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Abstract. The general method for calculation of correlation functions in
integrable quantum models has been given in papers [1,2]. The correlation
function of the third components of local spins for the Heisenberg one-
dimensional XJf Z-antiferromagnet is calculated in this paper. The answer is a
series which gives, in particular, an improved version of the usual perturbative
expansion in the anisotropy parameter. The remarkable property of the series
obtained is that the long-distance asymptotics of the correlator is given already
by the first term. The arguments are given in favour of the convergence of the
series.

1. Introduction

The present paper deals with the problem of calculation of correlation functions
for the Heisenberg XXZ-modd. This model describes an interaction of spins 1/2
located at the sites of one-dimensional lattice, the spin vector at the rath site being

/τ(m)_ r_(m). •_ ι 9 3 . w l _ι 9 wι\<J — {vj •>]— 1? A 3 > m— 1, Z, ...,mj .

Here σ(m) are Pauli matrices with usual commutation relations:

M denotes the complete number of the sites. The Hamiltonian ffl of the model (in
the presence of constant magnetic field H directed along the third axis) is written in
the following form:

Jtf=- Σ {σ(^V^ + 1} + σ^V^+1) + A(σ(^σ^+'L)-ί)} + H Σ (l-4m))
m= 1 m= 1

(1.1)

The periodical boundary conditions are supposed to be imposed (σ(M+1) = σ(1)).
Parameter A describes the internal anisotropy of the model. After Bethe [3]
constructed eigenfunctions for the isotropic JO^-model (A = ± 1), the ground
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state and the spectrum of excitations of Hamiltonian (1.1) were found for every A
[4,5,6]. At A ̂  1 the ground state oϊJtfis the ferromagnetic state |0> (all spins up at
.ίί^O), and the model describes the one-dimensional ferromagnet. At Δ<1 the
ground eigenstate |ί2> is of a more complicated structure having zero magneti-
zation «ί2[σ(

3

m)|ί2> = 0) at H = 0. Thus the model describes the one-dimensional
antiferromagnet at A < 1. At A = 0 one has the XX-model which corresponds to
free fermions.

In this paper zero-temperature equal-time correlation function <σ(

3

m)σ(

3

υ>:

<*§">(#>> = <Q|σ<ίl>σ(>

1>|β>/<0|ί2> (1.2)

is calculated at the thermodynamical limit (M-> oo). The answer is obtained for the
following values of A and H:

O ^ Λ < 1 ; Q^H<2(l-A). (1.3)

(It should be mentioned that for the ferromagnetic case (A ̂  1) the answer is trivial:
(σ^σ^y = <σ(31}>2 = 1.) In region (1.3) of parameters ground state |Ω> is not the
ferromagnetic one; that makes the problem rather complicated. To solve it we use
the approach to calculation of equal-time correlation functions for integrable
models suggested in papers [1,2]. It is based on the quantum inverse scattering
method (QISM) [7] applied to the Heisenberg XXZ-model in paper [8]
(correlation functions for the JQΓZ-ferromagnet (A ̂  1) in the frame of QISM were
discussed in [9]).

In papers [1,2] the correlation function of currents for the nonrelativistic Bose-
gas with repulsive delta-function interaction was obtained. This is an example of
the completely integrable model with the Λ-matrix of the XXX-type. The
Heisenberg .OfZ-model which is discussed in more detail in Sect. 2 is an example
of the model with the XXZ jR-matrix [8]. The necessary generalization of the
approach to these models (including also the sine-Gordon model which will be
considered in a separate paper) is made in Sects. 3-5. In the rest of the paper these
results are used to calculate correlator (1.2), (1.3) at the thermodynamical limit. The
answer is the series which gives, in particular, an improved version of the usual
expansion in the anisotropy parameter around the point A = 0 (which corresponds
to the XJf-model, or free fermions). At A = 0 the series is reduced to the first term
giving at H = 0 the known answer [10,11] for correlator (1.2). It is highly probable
that the series obtained is convergent within region (1.3) of parameters. The
remarkable property of the series is that the first term already gives the correct
asymptotics of correlator (1.2) and (1.3):

<4w)4υ> - <y3

w)> <4υ> ~ l/w2 (m->oo)

(normalized meanvalue <σ(

3

m)> = <σ(

3

υ> for H = 0 it is equal to zero). Thus for H = 0
the asymptotics obtained is in agreement (for 0 ̂  A < 1) with the result of papers
[12,13].

In this paper we calculate the zero-temperature correlation function. The
approach can be generalized to calculate the correlation function at finite
temperature which gives the temperature dependence of the correlation radius.
These results will be published later.
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2. Heisenberg XXZ- Antiferromagnet

Before the generalization of the results of papers [1, 2] to the XXZ-case let us state
the problem of calculation of equal-time correlation functions for the XXZ-
antiferromagnet in more detail. It is convenient to go from anisotropy parameter A
in (1.1) to the "coupling constant" η:

A=cos2η (2.1)

so that the region of parameter (1.3) is now

(2.2)

The value 2η = 0 corresponds to the isotropic ferromagnet, and 2η = π/2 to the
XX -model (i.e. to free fermions).

The simplest of the eigenstates of Hamiltonian Jif (1.1) [3,4] is the ferromag-
netic (all spins up) state |0>:

|0>=(§)IT>» (4m)lί>m=lt>J; #Ίθ>=o. (2.3)
m= 1

Other eigenstates {ψ^λ^ ...,ΛN)> (JV=1,2,3, ...) can be obtained by putting
"particles" with "rapidities" λl9...9λN into the ferromagnetic state. These rapidities
are complex numbers which should satisfy the following system of equations

fe*j
/0(λ) = sinh(/l - iη)/ύήh(λ + ίή)

Φ(λ, μ) = i In [sinh(A -μ + 2ίη)/smh(λ -μ- 2iη)~\ .

The momentum and the energy of the state thus obtained are the sums of momenta
p(/lj) and energies h(λj) of individual particles where functions p(λ) and h(λ) are

-2η^p^2η for Imλ = 0,π/2), (2.5)

h(λ) - - 2 sm2η(dp/dλ) + 2H
(2.6)

- 2 sin2 2ι/[sinh(λ + iη) sinhμ - iη)~] ~l+2H.

One can also define operator Q of the complete number of these particles as the
sum of operators qm of the number of particles at the mth site:

Q= Σ qw; qm=i(i-4m)); CQ?^]=o. (2.7)
m = l

The pseudo vacuum is the state without particles (Q|0> = 0); the number of
particles at state ψN is equal to N. It should be emphasized that the ferromagnetic
state |0> (2.3) is not a ground state in case (2.2).

We will consider the ^OΓZ-model at the thermodynamical limit (M->oo). At
this limit the values of /I's allowed by system (2.4) include elementary particles with
Imλ = 0 or Im λ = π/2, as well as their bound states which were described in detail in
paper [6]. The ground state |Ω> of the Hamiltonian (which will be called the
physical vacuum) is obtained in case (2.2) by filling the ferromagnetic state |0> with
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elementary particles with Imλ = π/2 (only these vacuum particles appear to be of
importance for calculation of correlators). We'll write rapidities for vacuum
particles in the following form:

λ = s + iπ/2; Ims = 0. (2.8)

At M->oo the number N of particles in physical vacuum |Ω> also goes to infinity,
the ratio N/M remaining finite. The values of rapidities for vacuum particles fill the
Fermi zone — Λ^s^Λ with the density ρ(s) [Mρ(s)ds is equal to the number of
particles having rapidities between s and (s + ds)]. System (2.4) turns into the linear
integral equation for ρ(s)

2πρ(s) - (ftρ) (s) = u(s + iπ/2), (2.9)

where operator ft acts as follows:

(Λρ)(s)= J K(s,t)ρ(t)dt. (2.10)
-A

Functions K(λ, μ) and u(λ) are

) = dΦ(λ, μ)/dλ

= sin 4*7 [sinh (Λ, — μ + 2iη) sinh(/l — μ — 2iη)~] ~1

(2.12)
= - sin 2η [sinh (λ + iη) sinh (λ — iη)'] ~ 1 .

Notice that at Q<2η<π/2 (2.2) functions K(s,t) and u(s + iπ/2) are positive
(Ims = Imί = 0). "Fermi rapidity" Λ>0 is uniquely defined by the requirement of
the minimization of vacuum energy Ev [14, 6]:

EV/M= f h(s + ίπ/2)ρ(s)ds\ (2.13)
-A

at a weak magnetic field Λ is given by:

Λ = [(π - 2η)/π] In [(8ιj sm2η)/((π - 2η)H)] (H^O). (2.14)

It should be also noted that at the thermodynamical limit one has

0<JV/M= f ρ(s)ds£l/2. (2.15)
A

As A = ao at # = 0, one can easily solve equation for ρ(s):

