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Abstract. We construct new manifolds with SU(3) holonomy that are candidate
vacua for superstring theory and give a detailed explanation of the techniques
involved. Some of these manifolds have a non-abelian fundamental group and
thus can lead to a rank five low energy gauge group. Models with an odd
number of generations are obtained. ^Θ* violation is discussed in this context
and shown to occur generically. Topological features of the Yukawa couplings
are also discussed.

I. Introduction

The discovery of a generalized mechanism of anomaly cancellation [1] has made
superstring theory [2] not just a logically viable approach to quantum gravity but
also a practical approach to phenomenology. Especially promising is the new
superstring theory with £ 8 x £ 8 gauge group [3]. One approach to phenome-
nology [4] is to consider compactification from ten dimensions to M 4 x K, M 4

being four dimensional Minkowski space and K being a six dimensional Calabi-
Yau manifold, i.e. a manifold of SU(3) holonomy. These manifolds are (at least in
tree approximation) vacuum solutions of the string theory. Supersymmetry is
preserved at the Planck scale, which may be useful for solving the hierarchy
problem. The gauge field acquires an expectation value on K, and the gauge group
is broken down to E6xE8. Ordinary fermions appear in the 27 of E6. The number
of generations is | |χ |, χ being the Euler characteristic of K. Properties of these
models have been further investigated in several recent papers [5-11].

It is beyond present technology to determine from the string theory which of
the many Calabi-Yau manifolds, if any, indeed represents the true ground state of
the theory. However, phenomonological considerations severely limit the possi-
bilities. For example [4], in order to get a reasonably small number of generations,
one must find a Calabi-Yau manifold with small χ.

Most straightforward constructions of Calabi-Yau manifolds seem to give
simply connected manifolds with rather large |χ|. However, χ can be reduced by
passing from K to K/G, where G is a discrete symmetry group of K that acts freely.
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In [4], a model with χ = — 8, and therefore with four generations, was constructed
in this way. Recently, more detailed investigations of phenomenological impli-
cations have produced further constraints on the internal manifold, probably ruling
out the four generation model of ref. [4]. One constraint arises from Georgi-
Quinn-Weinberg type renormalization group calculations. Since E6 unification
necessarily occurs at the compactification scale, the requirement that the strong
and electroweak couplings have their observed values at low energies is quite
stringent (and appears to favor a three generation model) [6]. A second constraint
comes from proton decay. In general, supersymmetric E6 models have rapid
proton decay mediated by scalar quarks and leptons. These can be eliminated by a
discrete symmetry that forbids the troublesome Yukawa couplings. Although
discrete symmetries abound in Calabi-Yau compactifications, one with exactly the
required properties has not been found. It is thus imperative to find more examples
of Calabi-Yau manifolds and to investigate their properties.

The main purpose of the present paper is to construct other examples of
Calabi-Yau manifolds with a reasonably low number of generations. In fact, we
will construct examples with one, two, and four generations. The one generation
case (described in Sect. Ill) could not be the real world, but it is an interesting
theoretical laboratory, especially since it shows that the number of generations is
not always even. Two generation E6 models are nearly capable of describing
known phenomena [12], but data on b quark decay probably rules out this
approach [13]. Four generation models are compatible with most observations
(the fourth generation could well have a mass of order Mw), but may be disfavored
by renormalization group calculations. We have not managed to find a three
generation model, although the fact that models exist with an odd number of
generations suggests that three generations is possible.

The organization of this paper is as follows. In Sect. II, we construct new
examples with two or four generations by the method used in [4] - dividing a
simply connected manifold by the free action of a discrete group. In Sect. IV, we
use a more general technique (dividing by discrete symmetries that have certain
types of fixed points) to construct examples with one, two, or four generations. In
Sect. IV we discuss the equivalence of the existence of a holomorphic three form to
the vanishing of the first Chern class (cx) and show how this fact can be used to
determine when cx = 0. In Sect. V, we describe how manifolds of SU(3) holonomy
can be constructed by taking suitable branched covers of manifolds of U(3)
holonomy. In Sect. VI we turn to the question of <€&> violation in Calabi-Yau
manifolds. We will see that ^ ^ violation is possible in nearly all Calabi-Yau
manifolds. In Sect. VII, we discuss general formulas for Yukawa couplings and
their topological properties.

A noteworthy feature of the manifolds constructed here is that several of the
two and four generation models have non-abelian fundamental group. This makes
it possible [5] for the low energy gauge group in four dimensions to be a rank five
group (such as SU(3) x SU(2) x U(l) x U(l)) rather than a rank six group.

II. Free Actions of Discrete Groups

One of the models considered in [4] was 7(7; 2, 2, 2, 2), the intersection of four
quadrics in CPΊ. Thus, let zi9 i=l,...,8, be eight complex variables, not all zero,
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with {zf} and {/ίzj considered equivalent for any non-zero λ. Let Ik9 k = 1,..., 4, be
four homogeneous quadratic polynomials in the zί5 which obey a transverse
intersection condition described below. Then the equation Iί=I2 = I3 = I4 = 0
defines a manifold K of complex dimension three and vanishing first Chern class. It
has Euler characteristic χ = —128, corresponding to 64 generations. In [4], it was
mentioned that K (for suitable Ik), can admit the free action of Z 8 or Z2xZ2xZ2.
The model obtained in this way is an eight generation model. In this section we will
describe several examples of groups with 16 or 32 elements that can act freely on
the intersection of four quadrics, giving models with two or four generations.

It is not enough to find an intersection of quadrics Ik = 0, k = 1,..., 4, on which a
group G acts freely. It is also necessary to verify that, in the language of algebraic
geometry, the intersection of quadrics is "transverse," i.e. that the equation Ik = 0
defines a smooth, non-singular manifold. The criterion for a transverse intersec-
tion is that the four form ω = dIγA dl2 Λ dl3 A dl^ does not vanish at any point
where all lk = Q} At any point where ωφO, there is a non-singular local
holomorphic change of coordinates from the independent variables zu ...5z7 (z8

can be set to 1 by scaling) to new variables consisting of the Ik and three
independent variables yl9 y2, j / 3 . In these coordinates, the locus of Ik = 0 is a non-
singular space spanned locally by the yt. If the equation 0 = ω = Ik has a
simultaneous solution, the manifold defined by Ik = 0 is singular at that point. The
equations 0 = ω = Ik are overdetermined (more than seven equations for the seven
unknowns), so generically they have no solution. However, when we start to
restrict the Ik by global symmetries, we are not dealing with a generic set of
quadrics, and it is necessary to check the transverse intersection condition
carefully.

