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Abstract. In this work we prove completeness for N-body systems that evolve
asymptotically into either N free particles or a two cluster system with one of the
clusters being a single particle. For the three body case our results imply
completeness for a very general system with potentials decaying like \x\~1~ε

at oo.

Introduction

Completeness in many body scattering was first prove by Faddeev for three particles
using a time-independent method in [1] and was followed up by many authors
for the same case. All these methods are limited in that they make assumptions
on the spectral properties of the subsystems. For an excellent review of these results
see Ginibre [2]. On the other hand for the iV-body short range systems La vine
[3] proved a completeness result when the potentials are repulsive, Iorio-O'Carroll
[4] proved it when the potentials are weakly coupled and Sigal ([5] and the
references given there) proved completeness for a class of generic short range
potentials.

More recently Enss has continued his work on time-dependent scattering
theory that he pioneered for the two body case to three body systems. In [6] he
treated two cluster scattering of Λf-body systems. While in [7] he gave a rough
sketch of the proof of three-body completeness, in [8] he made the proof clearer.
See [8a] for a complete proof of the three-body long and short range cases. In
[9] he has a slightly different approach to the proof and also some discussion of
the general case. Almost simultaneously with [7,8], Sinha et. al. [10] proved
three-body completeness for pair potentials with (2 + ε) decay at oo. They also
incorporated some ideas of Enss in their work. See the work of Kitada for a
different approach [11].

Mourre on the other hand has used his work on the spectral theory of many
body operators [12] to determine some propagation properties of the N-body
total evolution in some weighted spaces. He obtained L2 estimates [13] in certain
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regions of the phase space for the three-body operator and obtained completeness
in [14].

In [15] the work of Hagedorn and Perry [16] was used to prove completeness
for a class of four-body systems, while Hagedorn and Perry themselves extended
their work to the four-body case in [17], using in part the work of Hagedorn [18].

In an unpublished preprint [19], Mourre and Sigal combined some ideas from
Mourre [13] with the phase-space analysis, refer to Deift and Simon [20] for a
version of this, and proved completeness for a special class of JV-body systems
that they call admissible. It is one in which all the (N — 2) or lower-body subsystems
do not have any negative eigenvalues. We prove in the present work a result
similar to that of the Mourre-Sigal result but use the method of time-dependent
scattering theory for the proof. We observe that for the three-body case this result
means completeness for a wide class of short range potentials without any
assumptions on the threshold eigenvalues and including a possibly infinite number
of bound states of negative or zero energy for the subsystems.

Finally we note that a good review of the work done in completeness and
related results for the AΓ-body case can be found in the works of Reed and Simon
[21], Sigal [5] and Hunziker and Sigal [22].

The model we consider for N-body scattering is the following. Corresponding
to the partitions D = {Dί9D2, ..,Dk} of {1,...,JV} into clusters, we have the
associated cluster Hamiltonians

ei(D)yei(D)

where

i(D) = {y = (ίj): i <j, ije Dh for some 1 rg / ̂  fc},

and Ho is the usual free Hamiltonian [23,24] on the relative Hubert space
L2(R(N~1)V), v ^ 3 . We scale the pair positions and momenta respectively by
xy^(μy)

1/2xy, py-»(μy)~1 / 2py, where μγ is the reduced mass of the pair γ. Then
we obtain Ho in normal form, that is, Ho = — \A in terms of the Laplacian A on
L2(R( iV~1)v). As in [5] we write L2(M(N-1)v) as L2(XD)®L2(XD\ corresponding to
the internal and external spaces of the clustering D. Then the cluster Hamiltonian
splits into

H(D) = HD+TD, HD=TD+WD,

where —2TD and — 2TD are the Laplacians on L2(XD) and L2(XD) respectively.
We denote any x in [R(iV~1)v by (xD,xD\ corresponding to a clustering D, and xD

would further split as xD = (yx,...,yk_ J if D has k clusters. We denote by Vt9 Ut,
Vt(D) and V? the unitary groups generated by //, Ho, H(D) and HD respectively
and the total Hamiltonian H is defind by H = H(C) for # C = 1. The cluster wave
operators are given by

Ω±(D)= s l im V* Vt(D)ED, 1<#
£-• + 00

with ED denoting the spectral projection corresponding to σP(HD) whenever #DΦN
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and denoting the identity when #D = N. The existence and mutual orthogon-
ality of the ranges of the wave operators is well known [21,23] when the pair
potentials satisfy

(Al) Wy(Ty H-1)"1 is compact on L2(W\

(A2) pί(xyy1Wy(T*+ I ) " 1 is bounded for

pί(χi) = {l+(χv)2)-δί

9 for some δγ>^.

We make two additional assumptions on the N-body system with one of them on
the potentials, namely,

(A3) (Ty + l)~ί{xyVyWy{xr)}(TΎ+ I ) " Ms compact onL2([RV)

and

(A4) σ(HD) = [0, oo) for every clustering D with 3^#D^N.

We note that the assumption (A4) means that only a class of (N — l)-body
subsystems are allowed to have negative eigenvalues. With these assumptions on
the potentials our main theorem is the following.

Theorem I. Let H be an N-body Hamiltonian with the pair potentials satisfying
the conditions (A1)-(A3) and let the system satisfy the condition (A4). Then the
scattering is asymptotically complete, that is,

0 RangeΩ+(D) = J^C(H)= ® Range Ω~{D).
D:#D^2 DSD ^2

Remark. We observe that for more than three particles the condition (A4) might
not be possible if we insist on the (1 -f ε) decay for non-positive potentials at oo
(Theorem XI 11.6, [24]). Nevertheless we retain Condition (A2) and are content
with this remark.

1. Reduction of yV-body Completeness

In this section we reduce N-body completeness to the verification of two conditions.
Namely, the local decay and the lower energy decay of the total evolution of the
scattering states (formulated as the conditions (LD) and (LED) later in the section).
We make use of the theory of evolution of observables developed by Sinha and
Muthuramalingam [25] and Enss [26]. We denote by F() the spectral projections
and by K all absolute constants that occur in estimates. We assume throughout
this section that the potentials satisfy the conditions (A1)-(A3).