ρ(s) = {2(n - 2η) cosh [πs/(π - 2if)]} ~ x N/M = 1/2

(H = 0,ΛL = oo). (2.16)

So we have described the ground state of 3tf (1.1) in region (2.2).
Turn now to correlator (σ^σ^) (1.2) [due to the translation invariance

correlator <σ(3m)σ(

3

Π)) depends on (m — n) only and is easily reduced to (1.2)]. It is
convenient to express it in terms of correlator <qwqι> of local operators of number
of particles qw,q! given by (2.7):

> + l. (2.17)
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These quantities are well-known at m =1,2 (see, e.g., [15])

(2.19)

Here Ey is vacuum energy (2.13).
To calculate the correlator at m^ 3 we apply the approach of papers [1, 2], To

do this one introduces operator Q^m) of the number of particles at the first m sites
of the lattice:

m

Qι(ro)=Σq; (2.20)
j=ι

This operator is quite analogous to operator Qί of papers [1, 2] [see (1.9) in [1]].
Correlator <qwqι> is expressed in terms of normalized meanvalues of this
operator:

£3), (2.21)

where D(2) is the second derivative operator on the lattice and acts on functions
/(m) (m-integer) as follows

(Z)<2>/) (m) =/(m) +/(m- 2) -2/(m- 1) . (2.22)

Turn now to correlator (1.2) which is naturally represented in the following form:

<<#><#>> = <σ<3

w>> <<#>> + Cσ^V^)) (2.23)

The first term at the right hand side is equal [see (2.18)] to

(2.24)

it is simply the square of the mean magnetization. The nontrivial part of the
correlator can be expressed by means of (2.17), (2.21) as follows:

(2.25)

So the problem of calculation of the correlator (1.2) is reduced to calculation of the
meanvalue of operator Ql(m) (2.20). To do this we introduce the two-site
generalized model, as is explained in detail in paper [1]. The difference is that now
one has to consider the model with the XXZ ^-matrix. The necessary general-
ization is made in Sects. 3-5.
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3. The Two-Site Generalized XXZ-Model

The main object in QISM (see, for example, [7]) is the monodromy matrix T(λ) of
the auxiliary linear problem. In our case it is a 2 x 2 matrix depending on complex
spectral parameter λ:

; B(λ)\

The matrix elements of T(λ) do not commute - they are "quantum operators."
Their commutation relations are given by

R(λ, μ)T(λ)® T(μ) = T(μ)® T(λ)R(λ, μ) , (3.2)

where R(λ,μ) is the XXZ-model i?-matrix:

f(μ,λ) 0 0 0

0 1 g(μ,λ} 0
0 0 0 f(μ,λ)l

\ I

Here functions / and g are

,, x isin2f/

η is a "coupling constant."
For the Heisenberg .OfZ-model the monodromy matrix (3.1) is constructed as

a matrix product of local L-operators at the sites of the lattice

[8]. To calculate correlator (1.2), however, it is sufficient to consider monodromy
matrices with more simple internal structure. To do this let us introduce the two-
site generalized model. It is a model with a monodromy matrix T(/l), which is a
matrix product of two monodromy matrices:

(3.5)

; Bt(λ)\ ,. , ~ n,.
, W (l=1>2) (3 6)

The matrix Γt(/l) can be associated with the first site and T2(λ) with the second site
of a lattice with two sites. Matrix elements of 7](/l) are quantum operators which
commute at different sites of the lattice. Operators at the same site commute
according to the rule (3.2). The monodromy matrix 7](/l) (i = 1, 2) has the vacuum
|0>f - the state in quantum space with the following properties:

( j.o)

The state |0> = |0>2(g)|0>1 is the vacuum for T(λ) (3.5), (3.1):

C(Λ)|0> = 0 A(λ)\θy = α(Λ)|0> D(λ)|0> =
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Here αf(/l), d^λ) are c-number functions which are defined by the choice of concrete
models. The crucial point is that there exist monodromy matrices Tl(λ) for
arbitrary functions at(λ)9 dt(λ) [16]. It is convenient to use the following notations:

/(A) = a^/d^λ) m(λ) = α2(A)/d2(A)

Different functions l(λ) and m(λ) correspond to essentially different models.
Function l(λ) will be the main free functional parameter in the two-site model. It
occurs that the dependence of correlation functions on l(λ) is rather simple and can
be explicitly evaluated. It should be noted that for the Heisenberg XXZ-modoί
functions r(λ), /(/I), m(λ) are periodical functions of λ with the period equal to iπ
[see (3.21)]; further it will be sufficient to consider them as arbitrary periodical
functions with this period.

The trace of the monodromy matrix τ(X) = A(λ) + D(λ) generates the Hamil-
tonians of completely integrable systems [see (3.20)]. Eigenfunctions ofτ(λ) are of
the form

(3.10)
j=ι

where

B(A) = B(λ)/d(A). (3.11)

Here all the λj are different [17] and satisfy the system of transcendental equations
(s.t.e.)

fjk=f(λpλk) and Γj=r(λj). The s.t.e. may be put into the form (pj = Q(mod2π)9

where

φ^ilnrj+Σ^Φfi. (3.13)

feφj

Function Φjk = Φ(λj9 λk) = i ln(fjk/fkj) here is the same as in (2.4). The corresponding
eigenvalue of τ(λ) is

= N)\ψN(λ^ . . ., /1N) >

n f(λJ9λ).
J= 7=1

The dual vacuum <0| = 2(0|®1<0| satisfies relations

<0|B(Λ) = 0; <OM(A) = α(A)<0|; <0|D(λ) = d(λ)<0| .

We put also <0|0> = ί<0|0>ί = l. The dual state

(3.15)
7=1



278 A. G. Izergin and V. E. Korepin

is an eigenstate of τ(λ); (ψN\τ(λ) = tN(ψN\ with the same eigenvalue (3.14) if the s.t.e.
(3.12) is valid. The "norm" is equal to [18]:

where the N x JV-matrix φf is defined as follows:

(3.16)
**

-Kjk . (3.17)

Here Zj=z(λj); function z(λ) is equal to

z(λ) = ίdlnr(λ)/dλ. (3.18)

Function Kjk = K(λp λk) = dΦ(λp λk)/dλj was given in (2.1 1). Notice that eigenfunc-
tions corresponding to different sets of λj are orthogonal due to different
eigenvalues (3.14).

The operators of the number of particles will play an important role. Operators
Qt of the number of particles at the ίth site of the lattice ~(ί= 1,2) and Q of the
complete number of particles are defined as follows:

Qi Π B Λ)|0> = n Π B A)|0> (i = 1 , 2)
fe=l fc=l

<0|ΠCί(4) (i = U); (3.19)
fc=l

= Qί|0> = 0; [Q,τ(λ)]=0.

Here λk are arbitrary and are not supposed to satisfy s.t.e. (3.12).
Let us discuss the connection of the two-site model with the Heisenberg

XX Z-model. The monodromy matrix TH(λ) of this model is constructed in a
standard way by means of local L-operators. Operators A, B, C, D in (3.1) and (3.6)
are functions of spins σ(m) and act in the tensor product of local spin spaces. The
Hamiltonian 3? (1.1) is expressed in terms of τH(λ) = A(λ)+D(λ) by means of the
trace identities [8] :

Jl? = 2isw2η—]nτB(μ)\μss-iη +2Mcos2η + 2HQ, (3.20)

so that A = cos2η is indeed the anisotropy parameter in 2tf. All the formulae of the
generalized two-site model are valid also for the Heisenberg XXZ-modoί provided
that one considers T^λ) in (3.5) as the monodromy matrix from the first site to the
mth site of the lattice, and T2(λ) - as the monodromy matrix from the (m + l)th to the
Mth site. Functions α(λ), d(λ\ r(λ\ l(λ\ and m(λ) (3.9) in the Heisenberg model are
equal to

d(λ)=d%(λ)

Here a0(λ) = sinh(λ — ίη), dϋ(λ) = sinh(/l + iη) and function

I0(λ) = a0(λ)/d0(λ)
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is just the same as given in (2.4). Function z(λ) (3.18) is expressed in terms of u(λ)
(2.12):

z(λ) = id ln(l%(λ))/dλ = Mu(λ). (3.22)

Operators Q and Qx (3.19) turn into operators Q (2.7) and Q^m) (2.20) of the
Heisenberg model. The pseudovacuum |0>, (3.7) and (3.8) corresponds to the
ferromagnetic state (2.3), and the dual pseudovacuum <0| is hermitian conjugated
to it: <0| = |0>+. S.te. (3.12) goes to system (2.4). State vectors (3.10), (3.15) are thus
eigenvectors of Jf (1.1). Operators B(λ) and C(λ) in (3.1) for the Heisenberg model
have the involution C(λ)= — B+(/ί*); so (3.16) really gives the norm of the wave
function [18].

We are interested in correlator (1.2) which is expressed in terms of the vacuum
mean value of operator Qf (2.25). This operator is defined also in the two-site
model (3.19) where its matrix elements are easier to calculate due to the arbitrary
functional parameter l(λ) (3.9). Below we study the mean value (v^lQilV^) in the
two-site model (Sects. 4 and 5) at first. The proofs of the majority of the results
obtained in these sections are similar to those for the XXX-case [1,2], so we don't
give the details of the proofs. The details of the proofs which are different from the
XXX-c&se are given in Appendices 1 and 2.

3. The Mean Value of Operator Ql and Irreducible Parts

It is convenient to begin with the "generating operator" expίαQJ, α being an
arbitrary complex number (operator Q^ is obtained by double differentiation with
respect to α at α = 0). The starting point is the following formula for matrix
elements of this operator which is valid in the two-site model, which is proved in

[1]:

M^ <0| ft CίλflexpίαQJ Π

π m(λf)\ m i(®\ (π /(# $} (n /as, ΛC)) . (4. i)
Λ Π ΛI.Π AMI /

Here the sum is taken over all the partitions of the set {λ^'J= 1, ..., N} into two
disjoint subsets {/If} and {/!,„} and over similar partitions of the set {λc}. These
partitions are independent except that card {Af} = card {AI

c} = n1; card{/!|}
= card {/!,£} = n2 = N — nί. Product Π denotes the product over all the λ e {λ^, and

I

thus contains n1 factors. Product Π denotes double product over all λ e {λ^ and
i, π

over all λ e {λu} and contains n1n2 factors. Notice that values of /lc, λB in (4.1) can
be quite arbitrary; we suppose only that λj φ λ% (j φ fe) and λ^ φ λ% (j φ fe) (see [17]).
Operators B and C are defined in (3.11) and (3.15).
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Formula (4.1) expresses M# in terms of "scalar products"

<0|ΠCfα
c)ΠB^β)|0> (ί=l,2).

These scalar products were investigated in detail in paper [18]. Their properties
necessary to prove the following results are given in Appendix 1. The independent
variables which scalar products depend on are also discussed in detail there [see
(A.7)]. One then concludes that M# depends on 6N independent complex

arguments j^^μcj^ μ^ {/c}^ {M^ {mc}^ {nf}^ (42)

The variables lfc and mfc introduced here are the values of arbitrary functions
l(λ) and m(λ) (3.9) at points λf c [compare with (A.6)]:

/fc = /(Λfc); mfc = m(λ?c). (4.3)

Due to commutation relations (3.2): [(C(A), C(μ)] = [β(λ\ B(μ)] =0. Hence M"N is a
symmetric function with respect to replacement of triples

and with respect to (λB, /* , mf)<-»(Λf, /£, mf). The main property of M^ is that it has
first-order poles at λ<j-+λ?l, the residue being expressed in terms of M#_!. If
λfif->λN-*λN and all the other variables in (4.2) are fixed one has for (4.1) (other
possibilities are easily restored from the symmetry):

^^

(4.4)
and modification of /, w is defined similar to (A.9)

TC,B_ιC,B( fC,B/fC,B\. rflC,B_n,C,B(fC,B/fC,B\ (Λ C|
lj ~Ί V/jN //Nj J j mj — mj V/jW //Nj )• (^'J)

Formula (4.4) is proved using Eqs. (4.1) and (A.8).
To get the mean value of operator explαQJ with respect to eigenfunctions

(3.10) and (3.15) two steps have to be taken.
(i) The first step is to take the limit λj->λj->λj (j=l,2, ...,N; all λj being

different). At the physically interesting models, variables lp mj (4.3) are values of
smooth functions l(λ) and m(λ) [see, e.g. (3.21)]. Thus the residue at the pole in (4.4)
is equal to zero and the corresponding limit is finite. The dependence of matrix
element (4.1) on vacuum eigenvalues at points λj is then represented in terms of
variables /,, m. ,

J J <j=l,...,N), (4.6)

and of variables x7 , yp

( j = l , . . . , N ) , (4.7)
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where we denote:

x(λ) = id In l(λ)/dλ y(λ) = id In m(λ)/dλ . (4.8)

So in this case MN depends on 5N complex variables

}N, {x}N9 [y}N, {/}„, {m}N) (4.9)

[it is to be compared with (A. 10)]. The dependence of M# on each xp y,- is linear. As
variables Zj (3.18) are equal to Zj = Xj + yp they are not independent variables.

(ii) To make the second step one has to impose s.t.e. (3.12) on λj in (4.9). After
this is done one can express variables w7 in terms of other variables due to (3.9).
Thus the mean value <ψjv|exp{αQ1}|φJV> is the function of 4AΓ complex variables
[cf. with(A.12)]:

(4 10)

The dependence of Jί^ on each xj,yj is linear; using (4.4) one has:

/N-l

α} Π/NjJ
\j=ι

f - l

Π /NjfjN

At the right-hand side here / is modified to Γ according to the rule (4.5) and the
modification of x,y to x,y is made similar to (A.14):

where KjN = K(λpλN) is defined in (2.11).
Formulae (4.11) and (4.12) are of importance because they give an opportunity

to restore meanvalue JίN (4.10) in terms of values of Jtn\x.=y.=0 (j' = 1 > ? n I n ̂  N)
[2], which is the main result of the analysis of the mean value in the two-site model.
To do this one has to introduce irreducible parts. Irreducible part PN of mean value

(4.10) is defined as follows:

-^ .̂̂ ^oo-i,...̂ ), (4.14)

the factor before Jl*N being introduced for convenience. Mean values of powers of
operator Qx can be obtained by differentiation of the mean value (4.10):

:o (4.15)
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The irreducible part of <i/>NIQilv^> is I(N):

0. (4.16)

It follows from (3.16)-(3.18) that the irreducible parts of the mean value of the unit
operator are rather simple:

lff = δON. (4.17)

The irreducible parts Iff are equal to zero as will be shown in Appendix 2:

Iff = 0 (ΛΓ^O). (4.18)

The irreducible parts Iff of the JV-particle mean values <tpΛrlQιlψN) are of great
interest. Further we denote it simply Iff = IN, suppressing the superscript.
Irreducible parts IN do not vanish for N^2.

It should be mentioned that it is possible to give the definition of irreducible
parts IN directly in the Heisenberg X Jf Z-model as it was done for nonrelativistic
Bose-gas in [1, 2], At N small it is possible to calculate IN directly from definitions
(4.14) and (4.10) using commutation relations (3.2) (it is easier, however, to use for
this purpose form factors, see Appendix 2). One gets after some algebra:

/o=Ί=0; (4.19)

o/VJ ; n _ _ _ _ a n 1 2 2&()
^2^1,̂ 1- sinh2Ai2 Sinhμi2_2^)

(we denote λjk = λj—λk) and also

/iΛΛ})

- 1] . (4.21)
P

The sum here is taken over all permutations P of numbers 1,2,3;

/sinh/J32 [ sinhA3Λ

'+2ίη) sinh^a + 2iη) \sinh/L31

To investigate general properties of IN it is necessary to use the algebraic
structure of QISM (see Appendix 2). As a result, IN can be represented in the
following form:

, {/}*)= "Σ
{λ} = {λ+}uμ-Mλ0> (+) (-)

ίJ. (4.23)
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The sum here is taken over all the partitions of the set {λ}N into three disjoint
subsets:

card {λ+ }„ = card U_}Λ = n;

Coefficients Λ/jJ are the Fourier coefficients of the irreducible part IN. They do not
depend on /,. but only on λj being a rational functions of exp(/l). Fourier coefficients
depend on the ^-matrix only and do not depend on the concrete model. All the
dependence on concrete models enters through vacuum values l(λ) and is written
in (4.23) explicitly. The irreducible part has also the following important property

[1]:
{/! = /2 = . . - = / * = 1}*) = 0 , (4.24)

which permits to express coefficient ̂  as a linear function of coefficients j/jj
(l^n^[JV/2]) [see, e.g., (4.20) and (4.21)]. Other properties of IN proved in
Appendix 2 are the following ones.

(i) The behavior in coupling constant η:

/*~^~{(π/2)-ί/}"-2 fo->π/2), (4.25)
IN~^~{(π/2)-2η}N-2 (ff->π/4).

(ii) Λ/jJ are symmetric functions of λ(^\ as well as symmetric functions of λ(^}

and ΛJ0) (separately).

(iii) Under the replacement of {/ί+}<->{/l_} one has

, μ_}, μ0})=Mμ_}, μ+}, μ0})]*

>=( π
π ru,A+)γ π

(4.26)

5. The Representation of the Mean Value of Operator Qϊ
in Terms of Irreducible Parts

This representation is the main result of the analysis of the mean value in the two-
site generalized model. Relations (4.11) and (4.12) being established, the proof is the
same as in the XXX-case [2] and we only give the result.

Consider the normalized mean value of operator Ql with respect to
eigenfunctions ψN (3.10) and (3.15):
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We have written the independent variables explicitly [see (3.16) and (4.10)]. The
following representation is valid for mean value (5.1):

<Q?>*=<Q?>k0)+ Σ rmitN. (5.2)
«ι = 2

Define now the right-hand side of this formula.
(i) Quantity <Qι)(0) corresponds to the contribution of the irreducible part Iffl

(4.17):

φ;) . (5.3)

Here detN(φ/) is the determinant of the N x JV-matrix φ' (3.17). The sum is taken
over all the partitions of set {λ}N into two disjoint subsets {λx}Hχ and {λy}n^ so that
nx + ny = N. Jacobians detnχ(φx) and detπ (<j0y) are the determinants of the nx x nx-
matrix φ'x and of the ny x n^-matrix φ'y which are defined similar to (3.17):

(5.4)

Σ
i=1 - (5.5)

So the first term at the right-hand side of (5.2) depends on variables Xj and y; only
and does not depend on /,.. It should be emphasized that

(5.6)

. (5.7)

so that detjv(φ/) depends on the sum z; of Xj and y^ only.
(ii) Quantities Γnι N are defined in a more complicated way:

' Σ
{λ}w = {λr}«1υμ«'}nt,

The sum is taken over all the partitions of set {λ}N into two disjoint subsets,
namely, the subset {λv}nv of "vacuum" rapidities and subset {λl}nι; nv + Hj = N.
Jacobian detπ (φQ is the determinant of nv x n^-matrix φ'v which is defined similar
to<3-17): " Γ - Ί

(φ'v)jk=δjk\ z(λv+ Σ K(Xj,X[) -κ(λ°j,λΐ)
L ' 1 J (5.8)

(λlk^{λv}hυ j,k,l=\,2,...,nυ}.

Here z(λ) is given by (5.6).
"Dressed" irreducible parts Id at (5.6) are defined as follows:

(5.9)
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The sum here is taken as in (4.23) (where one has to change JV->n7). So the
difference between I*ItN and Inι (4.23) is in dressing factor EM}ΠV, defined as follows:

• Π Π {f(ti, ®Γ '(%, λt)f(λi, W '(ΛΓ, Λj)} . (5.10)
j = 1 k = 1

The sum is over all the partitions of {λv}nv into {λx}Hχ and {λy}ny (nx + ny = nv) .
Jacobians detnjφ^) and detΠy(φy) are defined in (5.4) and (5.5). The dependence on
x/,3// enters the Jacobians; dQtnχ(φx) depends on xy9 detMy(φp depends on yj9

detN(φ') and det,J(^) depends on Zj = Xj + yj. The dependence on /,. is written
explicitly in lά (5.9). We have defined the right-hand side of (5.2). The behavior of
Γκ N in the coupling constant η is the same as the behavior of Iκ (4.23) [see (4.25)] :

Γκ,N~{(π/4)-η}κ-2 (η-+π/4)(K*2). (5.11)

It should be emphasized that the results of Sects. 3-5 are valid for any
integrable model with the XX Z β-matrix which can be solved by means of the
algebraic Bethe Ansatz of QISM. In the rest of the paper formula (5.2) is used to
calculate correlator (1.2) for the Heisenberg one-dimensional ferromagnet.

6. The Thermodynamical Limit and Dressing Equations

The transition to the Heisenberg .OfZ-model will be made in two steps. The first
step is taken in this section. We make arbitrary functions r(λ) (3.9) and z(λ) (3.18) of
the two-site model equal to their values (3.21) and (3.22) in the Heisenberg model,

r(λ) = l$(λ) I0(λ) = sinhμ - iη)/smh(λ + iη) (6.1)

z(λ) = Mu(λ) u(λ) = id \nl0(λ)/dλ [see (2.12)] . (6.2)

Functions l(λ) (3.9) and x(λ) (4.8) remain arbitrary. Due to (5.6) function y(λ) (4.8) is
now expressed in terms of x(λ) :

= Mu(λ)-x(λ), (6.3)

variables y7 being thus linear functions of variables (4.7):

Xj. (6.4)

S.t.e. (3.12) of this model is the same as s.t.e. (2.4) of the Heisenberg model, the
thermodynamical limit (M->oo) of s.t.e. being also the same.

Turn now to Eq. (5.1) and take for \ψNy there the state which corresponds to the
physical vacuum |Ω> in the Heisenberg model. At the thermodynamical limit this
state is described by vacuum particle density ρ(s) (2.9) [vacuum rapidities have
property Im λ = π/2, and we use notation (2.8) putting Re/I = 5]. Arbitrary function
x(λ) is supposed to be fixed and finite at M-»oo. Then function y(λ) (6.3) goes to
infinity at M-»oo.
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Consider first the thermodynamical limit of term <Q?>/v>) in (5.2) which is given
by (5.3). It is convenient to consider quantity EN [2]:

Σ exp {on,} detπ>;) detny(φ;) . (6.5)
WN = {λχ}nχu{λy}nχ

Here α is supposed to be pure imaginary. To calculate the limit of each term in (6.5)
one has to calculate the ratio detΠy(φ^) det# l(φf) in this limit (M->oo, N->co,
n^-fixed, ny = N — nx-^oo).

The thermodynamical limit of det^φO giving the norm of wave function (3.16)
is rather simple [2, 19]:

= (det(l - ft/2π)) ( f [ [2πM ρ(s,)]) . (6.6)
\j=ι /

Here Sj are real parts of rapidities entering det^φO; integral linear operator ft is
defined in (2.10) and (2.11). Using a similar representation for detny(φ^) and
properties of operator ft given in Appendix 3 one calculates the determinant ratio:

The weight ωΛ(s) here is given by

-(l/2π) K(s,t)dt. (6.8)

For coupling constant η being in region (2.2), one has the following important
property:

(6.9)

The limit of determinant ratio (6.7) having been calculated, one can prove the
following statement. The limit E(α, [x(/l)]) = lim EN(u, [x(/l)]) does exist and is

W-"oo

equal to the sum of the limits of individual terms at the right-hand side of (6.5).
Function E satisfies the following properties:

2πδE(*,lX(λfl)/δx(μ)

E(α, [x(λ) + K(λ, μ)]) (6.10)

^l (lmλ = π/2) (6.11)

(recall that we consider α to be pure imaginary).
The proof of this statement is made in complete analogy with the proof for

Bose-gas given in paper [2].
Linear Eq. (6.10) is solved by Fourier transformation. Putting

f
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one has that (6.10) and (6.11) are equivalent to the following integral nonlinear
equation and inequality for P(ί,α):

( A ")
2πP(t, α) = exp < α + f K(t, s)P(s, a)ds > -1

^ ~Λ J (6.13)
ReP(ί, α)^0.

It is proved in Appendix 4 that for α pure imaginary and 0 < 2η ̂  π/2 (2.2) the
solution of system (6.13) does exist and this solution is unique.

The thermodynamical limit <Qι>(0) of <Q?>$> is obtained from £(α, [x(Λ)] by
taking the second derivative in α at α = 0. The answer is given in (6.24). So the
thermodynamical limit of the first term at the right-hand side of (5.2) is calculated.

Other terms ΓnitN [(5.7) and (5.11)] at this limit (N-^oo, nrfixed) are calculated
in a similar way. The limiting determinant ratio at (5.7) is obtained similarly to
(6.7):

det Jφ ydeUφΉ Π [2πMρ(Aj)] - X(λj) (6.14)
J = l

(JV->oo; nv = N — nI-+co:> wf-fixed).
To calculate the limit of dressed irreducible part Id (5.9) one has to calculate the

limiting dressing factor En — \imEnnv (5.10). This is to be done essentially in the
same way as the calculation of the limit of EN (6.5). The limiting function En does
exist and is defined by the following properties:

E n ΞΞl a t x = 0. (6.15)

2πδEn/δx(μ)=-En

fl nλ^μ^f-^λ^mμ^^f-^^μE^x^ + K^μ^ (6.16)

It is essential that the modulus of the product of the /-factors at the right-hand side
is equal to one. Putting

(6.17)

one obtains that Eq. (6.16) is equivalent to the following nonlinear "dressing"
equation for Pn

2πP.(ί)=
V = 1

(6.18)

Inequality (6.15) turns into the following inequality for Pn:

ReP^O. (6.19)
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For 0<2η^π/2 (2.2) the solution of system (6.18) and (6.19) does exist and is
unique. It is proved in Appendix 4, where properties of functions Pn are discussed
in detail. Of greatest importance for us are the following properties which can be
easily proved using Eqs. (A.38) and (A.39). At ί finite and 2η Φ π/2, RePