Communications in
Commun. Math. Phys. 99, 271-302 (1985) Mathematical
Physics

© Springer-Verlag 1985

Correlation Functions for the Heisenberg
XXZ-Antiferromagnet

A. G. Izergin'! and V. E. Korepin?

1 Leningrad University, SU-199164 Leningrad, USSR
2 Leningrad Department of V. A. Steklow Mathematical Institute, Fontanka 27,
SU-191011 Leningrad, USSR

Abstract. The general method for calculation of correlation functions in
integrable quantum models has been given in papers [1,2]. The correlation
function of the third components of local spins for the Heisenberg one-
dimensional X X Z-antiferromagnet is calculated in this paper. The answer is a
series which gives, in particular, an improved version of the usual perturbative
expansion in the anisotropy parameter. The remarkable property of the series
obtained is that the long-distance asymptotics of the correlator is given already
by the first term. The arguments are given in favour of the convergence of the
series.

1. Introduction

The present paper deals with the problem of calculation of correlation functions
for the Heisenberg X X Z-model. This model describes an interaction of spins 1/2
located at the sites of one-dimensional lattice, the spin vector at the m'™ site being

oM ={o™:j=1,2,3;m=1,2, .., m}.
Here ¢™ are Pauli matrices with usual commutation relations:
(6%, 6] =28, 0™ ;

M denotes the complete number of the sites. The Hamiltonian s of the model (in
the presence of constant magnetic field H directed along the third axis) is written in
the following form:

M M
H=— 3 (oo V4ot V4 A O V=) +H ¥ (1-o0f).
m=1 m=1
(1.1)

The periodical boundary conditions are supposed to be imposed (6™ * V= gV),
Parameter A describes the internal anisotropy of the model. After Bethe [3]
constructed eigenfunctions for the isotropic XX X-model (4= +1), the ground
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state and the spectrum of excitations of Hamiltonian (1.1) were found for every 4
[4,5,6]. At 4= 1 the ground state of 5 is the ferromagnetic state [0) (all spins up at
H >=0), and the model describes the one-dimensional ferromagnet. At 4<1 the
ground eigenstate |2) is of a more complicated structure having zero magneti-
zation ({Q|o"|Q> =0) at H=0. Thus the model describes the one-dimensional
antiferromagnet at 4 <1. At 4=0 one has the X X-model which corresponds to
free fermions.
In this paper zero-temperature equal-time correlation function {(s{"o{"):

(6§7057) =< Qo5"0512)/< 22> (1.2)

is calculated at the thermodynamical limit (M — c0). The answer is obtained for the
following values of 4 and H:

0<4<1; O0<H<2(1—4). (1.3)

(It should be mentioned that for the ferromagnetic case (4 = 1) the answer is trivial:
ey =(a’»?=1.) In region (1.3) of parameters ground state |2 is not the
ferromagnetic one; that makes the problem rather complicated. To solve it we use
the approach to calculation of equal-time correlation functions for integrable
models suggested in papers [1,2]. It is based on the quantum inverse scattering
method (QISM) [7] applied to the Heisenberg XXZ-model in paper [8]
(correlation functions for the X X Z-ferromagnet (4 = 1) in the frame of QISM were
discussed in [9]).

In papers [1, 2] the correlation function of currents for the nonrelativistic Bose-
gas with repulsive delta-function interaction was obtained. This is an example of
the completely integrable model with the R-matrix of the XXX-type. The
Heisenberg XX Z-model which is discussed in more detail in Sect. 2 is an example
of the model with the XXZ R-matrix [8]. The necessary generalization of the
approach to these models (including also the sine-Gordon model which will be
considered in a separate paper) is made in Sects. 3-5. In the rest of the paper these
results are used to calculate correlator (1.2), (1.3) at the thermodynamical limit. The
answer is the series which gives, in particular, an improved version of the usual
expansion in the anisotropy parameter around the point 4 =0 (which corresponds
to the X X-model, or free fermions). At 4 =0 the series is reduced to the first term
giving at H =0 the known answer [10, 11] for correlator (1.2). It is highly probable
that the series obtained is convergent within region (1.3) of parameters. The
remarkable property of the series is that the first term already gives the correct
asymptotics of correlator (1.2) and (1.3):

(6§705)) —<o§") <o§)> ~1/m*>  (m—o0)

(normalized meanvalue {¢{") = {a{"’); for H=0itis equal to zero). Thus for H=0
the asymptotics obtained is in agreement (for 0 < 4 < 1) with the result of papers
[12,13].

In this paper we calculate the zero-temperature correlation function. The
approach can be generalized to calculate the correlation function at finite
temperature which gives the temperature dependence of the correlation radius.
These results will be published later.
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2. Heisenberg XXZ-Antiferromagnet

Before the generalization of the results of papers [1, 2] to the X X Z-case let us state
the problem of calculation of equal-time correlation functions for the XXZ-
antiferromagnet in more detail. It is convenient to go from anisotropy parameter 4
in (1.1) to the “coupling constant” #:

A=cos2y (2.1
so that the region of parameter (1.3) is now
0<2y<n/2; O0ZH<4sin?y. 22

The value 2y=0 corresponds to the isotropic ferromagnet, and 2y =m/2 to the
X X-model (ie. to free fermions).

The simplest of the eigenstates of Hamiltonian # (1.1) [3,4] is the ferromag-
netic (all spins up) state [0):

=@ Dn EP1D=ID;  #10>=0. 23)

Other eigenstates |py(4y,...,4x)> (N=1,2,3,...) can be obtained by putting
“particles” with “rapidities” 44, ..., Ay into the ferromagnetic state. These rapidities
are complex numbers which should satisfy the following system of equations

lgf(ij):k]:[1 exp{i®(A, 4)} (=1,...,N);

kj
lo(A)=sinh (A —in)/sinh (4 +in); (24)
D(A, p)=iln[sinh(A — p + 2in)/sinh(A — pu—2in)].

The momentum and the energy of the state thus obtained are the sums of momenta
p(4;) and energies h(4;) of individual particles where functions p(4) and h(4) are

p(A)=ilnly(A)(—2n=p=2n for Im1=0,7/2), (2.5)

h(A)= —2sin2n(dp/dA)+2H

2.6
=2sin?2x[sinh(4+in) sinh (A —in)] "' +2H. 29

One can also define operator Q of the complete number of these particles as the
sum of operators q,, of the number of particles at the m™ site:

Q=5 4w Gu=d1—0t)  [Q#1=0. @

The pseudovacuum is the state without particles (Q|0)=0); the number of
particles at state py is equal to N. It should be emphasized that the ferromagnetic
state |0) (2.3) is not a ground state in case (2.2).

We will consider the X XZ-model at the thermodynamical limit (M — c0). At
this limit the values of A’s allowed by system (2.4) include elementary particles with
ImA=0orImA=n/2,as well as their bound states which were described in detail in
paper [6]. The ground state |Q2) of the Hamiltonian (which will be called the
physical vacuum) is obtained in case (2.2) by filling the ferromagnetic state |0) with
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elementary particles with ImA=7/2 (only these vacuum particles appear to be of
importance for calculation of correlators). We’ll write rapidities for vacuum
particles in the following form:

A=s+in/2; Ims=0. (2.8)

At M — o0 the number N of particles in physical vacuum |2 also goes to infinity,
the ratio N/M remaining finite. The values of rapidities for vacuum particles fill the
Fermi zone — A <s< A with the density o(s) [Mg(s)ds is equal to the number of
particles having rapidities between s and (s + ds)]. System (2.4) turns into the linear
integral equation for g(s)

2mo(s) — (Ro) (s) =u(s +in/2), 2.9

where operator K acts as follows:
A
Ro)(9)= _fA K(s, ye(t)dt . (2.10)

Functions K(4, 1) and u(A) are
K(4, w)=K(@A—p)=0P(4, p)/0A
=sindn[sinh(1— pu+ 2in) sinh(A—pu—2in)]~*;
u(A)=dp/dA=i0lnl,(1)/0A
= —sin2y[sinh(A +in) sinh(A—in)] ~*.

Notice that at 0<2y<mn/2 (2.2) functions K(s,t) and u(s+in/2) are positive
(Ims=Imt=0). “Fermi rapidity” 4> 0 is uniquely defined by the requirement of
the minimization of vacuum energy E, [14, 6]:

@.11)

(2.12)

E M= | h(s+in/2)a(s)ds: (2.13)
—A

at a weak magnetic field 4 is given by:
A=[(r—2n)/7] In[(8# sin2n)/(x —2n)H)] (H—0). (2.14)

It should be also noted that at the thermodynamical limit one has
A4
0<N/M= | o(s)ds<1/2. (2.15)
-4

As A=o00 at H=0, one can easily solve equation for g(s):
o(s)={2(n—2n)cosh[ms/(n—2m)]} ~'; N/M=1/2
(H=0, A=00). (2.16)
So we have described the ground state of # (1.1) in region (2.2).
Turn now to correlator {(a{"s{"’> (1.2) [due to the translation invariance
correlator (a{"oP> depends on (m—n) only and is easily reduced to (1.2)]. It is

convenient to express it in terms of correlator <q,,q; > of local operators of number
of particles q,,,q, given by (2.7):

(o§08)) =4(q,9,> —4{q;> +1. 2.17)
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These quantities are well-known at m=1, 2 (see, e.g., [15])

@ =@y =Ca = o)ds:

@y =1-2a,y; <o =1 2.18)

1 10 (E)\.
9291 =G+ 19m) = — 2 +4q,> — Zﬁ(ﬁ) ;
(2.19)

o (E,
(0 =or o= - L (B} (a=costn).