To facilitate extracting the decay from the potentials, when they are locally
singular, and to use it for estimates, we have a technical lemma whose proof is
easy and is given in [15]. So we state it without proof. We set p(λ) = {l + λ2)~δ

for any δ>0. We define the generator A of dilations as in [10,15], namely
A=$(x P + P'x).

Proposition 1.1. Let φeC£(M) and let S be any of {H(D): 1 ̂ #D ^ N}, 2S
N < oo and zφσ(S).
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(i) If φ(x) is an S-bounded multiplication operator and p(x)~1φ(x) is also S-
bounded, then φ(x) (S - z)~np(x)~1 and φ(x)φ(S)p(x)~1 are bounded operators for
every positive integer n.

(ii) For any pairs α, y, p(xa)~ * φ(Tγ)p(x*) is bounded.
(iii) Aθφ(S)(l +x2)~θ/2 and A\S-z)~l (1 + x 2 ) ~ θ / 2 are bounded for O^θ ^2.

For any Λί-body Hamiltonian H, we set Σ = inf σess(//), σess(H) being the essential
spectrum (see [23,24] for a definition) of H. Then we have the following decay
results.

Proposition 1.2. Consider φeC${M) with positive constants a, b and c. Then for every
2 ^ N < 00 we have the following.

(i) Lei inf supp φ ^ |fc2. If a + c<b and \s\ ^ |ί|, for arbitrary positive integer M,

\\F(\x\ £a\t\)Utφ(H0)F(\x\ S c\t\)\\ S KM{\ + \t\)'M.

(ii) There exists a positive constant A (depending upon N and the masses of the

particles) such that if a > A ~ ι{b + c + y/—Σ), then for all 5, t with \s\ -f |ί| ^ |M|,

we have

\\F(\x\ > a\u\)Vsφ(H)Utφ(H0)F(\x\ ύ Φ l ) II ̂  K(l + \u\Γδ

whenever φeCo(U) with sup supp φ = \b2.

The proof of (i) in the above Proposition is standard [27,30] and the result
(ii) is a generalization of the result, of Enss [29], for the two-body case.

In the appendix a slightly more general version of Proposition 1.2 is proved
which asserts that arbitrary power-law decay holds in (ii).

Now we are ready to formulate the conditions needed for completeness to
follow. We recall that in the two-body case in the methods of Enss [26] or Sinha
and Muthuramalingam [25] they conclude that whenever the scattering states
evolve out of bounded regions in space (Local Decay), the asymptotic observ-
ables corresponding to the average velocity x/t and the momentum P are
the same (in units where the reduced mass of the system is 1). We conclude the
same result here. But since it is possible in the N-body case that asymptotically
the particles might cluster so that some of them might stay in bounded regions
of the cluster-internal-spaces, we have to rule out these states if we want the total
momentum and the average velocities to be the same asymptotically.

Henceforth for any real valued continuous function φ, we set

1 '
δ lim φ{t)= lim -jdsφ(s)

r->±oo ί-> + oo ^ 0

whenever the limit exists. We also set,

Σ® Range ( «

where J f C(H) is the continuous spectral subspace of H. With this notation, the
Local Decay condition is stated as,
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. Then for any function ΦECQ(UV) andLocal Decay Condition (LD):Let
any pair y,

S lim
r->±oo

Given this condition the proof of the theorem on asymptotic observables is
almost identical to the one for the two-body case [25,26]. Hence we state it below
in the form that we need, without proof. We take Yu = exp(— in A) for any real u
in the following.

Theorem 1.3. Whenever the condition (LD) is satisfied for a vector fe3tf?±, then

(i) δ lim || (V* Yu/tVt - Vu)f || = 0, MUEU.

(ii) δ lim
ί-> + oo

(iii) δ lim \\<V*Utφ U?Vt-φ(0)}f = 0, \fφeCb(U+).

(iv) δ lim F(\x\>c\t\)U*Vtf\ = 09 VoO.

Another consequence of the condition (LD) is,

Proposition 1.4. Let φeC£(U) and letfeJ4?± satisfy the condition (LD). Then, for any
clustering D,

(i) S lim \\{φ(HD)-φ(TD)}VJ\\=0,
t-*±ao

(ii) g lim || {φ(H) - φ(H{D))} VJ \\ = 0.
f-v + OO

Proof By a standard argument using the Stone-Weierstrass theorem [31], we need

to show only that for some real λ,

$ lim \\{(HD-λ)-1-(τD-λy1}(τD-λyMvtf\\=o
f->±OO

for every positive integer M. Using the second resolvent equation, the above term is

dominated by

Σ * lim
γei(D) f ^±oo

Ϊ

By Proposition 1.1 and the assumptions (A2), the first two factors in the above
expression are bounded and it is dominated by

K £ g lim \\Pι(x")V,fl
γei(D) ί ^ + oo

which is zero by the condition (LD). The result (ii) is similarly proved. •
Now we give a very useful norm estimate connected to the wave operators
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corresponding to the case when all the particles are free asymptotically. We set
Ω± (0) ΞΞ Ω± (D) when #D = N.

Theorem 1.5. Let φeC^((0, oo)) and let 2c < ^/inf supp φ. Then,

lim 11(^(0)- l)Y\φ(TηUtF(\x\^c\t\)\\=0.
ί-*±oo y:all

pairs

Proof. ( + case only). We have

(Ω+(0)-l)Y\φ(TηUtF(\x\^c\t\)

a 0 γ a 0

We shall prove that, for some μx > 1 and any α,

thereby proving the result.
We have

Using Proposition 1.1, the first factor, in the above inequality, is finite. Then using
Proposition 1.2(i), for the two-body case, the remaining part has the required
estimate as in ([10], Lemma 6.2). •

Now we formulate the low energy decay condition.

