is then
obtained as the immediate consequence of P = 0, (IV.23-24) and (IV.28).

Under these circumstances, we can write down the expressions for the
scattering angle θ and the time-delay τ. We have first

mf,s) = «-2^drr-^^μ-^ , (IV.29)

where r0 is the largest positive root of the expression under the square root.
A similar expression can be written down for τ, giving τ as a function of \\λ\\2

and ε.
It is moreover known [7] that there exists a function ψ of \\λ\\ and ε such that

(IV.30)

Compare to (ΠL48-49); and notice that ||Λ,|| and ε are functions of the Casimir
operators C1 = W2 and C2 = M2c4.

The value for τ appearing in (IV.31) is the flow-parameter-delay when we
choose u = 2μ~ί, such that Xj = Pj/m. In order to obtain the center-of-mass time-

( 1 ) ( 2 )1 £ + E
delay, one has to choose -u= w n r , m , i.e. make the substitution

2 Eκ >EK '

( I V 3 2 )

Remarking also that | | i | | =\W/Mc2 [since x = \{xί— x 2 )], one verifies that
(IV.30-31) can be rewritten, with the substitution (IV.32):

a S(2ψ)

τ =

d(W/Mc2)'
(IV.33)

d(Mc2)'

Comparing this to (IΠ.48-49), we conclude that S is symplectic.
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Finally, upon taking the non-relativistic limit of this model, we obtain a non-
relativistic two-particle system with interparticle potential V. The non-relativistic
S operator is again determined by (IV.30-31). As we already pointed out, in the
preceding section, all the dynamic information contained in S is given by
(IV.30-31). Hence the non-relativistic and the relativistic scattering operators for
this model differ only through the kinematics; in particular, the non-relativistic
and the relativistic differential scattering cross-sections calculated from (IV.24-25)
will have, for this model, the same angular dependence. It is to be expected that the
general scheme proposed in the main body of this paper for relativistic particle
scattering will transcend such limitations.

The simple model, discussed in the third part of this section, nevertheless shows
that - in spite of the no-go theorem, ruling out the existence of an interacting
relativistic dynamics in T*IR6 - actual scattering situations are covered by the
general scheme proposed in Sects. II and III for the description, within T*IR6 ~ Γ0

2,
of relativistic particle scattering.
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