To try to find models with large freely acting symmetries, we first imitate the
model in [4] and try to find a model with a Z 8 x Z 8 symmetry. Let S and T be
defined by S{zi) = zi+ί, T(zt) = β{zb where β = exp(2πz/8), and we identify zi + 8 with
zf. Then S and T generate a group G isomorphic to Z 8 x Z 8 . 2 The following set of
four quadrics is invariant under G.

h=l Σ zlβ2k* + ε Σ z f t _ 1 z f c + 1 j 8 2 k v + ^ Σ zk_2zk + 2β
2k\ v = 0 , l , 2 , 3 .

-ώfc=l k=X £k=l (21)

Here ε and δ are arbitrary complex parameters. The individual Jv are not
invariant under Z 8 x Z 8 . T permutes the Jv, and S transforms Iv^β~2vIv. But the
locus K of Jv = 0, v = 0,..., 3 is invariant under Z8xZs.

It is not difficult to check that Z 8 x Z 8 acts on K without fixed points. It must
be checked that SkTι has no fixed points on K unless k and / are multiples of 8. For
any element x of a finite group, there is an integer n called the order of x defined as
the lowest positive integer such that xn = 1. In Z 8 x Z 8 any element has order T for

1 To get a heuristic feeling for this criterion, consider a polynomial I(x, y) in two real variables x
and y. The equation I(x,y)=0 describes a curve in the x — y plane which is non-singular if
1 = dI = 0 has no solution. For instance, I(x, y) = x — y corresponds to a line. If J(x, y) = x2 — y2,
then / = dl = 0 at x = y = 0, and the curve defined by / = 0 (which consists of two lines) is singular at
x = y = 0 (where the two lines intersect)
2 Actually ST=TSβ~1. In CPΊ, the phase /Γ 1 is irrelevant, so ST=TS, and the group is
Z 8 x Z 8 . Similar remarks hold for many examples considered later
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some r. If SkTι has order 2r, then θ = (SkTι)2r~ι has order 2. If θ has no fixed points
SkTι has none (since a fixed point of SkTι is certainly a fixed point of #). Hence to
show that Z 8 x Z 8 acts freely, it is enough to show that the elements of order two
act freely. The elements of Z 8 x Z 8 of order 2 are S4, T 4 and S*T4. It is easy to
check that for generic ε, δ they have no fixed points. The "reason" for this is that the
Z 8 x Z 8 action has been chosen so that each element x of order 2 has four
eigenvalues -b 1 and four — 1 when acting on the z-v The fixed point set of x in CPη

consists then of two copies of CP3, each of dimension three. Also, the quadratic
equations have been chosen to be invariant under the elements of order two.
Under these conditions the fixed point set of the x's can be expected not to intersect
the four quadrics, since four equations for three unknowns generically have no
solution.

We now must check whether the quadrics defined by Jv = 0 intersect
transversely. If so, the space K/(ZS x Z8) would have Euler characteristic — 2, and
hence one generation. However, it can be shown that the intersection is not
transverse; the equations Jo = IΛ = I2 = /3 = dlo AdIxA dl2 Λ dl3 = 0 have a so-
lution at zo=z4 = 09 z2 = z6, for certain values of the other variables.

If we consider instead the group Z 8 x Z 4 generated by S and Γ2, the conclusion
is different. We can now consider the following set of four quadrics:

I,= \ i zlβ^+ε Σ zk^zk+ιβ
2k\l+λ(-\γ)+^ Σ zk-2zk+2β2kv• (2-2)

2fe=i fc=i ^fc=i

Here ε, λ, and δ are complex parameters. The group action on the intersection
K of the quadrics is free, as it was previously. However, now the intersection of the
quadrics /v = 0 can be shown to be transverse, for generic ε, λ, and δ. Hence, K/(Z8

x Z4) is a model with χ — — 4 and two generations. (Note [4,5] that three complex
parameters ε, λ, and δ is the proper number for a Calabi-Yau manifold with
blΛ = l and χ~ — 4.) A slight variant of this gives some new four generation
models. Let H be the Z 4 x Z 4 group generated by S2 and T2, the Z 8 x Z 2 group
generated by S and Γ4, or the Z 8 x Z 2 group generated by ST2 and Γ4. Then K/H
has χ= - 8 and four generations. Of course, in any of these cases two more
complex parameters can be included in (2.2).

We will not here carry out the detals of proving that the quadrics Iv = 0
intersect transversely for generical ε, λ, and δ; the analogous calculation in a
similar (but somewhat simpler) case is described below. However, a few general
comments may be useful. To prove that the intersection is transverse generically
for almost all ε, λ, and δ, it is enough to show the intersection is transverse for some
ε, λy and δ. For, as CPΊ is compact, if the equations IQ^IJ^^12 = 13
= dlo AdItA dl2 Λ dl3 = 0 have no solution on CPΊ, they fail to have a solution by
some minimum amount A. Hence, if ε, λ, and δ are perturbed slightly, these
equations still have no solution. Therefore, if the set of (ε,λ,δ) for which the
intersection is transverse is not empty, it contains an open set. By analytic
continuation, it follows then that the intersection is transverse for almost all
(ε, λ, δ). Hence, it is natural to try to find some special values of ε, λ, δ for which the
intersection is transverse. One might try to set ε or λ or δ to zero, but all of these
attempts are easily seen to fail. An alternative which does work is to regard ε as
infinitesimal and systematically drop from the equations all terms of order ε2. It
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can be shown that in this approximation the equations 0 = /v

= dlo Λίί/jΛ dl2 A dl3 have no solution (for generic λ and δ). Hence, K/(ZS x Z4)
is non-singular for almost all (ε, λ, δ). The same is certainly also true for K/H, which
is a double cover of K/(Z8 x Z4).

Now we will construct a two generation model whose fundamental group is
not G=ZsxZ4 but a non-abelian group G' with 32 elements. Let W be defined by
W: zt-^z3i+l. W acts freely on K since W2 = S4, and we already know that S4 acts
freely. W and S2 generate a nonabelian group Q with eight elements which can be
identified as the group of "unit quaternions" whose dements are ± 1, ± iσu ± iσ2,
and ±iσ 3. This may be readily seen if the eight zf are identified with the unit
quaternions in the following way,

zx z2 z3 z4 z5 z6 zΊ z8

1 iσί iσ2 iσ3 —1 — iσx —iσ2 — i σ 3 '

then the action of S2 and W correspond to left multiplication of the unit
quaternions by iσ2 and iσ3, respectively. Since Q acts freel,y K/Q is an eight
generation model.

Although S and W generate a group with sixteen elements, this group does not
act freely (it contains the element of order two S~1W, which has fixed points).
However, S2, W, and T2 generate a 32 element symmetry group G\ since
WT2W~ιT-x = iT4 and S2T2S-2T~2= -1. G' acts freely (the elements of order
two are S4, T4, and S4T4), so KjGf is another two generation model. Again,
various double coverings of K/G' give models with four generations.

The group G' has irreducible two dimensional unitary representations. (For
instance, one can represent T2 by 1 and σf by the usual Pauli spin matrices.) Hence
[5], ten dimensional supergravity compactifϊed on M 4 x K/G' can give a rank five
group at low energies.

At first sight, it is rather surprising to find inequivalent models K/G, K/G', with
the same universal covering space K. Their physical properties are quite different;
for instance, K/G' leads to low energy gauge groups of rank five or rank six, but
K/G leads only to rank six groups. Elements of Gf that are not in G are global
symmetries of K/G, and vice-versa. (Thus, Wis a global symmetry oϊK/G, and S is
a global symmetry of K/G'.) Since these symmetries do not act freely, one cannot
divide by them to get a one generation model, but they still restrict Yukawa
couplings. (Thus, W invariance restricts Yukawa couplings on K/G, and S
invariance restricts Yukawa couplings on K/G'). More generally, Yukawa
couplings on, say, K/G can be limited by "pseudosymmetries" that are symmetries
only of the covering space K and not of K/G.

Before leaving this example, let us pause to rewrite Eq. (2.2) in another form that
is in some respects simpler. Let J r j=iΣJ v β~ 2 l \ 1 = 0, ...,3. Explicitly,

=40? + z\) + ε(z0z2 + zAz6) + ελ(z2z4 + z6zQ) + δz^zΊ,

2(4
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This way of writing the equations is a more convenient starting point for
investigating the transversality of the intersection Jk = 0, because each Jk is the sum
of relatively few monomials. The actual calculations will not be given here, as we
will treat a similar model below.

For our next model, we break up the eight homogeneous coordinates of CPΊ

into two groups zk, and wk9 k = 1,4. We define transformations U, V, V, and W by

where now β = Qxp2πί/4.
Then U, V, and W generate an abelian group G with 32 elements; it is

isomorphic to Z4xZ4xZ2. U, V, and W generate a group of G' of 32 elements
which is nonabelian since UVU~1V~1 = W. (G' has the irreducible two dimen-
sional representation U = iσl9 V=ίσ2, W— — 1, so it can lead eventually to rank
five groups in four dimensions.)

We now will write down a set of four quadrics invariant under G and G. We will
write them this time only in the form which is analogous to (2.4). The quadrics are

3,

= δz1z3 + ε'w0w2 +i(

To see that G acts freely, it is again enough to check the elements of order two,
which are U\ V2, W, U2V2, U2W, V2W, and U2V2W. The calculations are
straightforward. To check that G' acts freely is no additional work, since V2 = V2

and the elements of order two in Gf are the same as those in G. Hence K/G and
K/Gf are two new models with two generations. They again are an isomeric pair
with a common universal covering space. Double covers of K/G or of K/G' again
give new four generation models.

We conclude this section by proving that the quadrics in (2.6) intersect
transversely for generic ε, ε\ and δ. What must be shown is that the equations L o

= Lί=L2 = L3 = ω = 0 have no solution in CPΊ; here ω is the four form

ω = dL0 A dL1 A dL2 A dL3.

The equation w = 0 is a multitude of equations for the zx and w; ; it means that when
ω is expanded as a sum of monomials, each monomial being quartic in dzt and dwu

the coefficient of each such monomial vanishes. Vanishing of the coefficients of

dz0 A dzγ A dz2 A dz3, dw0 A dwx A dw2 A dw3,

dz0 A dz2 A dw0 A dw2 , dz0 A dz2 A dwί A dw3 ,

dzι Adz3 Adw0 A dw2, and dzι Adz3 Adwί Adw3
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can be seen (after some algebra) to be equivalent to the following six equations:

These equations admit several branches of solutions. One branch is z\ — z\,z\^z\,
wl — w2. The other branches lead to an equivalent analysis, so we will focus on this
one.

The vanishing of the coefficient of dz0 A dw0 A dw1 A dw3 now gives

(wf - w|) (zowo + εε/z2w2 - δ2z2w2) = 0. (2.8)

If we satisfy this with wf = wf, then, given also ZQ = z2, zj = z§..., it is easily seen
that for generical ε, ε', and <5, the equations Lfe = 0 have no solution. Given that z\
= z2, WQ = vv2, the only other way to obey (2.8) (for generical ε' and δ) is z 0 = z2 = 0 or
wo = w2 = 0. One again easily finds that Lk = 0 is (generically) incompatible with
zo = z 2 = 0, z\ — z\, WQ = W2, and also with wo = w2 = 0, ZQ = Z 2 , Z\ = Z\. This
completes the proof that the quadrics Lfe = 0 intersect transversely.

III. Group Actions with Fixed Points

In Sect. II, we described the construction of several Calabi-Yau manifolds of
χ = — 4 and χ = — 8 by taking a simply connected space K and dividing by a
discrete group G that acts freely.