Low Energy Decay Condition (LED). There exists asetS>± dense in Jf± such that for
each / G ^ ± , there are constants b±(f) so that for each pair γ and 0 < by ^ b±(f),

£Um\\F(T '<±b2

y)Vtf\\=0.

Then we have the N-body completeness result for which we set F±(D) =
RsingQ{Ω±(D)).

Theorem 1.6 Let the N-body Hamiltonian H have potentials satisfying (A1)-(A3) and
also let the system satisfy the conditions (LD) and (LED). Then,

in particular the singular continuous spectrum for H is absent.

Proof. (+ case only). We show that the set Q)+ of the condition (LED) is {0}, thus
proving the result. So we take an /eQ)+, we also take b > 0 and a function φ e CQ (R)
with inf supp φ = \b2. Then, we have the following inequality.

^s lim
pa
yall
airs
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Clearly by the condition (LED) we can choose b so that the above inequality reduces
to

^S lim \<V,f,(-Ω+(0)+ l)Y\Φ(Ty)UtF(\x\ίc\t\)U*VJ}
t^±oc I y

\\F(\x\>c\t\)u*vj\\
y

for any positive number c. Now we choose the constant c to satisfy the conditions of
Theorem 1.5 vis-a-vis b, so that the first term is zero in the above inequality by
Theorem 1.5. The second term is zero since (Ω+ (0))*/ = 0, and the last term is zero
by Theorem 1.3 (iv). •

Remark 1.7. If the condition (LED) is altered as follows for each feQ)± and each
pair y,

lim<f lim \\F(Ty < ε)VJ\\ = 0,
εjO ί-> + oo

even then Theorem 1.6 remains valid.

2. Completeness for an /V-body System

In this section we prove completeness for an N-body system that verifies conditions
(A1)-(A3) on its potentials and also satisfies condition (A4). We briefly explain the
contents of this section. We prove the Local Decay condition in Theorem 2.4 using a
Theorem of Enss [7-9] which we state and prove in Proposition 2.2. (We note that
this result appears in the work of Kitada [11] in a slightly different form.) We start
with the RAGE Theorem [21] and Proposition 2.2 to conclude that whenever a
scattering state leaves bounded regions in the internal spaces of clusters D with the
same number of clusters, then for large times such a state also stays away from
bounded regions in the internal spaces of any sub-clusterings C with #C = #D + 1
provided it is not asymptotically a cluster state corresponding to the clustering C.
Thus we inductively conclude the Local Decay result for states in J f±.

Having done this we note that if the total available energy for a state is positive
(as it should be if it is in J f ±) then in view of the Local Decay result such a state can't
stay in bounded regions along any pair directions which is possible only if all the
pairs have strictly positive kinetic energies. This we conclude in Theorem 2.5.
However for technical reasons and the limitations of our proof, we cannot prove this
result directly but have to make use of the assumptions that (N-2) or lower-body
subsystems do not have any negative eigenvalues and all the subsystems have
complete scattering. Though we do not achieve it, it is our belief that completeness of
the subsystems is not necessary in a general proof.

We start this section with an abstract lemma whose proof is found in the work of
Enss [8].

Lemma 2.1. Let H be any self-adjoint operator on 2tf and B be any operator



136

satisfying;

M. Krishna

lim
1 I
- J dtcxp(iHt)B*Bexp(- iHt)Pc(H)
Ί o

= 0.

Then for any feJί? and any ε > 0, there exists a T(ε) (independent of f) such that
for every \T\^ \T(ε)\,

^ f dt\\BQχp(-ίHt)Pc(H)f\\^ε
1

Using this abstract lemma we have the following proposition. We set

= (l+λ2yδ

9δ>0.

Proposition 2.2. Let the potentials in the N-body Hamiltonian satisfy the condition
(Al). Consider any feL2 (R ( i y- 1 ) v), | | / | | = 1 and φεC$(U) with s u p p l e
σc(HD)\σP(HD), for every clustering D with k clusters in it. Then, for any ε > 0,
there is a T^ε) and an Ro = R0(Tί(ε)iε) such that for every R ̂  Ro,

J 0 1=1

uniformly in | T\ ^ | T^ε)].

Proof As in [8] it is enough to show that

1 t+Γi(ε)

sup — ί
k-1

p(xD)φ(HD) Π F{\y,\ > R)Vt(H + i)~ ιPc(H)f\
1=1

to conclude the result. By Lemma 2.1 this follows by showing that, for some Tγ(&)

and R^R^TMε)

I rfί(tf + 0" ' V* φ(HD)\ p(xD) Π F{\y,\ > R)
o I ι = i

•φ(HD)Vt(H + i)- 1 <Kε.

In view of the operator inequality, (1 - ED)φ(HD) = φ(HD),

U dtV*(D)φ(HD)\p(xD)kγi F(\yι\> R)}2φ(HD)Vt(D)
To I 1=1 J

^ i J dt{Vf)*φ(HD)p(xD)2φ (HD) Vf,
ί o

and the compactness of p(xD)φ(HD), there exists a T1(ε) such that,

k ffL-Tijε)dt(H + o"1 n*
(ε) o

ff
ι i

^ Kε/2.

(2.1)

(2.2)
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On the other hand by an elementary estimate and Duhamel formula, the
remaining term has the estimate,

2 Γ>ω k-1

F(\yι\ > R)p(xD)φ(HD){Vt - Vt(D)}(H + i)~x

^ K ^ T1(ε) sup

where ^ is the relative coordinate between the clusters connected by α, the clustering
Duoc is defined as in [32],

VD

S

 uα(D) = exp ( - iHD^{D)s\ HDua(D) = TD u α + ^ D ,

and ^(D) is defined by

e(D) = {y = (ij):i <j, ieDhjeDy, / # f, 1 ̂  /, /' ̂  /c — 1}.