Here E, is vacuum energy (2.13).

To calculate the correlator at m = 3 we apply the approach of papers [1,2]. To
do this one introduces operator Q,(m) of the number of particles at the first m sites
of the lattice:

Ql(m):é1 q;- (2.20)

This operator is quite analogous to operator Q, of papers [1,2] [see (1.9) in [17].
Correlator {q,q;> is expressed in terms of normalized meanvalues of this
operator:

4,.9;>=DXQi(m)>/2=(D/2) KQIQImM)IQY/<LI2)) (mz3), (2.21)

where D'® is the second derivative operator on the lattice and acts on functions
f(m) (m-integer) as follows

(DPf) (m)=f(m)+f(m—2)—2f (m—1). 2.22)
Turn now to correlator (1.2) which is naturally represented in the following form:
(o§76§7> = (08" (o8) + L5l ) (2.23)

The first term at the right hand side is equal [see (2.18)] to
A 2
GG OEIG I <1 -2 Q(S)dS) ; (2.24)
-4

it is simply the square of the mean magnetization. The nontrivial part of the
correlator can be expressed by means of (2.17), (2.21) as follows:

Lo§o Dy =2DD(Q3(m)> — 4 <—3: g(s)ds>2 . (2.25)

So the problem of calculation of the correlator (1.2) is reduced to calculation of the
meanvalue of operator Q3(m) (2.20). To do this we introduce the two-site
generalized model, as is explained in detail in paper [ 1]. The difference is that now
one has to consider the model with the XXZ R-matrix. The necessary general-
ization is made in Sects. 3-5.
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3. The Two-Site Generalized XXZ-Model

The main object in QISM (see, for example, [7]) is the monodromy matrix T'(2) of
the auxiliary linear problem. In our case it is a 2 x 2 matrix depending on complex
spectral parameter A:

(4G); B
m‘(Cw; D(A))' G1)

The matrix elements of T(4) do not commute — they are “quantum operators.”
Their commutation relations are given by

RA,MTAHRTW) =TS TR, 1), (3.2
where R(4, u) is the X XZ-model R-matrix:
fwd) 0 0 0

|0 ewny 1 0
RALW=| | L gwn o | (3.3)

0 0 0 flw4)
Here functions f and g are

_ sinh(A—p+2in) _ isin2y
f(/lnu)_ smh(,l—-,u) s g( nu)'— Slnh(/l—ﬂ),

n is a “coupling constant.”
For the Heisenberg X X Z-model the monodromy matrix (3.1) is constructed as
a matrix product of local L-operators at the sites of the lattice

TH()') = LM(/DLM -1 ... Ll(}')

[8]. To calculate correlator (1.2), however, it is sufficient to consider monodromy
matrices with more simple internal structure. To do this let us introduce the two-
site generalized model. It is a model with a monodromy matrix T'(1), which is a
matrix product of two monodromy matrices:

(3.4)

T() =TT (); 6.9
o= (39 20 =12, 6.

The matrix T;(A) can be associated with the first site and T,(4) with the second site
of a lattice with two sites. Matrix elements of T;(4) are quantum operators which
commute at different sites of the lattice. Operators at the same site commute
according to the rule (3.2). The monodromy matrix T;(4) (i=1, 2) has the vacuum
|0>; — the state in quantum space with the following properties:

CMI0>;=0;  A(D)I0>;=a(D)I0);;

3.7
DAAI0Y=di(DI0;;  BDI0)+0. 3.7

The state [0>=|0>,®|0), is the vacuum for T(4) (3.5), (3.1):
CA0Y=0;  ADOY=a@d0>;  DAI0>=d(ADI0); o)

a(A)=a,(Aay(A);  d(A)=d;(D)dx(4).
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Here a,(4), d,(2) are c-number functions which are defined by the choice of concrete
models. The crucial point is that there exist monodromy matrices T;(4) for
arbitrary functions a;(4), d;(4) [16]. It is convenient to use the following notations:

(D) =a,(D/d(2);  m(A)=a,(A)/d5(2);
r(A)=a(A)/d(2) = (A)m(2) .

Different functions I(A) and m(1) correspond to essentially different models.
Function I(4) will be the main free functional parameter in the two-site model. It
occurs that the dependence of correlation functions on I(4) is rather simple and can
be explicitly evaluated. It should be noted that for the Heisenberg X XZ-model
functions r(1), I(4), m(4) are periodical functions of A with the period equal to ir
[see (3.21)]; further it will be sufficient to consider them as arbitrary periodical
functions with this period.

The trace of the monodromy matrix t(4)=A(4)+ D(A) generates the Hamil-
tonians of completely integrable systems [see (3.20)]. Eigenfunctions of t(4) are of
the form

(3.9)

(s ) = T B0, 3.10)
where
B(2)=B(\)/d(3). (3.11)

Here all the 4; are different [17] and satisfy the system of transcendental equations
(s.te)

rjklf[l(fjk/ﬁcj)=1 (j=1,...,N); 3.12)

k*j

fu=f(4;,4) and r;=r(4;). The s.t.e. may be put into the form ¢;=0(mod2x),
where

N
@;=ilnr;+ Z D (3.13)
i3

Function @, = ®(4;, 4,) =iIn(f;/f;;) here is the same as in (2.4). The corresponding
eigenvalue of (1) is

T(A)le(ll, seey AN)> = tN(’la /11’ seey AN)W)N(AD sery AN)> 5
N N
ty=a(4) JI=Il (@4, 4)+d(3) ,-Ul fG3 7).

The dual vacuum (0|=,{0|® 0] satisfies relations
0IB(A)=0;  <0]4(1)=a(4)<0|;  <0|D(4)=d(4)<0].
We put also <0|0) =,{0|0>;=1. The dual state

WAy, - Ay)l = 0] ,f[l C@4);  CH=C)/d(2) (3.15)

(3.14)
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is an eigenstate of 7(4); (yylt(4) =ty{py| with the same eigenvalue (3.14) if the s.t.e.
(3.12) is valid. The “norm” is equal to [18]:

oy ooy ANy, -y Ay)D = (sin2m)Y <j$k f;k) dety(¢), (3.16)

where the N x N-matrix ¢’ is defined as follows:
N
(p;k=a(pj/3).k=5jk<zl+ l=21 K]l> _K.Ik' (3.17)

Here z;=2z(4;); function z(4) is equal to
z(A)=idInr(A)/0A. (3.18)

Function K, = K(4;, 44) = 09(4;, 4,)/04; was given in (2.11). Notice that eigenfunc-
tions corresponding to different sets of A; are orthogonal due to different
eigenvalues (3.14).

The operators of the number of particles will play an important role. Operators
Q; of the number of particles at the i™ site of the lattice (i=1,2) and Q of the
complete number of particles are defined as follows:

Q: [T B30y =n [T BG)I0> (=1,2);

O [T CGoQ=n<0l [T € (=1,2); (3.19)
Q=0Q,+Q:;;  QOY=Q/0)=0; [Qx(A]=0.

Here A, are arbitrary and are not supposed to satisfy s.t.e. (3.12).

Let us discuss the connection of the two-site model with the Heisenberg
XXZ-model. The monodromy matrix Tyz(4) of this model is constructed in a
standard way by means of local L-operators. Operators 4, B, C, D in (3.1) and (3.6)
are functions of spins ¢™ and act in the tensor product of local spin spaces. The
Hamiltonian s (1.1) is expressed in terms of t5(1) = A(1)+ D(1) by means of the
trace identities [8]:

H=2i sin2n5%lnr,,(u)l,,= —ip +2M cos2n+2HQ, (3.20)

so that A =cos2# is indeed the anisotropy parameter in #. All the formulae of the
generalized two-site model are valid also for the Heisenberg X X Z-model provided
that one considers T;(4) in (3.5) as the monodromy matrix from the first site to the
m™ site of the lattice, and T,(4) — as the monodromy matrix from the (m+ 1) to the
M'" site. Functions a(4), d(4), r(4), I(A), and m(A) (3.9) in the Heisenberg model are
equal to
a(A)=ag'(2);  d(A)=dg(2);

rA)=I4);  IA)=KRD; mA)=1L""@A.

Here aq(4) =sinh(A—ix), dy(4) =sinh(4 +in) and function

lo(A)=ao(4)/do(4)

(3.21)
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is just the same as given in (2.4). Function z(1) (3.18) is expressed in terms of u(4)
(2.12):

2(A) =0 In (P4(4)/02 = Mu(2) . (3.22)

Operators Q and Q, (3.19) turn into operators Q (2.7) and Q,(m) (2.20) of the
Heisenberg model. The pseudovacuum |0}, (3.7) and (3.8) corresponds to the
ferromagnetic state (2.3), and the dual pseudovacuum <0| is hermitian conjugated
toit: {0|=[0>". S.t.e. (3.12) goes to system (2.4). State vectors (3.10), (3.15) are thus
eigenvectors of # (1.1). Operators B(4) and C(4) in (3.1) for the Heisenberg model
have the involution C(1)= — B™*(4*); so (3.16) really gives the norm of the wave
function [18].

We are interested in correlator (1.2) which is expressed in terms of the vacuum
mean value of operator Q? (2.25). This operator is defined also in the two-site
model (3.19) where its matrix elements are easier to calculate due to the arbitrary
functional parameter I(4) (3.9). Below we study the mean value {yy|Q?|yy> in the
two-site model (Sects. 4 and 5) at first. The proofs of the majority of the results
obtained in these sections are similar to those for the X X X-case [1, 2], so we don’t
give the details of the proofs. The details of the proofs which are different from the
X X X-case are given in Appendices 1 and 2.

3. The Mean Value of Operator Q3 and Irreducible Parts

It is convenient to begin with the “generating operator” exp{«Q,}, « being an
arbitrary complex number (operator Q7 is obtained by double differentiation with
respect to o at a=0). The starting point is the following formula for matrix
elements of this operator which is valid in the two-site model, which is proved in

RYE
N N
v= <0l ,-1=_[1 C(45) exp{xQ, } 1 B(4)I0>

= X > exp{an}
@2 =(BHo0p 1 =3Duug

<01 C, () I B, (410> <OILT C,(4) II B,(4ml0>
: (1:[ m(fﬁ‘)) (l;[ 10 ) (IIE Y ) (II_III [, /1?)) : 4.1)

Here the sum is taken over all the partitions of the set {4};j=1, ..., N} into two

disjoint subsets {45} and {A5} and over similar partitions of the set {4°}. These

partitions are independent except that card{Af}=card{A‘}=n,; card{AZ

=card {A§} =n, =N —n,. Product [] denotes the product over all the A € {4;}, and

I

thus contains n, factors. Product [] denotes double product over all A€ {4,} and
LI

over all A€ {4} and contains n,n, factors. Notice that values of A, A% in (4.1) can

be quite arbitrary; we suppose only that A%+ A7 (j+k) and A§ + A7 (j+k) (see [17]).

Operators B and € are defined in (3.11) and (3.15).
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Formula (4.1) expresses IM% in terms of “scalar products”
OITCA)TIBLA)0> (i=1,2).

These scalar products were investigated in detail in paper [18]. Their properties
necessary to prove the following results are given in Appendix 1. The independent
variables which scalar products depend on are also discussed in detail there [see
(A.7)]. One then concludes that M% depends on 6N independent complex

MEMNE My =M%, (P (b (P (s 1)), (42)

The variables [?© and m$ € introduced here are the values of arbitrary functions
I(4) and m(2) (3.9) at points 13> [compare with (A.6)]:

BOIGRY;  mpe=m). “3)

Due to commutation relations (3.2): [€(4), €(w)]=[B(4), B(x)] =0. Hence IM% is a
symmetric function with respect to replacement of triples

(5, IS, m§)yo (A5, IE, mf)

and with respect to (47, I, m})—(47, It, mf). The main property of My is that it has
first-order poles at AS—A2, the residue being expressed in terms of My _,. If

15— A2— )y and all the other variables in (4.2) are fixed one has for (4.1) (other
possibilities are easily restored from the symmetry):

N-1
Mg =005, 2 Ui (T )
‘M4 - 1({'{;?}N— 1 {l?}zv- 15 {rjc}N— 15 {ijB}N— 1 {mf}N— 1 {mf}N—i)
N-1
+o05 RS-t TT 1558

N 1A 6 - 1 I 1 v 1 T Yy — 1 (] Sy 1)
4.4)
Here f§;%=f(Ay, A$'®) and modification of [, m is defined similar to (A.9)

I8 <15 P =mE PSS 43)

Formula (4.4) is proved using Egs. (4.1) and (A.8).

To get the mean value of operator exp{aQ,} with respect to eigenfunctions
(3.10) and (3.15) two steps have to be taken.

(i) The first step is to take the limit Af—i}—4; (j=1,2,...,N; all 4; being
different). At the physically interesting models, variables I;, m; (4.3) are values of
smooth functions I(1) and m(2) [see, e.g. (3.21)]. Thus the residue at the pole in (4.4)
is equal to zero and the corresponding limit is finite. The dependence of matrix
element (4.1) on vacuum eigenvalues at points 4; is then represented in terms of

variables I;, m;, )
L=ly); mi=m@A) (=1,...,N), 4.6)

and of variables x;, y;,
x;=x(A);  y;=y@y) (=1,...,N), 4.7)
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where we denote:

x(A)=i0Inl(A)/04; y(A)=i0lnm(1)/04. 4.8)
So in this case IM,, depends on SN complex variables
Mlavllf=l?EMaIz\l({}‘}Na 3w, (Whns By {m}w) 4.9)

[it is to be compared with (A.10)]. The dependence of My on each x;, y; is linear. As
variables z; (3.18) are equal to z;=x;+y;, they are not independent variables.
(ii) To make the second step one has to impose s.t.e. (3.12) on 4;in (4.9). After
this is done one can express variables m; in terms of other variables due to (3.9).
Thus the mean value (pylexp{aQ,}yy> is the function of 4N complex variables
[cf. with (A.12)]:
Con({An)lexp{aQ; Hyn({A}n)>

=M A (X (Vv A1)
=My <{'1}N’ {3 (V3w (s {mj: lj— ! kl;Ij (fk,/f]k)} ) . (4.10)

The dependence of .4} on each x;, y; is linear; using (4.4) one has:

0M3/0xy = (sin2n) exp {2} (”_ff fNjij)

Ia\;—l({’lj}N—ls{fj}N—la{yj}N—la{rj}N—l), (4.11)
ooy, =Gin2n)( TT fuf )
My (A1 X - Tidn- 1 kv -1)- (4.12)

At the right-hand side here [ is modified to [ according to the rule (4.5) and the
modification of x, y to %, j is made similar to (A.14):

£1=XJ+KJN; j;j=y]+KjN (j=1,...,N-1), (4.13)

where K ;y=K(4;, Ay) is defined in (2.11).

Formulae (4.11) and (4.12) are of importance because they give an opportunity
to restore meanvalue .#y (4.10) in terms of values of &, |, -, o =1, ...,n; n<N)
[2], which is the main result of the analysis of the mean value in the two-site model.
To do this one has to introduce irreducible parts. Irreducible part I% of mean value
{wylexp{aQ;}Hyyy (4.10) is defined as follows:

LAy, {hw)=(sin2n) ™" <11;[k J'jk>'1ﬂﬁlxj=y,~=o (=1,eN)> (4.14)

the factor before .#% being introduced for convenience. Mean values of powers of
operator Q, can be obtained by differentiation of the mean value (4.10):

<ynlQilww) =" Cwnlexp {aQ  Hww /0 = - (4.15)
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The irreducible part of {(yy|Q}lyy> is IP:
IR Ay, {w) = 0"/ 00" = - (4.16)

It follows from (3.16)3.18) that the irreducible parts of the mean value of the unit
operator are rather simple:

I§$)=50N. (4.17)
The irreducible parts I{}’ are equal to zero as will be shown in Appendix 2:
IP=0 (N=0). (4.18)

The irreducible parts I?) of the N-particle mean values {yy|Q?|yy) are of great
interest. Further we denote it simply IP’=1I,, suppressing the superscript.
Irreducible parts I do not vanish for N =2.

It should be mentioned that it is possible to give the definition of irreducible
parts Iy directly in the Heisenberg X X Z-model as it was done for nonrelativistic
Bose-gasin [1,2]. At N small it is possible to calculate I directly from definitions
(4.14) and (4.10) using commutation relations (3.2) (it is easier, however, to use for
this purpose form factors, see Appendix 2). One gets after some algebra:

I,=1,=0; (4.19)
({41, A2}, {l, b)) = 5 (Ag, A2) LA™ H(A2) — 1]
+ 3 (A A) (A1) =115
2 sinh(4,,+2in)
sinh?,, sinh(4,,— 2ix)

(4.20)

LYy, 1a)=—

(we denote 43 =4;,—4,) and also

13({)'19 127 ’13}7 {lla 129 13})
=2, A3(Ap,s Apyy Ap,) [I(Ap )™ (Ap,) — 11 (4.21)
The sum here is taken over all permutations P of numbers 1,2, 3;
4sindn sinh(4,,+2in)
sinh?,, sinh(4,,—2in)

1 (sinhi3 , sinhas,
sinh(A3, +2in) sinh(4,5 +2in) \sinhA;, = sinhi;,

dg(lp '12a /13)=

>. (4.22)

To investigate general properties of I it is necessary to use the algebraic
structure of QISM (see Appendix 2). As a result, Iy can be represented in the
following form:

0=nz[N/2] n n
I w {hw) = 2 [TIA)TTIA-)
{A={A+}u{d-}u{do} (+) (=)

“A§{As {4} {Aotn—20) - (4.23)
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The sum here is taken over all the partitions of the set {1}y into three disjoint
subsets:

card{1,},=card{A_},=n;
Cal‘d{ﬂ.o}N_z,,=N—2n;
0=n=[N/2].