If G does not act freely, the space K/G has singularities. The singularities arise
at points xeK that are left fixed by elements g e G (other than the identity). Under
certain conditions, these singularities can be repaired3 in a suitable way, giving a
manifold of vanishing first Chern class which thus admits a metric of SU(3)
holonomy. Thus let T be a connected submanifold of K left fixed by some
subgroup Go of G. Suppose that the points in K close to but not on T are not left
fixed by any element of G. Then Go induces an action in the normal bundle Q of T
in K. If this action has certain properties, the singularity of K/G near T can be
repaired. This can happen under conditions to be described if Tis an isolated point
or is a complex curve.

If T is an isolated point, p, its normal bundle Q has complex dimension three,
and the action of Go on Q is an embedding of Go in U(3). One case in which the
singularity can be removed is that Go is Z 3 and Go transformations act on Q as
multiples of the identity (i.e. as elements of the U(l) subgroup of U(3) that
commutes with SU(3)). Then the singularity of K/G near p can be eliminated by
removing p and gluing in the three complex dimensional analogue [15] of the

3 This procedure is known as "blowing up" in the mathematics literature [14]
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Eguchi-Hanson space [16] (the —3 power of the Hopf bundle of CP2, which
admits a metric of SU(3) holonomy). As we show in the appendix, this space is
asymptotically flat and topologically S5/Z3, so "the key fits the lock." Use of this
procedure in a special case was sketched in [4].

The other relevant case arises if T has complex dimension one. The simplest
case is when Go is Z 2 . The singularity oϊK/G near Tcan then be cured by removing
Tand gluing in a copy oϊTxZ(or actually a suitable fiber bundle over T with fiber
Z) where Z is the Eguchi-Hanson space. There are generalizations of this in which
G is not Z 2 but some discrete subgroup of SU(2); Z must be replaced by a suitable
generalization of the Eguchi-Hanson metric. We will not consider these general-
izations here.

To illustrate these ideas, consider as in Sect. II the intersection K of four
quadrics Ik in CP7. Let G be the Z 2 group generated by the diagonal matrix

\

(3.1)

- 1

acting on eight homogeneous variables z l 5 z2, ...,z8.
Take the Ik to be any generical four quadrics that are invariant under g. Then G

does not act freely on K, since g has fixed points. The fixed point set of g in CP1 is a
copy of CP5(z7 = z8 = 0) and a copy of CP1(z1 = . . . = z 6 = 0). This CP 1 will
generically not intersect K (since four quadratic equations for z7 and z8 will have
no solution). But the CP5 that is left fixed by g will intersect K in a manifold T of
complex dimension one.

The Euler characteristic χ of T is —32, as may be computed by methods
indicated in [4] (using the fact that T is the intersection of four quadrics in CP5).

Let us now calculate the Euler characteristic of the manifold K made by
removing T from K, dividing by G = Z 2, and gluing in T x Z. As K has χ = —128,
K-Thas χ= —128 —( — 32)= -96, so (K-T)/Z2 has χ= -96/2= -48. Gluing
in T x Z, we must add χ(TxZ) = χ(T)χ(Z) = - 32χ(Z) = - 64. So K has χ = - 48

+ ( —64)=—112.
Having explained the strategy, we now turn to a more interesting example. We

return to the last model of Sect. II. For convenience we rewrite the four quadrics:

L 2 =

L 3 =

(3.2)

+ w§).
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As was explained in Sect. II, a non-abelian group F of 32 elements, generated
by U, V, and W,

kzk, Ϋ(v»d = iβ-knk, (3.3)

zh9 W(wk)=-wk,

acts freely on the space K defined by Lk = 0. (Here /? = exp2πz/4.) Hence K' = K/F
has χ= — 4.

Now consider the operation Y defined by

It is easy to check that Y2 — 1, so Y generates a Z 2 group G. It is easy to see that
7 is a symmetry of K if ε' = is. It is less obvious, but true, that Y is a symmetry of
X/i7. [Proving this requires checking that the action of Y on K/F makes sense. In
K/F, x and fx are equivalent for x e K and f eK. The action of Y on K/F only
makes sense if Y(fx) is always equivalent to Y(x). This means that for any feF
there must be / ' e F such that Y(fx) = fΎ(x). Since x is arbitrary, it must be that
for each feF there is / ' e F with Yf= f'Y. This can be shown with some effort. This
step would fail if we used V instead of V in (3.3).]

Although Y is a symmetry of K/F, it does not act freely on K/F. The fixed set of
Y in K/F consists, however, of a subspace of complex dimension one, so the
construction described above can be carried out.

In CP7, the fixed set of 7is two copies of CP3, defined by w0 = ill2ηz0, wx = ηz1,
w2 = — i1/2ηz2, w3 = ηz3, where η=l or η = — 1. If, say, η = ί, the copy of CP3 left
fixed by Y intersects K (defined by Lk = 0) on points obeying

0,

0

These two quadrics in the four homogeneous variables z{ define a space Tx of
complex dimension one. By methods sketched in [4], it can be shown to have χ = 0
(which is the value of χ for any transverse intersection of two quadrics in CP3).
Setting η = — 1 gives a distinct but isomorphic space T2 of fixed points of Y in K.

To analyze the fixed points of Fin K/F is trickier. A point x in K/F is left fixed
by Y if Yx = fx for some / in F. With some effort (surveying the possible choices of
/) , it can be shown that the fixed point set of Fin K/F is a space T whose connected
components Tt are similar to Tλ and T2 just considered. (They are defined by two
quadrics in CP3, modulo division by F.) Thus, T has χ = 0.

Now we construct a new space K by removing T from K/F, dividing K/F — T by
Y9 and gluing in a copy oϊTxZ. As K/F has χ = - 4 and T has χ = 0, K/F - T has

χ = _ 4 - 0 = - 4 ; (K/F-T)/Z2 has χ = - 2 ; and K = (K/F-T)/Z2 + Γ x Z has
χ = - 2 + χ ( T x Z ) = - 2 + χ(Γ) χ(Z) =-2. Thus X is the'example - promised in
the introduction - of a model of χ = — 2, and hence one generation of quarks and
leptons.
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A relatively simple model with an odd number of generations can be obtained
from Y (5; 4, 2). Consider the set of equations in CP5:

£i=i Σ (zf-rf) = 0, E2= Σ W ; = 0, (3.6)
1 = 1 ί=ί

with αf arbitrary constants.
The normals to the two hypersurfaces defined by Ex and E2 are

dE,=Σ (zfdzt - y?dΛ), dE2 = Σ ( α ^ y , + αjv/z,), (3.7)

and vanish nowhere on CP6. The two form dE1 A dE2 vanishes if and only if zf
= λ(xiyi and yf = —λaizi for some λ. The solutions of these equations are at

~8 _ 24^4 .,8 2 4Λ,4 /O O\

Z f — — A CCt , j / f = — A OCi . ( J . δ J

For generic αf, none of these points lie on the intersection of hypersurface Eγ

= E2 = 0, so the intersection is transverse.
Now consider the discrete Z 2 symmetry

X(yd = zi9 Z(zi) = yi. (3.9)

The fixed point set in CP5 is zt — yt or zt =—yί.E1 automatically vanishes there, so
the fixed point set in the intersection consists of two disjoint components each of
which is a quadric in CP2, i.e. two CP1?s. Subtracting this set, dividing by X, and
gluing back in the fixed point set times Eguchi-Hanson, one finds χ=\(—176 — 4)
+ 2 2 2 = - 82. This gives 41 familes.

We now consider the construction of new four generation models with the
intersection of two cubics in CP5 as the starting point. Let

E1 = Σ (4 + wfe

3), E2 = Σ fe3 - w , V , (3-10)
k=ί k=l

where α3 = l. To check transversality of the intersection, note that the normals

^ ! = 3 Σ (zidzk + w2

kdwk), dE2 = 3Σ (zidzk- w2

kdWk)ak (3.11)
k=l k=ί

vanish only if wk = 0 = zk. They are proportional if and only if all the zk5 wk but one
vanish. Et = 0 then forces the remaining coordinate to vanish, so dEί ΛdE2 + 0
everywhere on the intersection. The Et are invariant under

Fixed points of S and V in CP5 lie on a CP1, but the equations Et = 0 have no
solution on this CP1, so S and F act freely on the intersection. Now consider the Z 2

action
= zk. (3.13)
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The equations Et = 0 are invariant under X. The fixed points lie on the CP2s
zk— ± wk. For either sign, one of the two equations vanishes identically. The fixed
point set is a single cubic in CP2 which is isomorphic to a torus and has zero Euler
character. This means that if we divide 7(5; 3,3) by the group G generated by V, 5,

and X, the resulting Euler character will be χ= —~— = — ̂ = —8. Equations

(3.10) are also invariant under a non-abelian group with twelve elements. This
group is generated by X, S, and

V(zk) = (xkzk, V(wk) = a-kwk. (3.14)

The fixed point set is again a torus, and this leads to another four generation
model.

IV. Holomorphic Three Forms

It is well known in the mathematics literature that the vanishing of the first Chern
class is equivalent, in n complex dimensions, to the existence of an everywhere non-
singular and non-zero holomorphic n form.4 This equivalence is very useful for
finding Calabi-Yau manifolds. In this section we will explain this equivalence in a
manner accessible to physicists and describe how these n forms can be explicitly
constructed.

Recall that, on a complex manifold with a Kahler metric and associated
connection, a representative of the first Chern class (cx) is the curl of the U(l) part
of the connection. Locally, this may be written

(4.1)

R is also known as the Ricci form, as it is just the complex structure times the Ricci
tensor. If R is not in the trivial cohomology class (i.e. A cannot be globally defined),
there is a topological obstruction to obtaining a Ricci flat Kahler metric. It was
conjectured by Calabi and proved by Yau that if R is topologically trivial, i.e.
cx — 0, then there does exist a Ricci flat Kahler metric. Ricci flatness imples that Γb

vanishes (in some coordinate system) and that the holonomy group is SU(n).
It is easy to see that SU(rc) holonomy implies the existence of a holomorphic n

form. For notational simplicity we hereafter consider only n = 3. A (3, 0) form
transforms as a singlet under the SU(3) part of the connection, but is charged with
respect to the U(l) part of the connection. If the U(l) connection is topologically
trivial (and vanishes for the Ricci flat metric) then a holomorphic three form always
exists. For the special case of a Ricci flat metric, this three form can be constructed
from the positive chirality covariantly constant spinors

ω = ζτ

+yabcζ+dzadzbdzc. (4.2)

4 A harmonic form of type (k, 0) is called a holomorphic k form
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To show that the existence of a holomorphic three form implies c1 = 0, choose
an arbitrary Kahler metric ga^. Then the associated Ricci form can be written

R = dV, where V-d = idM<»abc(osi-cg<'sgbY<) = {Viy. (4.3)

The argument of the logarithm, which is proportional to det~ 1/2g, is the norm of
ω. If ω is everywhere non-singular, then Fis globally well defined, R is in the trivial
cohomology class and cί = 0. Similar arguments apply for πΦ3.

We now describe how ω is constructed in simple cases. Consider a hypersurface
in CP\ 5

Σ*7 = 0, (4.4)

where zt are homogeneous coordinates. It is convenient to introduce inhomo-
geneous coordinates yk = zk/z5, k= 1, ...,4. The equation becomes

l+/(Λ) = 0 with / ( Λ ) = Σ > ΐ (4-5)

Define a holomorphic three form ω by

ω = dyiΛdy2Λdyjy\~ι. (4.6)

We need to check that it is non-singular. y4 = 0 appears to be a singular point.
However ω may be rewritten as

ω = - dy2 A dy3 A dyjy\-ι, (4.7)

using df(y) = 0. No difficulty arises unless all the yfc's vanish, a point which is not on
the hypersurface (4.5). We must also investigate the point where one or more of the
3>ί> s a y J>i5 becomes infinite, which is equivalent to z5->0. To do so we change
variables,

(4-8)

In terms of the xi9

ω=-xn

5~
 5dx2 Adx3A dx5/xl~1. (4.9)

So we see ω is nonsingular and non-zero at the point z5 = 0 = x5 if and only if n = 5.
Thus a quintic hypersurface in CP4 has cx = 0.

This construction is readily generalized. For a generic quintic polynomial in
CP4 which in inhomogeneous coordinates takes the form

O, (4.10)

the holomorphic three form

ω = dy1Λ dy2 A dyjidf/dyj (4.11)

is everywhere non-singular and non-zero. One may also consider a system of k
equations in CPk+3:

α= ! , . . . , * . (4.12)
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The appropriate three form is

ω = dyk + ί Λdyk + 2 Λdyk + 3 I det-r-^-), a,fe=l, ...,fc. (4.13)

Potential difficulties for some yc = 0 can be seen not to exist by rewriting ω,

Q—\ ]ζ b=l c k + 1 . (4 14)

Restrictions on the degrees of the polynomials arise from inspection of the region
zk+4 = 0. To investigate this region, one uses variables

in terms of which

,—fc-4/det-^^- . (4.16)
I OXfc + 4 OXb

k

Thus cx = 0 if Σ Dj = k + 4. This reproduces the five algebraic varieties discussed in
[4]. In the following section generalizations of this technique will be used to find
new Calabi-Yau manifolds.

V. Branched Coverings

Consider the equation

(5.1)

where the identification zf ~ λz{ z0 ~ λκz0 is made. For each point (z1,...9zn + 1)in
CPn not on the hypersurface V defined by Σ Z Γ X = 0 there are M values of z0. On V
there is only the solution zo = 0. Thus we describe this manifold as a branched
cover of CPn branched M times over the hypersurface V.

To illustrate the concept of a branched covering, we consider a simple example.
The torus can be described as a branched cover of CP1. Consider the equation

4+Σ4 = 0. (5.2)
i = l

This can be identified as the torus by computing the Euler number. If V is the
surface Σzf = 09 then χ = 2[χ(CP1)--χ(V)'] + χ(V), since CP1 - Vis covered twice
and Fis covered once. Fis simply the four points zί = αfez2, where ak is a fourth root
of minus one. V thus has χ = 29 while CP1 has χ = 2. Thus the surface (5.2) has χ = 0
and describes a torus.

We now use this construction to generate new manifolds with SU(3) holonomy.
There are two branched covers of CP3 with cγ = 0. We consider equations of the
form

Σ * f " = 0, z o ^ M z o , z - ^ . (5.3a)
ί = l
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4

This describes an rc-fold cover of CP3, branched over the locus Σ zϊ*N = 0. It can
be alternatively written: i=1

i+/O0=o,
where

f(y)=ΣyfN, yi=Φί/M- (5.3b)
i = l

The (potentially) holomorphic three form is

ω = dy1Λdy2Λ dyj(df/dy4). (5.4)

Finiteness at z0 = 0 is checked by a change of variables. We find the condition

N M - 4 + M. (5.5)

This has the two solutions N = 2, M = 4 and AT = 3, M = 2. Thus the two equations,

*o+ Σ * f = O, (5.6a)

ί = l
(5.6b)

give manifolds with c t =0. If F is the hypersurface where branching occurs, then
these manifolds have χ = Nχ(CP3) + (1 — iV)χ(F) χ(F) can be calculated from the
Chern character as indicated in [4]. (5.6a) has χ=—296 while (5.6b) has
Z=-204.

Similarly one may consider intersections of k JV-branched coverings of CP2+k,
but none of them have cι φ 0 for k> 1. More interesting is to consider the branched
covering of a complete intersection of hypersurfaces. Consider the equations

2,+k + l

(i) z£"+ Σ zfB- = O, α = l , . . . , / c ,

(5 7 )
(ϋ) Σ zj* = θ, fc=l,...,/, zΌ~λMz0, z-^λz,.

These have the following interpretation. For each point in cP2+k+ι obeying (ii),
there are Da values of z0, unless ΣzfDa — 0, in which case there is only z0 = 0. Hence
the manifold is a branched cover of the hypersurface defined by (ii), the branch
locus being the intersection of that hypersurface with the hypersurface defined by
YjzfDa = 0. The condition for c1=0 is again determined by constructing the

k I

holomorphic three form. We find 3 + k + l + M= X Da+ Σ <4 There are three
a=ί b=l

new solutions:

(1) zS

2

( ) ^0

(3) ZQ

5

4- V 7 4 — (

4

i+ Σ zi —'
ί = l5

!"+" Σ z f = l

5

6

i = l

5

o? Σ zf=ι

l, x =

6

i = l

0 y —

-156

2

-256

χ = - 1 7 6 (5.8)
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Another possibility is to consider arbitrary weighted homogeneous spaces

z^λM%. (5.9)

In general these spaces are singular because the transformation z{ ^ λMizi has fixed
points when λMi = l. One must be sure that the hypersurfaces defined by the
equations:

Σ zf," M j (5.10)

avoids these singularities. Modulo, this singularity problem, the holomorphic
three form is globally defined if

ΣM-DΠMj. (5.11)

The singularities are avoided if the M 3 are relatively prime. Only one new manifold
is found this way:

(5.12)

Note that the singularity at λ=— 1, z2, ...,z5 = 0, zί+0 in the weighted
homogeneous space is avoided by the hypersurface because Eq. (5.12) implies that
if z2, ...,z5 vanish zγ must as well. The singularity for nonzero z2 is similarly
avoided.

Clearly the constructions presented here have many generalizations. A
noticeable feature is that more complicated constructions tend to produce more
complicated manifolds with larger \y\.

VI. <€&> Violation

In this section we will discuss the question of ^0 conservation in Calabi-Yau
manifolds.

N = 1 supergravity in ten dimensions is not invariant under parity. Thus, if this
theory compactifies to M4 x K, where M4 is four dimensional Minkowski space
and K is a complex manifold of complex dimension three, there will be no
in variance under the usual parity transformation P of M4 (P being £-»ί, x-> — x).

However, suppose we find an isometry <$ of K which reverses the orientation of
K. Then $£? preserves the orientation of M 4 x K, and is a symmetry of the theory.
In almost all relevant cases, ^ has the properties of standard charge conjugation,
and ^ can be called <S0>.

What orientation reversing symmetry might a manifold of SU(3) holonomy
have? A transformation that preserves the complex structure always preserves the
orientation. However a so-called antiholomorphic transformation that exchanges
the independent complex variables zh i= 1, ...5 3 with their complex conjugates
always reverses the orientation. (The reason for this is that if z{ = u{ + ivb u{ and υt

being real, then complex conjugation is wf->Mf, v^—v^ as there are an odd
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number of vb this reverses the orientation.) An orientation reversing isometry of a
manifold whose holonomy group is SU(3) (rather than a subgroup of SU(3)) is
always an antiholomorphic transformation.5 Such a transformation deserves to be
called # since it reverses the 27 and 27 of E6 in the construction of [4]. The
combined operation (ί,x, zf)-^(i, — x,zf) deserves to be called ^ ^ .

When does a manifold of SU(3) holonomy admit an antiholomorphic
transformation? Consider the example of a quintic hypersurface in CP4. The
simplest quintic is

Σ * ? = 0 . (6.1)
ί = l

The transformation z^zf defines a Z 2 action on the hypersurface. Equally good
(in that it leads to a metric of SU(3) holonomy) would be a more general quintic
such as

5

Σ zf + εz1z2zzzΛz5 = 0. (6.2)

If ε is real there is still a symmetry zt-+zf, but if ε is complex this symmetry is
absent, since z{ being on the hypersurface does not imply that zf is on the
hypersurface.

There are several points of view one can take about this. At tree level any
(non-singular) quintic defines a candidate vacuum state. If this degeneracy is not
lifted, then one can allege that the generic quintic is Ή3? violating. If the degeneracy
is lifted, then the question of <β0> conservation depends entirely on how it is lifted. It
would be very interesting to find examples of manifolds of SU(3) holonomy that
violate %>& regardless of what Ricci flat metric ic chosen, but we do not know of
such examples.

One might at first think that <€& violation in the defining equation of our
manifold would tend to be stronger than what is observed in nature, but this is not
so; in the Kobayashi-Maskawa model of <€& violation, maximal <€& violating
angles are quite acceptable.

VII. Yukawa Couplings

In this section we will discuss the extent to which Yukawa couplings can be
computed from topological invariants or invariants of the topology plus complex
structure.

One particularly interesting result we will find is that whether or not a given
Yukawa coupling vanishes at tree level can be predicted on topological grounds
without having so solve any equations. This is likely to be important because many
problems about quark and lepton masses and mixing (and about other problems
such as proton decay) may be related to vanishing of tree level Yukawa couplings.
As for non-zero Yukawa couplings, because of normalization factors involving the

5 This is so because it must map the covariantly constant positive chirality spinor ζ into a
negative chirality covariantly constant spinor - which must be ζ* if the holonomy is precisely
SU(3). A transformation that exchanges ζ and ζ* precisely changes the sign of the complex
structure
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metric that will appear later, topological arguments only give relations among
them.

Four dimensional Yukawa couplings arise from cubic (or higher) terms in the
ten dimensional action. For example, the ten dimensional coupling

L, = ί dιow]^gψΛ(W)γ"ΆmB(w)ψάw)fABC, (7.1)

where A, B, C are E8 x E8 indices, can be expanded in harmonics on the internal
manifold K (suppressing gauge indices)

(7.2a)

AJy») = Σ AUxWiy) + Σ ΦK^Kiy), (7.2b)
j

(7.2c)

) - RlAfy) + 2Fn

mAi(y) = λ^m{y), D2φ*{y) = λψ(y), (7.2d)

where x parameterizes spacetime, y parameterizes K and D is the gauge covariant
derivative on K. Each mode on K corresponds to a four dimensional field with
mass proportional to λ\ In order that the four dimensional kinetic terms are
properly normalized, the internal harmonics should be normalized so that

ίd6yyrgΦ*i(y)Φj(y)^δij. (7.3)

Yukawa couplings among the light particles involve zero modes on K. Plugging (2)
into (1) we find terms of the form:

U = ί d6yγgψ°\y)A\y)ψ\y) \ d4x]/^gψ0(x)φ°(x)ψ0(x). (7.4)

The effective Yukawa coupling is thus the overlap integral of the zero mode wave
functions:

U6/°Koo(y). (7.5)

Aa

m is a one form with an extra gauge index α. For charged matter fields, a labels
the 3 or 3 of SU(3) (coming from (27,3)0(27,3) in the adjoint representation of £ 8).
The 3 and 3 label the holomorphic tangent and cotangent bundles T and T
respectively, so Aa

m is a one form with values in T or T. It will turn out that gauge
field zero modes are realted to elements of Hι(T) and /^(f), the first d
cohomology group with values in T or T.

For one forms with values in T theie is a natural exterior derivative given by:

δA = dκA%dz*Λdz*-^. (7.6)

The letters a, b, c will be used for tangent space indices. Note that under a
holomorphic change of frames:
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(7.6) is invariant. The adjoint of d can also be defined for a given Kahler metric. One
finds:

(d*Af=VihAb

ih, (7.8)

where Vm is the usual covariant derivative. We now observe the following
remarkable fact: if the holomorphic tangent indices are identified with SU(3) gauge
indices in the 3 representation, and the background gauge field is given by (ABm)b

a

= Γ£a; (ABm)l = Γ^ Eqs. (7.6) and (7.8) become precisely the equations for the gauge
covariant curl and divergence of A. It further follows that A is harmonic,

(d*d + dd*)Ab = 0. (7.9)

Equation (7.9) is identical to Eq. (7.2) when (ABm)l = Γ£b. Thus zero modes of the
Yang-Mills field in the 3 representation are given by harmonic elements of Hι(T).

Zero modes of the Dirac equation are now constructed using supersymmetry
as:

+, (7.10)

where yζ± = ± C ± , C± = (+ and y = iy59 ...,7io In verifying that φ α is a zero mode,
the relation γmζ+ = 0 is useful. C_ can not be used in (7.10), since y™ζ_ =0. Thus
harmonic elements of Hι(T) lead only to left-handed fermions in the 3 of SU(3).
Since the theory contains fermions in the (27,3) of E6 x SU(3), these give rise to 27's
of E6 at low energies.

For the special case of a Ricci flat metric on K, there is a map from harmonic
elements of //^T) to harmonic (2,1) forms. This is given by the holomorphic and
(for the Ricci flat case) covariantly constant three form,

Gmp = A^Mp9 (7.11)

(d + d*)2A = 0 immediately implies (d + 3*)2G = 0. On a Kahler manifold (d + 3*)2

= (β + δ*) 2 =\{d + d*)2, so G is harmonic. This tells us that the number of families
is dim// 2 ' 1 .

Antifamilies are associated with elements oiHι(T), whereTis the holomorphic
cotangent bundle. In this case the cί harmonic elements obey:

0 = (3"M)β. (7.12)

Zero modes of the Yang-Mills field in the 3 are given by

((d*d + dd*)A)a = 0. (7.13)

One obvious solution of (16), which exists on all Kahler manifolds, is Ama = ema.
Superpartners of Ama will be left-handed fermions in the 3 representation.

Harmonic elements of JF/1(T) can be related to harmonic (1,1) forms:

Vmn=-iAnae
a

m, (7.14)

y

so dimH1(T) = blί. Since - = b 2 i — b n on a manifold of SU(3) holonomy, we

regain the result that the net number of families is half the Euler character.
We now discuss Yukawa couplings among the four dimensional fields

associated with these zero modes as given by the wave function overlap integral
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(7.5). There will be no cubic couplings between familes and antifamilies as there is
no SU(3) invariant way to combine two elements of HX(T) with one of /^(T) or
two elements of HX{T) with one of HX(T) (i.e. there is no singlet in 3®3®3).

Cubic interactions between 27's are given by

where

9ιjk = ί <PγfmlifAmycφ
ahc. (7.15)

K

A9 B, C are E6 indices in the 27 representation, d^c *s the symmetric cubic
invariant in the 27, α, έ>, c are SU(3) (or tangent space) indices, and ψai is the zth zero
mode wave function in the 3 representation. Using the formula for the zero modes
in terms of elements of ίΓ^f), we find

m]y^AMy"A,hμPc^ζ+εahc. (7.16)

Using the fact that

ωm n p = ίΐymyπypC+, (7.17)

we obtain

δtjk = ί d6y]/gω^AmaiA-nbjApck8
abc

= $ωΛAaiΛAbjΛAckε
abc, (7.18)

K

where Aai = Amaidz™. Note that this expression is symmetric in ijk, as required by
supersymmetry. Now for the special case of a Ricci flat metric, covariant constancy
of ω implies ωmnp = smnp. This enables us to rewrite (7.18) in terms of the two form Vt

= Amaie
a

ndzmΛdzn<ιs:

^ = i ^ V F k . (7.19)

The integrands of (7.18) and (7.19) do not in general agree for an arbitrary
hermitian metric. (Being topological invariants, however, the integrals will agree.)
The latter expression has the advantage that it does not in any way involve the
complex structure on K, and can be defined for an arbitrary Riemannian metric. If
the Vt are normalized topologically (to represent integral cohomology classes),
then the integral in (7.19) is determined purely topologically, in terms of the
cohomology ring of the manifold K. This means (7.19) is invariant under bVi^dλi

for any λt. In particular, there is no need to know the metric of K or to solve the
Dirac equation for the Vb as any Vt in the right cohomology class will give the same
integral. In terms of homology, (7.19) counts the number of points of intersection of
the 2 complex dimensional hypersurfaces associated with Vu Vp and Vk.

Actually, we want to normalize the V{ not topologically but rather according to
(7.3). As this normalization condition cannot be worked out topologically but
requires knowledge of the metric and the wave functions, topological consider-
ations suffice to give only certain relations among Yukawa couplings. Of course,
whether gijk vanishes for certain i, j , and fe is purely a topological question.
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One can similarly compute the Yukawa couplings among families. They are
given by a formula analogous to (7.18):

gijk=^AA^AAbjAAc

k8abc, (7.20)

where Aa

i=Aa

mdzm is the ith zero mode associated with the 3 representation.6

Equation (7.20) depends on the complex structure of K (via ω), but not on the
metric tensor of K. Also, (7.20) can be evaluated without knowing the precise form
of the A°9 only their cohomology class in H1^). Again, the proper normalization
of the A" cannot be determined topologically, so knowledge of the topology (and
complex structure) gives only certain relations among Yukawa couplings.

Appendix

The form of the asymptotically flat, spherically symmetric metrics of SU(n)
holonomy was discovered by Calabi and discussed by Freedman and Gibbons.
Properties of the two and three complex dimensional cases are important to our
results and we describe them here.

The line element giving SU(π) holonomy in n dimensions is

1 i i_i

ds2 = (l + χ-n)»dzkdz*-~ -j{xn+ \)n zkdzkZjdzj, (A.1)

where x = zkzk. As x-»oo, the metric is flat, but near x = 0, it appears singular. To
investigate the origin we define new variables,

yi = Zi/zn, i = l , . . . , n - l , y = zn. (A.2)

The origin x = 0 is then y=0, yt finite. We have near )/ = 0,

+ \y\ 2n -

-(1 + W i ) " 2 ( y ^ y / ) + 0 ( y ) . (A.3)

If we define a new variable w = y", the metric appears regular at w = 0. However, as
the phase of w goes from 0 to 2π, the phase of y goes only from 0 to 2π/n. Thus the
metric appears regular if we identify y with e2πi/ny. Approaching the origin from
other directions, one finds that it is regular there if the identification zk ~ e2πi/nzk is
made. The nature of the origin can be seen by looking at the submaniίbld y = 0 in
(A.3). The resulting metric is just the Fubini-Study metric on CPn~x.
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which this paper could hardly have been written. Methods for constructing manifolds of SU(3)
holonomy are discussed by S.-T. Yau in [18].

6 Mathematically, what is being considered here is the following. For any holomorphic vector
bundle T, there is a natural mapping H1(T)xH1(T)x H1(T)-+H3(Γx T x T). If Γhas structure
group SU(3), there is a natural mapping H3(TxTx T)-^H3(5)~C, where 8 is the trivial line
bundle and C are the complex numbers. The composition of these operations gives a symmetric
map H\T) x H\T) x H\T)-*C, which is indicated in Eq. (7.20)
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