Now for each fixed 5 by assumption (Al), ( T ^ + 0 " 1 p(xD)Ffuα(Z))^α(jΓβ + i)" 1

is a compact operator on L2(XDua). This fact, the norm continuity of
((TD + 0~V( χ D) ί /f u α(^ ))^α('^α + 0" 1) m s uniformly in R and the inequality.

F(\yι\>R)SF(\yL\>R0\ R^R0

shows that there exists an Ro = R^T^c^c), so that for any R ̂  Ro,

sup \\F(\yι\> R)(TD + 0 " X Pi**)K?u β(D)Wς(Γβ + 0 " ' II < ^γ-v

Hence the result. •
We note that β±(D) = slim V*Vt(D) are defined [23] when the potentials

satisfy the conditions (Al) and (A2). We defined the thresholds T(H) as in [33] as

Ύ(H) = {0} u ί \J σp(HD) ) and prove a compactness result related to the wave

operators. We recall that it is possible to write the generator A of dilations as A = AD

+ AD on L2(U(N — l)v) corresponding to a clustering D. We set ρ(λ) =(l + λ2)'1 in
the following lemma.

Lemma 2.3. Let D be any clustering with #D = 2 and let φeC^(U\Ύ(H)). Then, there
exists b>0 depending upon the support ofφ such that for any φeC£(M) with sup supp
Φ = \b\

(Ω*(D) - \)φ(HD)φ(H(D))p(xD)F(AD ^ 0)

is compact.

Proof. (+ case only). We have

Φ +(D)- \)φ(HD)φ(H(D))p(xD)F(AD>0)

CO

= Σ i μSV*WaVs(D)φ(HD)φ(H(D))p(xD)F(AD>0)
aee(D) 0

] dsIβ(D,s). (2.3)Σ ]
<xee{D) 0
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Since there is a standard argument [10] using Theorem 2.6 of [32] for compactness,

we show only that there exists b > 0 such that for some μx > 1,

to conclude the result. Now for any positive number b, we consider
satisfying,

with s u p p 0 2 ^ (-^b2Ab2). Then we have,

\\IJLD,s)\\ £K{\\IΪ(D9s)\\ + \\IΪ(D,s)\\}>

where

I\ (D9s) = Pl(xa)VMΦi(HD)ψ(H(D))(H(D) + ί)p(xD)F(ΛD > 0)

and

IΪ(D, s) = P l (x α ) Vs(D)Φ2(HD)ψ(H(D))(H(D) + O p f r ' W i , > 0).

Since the support properties of φ(H(D)) and ψ(H(D))(H(D) + ί) are the same,
we consider only \jj(H(D)) in the following estimates.

We have by a theorem of Froese and Herbst [33] and the hypothesis (A4)
that the range of φ x (HD) is finite dimensional because sup supp φ 1 < 0. Hence for
estimating ||/*(Z), s) || we take, without loss of generality, the range of φ1(HD) to
correspond to the eigenvalue λD of HD. Then moving p(xD) to the left using
Proposition 1.1 (i), and using the inequality px(χα)p(xD) ^K(l + \xD\)~μι

for some μ1 > 1, we have, by a result of [34-36] and the support property of Ψ,

where UsD = exp (— ίsTD).

It is in the second term of (2.4) that we choose b depending upon

d = inf{suppιAn(0, oo)}. We take ^ 2 G C ^ ( ( 0 , OO)) SO that

φ2(TD)φ2(HD)φ(H(D)) = φ2(HD)ψ(H(D))

This is possible if b is small compared to d. We take \b\ = infsupp φ2. Then
by using Proposition 1.1 (i), and using a partition of the identity,

\\I2ΛD,s)\\ ^

+ IbiMII \\F(\xD\ £ a2\s\)Us,Dψ2(TD)F(AD > 0)|| \\p(xD)\\} (2.5)

If for each aee(D\

xα = c(α,Z))xD + φ,Z))xD, (2.6)

then we set

μί{D)= min \d(x,D)\9μ2(D) = max |c(α,D)|,
aee(D) aee(D)
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and choose aί,a2,b,bί to satisfy

{b\ + b2)<d, μ1(D)a2>μ2(D)a1, a2<bί and ax > Λ{D)~% (2.7)

where we define Λ(D) = max {1,/1}, A being the constant appearing in Proposition
1.2, appropriate for the (N — 1) particle system given by HD. We note that Λ(D) is
just a positive constant, and since the assumption (A4) guarantees that

ΣD = mininiσ(Hc) = O

Φ

(i.e., the two cluster threshold, Hunziker limit for HD is zero) if #D ̂  2, we can
apply Proposition 1.2 (ii) to the first term of (2.5), using condition (2.7), to conclude
that it is dominated by K(l + |5|)"Aίl. The last term has the same bound by a
result of [36]. The estimate for the second term of (2.5) is obvious from condition
(2.7). Thus we have the required estimate. •

We note as in [10] that whenever the /c-particle system, 2 ^ f c ^ ( N — 1), has
complete scattering, it follows that for #D = 2, Range (Ω±(D)) = Range
(β±(D))0 Range (Ω±(0)) and for 3 ^ # C ^ ( N - 1 ) , Range (β±(C)) =
Range (β(0)) by assumption (A4). Then the Local Decay result follows in

Theorem 2.4. The N-body system satisfying the condition (A4) with its potentials
satisfying the conditions (A1)-(A3) satisfies also the Local Decay condition (LD)
if every k particle system, 2 g k ̂  (N — 1), has complete scattering.

Proof (+ case only). We first claim the following.

Claim. We take p as in Lemma 2.3. Consider any 1 ̂  k ̂  (JV — 1) and suppose
that for all clusterings C with # C < /c,

£lim\\p(xc)Vtf\\=0
ί-^oo

for some /. Then for the same / and for any clustering D with #D = k we have,

<?\im\\p(xD)φ(HD)Vtf\\=0
r->oo

for all φeCSiM) with supp φ g σc(HD)\σp(HD). We have,

~] dt \\p(xD)φ(H»)Vtf\\ S~]dt\\p(xD)kf\ F(\y,\ > R)φ{HD)VJ\\
1 0 i 0 / - I

F(\yι\^R)Vtf\\.

For any ε > 0 , using Proposition 2.2 we choose 7\(ε) and /^(T^εXε) so that the
first term in the above inequality is smaller than ^ε when we take R = Rx. Given
this # x we choose T^R^T^εlεXε) so that the second term is smaller than ^ε by
the hypothesis of the claim, for any \T\^\T2\. Then we choose a T3 =
max(T1 ? T2) and exploit the uniformity statement of Proposition 2.2 to conclude
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that for any |T |^ |T 3 | ,

l-]dt\\p{xD)φ{HD)Vtf\\<ε

which is the claim. Now we show that for any clustering C with #C = 2,

for/e2tf ±; it is enough by density to take an/with ψ(H)f=f, ψeC$(U\T(H)). By the
RAGE Theorem [21] it is true that

<Πim||p(x)7,/||=0.
t-ΌO

We choose </> as in Lemma 2.3., given the ψ. Then by c/αim we have, supp (1 — φ) g

Therefore by the Schwarz inequality we consider only

<?lίm\\p(xc)V2φ(Hc)Vtf\\2

ί S lim {||p(
ί-»oo

+ < VJ, ( - Ω(C) + l)ψ(H(C))φ(H c)p(xc)F(Ac > 0)7,/ >

+ < 7 r / ( - Ω-(C) + l)(A(H(C))0(Hc)p(xc)F(Xc < 0)7 t/>

+ < VJ, Ω-(C)φ(H(C))φ(Hc)p(xc)F(Λc < 0)7,/>}.

Then the first two terms and the fourth term in the above inequality are zero by
Lemma 2.3 and the RAGE theorem. The third term is zero since ί2+(C)*/ = 0,
and the last term is zero because || F(AC < 0)UtCf || ->0 as t -• oo [36].

Once we have this result for every clustering C with # C = 2, the rest of the
theorem follows inductively from Claim. ••

We shall now prove the Low Energy Decay condition for the iV-body evolution.
For this we consider the sets

Clearly such 3)± is dense in Jf±.
We take 2)± in the above form since by Proposition 1.4 (ii), vectors in Q)± cannot

have negative energy and there are no positive energy thresholds by Froese and
Herbst.

Theorem 2.5. Let the N-body system satisfy the conditions (A 1)-(A4). Then the system
verifies the condition (LED).

Proof. (+ case only) We take 3)± defined above as the set stated in the condition
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(LED) and consider fe@+ with ψ(H)f=f. We set J^inf{supp^n(0,oo)} and note

that by Proposition 1.4 (which is valid in view of Theorem 2.4) for any b < 2 y/d,

£\im\\F(H0<^b2)Vtf\\=0.
f->oo

Then we prove the result by induction. We assume as the induction hypothesis
that for every clustering C with #C ̂  k, there exists some b, \b2 < d such that

£lim\\F(Tc<±b2)Vtf\\=0,
ί->oo

and prove that for all clusters!) with #D = k+ 1, there exists a constant bγ >0,b1<b
such that

*]ira\\F(TD<$bl)Vtf\\=O.
ί-i-CO

We set Tι = \k2, where kt is the momentum conjugate to yv Then for any bγ > 0,

δ lim || F(TD < %b\)VJ || ̂  δ lim {|| F(TD < \b\) f[ F{TX > \b2)VJ \\
t^oo ί->oo I 1=1

+ Σ WF^K^bDFiT^bDVJw). (2.8)

Now we chose bί,b2 to satisfy

b\ + b\ < b2. (2.9)

Then all the terms except the first in (2.8) are zero by the induction hypothesis.
Applying the Schwarz inequality to the remaining term of (2.8) we have

D<±b2)Vtf\\2^ <Πim (vtf,F(TD <^b2)f\ F(Tι>^bl)Vtf). (2.10)

We now take functions φ,φ1eCo'(M) with supsuppφ = \b\ and infsuppί/)1 =
\b\, b3 and b4 satisfying,

bl + bl<b2

9 (2.11)

and pointwise,

F{TD<hb\)f\ F(Γ,>^|)^</.(TD)Π ^(T,). (2.12)
Z = l ί = l

Then using the inequality (2.12) on the right-hand side of (2.10), replacing VJ by
UtF {\x\^c\t\)U*VJ (by means of Theorem 2.4 and Theorem 1.3 (iv)) and
φ(TD) by φ{HD) (via Proposition 1.4) respectively we obtain,

δϋm \\F{TD<±b2)VJ\\2^£ lim \(vtf,(-n+(D)^l)φ(HD)f\φ1(Tι)UtF(\x\

ίc\t\)U*Vj)+K\\φ+(D)rf\\\.
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The second term in the above inequality is zero by the choice of /. The first term
is zero by choosing the constants c, b3, bA as in the following lemma and applying
the lemma. The result then follows inductively using Lemma 2.6. •

Lemma 2.6. Let the N-body system satisfy the conditions (A1)-(A4). Let D be any
clustering with k clusters 1 < k < N. Then there exist positive constants b3, b4 and
c such that for φ, φίeC£(M) with infsupp φγ—\b\ and supsupp φ=\b\,
we have,

lim UΩHD)- l)φ(HD)"Π Φ1(T1)U,F(M <c\t\)\\ = 0.

Proof (+ case only) Owing to the equality

(Ω + () ) D k γ \ 1 ^ c\t\)

fc-1

α e e φ )

Σ
αee(D)

we prove only the estimate, for each aee(D\

iίdsVfWxVs(D)φ(HD)Y\Φ1(Tι)U,F(\x\^c\t\)
0 1=1

0

to conclude the result. Suppose yk is the relative coordinate of the clusters connected
by the pair α, then by the hypothesis (A2), Proposition 1.1 (i), (ii) we have,

A 5, t) II ^ K\\Pl(x«)(HD + i)φ(HD)Vs(D)(TL + ήφ^U.FiM ^ c\t\) ||.

Since only the supports of φ and 0X play a role in the following estimate, we omit
the factors (HD + i) and (7^ + i) from the above inequality in the following.

Then for some al9a29 positive, the inequality just obtained becomes, using a
partition of the identity,

\\Ia(D,s,t)\\^K{\\Pl(x«)\\\\F(\xD\>c

(2.13)

We take the numbers μγ(D\ μ2(D) defined in (2.6), an appropriate A from
Proposition 1.2 (ii) and choose the constants, aί9 a2, b3, b^ and c to satisfy,

μ1(D)a2>μ2(D)a1, Λa1>b3Λ-c and a2 < b4 + c, (2.14)

from which the required estimate follows using Proposition 1.2 (i), (ii) and the
relation (2.6) in the inequality (2.13) along with the assumption (A4). •

In view of Theorems 2.4 and 2.5 the theory of Sect. 1 applies to the N-body system
satisfying the assumptions (A1)-(A4) whenever all the (N—l) or lower-body
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systems satisfying the same hypotheses have complete scattering. Since complete-
ness of the two particle scattering is well-known [30], Theorem I follows inductively.

Finally we observe that the assumption (A4) being a consequence of (A1)-(A3)
for a three particle system, completeness follows for a three particle system with just
the assumptions (A1)-(A3).

Appendix

In this appendix we prove Proposition 1.2 (ii). Enss proved a similar result for the
two-body case, in a slightly different form, in [29] using the Gronwall inequality. We
use instead a method suggested by the referee of [10]. We actually obtain a result
stronger than Proposition 1.2 (ii) in that we deduce arbitrary time decay for the total
evolution.

Throughout this appendix we fix the number of particles to be Nί (a finite
positive integer larger than one), assume the potentials of the Nί -particle system
to satisfy the conditions (Al) and (A2) of the main paper, and assume the dimension
of the configuration space of pairs of particles to be v ^ 1. We also follow here the
notation of the main paper except for one difference. For every fc-cluster clustering D

we denote by <yl9 J = l , . . . , n D , nD =
k-l

the relative coordinates between

clusters in D.
Then we define the /c-cluster threshold Σk of the Nx -particle system to be

Σk= inf
D #D = k

and note that by the HVZ theorem [24] Σ2 ^ Σ3 <£ ••• ^ ΣNί = 0, and Σ2 is the
Hunziker limit for the system.

Having outlined the notation we present a technical result on the localizing
properties of functions of the Hamiltonians before we proceed to the main theorem.

Theorem 3.1. Let S = H(D), 1^#DSN1 and2^N1< oo. Consider the bounded
functions φ, φ1 in C°°(ίR) with disjoint supports and φ in C£(M). Then for any r > 0
and arbitrary integer M > 0,

(i)

(ii) For any a>al9

φ(-)Φ(S)φ1

\\F{\x\ > ar)φ(S)F(\x

\-M

r)

Proof. Clearly the result (ii) follows from (i) so we prove only (i). We choose a
bounded function φ2 in C°°([R(]Vl~1)v) with φ2(x)φ(\x\) = φ(\x\) for each xe
U{Nι"1)v and also such that the support of φ2 is disjoint from that of φ3 on U{Nl ~1)v

defined by φ3(x) = ιAi(M), xe(R ( i V l"1 ) v. Then we have,

, , x\\, X

ΉTMT
1

r
=

ί

\

X

r
+ 0.
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Repeating this procedure, of transferring a φ2 to the right side, M times, we have

The result now follows from the following Lemma. •

Lemma 3.2. Consider a bounded function φ in C°(W) for anyn>0 and φeCg(M).
Then for any r>0, S as in Theorem 3.1,

for every positive integer M.

Proof. We note that — oo < μ < σ(S) exists. We then consider, for any a < μ, the
map χ(λ) = (λ — a)~1. χ is a bijection from (μ, oo) to (0, (μ — a)~ι). Therefore it suffices
to prove the result with φι{(S — d)~γ) replacing φ(S), where φί=

zφ°χ~1 Now
by the self-adjointness of (S — α) " 1 , setting Zt = exp(— it(S — a)'1), we have

=ldt$1(t)Adγix/r){Zt}. (3.1)

We claim that

This follows by explicitly writing Adψ(x/r){Zt} using DuhameΓs formula and the
following equality:

= - i]dsZf(S - ay1 l ^

(3.2)

where the expression for the commutator [H0,ι//(x/s)] can be a priori defined on
^(IR") and then extended to ®(S) without change by the boundedness of A φ, Vφ and
the S boundedness of P. •

See for example [27] for the technique employed in the proof of the above
lemma.

Lemma 3.3. Consider the N\-body Hamiltonian H with the pair potentials satisfying
the conditions (Al) and (A2). Then for any φeCo(U)9 r > 0, and any clustering D,
with δ = 2δ1 > 1,

Π
γee(D)

F(\x*\>r){φ(H)-φ(H(D))}

The proof of the above lemma is easy since Y\ F(\xy\>r){(H — a)'1 —
yee(D)

(H(D) — a)'1} has the required decay for some real a. See for example [10].
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We recall that Σ2,Σ3,...,ΣNιdLτQ the two, three, four,... Nx -cluster thresholds.
Then our main theorem of the appendix is the following.

Theorem 3.4. Consider a N^particle system with the pair potentials satisfying the
conditions (Al) and (A2). Then for any positive numbers α, b, c, any positive integer
M and any function φeC£(M) with sup supp φ = \b2, there exists a positive constant
A (depending upon M, Nl9 and the masses of the particles) such that for all s9 t, u
satisfying \s\ + \t\ g \u\9

\\F(\x\ > a\u\)Vsφ(H)Utφ(H0)F(\x\ ^ c\u\)\\ £ K(\ + \u\YMδ

whenever a> A

Before we proceed to the proof of the theorem we make a few comments on
the result itself and also on the strategy of the proof. Firstly we stress that we give
only a sufficient condition for separation of clusters. A necessary condition should
read a "if the Λ^-body evolution has (1 + \u\)~δ time decay, then it is necessary
that a > (2(E — Σ2))1/2 + c, where E = \b2 is the maximum available total energy
for the system." In other words (2(£ — Σ2)

1/2 + c) should give a lower bound on
the speed for the forbidden region of propagation. Though it is intuitively expected,
getting the necessary condition is not obvious with our method of proof especially
for particle numbers higher than three. Secondly we take small positive energies
\b2 because in the application, we wanted to treat the possibility of an infinite
number of (N — l)-body bound states at zero energy.

Now for an explanation of the proof. We observe that the system can cluster
corresponding to a clustering D with the individual clusters being bound particles
or particles propagating with speed small relative to the speeds of separation of
the clusters. In the case when the clusters are bound particles with negative energy,
the centers of mass of the clusters move with large relative speeds, having extracted
energy from the bound states. So we decompose the velocity space into all such
possible clusterings D, starting with clusterings of N1 clusters and ending with the
clusterings of two clusters. Having done this, we approximate the total evolution
by the respective cluster evolutions in each of these regions. Therefore it is here
that the minimal velocity of the forbidden region depends on the threshold energies
of formation of the clusters. We handle the remaining tails using the Duhamel
formula, where we exploit the decay of the potentials connecting the clusters so that
each such step gives us a net (u)1 ~δ time decay. Therefore we do this (δ — l)~1δ times
to obtain δ time decay. Finally we use a boot-strap method to obtain arbitrary decay
starting with δ decay, but this is only technical.

With these comments we proceed to fix a constant (implicitly) related to the
masses of the particles. Consider any clustering C. Then for any pair y external
to C, the position xγ can be written in terms of the internal coordinate xc and
the relative coordinate yt between the clusters joined by y as, xy = a(γ, C)xc +
b(y, C)yt. Then we set.

μ,(Q = min \b(y, C)|,μ2(C) = max \φ9 C)|,
yee(C) yee(C)
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'•= Σ Σ
O#C = k

μ = max {2,

F(\xc

\cu\)

max
C:#C>1

nC

1=1

μ^C)

F(\yt

"V2(Q},

>a2(k)\u\)Vsφ(H)Vtφ(H0).

(3.1)

Then,

Lemma 3.5. Let ΦECQ(U) with supsupp φ = \b2. Let 1 <n^N1 and suppose that
there exist positive constants {aί(k),a2(k)}n+ί<k<Ni satisfying aί(k) = aί(k+l) +
a2(k + 1) such that

(H) \\in+1\\^κM(i + \u\yMδ

is valid for arbitrary M > 0 whenever \s\ + |ί| ^ \u\. Then,

holds if for alln^k^Nί9

a2(k)> 2M(Max {b + c + y/-2Σk9 (3.2)

Proof Clearly it suffices to prove, whenever a2(n) satisfies (3.2), that, for any
clustering D with #D = n,

\\F(\xD\ ^aλ{ή)\u\) Π F(\yι\>a2(n)\u\)Vsφ(H)Utφ(Ho)F(\x\^c\u\)\\Π
1=1

For proving the above estimate we choose an ε > 0 so that

a2(n) > 2M(b + c + J-2Σn + ε),

(3.3)

(3.4)

and define the projections Ff, F]D', Ff and Gf as follows. Let KD = F(\xD\^
α^njlwl) and L be an integer L>((5 — 1)-1(5 + 2,

nD

1=1

2 M - 1

^ « 2 ( » ) - 7 i J(M "
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Ff = F"jDKD, Ff = F"jDKD,

fi( (2M-1) / 1 je\

and Gf+ίi/2) ̂ s defined by replacing; by j + ̂  in the above where 0 ^ ^ L - 2 and
0 g sL_2 ^ ^ sx ^ s. If the condition (3.4) is satisfied, then clearly there is a bγ > b
such that

a2(n) > 2M{bγ + c + y/-2Σn + ε). (3.5)

We fix, then, a function φeCo(U) with φ = 1 on the support of φ and supsuppφ =
\b\ and estimate the left side of (3.3) below by induction on M since (3.3) is valid
trivially with M = 0. We assume, without loss of generality, that for any constants
alί-.1 and aι

M-γ satisfying

^ ai-ι\u\)Vsφ(H)Utφ(H0)F(\x\^c\u\
1=1

(HI)

holds for a given clustering D. We have then by Schwartz' inequality and the Duhamel
formula,

\\F%Vsφ(H)U,φ(H0)F(\x\^c\u\)\\

ί\\F°{φ(H)-φ(H(D))}F°Vsφ(H)Utφ(H0)F(\x\^c\u\)\\

- \\Fξ{$(H) - $(H(D))F"0

DF(\xD\ > ai(n)\ti\)Vsφ(H)Utφ(H0)F(\x\ ί c\u\)\\

- \\F°φ(H(D))Vs(D)(l - G°ι2)φ(H)U,φ(H0)F(\x\ίc\u\)\\

- \\F°φ(H(D))Vs(D)GΪ/2φ(H)(l-G°)Utφ(H0)F(\x\ίc\u\)\\

-\\F°φ(H(D))Vs(D)Gϊl2φ(H)G°U,φ(H0)F(\x\ίc\u\)\\

-]dSl \\Fξ$(H(D))V.-.i(D){l -FiD)WDVSιφ(H)Utφ(Ho)F(\x\^c\u\)\\

0

-Us1\\F°φ(H(D))Vs_Sl(D)WDFΊDF(\xD\>aι(n)\u\)

•VSiφ(H)U,φ(H0)F(\x\ίc\u\)\\

-ldsί\\Fξφ(H(D))Vt.gl(D)WDF?Vaιφ(H)Utφ(Ho)F(\x\^c\u\)\\. (3.6)
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The second and the fifth terms in the above inequality are respectively dominated
by

K\\F°{φ(H)-φ(H(D))}(l-Fn

0

D)\\ and \\GD

mφ{H){\ - G?)||.

Hence they are bounded by K(l + \u\)~Mδ by Theorem 3.1 (ii). The first term
of (3.6) is dominated by

\\Fξ{φ{H)-ΦWD))}\\\\PoVjKH)U,<KHo)F(\x\£c\u\)\\. (3.7)

Here a2(n)>2μai{n) and F°S Π F(\χ7\ >σ\u\],F%£ ff F(\y,\ >|α2(n)|u|)
γee(D) 1=1

F(\xD\ ^ ax (n) I u |), for some positive σ. Hence by Lemma 3.3 the first factor of (3.7) is
bounded by K(l + \u\)~δ while the second factor has K(l + \u\)~iM~1)δ bound by
hypothesis ( i/ t ) since

D\ £aM\u\) Π F (\yι\ >-^v~a2(n)\
1 1 \ 2M

and the constants a1

M_1ΞΞa1(n) and ajί_1 =((2M— l)/2M)a2(n) satisfy the con-
ditions of the hypothesis (H^). Therefore the first term of (3.6) has the required decay.
The fourth and the seventh terms of (3.6) are respectively dominated by

K || F°φ(H(D)) FS(Z))(1 - G?/2) || and }dsx \\ F$$(H(D)) Vs_Sl (D)(l - F\D) \\

and have similar estimates. We set

- s

(L- l )ε
C + L

and estimate only

||

for all /. This expression is dominated by

\\F(\yι\>a2(n)\u\)oxp(-^(s-sι)kAφ(H(D))Fιl (3.8)

where kt is the momentum conjugate to 3;̂  In (3.8) the support property of $ res-
tricts H{D) to H(D)^\b\, which in turn restricts \kf^\b\-HD by the posi-
tivity of (TD-^kf). Since HD^Σn, we have, %kΐ^$b\-Σn) which follows
if kf g (fei + y - 2XJ2. Therefore if we consider $(H(D)) as an operator of \k2

x

fibred in (H(D)-^kf) and make use of condition (3.5) and Proposition 1.2 (i)
we will have the required estimate because,
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The sixth term being dominated by

K\\GξUtφ(H0)F(\x\^c\u\)\\

is similarly estimated using Proposition 1.2 (i). Now the eighth term is dominated
by

]ds1\\$(H(D))WDF"1

DF(\xD\>ai(n)\u\)VSlΦ(H)Utφ(H0)F(\x\Sc\u\)\\
0

^{<fci Σ Σ \\kH(D))WDFlDF(\xD\>aι(n)\u\)F(\xc\^a1(k)\u\).
0 C.C^D

• Π F(\yv\>a2(k)\u\)VSιφ(H)Utφ(Ho)F(\x\ύc\u\)\\.
l'=ί

Now we note that if C i= D, then a pair y is external to C whenever it is external to D.
This fact and the condition (3.2) imply that

b(#(D)) ϊ^

for all (n + 1) ̂  /c ̂  Nx. Hence the right-hand side of (3.9) is dominated by

]dSl(l + \u\yδ Σ Σ W\xc\^aάk)\u\)Y\F(\yι\>a2(k)\u\).
0 C:#C = k i = l

(w+lJgΛgJV!

• FSl</.(//)t/^(/i0)F(|x| ^ φ | ) | | ύ KM{\ + \u\)~Mδ

by the hypothesis (H) and the observation that for each /

s-sJ

) a2{n)\u\) < F(\yt\ > a2(k)\u\\ (3.10)

for any ( n + l ) g f c g N 1 ; since a2{n)>μa1(n)^2(a1(k) +a2{k))>2a2(k) for all
(n + 1) g fc ̂  Nv Finally, the third term has the K(l + \u\)~Mδ bound by a similar
argument. Thus collecting these estimates we have,

+ ]ds1 \\F°φ-(H(D))Vs-Sl(D)WDF°VSiφ(H)Utφ(H0).F(\x\ίc\u\)\\,
0

which is the one similar to the term we started with. So we can repeat the splitting
as in (3.6) and continue doing this (L — 2) times using the facts that for all
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Ff ίF(\XD\ sM")l«l) Π F(\yt\

( = 1 V

ί ? ^ Π F{\xy\>σ\u\), σ > 0 ,
γee(D)

and the hypothesis (HJ to obtain the following estimates

-WDF°-2VSL^φ(H)Utφ(Ho)F(\x\Sc\u\)\\

^0(( l + | M | ) - M 5 ) + XM(1 + | « | ) - ( a - 1 ) ( L - 2 ) ( l + | M | ) - ( M - 1 ) 5 ^ K(l + \u\)'Mδ.

Hence the result. •

Proof of Theorem 3.4. We have, for any positive numbers, a, b, c, the following
inequality.

\\F(\x\>a\u\)Vsφ(H)Utφ(H0)F(\x\^c\u\)\\

S Σ Σ Hί'(l*l>fl|Ml)ί'(l*cl^fli(fc)l«l)ff
C:#C = k 1=1

φ(H)Utφ(H0)F(\x\^c\u\)\\. (3.11)

We now recall the definition of μ and set

and choose the constants a, b, c to satisfy a>Λ~ι(b + c-\-sJ— Σ2). Then clearly
there is an ε > 0, sufficiently small, so that we can choose the constants {ax (k), a2 (k)},
1 ^ k ̂  N1 as follows.

k = 0

T
k = 0

a2(n) = 2M J2MμΓ(μ1)
(W'-1)-"(ft + c)

+ iNι T
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for all 2 ^ n ^ (Nx - 1) and ^(N,) = 2M(b + c + ε), a^NJ = 0. With this choice we
note that F(\x\ > α|M|)F(|x| ^ ^(1)1^1) = 0. Then we apply Lemma 3.5 inductively
to the terms on the right-hand side of (3.11) starting with the term with #C = Nt and
obtain the stated estimate. Π

Now Proposition 1.4 (i) follows as a corollary of Theorem 3.4 when we take
M = l .
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