Coefficients o/F are the Fourier coefficients of the irreducible part I. They do not

depend on [; but only on 4; being a rational functions of exp(4). Fourier coefficients

depend on the R-matrix only and do not depend on the concrete model. All the
dependence on concrete models enters through vacuum values /() and is written
in (4.23) explicitly. The irreducible part has also the following important property

[1]:
Iy {li=h= ... =ly=1}y)=0, (4.24)
which permits to express coefficient o7y as a linear function of coefficients o/j
(1=n<[N/2]) [see, e.g., (4.20) and (4.21)]. Other properties of Iy proved in
Appendix 2 are the following ones.
(i) The behavior in coupling constant #:
Iy~sly~n""? (—0),
Iy~ sy~ A(m/2) =" "2 (n-mn/2), (4.25)
Iy~ y~{(m/2)=2m}" "2 (n—>n/4).
(i) «/y are symmetric functions of A{*), as well as symmetric functions of 4§~
and A{” (separately).
(iii) Under the replacement of {1, }«{A_} one has

({23, {43, o) = [A({A-}, {44} {40 D]
M{G({M},{l—},{/lo})=<(+)r!_)[f(/h,/l-)/f(l-,h)])
( I1 f_l(lo,/1+)><(0)1_(I_)f_1(/1—,lo)>

(0),(+)
“an({A+ 3, 1A=}, {4o});
ay({A+}, {4-}, {AoD) =an({A-}, {44}, {Ao}) - (4.26)

5. The Representation of the Mean Value of Operator Q3
in Terms of Irreducible Parts

This representation is the main result of the analysis of the mean value in the two-
site generalized model. Relations (4.11) and (4.12) being established, the proofis the
same as in the XX X-case [2] and we only give the result.

Consider the normalized mean value of operator Q% with respect to
eigenfunctions yy (3.10) and (3.15):

QD y=<pn{ANIQE YN/ wn({ANlpn({A}n)>
= QDM {Aw, (3}, Wi (D) (5.1)
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We have written the independent variables explicitly [see (3.16) and (4.10)]. The
following representation is valid for mean value (5.1):

N
@Dy=@DP+ T L. (52)

Define now the right-hand side of this formula.
(i) Quantity (Q?> corresponds to the contribution of the irreducible part I’

@.17): .
2\(0) _
<Q1>N detN((p’) {A}N={)~xz}n,‘u{}vy}ny

n; det, (¢}) det, (¢7). (5-3)

Here dety(¢’) is the determinant of the N x N-matrix ¢’ (3.17). The sum is taken
over all the partitions of set {4}y into two disjoint subsets {A*}, and {4’}, ,so that
n.+n,=N. Jacobians det, (¢;) and det, (¢;) are the determinants of the n, x n,-
matrix ¢} and of the n, x n,-matrix ¢}, which are defined similar to (3.17):

(9) ke = 0 ik x(ll;c) + i K(/I;, lf):l - K(ﬂ;, %)
L =1 (5.4)

A5, A A e {750k, 1=1,2,..,n);

(@w=0x| YA+ Zy K(&, )vzy):l —K(2, A)
- =1 (5.5)

(A A A e{lY 50,k 1=1,2, ...,m).

So the first term at the right-hand side of (5.2) depends on variables x; and y; only
and does not depend on /;. It should be emphasized that

2(AH=x(1)+y(4), (5.6)

so that dety(¢") depends on the sum z; of x; and y; only.
(ii) Quantities I,y are defined in a more complicated way:

L, v=[dety(e)]™" = det,, (@I, v({A} {47) . (5.7)

{An = {AT}n,V{A%n,

The sum is taken over all the partitions of set {4}y into two disjoint subsets,
namely, the subset {1}, of “vacuum” rapidities and subset {A'},; n,+n;=N.
Jacobian det, (¢;) is the determinant of n, x n,-matrix ¢, which is defined similar
to (3.17):

(@)= [z(ﬂ';)+ X K@, z;’)] — K, 4
(A2 1€ A%sin b 1=1,2,...,m,).

Here z(A) is given by (5.6).
“Dressed” irreducible parts I at (5.6) are defined as follows:

(5.8)

2n+no=ny

I v (A7) = > ({4 1 {47 3 {A%00)

AT ={A1}n0{A 71U {2%n,

B0 e( LD 6D). 69
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The sum here is taken as in (4.23) (where one has to change N—n;). So the
difference between Ig, y and I, (4.23)is in dressing factor E, , , defined as follows:

Ep ({27 1 {47 3 {2%),) = [det,, ()]
det, (¢5) det,, (¢})

A = {4 0 (W),

TG BT DS GA0 G} (610

The sum is over all the partitions of {1}, into {4}, and {4,},, (n.+n,=n,).
Jacobians det, (¢}) and det, (¢;) are defined in (5.4) and (5.5). The dependence on
x;, y; enters the Jacobians; det, (¢) depends on x;; det, (¢;) depends on y;;
dety(¢) and det, (¢;) depends on z;=x;+y;. The dependence on [; is written
explicitly in I¢ (5.9). We have defined the right-hand side of (5.2). The behavior of
Iy y in the coupling constant # is the same as the behavior of I, (4.23) [see (4.25)]:

Ly~ @A) —ny* ™2 (1-n/4)(K22). (5-11)

It should be emphasized that the results of Sects. 3-5 are valid for any
integrable model with the XXZ R-matrix which can be solved by means of the
algebraic Bethe Ansatz of QISM. In the rest of the paper formula (5.2) is used to
calculate correlator (1.2) for the Heisenberg one-dimensional ferromagnet.

6. The Thermodynamical Limit and Dressing Equations

The transition to the Heisenberg X X Z-model will be made in two steps. The first
step is taken in this section. We make arbitrary functions (1) (3.9) and z(1) (3.18) of
the two-site model equal to their values (3.21) and (3.22) in the Heisenberg model,

r()=14(2);  Io(A)=sinh(A—in)/sinh(A+in); (6.1)
zA)=Mu(®); u(D)=idlnly(A)/04 [see (2.12)]. (6.2)

Functions I(1) (3.9) and x(4) (4.8) remain arbitrary. Due to (5.6) function y(1) (4.8)is
now expressed in terms of x(4):

(A =Mu(d)—x(4), (6.3)
variables y; being thus linear functions of variables (4.7):

S.t.e. (3.12) of this model is the same as s.t.e. (2.4) of the Heisenberg model, the
thermodynamical limit (M — o) of s.t.e. being also the same.

Turn now to Eq. (5.1) and take for |y there the state which corresponds to the
physical vacuum |Q) in the Heisenberg model. At the thermodynamical limit this
state is described by vacuum particle density o(s) (2.9) [vacuum rapidities have
property ImA=m/2, and we use notation (2.8) putting ReA=s]. Arbitrary function
x(4) is supposed to be fixed and finite at M — co. Then function y(1) (6.3) goes to
infinity at M — 0.
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Consider first the thermodynamical limit of term (Q?>{ in (5.2) which is given
by (5.3). It is convenient to consider quantity Ey [2]:
En(e, [x()]) =[dety(¢)] ™"
exp {an,} det, (¢7) det, (¢7). (6.5)

(AN = {4, V(W)

Here o is supposed to be pure imaginary. To calculate the limit of each term in (6.5)
one has to calculate the ratio det, (¢})dety (¢ in this limit (M —»o0, N— o0,
n,-fixed, n,=N —n,— c0).

The thermodynamical limit of dety(¢’) giving the norm of wave function (3.16)
is rather simple [2, 19]:

dety(¢) =(det(1 — K/2m)) ( ﬁl [2nMg(s,)]> : (6.6)

Here s; are real parts of rapidities entering dety(¢"); integral linear operator 8 is
defined in (2.10) and (2.11). Using a similar representation for det, (¢}) and
properties of operator K given in Appendix 3 one calculates the determinant ratio:

lim[det, (¢})/dety(¢")]
—exp { L i x <s + %) ds} TT [oAs)/2eMe(s)].  (67)

2n j=1

The weight w 4(s) here is given by
A
w 4(s)=exp { —(1/27) | K(s, t)dt} ) (6.8)
-4

For coupling constant # being in region (2.2), one has the following important
property:

0<w,() <0 ,A)<1; a)w=exp{— %} <0<211§ g) 6.9)

The limit of determinant ratio (6.7) having been calculated, one can prove the
following statement. The limit E(o, [x(l)])zléim Ex(a, [x(4)]) does exist and is
equal to the sum of the limits of individual terms at the right-hand side of (6.5).
Function E satisfies the following properties:

2mdE(ar, [x(4)])/0x (1)
= — E(, [x(4)]) +exp{a} E(, [x(4) + K(4, w]) (6.10)
(ImAi=Imp=mn/2);

|E(o, [xX(DDI=1  (Imi=m/2) (6.11)

(recall that we consider o to be pure imaginary).

The proof of this statement is made in complete analogy with the proof for
Bose-gas given in paper [2]. ‘

Linear Eq. (6.10) is solved by Fourier transformation. Putting

E (oc, [x (S + %):l) = exp{ :IlA x (t + %) P(t, oc)dt} , (6.12)



Heisenberg Antiferromagnet 287

one has that (6.10) and (6.11) are equivalent to the following integral nonlinear
equation and inequality for P(t,o):

2nP(t, o) =exp {cx + f K(t, s)P(s, oc)ds} —1;
-4

ReP(t,0)<0. (6.13)

It is proved in Appendix 4 that for o pure imaginary and 0<2y<n/2 (2.2) the
solution of system (6.13) does exist and this solution is unique.

The thermodynamical limit {Q?%>© of (Q?>{’ is obtained from E(a, [x(4)] by
taking the second derivative in « at «=0. The answer is given in (6.24). So the
thermodynamical limit of the first term at the right-hand side of (5.2) is calculated.

Other terms I, y [(5.7) and (5.11)] at this limit (N — oo, n,-fixed) are calculated
in a similar way. The limiting determinant ratio at (5.7) is obtained similarly to
6.7):

det, (¢,)/dety(¢)— jlf[1 [2nMo(2))]™ @ 4(4)) (6.14)
(N—o0; n,=N—n;—0; n,-fixed).

To calculate the limit of dressed irreducible part I4(5.9) one has to calculate the

limiting dressing factor E,=limE, , (5.10). This is to be done essentially in the

same way as the calculatlon of the limit of E v (6.5). The limiting function E, does
exist and is defined by the following properties:

|E,({A" }s {27 1o XD S 1(ImA=17/2;0 <20 S 7/2) ;
E,=1 at x=0. (6.15)

2n0E,/0x(u)= —E,
+ <Jlf[1 FO5Hmf 7w A0 l{)f_l(iﬂu)) E,([x(2)+K(4, w)]1) (6.16)

(ImA=Imu=m/2).

It is essential that the modulus of the product of the f~factors at the right-hand side
is equal to one. Putting

E({mm G [x<t+ %)D
=exp{fA <r+ ) Pyt (A} (A }n)dz} 6.1

one obtains that Eq. (6.16) is equivalent to the following nonlinear “dressing”
equation for P,
27P,(t) = (J]f[l fG5,0f 7@ sH s f sy, t)> exp {_jf; K(t, s)P,,(s)ds} —1.
(6.18)
Inequality (6.15) turns into the following inequality for P,:
ReP,=<0. (6.19)
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For 0<2n< /2 (2.2) the solution of system (6.18) and (6.19) does exist and is
unique. It is proved in Appendix 4, where properties of functions P, are discussed
in detail. Of greatest importance for us are the following properties which can be
easily proved using Eqs. (A.38) and (A.39). At ¢ finite and 25 +7/2, Re P, =0 if and
only if {A*},={A"}, (ie. sets {A*}, and {4}, are the same):

ReP,(t, {A}n {A})=0. (6.20)

In any other case one has for 2y <n/2:
ReP,(t, {A"},, {A7}) <0 (e £ oo; {47}, +{17},). (6.21)

The behavior at t— + oo is as follows:
P,(t,{A*},, {A7},)—0 (at t— + 00 and A fixed). (6.22)

Equation (6.14) and (6.17) permit us to calculate the thermodynamical limit
I, =limI, y (n,-fixed) [the answer is given in (6.26)].

Let us give now the answer for the thermodynamical limit of the meanvalue
(5.1) and (5.2) for the two-site model considered in this section [see (6.1)}6.3)]. At
this limit state |y at (5.1) goes to |2) which corresponds to the physical vacuum
in the Heisenberg model. Using results obtained above one has:

Q|Q? <
< <|§?|512|§2> _ <Q§>(o>+xz=:2 Iy. (6.23)

Here <Q?>© is the thermodynamical limit of (Q?>{ in (5.2):

Qb=

4 in 2 4 in
Q0= ( _j x (t + 7) P’(t)dt> + _I X (t + 7) P’(t)dt, (6.24)
where we denote
P'(t)=0P(t, ®)/00),=o;  P"(t)=0P(t,0)/00’|,, (6.25)

and function P(t, «) is defined by (6.13).
Quantities Iy are contributions of K-particle limiting irreducible parts I%:

1 4 (K dsjm,(s)) . i _
Iy ] (]—[ —27;—>I‘}(({/1}K) (zlj—sj+ 5 ,Imsj—O). (6.26)

K! “4\j=1

A
Weight w 4(s)=exp {—(1/27z) | K(s, t)dt} is defined in (6.8). Irreducible parts I%
—A

are obtained from I y (5.9) by changing dressing factors E, , to E, defined in
(6.17) and (6.19): .

{4 = > AT} A7 b {A% k- 20)
(=4 0 lT 1A% -2

“E,({A7 1 {27 1 [X(A)]) (Jlf[1 (Chol 1(/1,7)> : (6.27)

Here ofy are Fourier coefficients of the irreducible part [see (4.19)-(4.23)]. It
should be emphasized that the behavior of I in coupling constant # is just the
same as of I y [see (5.11)].
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7. Correlation Function {(6{"a{") for the Heisenberg XX Z-Antiferromagnet

The normalized vacuum mean value of operator Q?(m) (2.20) is obtained from
(6.23)+6.27) by substituting for arbitrary functions /(1) (3.9) and x(4) (4.8) their
values in the Heisenberg model (3.21) [cf. with (6.1) and (6.2)]:
AN)=IFA); 1ly(A)=cosh(s—in)/cosh(s+in), (7.1)
x(A)=imdInly(1)/0A=mu(s+in/2) (A=s+in/2). (7.2)
The function u(s +in/2) >0 is given by (2.12). It is to be remembered that all the
rapidities A here are the vacuum ones, so we denote A =5+ in/2; Ims=0 [see (2.8)].
Vacuum rapidities fill the Fermi zone —A<s=<A, “Fermi rapidity” A being

defined by magnetic field H [see (2.13) and (2.14)]; A— oo at H—0. Quantities
{Q?%>® and I in (6.23) are thus functions of the “distance” m and we write for them

<Qi(m)>© and Ii(m):
{Qi(m)) =<Q3(m)> + ng I(m). (7.3)
Function P'(t) in (6.24) satisfies the following linear integral equation which is

readily obtained from (6.13) and (6.25): 2zP'(t)— (KP") (t)=1. Using Eq. (2.9) for
o(s) one has from (6.24) and (7.2):

(Qi(m)> P =m? (_TA Q(s)ds>2 +m _/fA u(s +in/2)P"(s)ds . (7.4)

Contributions I'x(m) of dressed irreducible parts are given by (6.26) with /(1) and
x(4) defined in (7.1) and (7.2).

Turn now to correlator (1.2) and (1.3) which is represented in the following
form (2.23) and (2.24):

PPy = (1 -2 _fA Q(S)dS>2 + &y . (7.5)

To obtain the nontrivial part of this correlator one has to apply the derivative D®
(2.22) to <Q%(m)) (7.3) [see (2.25)]. The differentiation of (Q?(m)>® is easily done
due to relations D@m=0; D®m?=2. Thus one gets:

oYy = 3 Gylm), 1)
where [see (2.25), (6.26), and (7.3)]

Gum=20r0m= 2 § (122450 portims . @0

Loa\y=1

Irreducible part I%(m; {A}) is just I%({A}) (6.27), where the substitution (7.1) and
(7.2) is made; one thus has

DPIg(m; {A}x) = 2 A3 (20 {A%}k~24)

oxpm=2m(is* o (57103 (11620067720 )

j=

-[eXp{ﬂn({S+}m {S'}n)}<jI:Tl lo(A)lo 1@{))—1] - (7139
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The sum here is taken as explained after (4.23) and (5.9) but the term with n=0 is
omitted as it is annihilated by the derivative. Fourier coefficients /% are defined by
(4.23); for K=2,3 they are given in (4.20) and (4.22). We introduce also the
followith notation:

A

({8 3 (s )= | ult+in/2)P,(t, (A"}, {A7},)de

-4 (7.9)

At =s*+in/2);
functions P, here as defined by (6.18) and (6.19). It should be emphasized that
functions 7, are the only quantities which are not given in the expression for G(m)
quite explicitly. They are defined in terms of functions P, which are solutions of the
nonlinear integral equation (6.18). This equation can be solved either perturba-
tively in {(7/2) — 27} [see (A.41)] or by means of iterations described at Appendix 4
(A.37). The important property of functions =, (7.9) is Ren, <0, which follows from
u(t+in/2)>0 (2.12) and ReP,<0 (6.19). More exactly, using (6.20), (6.21), and
(A.41) one has the following statements:

7Tn({s-*-}m {s_}n)':o at 2'7=7t/2: (710)
m({shw {s}) =0 ({s7}={s"}={s};0<2=n/2); (7.11)
Rem,({s*},, {s7})=0;  Rer,=0[((m/2)-2m)?]1, (0<2n=m/2).(7.12)
Formulae (7.6)7.9) give the final answer for correlator {o§o{"). It is
represented as a series, the K™ term of the series corresponding to making K holes
in the physical vacuum. To clarify the structure of series (7.6) we write down the
first two terms. Function G, is represented as a double integral. Using (4.20), (4.26),
and (A.40) one has:
sinh(s; —s, +2in)
sinh(s; —s, —2iy)
cosh(s, —in) cosh(s, + in))"’ -2
cosh(s; +in) cosh(s, —in)

>—1]2, (m=3). (7.13)

1 4
G,(m)=— Z _jA dsds 0 4(s1)@ 4(55)

exp{(m—2)m(sy,52)} (

“sinh(s, —s,)
: [exp{”l(sl, 55)} <

Weight w ,(s) being defined in (6.8), the only quantity which is not given in (7.13)
explicitly is function =, [see (7.9)], which is to be calculated as explained above.
Function 7,(s,, s,) enters also the expression for G5(m) which is given by the
following triple integral:

sindy 1

A 3
n° —IA <,1;11 dsj04(s)) ) sinh(s; —sy +2in) sinh (s; — s, —2in)

. sinh(s;—s,) sinh(s;—s;) \sinh(s; —s, +2in)
sinh(s;—s;)  sinh(s;—s,) / sinh(s; —s, —2in)

cosh(s; —in) cosh(s, +in)
cosh(s; +in) cosh(s, —in)

Gy(m)=—

1 cosh(s; —in) cosh(s, +in) \™ 2
-mexl’ {m—2)m,(sy,5,)} (cosh(sl +in) cosh(s, — in)
cosh(s, —in)cosh(s, +in)

cosh(s, +in) cosh(s, —in)

'[GXP{nl(sv s2)} - 1]2, (mz3). (7.19)
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Let us discuss now the general structure of the K'® term Gg(m). It is represented
as the K-multiple integral (7.7). At s;— oo this integral is convergent which makes
possible to put A= oo (i.e. H=0). The singularities of the integrand at finite real s;
are reduced to first order poles. It follows from the analysis of the limiting process
discussed in detail in Sect. 6 that the principal values of corresponding integrals
should be taken. With this prescription all the integrals are well defined.

Expression (7.7) for Gg(m) contains the K™ power of weight w,(s) (6.8)
possessing property 0Sw () Sw,(A)<1; o, =exp{—(r—4n)/n} <1 for 0<2y
<m/2, A>0(6.9). Therefore the convergence of series (7.6) seems highly probable,
though we don’t know the complete proof yet. It should be mentioned that region
n/2<2n <= of the coupling constant also corresponds to an antiferromagnetic
case. At these #, however, weight w ,(s) in (7.7) becomes more than 1 and series (7.6)
seems to be divergent; to obtain correlator (a§c'") in this region of the coupling
constant one has to make an accurate analytical continuation from region 0 <2y
<n/2. The convergence of the series is closely connected with the following
phenomenon. S.t.e. (2.4) in the logarithmic form can be obtained from a variational
principle [14,4]. Corresponding action is convex only in our region 0 <2y <7/2,
which permits us to prove the existence of the solution of system (2.4).

The behavior of Gg(m) in the coupling constant # is the same as the behavior of
Fourier coefficients [see (4.25) and (5.11)]. At 2y— /2 one has

G(m)~[(r/2)—2n]%"2. (7.15)

This property shows that the perturbative expansion in the coupling constant
[(m/2)—2n] is easily obtained from series (7.6). To obtain this expansion up to
[(m/2)—2n]", one has to consider n first terms of series (7.6). At 2y =mn/2 only the
term with K =2 survives which gives the correlator for the X X-model. In this case
K(s,t)=0 [see (2.11)]. It means that g(s)=(w cosh2s)~* (2.9), w (s)=1 (6.8) and
7,(s1,5,) =0 (7.10). Integrals in (7.5) and (7.13) can be taken explicitly and one

obtains:
2q\> 4sin?[(m—1
(opay= (1-2) A lndl 19

(m=3; 2n=n/2; 0<H <4). Here q is the Fermi momentum which at 2yp=mn/2 is
given as [see (2.5)]

q=2arctgthA=arctg()/4—H?/H). (7.17)

(Fermi rapidity A is simply expressed in terms of magnetic field H for
2n=m/2:cosh2A4=2/H.) The first term at the right-hand side of (7.16) gives the
square of magnetization and the second one represents the nontrivial part
Loy, At H=0 (A= 0), g=m/2, and the correlator is especially simple:
4 sin?[(m— 1)m/2]

?(m—1)*
(m=3; 2n=mr/2; H=0). This formula reproduces the known answer [10, 11] for
the X X-model.

(Mo Dy = LMDy = (7.18)
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Turn now again to correlator for 0 <25 < /2. The most remarkable property*
of series (7.6) is that the correct asymptotical behavior of the correlator at m— oo is
given already by the first term. Below we discuss the most obvious results
concerning the first two terms of the series.

Consider first G,(m) (7.13). Integrating by parts in s, s, and using (7.11) one
obtains

G,(m)=— %{1 — %(Cexp[(m— 1) (—2ig+ix—r)] +c.c.)},
(m>mn/2y). (7.19)
The following notations are used here. (i) q is the Fermi momentum:
q=2arctg(tgn thA). (7.20)

(ii) Constant C=C(n, A) does not depend on m and is easily calculated in
terms of the function 7,(A4, — A). Of importance for us is the following property:
C-1 at 2n-mn/2. (7.21)
(iii) Quantity ais given by different formulae in the following two regions of m:
a=w,A) (m>sin(z—4n)ch24), (1.22)

a=w,0) (m<sin(r—4n)ch24).

A
Here w A(s)=exp{ —(1/2m) | K(s, t)dt} (6.8). It is to be remembered that in any
-4

case m> 1/2y [see (7.19)].
(iv) Quantities r and x are:

r=—Ren(A, —4); x=Imn, (A, —A). (7.23)
It follows from (7.10), (7.12) that ‘
r=x=0 at 2n=mn/2,
r>0; r=0[(n/2)—2n)*] at 0<2p<m/2.

At H=0and 2y—-n/2,r=(n—4n)?. So all the notations used at the right-hand side
of (7.19) are explained.

Discuss now asymptotics (7.19) in more detail. There are three different scales
M, M,, M, in the asymptotics:

M,=n/2n; M,=r"1; Mj=sin(n—4n)ch24. (7.25)

At m> M, the integrand in (7.13) does oscillate and one thus obtains asymptotics
(7.19). The second scale M, [see (7.23) and (7.24)] characterizes the region where
oscillations in the asymptotics exist. For m<M, there are oscillations
(~exp[(m—1)(—2ig+ix)]); for m> M, they disappear. These two scales are
essentially defined by coupling constant # [i.e. by internal anisotropy 4 (2.1) of the
antiferromagnet]. The third scale is M;~ch24. As A is defined by external
magnetic field H, M is also essentially defined by the magnetic field. For m> M,
and m < M5 one has different a in (7.19). Though we are discussing now the first
term of series (7.6), the existence of these three scales has grave physical meaning
and they have to be present in the exact correlator oo}y also.

(7.24)
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Note that M; =1, M, =00, M3=0, and a=w 4(4)=w (0)=1 for the X X-case
(2n=m/2). Using (7.24) and (7.21) one restores then correlator (7.16)—(7.18) (it is to
be mentioned that asymptotic formula (7.19) appears to be exact in this case).

For 2p<m/2 terms Gg(m) (K=3) of series (7.6) also contribute to the
asymptotics of the correlator. The contribution of G4(m) (7.14) can be easily
calculated. It is of the same form as (7.19) resulting in corrections to coefficients a
and C there, these corrections being especially simple for the nonoscillating terms.
Summing up contributions of G,(m) and G;(m) one obtains the following results
for correlator (7.6).

For nonzero magnetic field H>0 the “far” asymptotics and the “near”
asymptotics have to be distinguished:

ooy = G,(m)+ G (m)
203(4) [1 + % { dsoo (K, A)]
-4

T i m—1)
(0<H<4sin?n;0<2n<n/2;m>max{M,M,, M3}); (7.26)
o565 ) = Go(m) + G3(m)

_ 2030) 2 4
=-— m[l + 2 1 dso (9K, 0)]

(0<H<4sin’n;0<2np<n/2; My>m>max{M, M,}). (7.27)

Weight w ,(s) and function K(s, t) are defined in (6.8) and (2.11). For M, , ; see
(7.25). [1t is worth mentioning that for A sufficiently large the square bracket in
(7.26) turns into [1—4w (4)Inw,(A4)], and the square bracket in (7.27) — into
[1—4w4(0)Inw,(0)].]

To obtain the asymptotics of the correlator at zero magnetic field one puts
A—00. As M3;— 00 at A— o0, one has to use Eq. (7.27). The result is:

(05"657) = 0§08y = Gy(m) + Gy(m)
__ 2exp{—2(n—4n)/n} (m—4n) (m—4n)
= 1) 1+4 —— €Xp -
(H=0,A=00;0<2n<n/2;m>max{M,,M,}). (7.28)
So we have calculated the asymptotics of the first two terms of series (7.6)
representing the correlator. It is obvious that other terms Gg(m) (K =4) do not
change behavior ~1/m?, changing only the coefficients.
Equations (7.26)7.28) are already sufficient to obtain the asymptotics of the

correlator up to the first order in [(n/2)—2#] (i.e. near the X X-model). After
elementary calculations one has at nonzero magnetic field H > 0:

2 [ —4
== s 1+ (“ — ”)th2A+0[(n—4n)2]]
H>0;0<2n<n/2;m>max{M,,M,, M3}); (7.29)
2 i —4
<<O'(3m)0'(31)>>= — m _1 +2<7T p ’1> thA+0[(ﬂ—4n)2]]

(H>0;0<2n<m/2; M3>m>max{M,, M,}). (7.30)
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For H=0 one has

<oy == 2l 1+2(T2) s ope—an? |
(H=0;0<2n<n/2;m>max{M,,M,}). (7.31)

It is to be emphasized that we obtain asymptotics (7.31) at H =0 as a limit A— oo of
“near” asymptotics (7.30). [The matter is that “far” asymptotics (7.29) is valid if
m> M, =sin(n—4n)ch2A. At (mr —4n) small (but fixed) the corresponding region
does not exist at 4 =00.] The first order correction thus obtained is twice as large
as the corresponding correction of paper [13] where the correlator at H=0 was
calculated. If one takes the limit A— co not in (7.30) but in (7.29) then the coefficient
is just the same. Our limiting procedure seems to be more accurate.

8. Conclusion

We have calculated the simplest correlation function {c$"¢{"> for the one-
dimensional Heisenberg antiferromagnet. The method used is quite general,
results of Sects. 3-5 of this paper giving a background for calculation of practically
any correlation function for integrable models with the R-matrix of the X X Z-type.
In particular, we’ll calculate the field correlator for the sine-Gordon model in our
next paper. The method permits also calculation of the dependence of the
correlation radius on the temperature for such models; for the One-Dimensional
Bose Gas it was done in [20].

Appendix 1

“Scalar product” Sy is defined as follows:
N N
Sy=(OITT €(5) TT BAYI0). (A1)
= g

Here A$ + A (j+k); A} Af (= k). The properties of Sy necessary for us are given
below [18]. Scalar products can be in principle calculated by means of (3.2) and
(3.7). So one has for example

S =0ICA)B(AMI0) =g(4, %) [r(29) —r(2")], (A2)

where g and r are defined in (3.4) and (3.9). For N arbitrary the dependence of Sy on
vacuum eigenvalues r(1) can be explicitly extracted:

N
Sy=Y < 1r(l§~"”)> K, (part). (A.3)
part \j=

The sum here is taken over all the partitions of the set {A°}yU{A®}y into two
disjoint subsets {A®""}y and {4}, (subindex N in {1}y means the numbers of
elements in this set). Coefficients IK; do not depend on (1) and are functions of 2N
rapidities 4§, Af, the dependence on each individual A at all the other A’s fixed being
as follows:

K, =exp(1)A (exp(24)) =exp(— A)A (exp(—24)). (A4)
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Here A", A are rational functions of their arguments decreasing at infinity:
A (@)=0@z"") (lzl>0);
A(z"H=0@z) (z2-0); z=exp(27).

Scalar product Sy depends on the values of the arbitrary function (1) at 2N points
A€, JB. Due to the arbitrariness of this function these values can be considered as
independent variables r§, r%:

(A.5)

$=r(A5);  ri=r(A}). (A.6)
So the scalar product is the function of 4N complex variables:
Sy =Sy({A%, (A% i irPhw)» (A7)

which is symmetric with respect to

(A5, 1)y, or (4F,1))~>(, 1)

(separately). The most important property of Sy is that it has a first-order pole at
A$-2F (,k=1,2,...,N), all the other arguments being fixed. At 15— A — Ay one
has (the general case is obvious due to the symmetry):

Sx({An, {4}y, {ry, {r® Wlig-a2
o i (T )

' SN - 1({'1C}N— 15 {A'B}N -1 {fC}N -1 {FB}N— 1) . (A,8)
Here f;¢=f(Ay, A7) (3.4) and
F(A) =r(A) (f (4, An)/f (An, ) - (A9)

Function Sy _, in (A.8) does not depend on ry; Sy _, also depends on 4 only due
to modification (A.9).

It should be emphasized that Sy has this pole only if function r(4) is not smooth
at A=1y. In physical cases r(4) is a smooth function [see, e.g. (3.21)], and the
residue at A=Ay is equal to zero. Then the dependence of Sy on the vacuum
eigenvalue at point A is represented naturally in terms of two variables: ry=r(4y)
and zy=i0Inr(4)/0Al;~,,. The dependence on zy is linear, the coefficient at zy
being easily obtained from (A.8).

At the limit A >4} —>4;(j=1,2,...,N) (all 1; are supposed to be different) the
scalar product depends on 3N complex variables:

Sy=Sw{L}w, {2}, (r}n) (A= {27ty ={A}n). (A.10)

Here z; is defined in (3.18). Sy is a linear function of each z;.

The case where 4;in (A.10) satisfy s.t.e. (3.12) is of primary importance, because
Sy gives the “norm” A" of eigenfunction (3.10):

paiAMIwa({AN)D = A {4}y, {23n)
=Sy ({lj}zvo {Zj}N’ {rj = kI;[, (f (s, A’j)/f(j'ja Ak))}]\[) . (A.11)



296 A. G. Izergin and V. E. Korepin

The norm also is a linear function of each z;, the coefficient being obtained from
(A.8):

ofosy=(sin2 iy (e )T Suden)- (A1)

The modification of z; to Z; is defined as follows:
Z]=Z]+KJN (i=1,...,N_1), (A.13)

where K;y=K(4),Ay) (2.11). Equation (A.12) was the basic one in obtaining
explicit formula (3.16) [18].

Appendix 2

To investigate properties of irreducible parts (4.14) at N arbitrary it is necessary to
introduce form factors. Form factor Fj is matrix element (4.1) between different
eigenfunctions (3.10) and (3.15),

F=Cpn({AN) lexp {2Q  Hwn{A%} ) - (A.14)
Al 25, A2 here are different and satisfy s.t.e. (3.12) (each set {1}, {A®} separately). It

s Aj
means that variables m®in (4.2) can be expressed in terms of A2 and I8, and variables
mC—in terms of A€ and I° [see (3.9)]. So the form factor depends on 4N independent

variables:
N =F5({A% % (A%, (I y, {IP})- (A.15)

The irreducible part I% (4.14) can be obtained as some limiting value of the form
factor [1]:

b (39 =6in20) ([ 1)
i PR U+l (s (- (a16)

The investigation of form factor (A.15) is similar to the one made for the X X X -case
[1]. The difference is in analyticity properties in A’s of scalar products [see (A.4)
and (A.5)]. Taking this into account one proves the following representation for
the form factor:

M2 {47, I, {PPhe)
=2 (H l(/lﬁr)) (H I ‘(%‘i)) Ry(part). (A.17)

part \ pr pr
Here the sum is taken over all the partitions of set {4} into two disjoint subsets
{45}, and {15}, and over partitions of set {4} into two disjoint subsets {1}, },
and {A%}y_,. These partitions are independent except that

card{AS,},=card{A5},=n; card{AS}y_,=card{A5}y_,=N—n.

Product [TI(A5,) denotes the product of n factors I(AS); ASe {45}, Product
pr

IT!7*(42) denotes the product of n factors I~ *(4?); A7 € {42,},.. So form factor F} is
a linear function of each I(45) and a linear function of each I™!(4%). Coefficient
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R y(part) does not depend on [ and is a function of A’s only, having the following
representation:

Ry(part)=o7({ A5}, {45} )0% - ({Als Iy - (R n -}
: {H 1G5 lfb)} {1;[ I1s (% lﬁr)} : (A.18)

pr ab

Product [T ] denotes the independent products overall A€ {4,,} and all A € {4,};

pr ab
this product contains n(N —n) factors. Functions 6%({A°},, {4%},) (n=0,1,...) are

functions of 2n rapidities A% and are uniquely defined by the following properties.
(1) o%is a rational function of exp(4;); 4;€ {A°},U{A%},.
(2) It depends on AS at other A’s fixed as follows [cf. with (A.4)]:

o =exp(4;)d3(exp(24y)). (A.19)
Here 6° is a rational function of exp(24S) decreasing at n>1 at infinity:
6% =0[exp(—275)](exp(2AS)—c0;n=1). (A.20)

(The dependence of 6% on A2 is similar).
(3) Function o7 is a symmetric function of A{ and a symmetric function of 1}.
(4) The only singularities of 6% (A.19) are first-order poles at

9705 =0; j=1,2,..,n
[g is defined in (3.4)], the residue at A =18 =], being equal to
O‘z({lc}m {AB}n)'}.E—vﬂ.f

n—1 n—1
=g(4y, An) {exp(a) ,-l=_[1 fintui— ,El fin ,S}

con-1({A% - 1 {A%- ) (A.21)
(5) At n=0,1:
o3=1; d5(A5 AB)=9g(A%, AB) {exp(o) —1}. (A22)
Remark also the following important property:
a3({A%} (A%} ) = exp(na)a, “({A%,, {A%},). (A.23)

To investigate irreducible part I of the meanvalue of operator Q? one needs
form factors of operators Q; and Q?, which can be obtained from (A.14) by
differentiation with respect to o at «=0. One has then from (A.17) and (A.18):

Fiy=pa({AQulpn({A7}H)>
= { I;NI1 G (A7) - 1} an({2%m (A7), (A.24)

where g% is defined as
N2 w, (A%} §) = 003({A n, {A%}3)/ 0t - (A.25)
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Properties of functions ¢’, which is easily restored from properties (1)~(5) of
functions ¢% define them uniquely and allow us to calculate them. The first three
functions are

0o=0;  01(A5 2" =g(2%, 2%);
05 ({A5, A5}2, {1, A3}2) =2 cos2ng ™ (AT + A5, AT + 43)

905 ADg(L, 42)9 (A3, A9 (A3, 43) - (A.26)
The following property is obtained from (A.23)
oM{A%, (2%} ) = — ay({A%}ws {2%}w). (A27)

One has from (A.25) and (A.21) the following relation
on({A% ws (A%} )l ag- 2z
N-1 N-1
= g(if; /1%){ IT /3R 11 f,vc,m} O s((A -1 (ATn-r), (A28)
i= j=
which permits us to establish the behavior of ¢’ in the coupling constant #:

oy~n*N"1 (n—0),
oy~[®/2)—n*¥"1  (n-mn/2), (A.29)
ox~Lm/4)—nI""' (n-n/4).

Turn now to the form factor of operator Q?:

F = o {A0)IQ1Ipa({A%} 0> - (A.30)
Using (A.17) and (A.18) one has

v=03{Ay, {A}N) + (:1 147 )> o({Aw, {A%}n)

1<nsN-

1
+ 2 Z 0';.({/1; n {j'gr n) va—n({'lfb}N—m {lgb}N —n)

part

: {l;[ I l(lﬁr)} {l;[ ILf (¢ /lacb)} {1;[ I1f (A ifb)} : (A31)

The sum here is taken as is explained after (A.17) but we have written down
explicitly the two terms corresponding to the partition {5} =0; {45} =0 and to
the partition {AS}={A%y; {A5}={1%}y. We denote card{4S,},=card{i}}=n
and ¢}, =0%6%/00*|,— .

Let us now consider irreducible parts using Eq. (A.16). One obtains from (A.24)
that I{) =0, (4.18). For irreducible part I’ =1, of the meanvalue of operator Q?
one gets from (A.31) representation (4.23). It should be noted that Fourier
coefficients o/} (n > 1) in (4.23) are expressed in terms of functions ¢” only, function
¢” entering only coefficient /9 which can be expressed as a linear combination of
2y (nz1) due to (4.24). Using (A.29) one comes to (4.25).
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Appendix 3

Some important properties of operator & (2.10) and (2.11) are discussed here. At
0<2n=7/2 (2.2) and A=s+in/2, Ims=0 (2.8) one easily obtains the following
estimate for the quadratic form of matrix ¢’ (3.17):

Z’:c V@0 =M 3 viu(s;+in/2)
Js J
+ X (0 — ) K(sy, ) > M X viu(s;+im/2) >0 (A.32)
k<l j
Here v; is an arbitrary vector with real components; functions K(s,t) and
u(s+in/2) defined in (2.11) and (2.12) are positive at 0 <2y <n/2. Going to the
A
thermodynamical limit | which corresponds to changing 3> -»M | dSQ(S)] one
j -4

has for arbitrary real function (s):

_f w(s) [6(s—t)—(1/2m)K (s, t)]w(t)ds dt > (1/2x) _?A Y2(s)u(s+in/2)o~ *(s)ds.
(A33)

Using this formula one gets that eigenvalues of operator & satisfy the following
inequality:
1—e>|R/27|>0, (A.34)
where ¢ is positive constant (for H>0), going to zero as H—0.
It should be mentioned that the determinant of the linear integral operator
(1—8K/(2n)) [entering, e.g., (6.6)] is thus a finite positive number at H>0; as H—0
one has due to (2.14):

det(1— $/(2m),-. =exp{ -2 a )m <1 _ %‘))u

and

R(k)= _T ™ K(s, 0)ds = 2n sinh [(x — 4n)k/2]/sinh (nk/2) .

Appendix 4

Consider the following system consisting of the nonlinear integral equation and
the inequality for function P(t):

2nP(t)=exp{a(t)+(KP) (1)} —1 (Rea(t)=0), (A.35)

ReP(t)<0. (A.36)

Operator K is given by (2.10) and (2.11); given function «(¢) is supposed to be pure
imaginary, system (6.13) is obtained from (A.35) and (A.36) at a(t) = « = Const; for
system (6.18) and (6.19) function exp{a(z)} is given by the product of factors f in

(6.18). Prove now that for 0 <25 <n/2 (2.2) a solution of system (A.35), (A.36) does
exist and that the solution is unique.
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To prove the existence of a solution consider the following sequence of
functions P,(t) (k=0,1,2,...):

Po()=0;
2Py, ((8) =exp{a(t) +(KP) (1} — 1.

Due to the fact that kernel K(s,t) (2.11) of operator & is a positive function
[K(s,t)>0for 0<2y<m/2 and s, t % + 00] one easily sees that Re P,(t) <0 for any
k. Let us prove now that the sequence (A.37) converges which means that the
limiting function P(t)=1lim P,(¢) (at k— o0) exists and is a solution of (A.35) and
(A.36). As Rea(t) =0, one has from (A.37):

|Py+1(8) — P (D] =Iexp{(R]P;) (1)} —exp {(]P;._ 1) ()}1/(2) .
Kernel K(s,t) (2.11) of operator & is positive for 0 <2y <n/2. So
Re{(8&P)) (1)} =0

for any k. Using inequality |exp(z,) —exp(z,)| £|z, —z,| for Rez, <0, Rez, <0,
one has

[Pis 1(8) = Pl S (R(Py— Py - 1)) )1/ (27) < (RIP, — Py ) (1)/2) .

Due to (A.34) this means that the limit of P,(t) at k— oo exists. Thus the existence of
the solution is proved. The uniqueness of the solution can be proved in a similar
way. Suppose that two solutions PY)(t) and P?(¢) of (A.35) satisfying (A.36) do
exist. Then the following inequality must be fulfilled:

|PY(t) — PO < (RIPD — PY) (1)/(2m) -

Multiplying both sides of this inequality by |P@(t) — P)(¢)| and integrating them
over ¢, one comes to contradiction with (A.33) if P@(t) + PY)(¢). So the existence
and uniqueness of the solution of system (A.35), (A.36) is proved. It should be
mentioned that if «(tf)=Const and A= co one has that P(f)=Const. Hence the
solution of (6.13) for A= co is particularly simple.

The most important property of the solution of system (A.35) and (A.36) is that
if function a(t) is not equal to zero identically then the real part of function P(¢) is
strictly less than zero at finite ¢:

ReP()<0 (t+ +o0,a(t)%0). (A.38)

To prove it suppose that Re P(t,) =0 at some t, = + co. Taking the modulus of
both sides of (A.36), one has:

(A.37)

[14(nImP(t,))*]**=exp {:Ii K(to, ) ReP(s)ds} .

Due to property K(t,, s) >0 it can be valid if and only if Re P(s) =0 at any s. One
can easily see then that Im P(s) =0 at any s, and hence P(s) =0 at any s. This can be
so only if a(s) =0 at any s. Equation (A.38) is thus proved. The behavior of function
P(t) at t— + oo is defined by the behavior of function a(t). In particular

P(t)—0 at t— + o0 if (t)—>0 at t—>+00. (A.39)
Equations (A.38) and (A.39) lead to Egs. (6.20)6.22).
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Now we list important properties of functions P,(t, {A*},, {A7},) which are
solutions of (6.18) and (6.19):

(1) These functions are symmetricin all A;” and in all A; (separately). They also
possess the following property:

P, {27 b {47 1) =Pyt {4}, {7 }0). (A.40)
(2) Pn(t9 {'1+}n9 {i_}n)ll,f =An =Pn— l(t’ {j'+}n— 1> {l—}n— 1)
A3) Pt {A" b {27} S (/).

(4) P,—0at2n—mn/2, the first two terms of the expansion in ¢ =(n/2) — 27 being
equal to:

P,(t)=— % i [tanh(s; —¢)—tanh(s; —1)]
i=1

2

- %{ 3 [tanh(s} —£)—tahn(s; —t)]}2

j=

+ig? { i [coth(sj' +t)—coth(s; +1)

j=1

(55 +1) (s7 +1)
sinh?(s;" +1) B sinhé(sj— T t)]} +0(%). (A.41)

(5) At n—0 function P,=+0 only if [t—sf|=n (=1, ...,n).
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Note added in proof: After this paper was sent to Commun. Math. Phys. we have learned that the
correlation function for the X X-model (free fermions) at nonzero magnetic field H >0 was first
calculated by B. Sutherland [Sutherland, B.: Correlation functions for two-dimensional
ferroelectrics. Phys. Lett. 26A, 532-533 (1968)].





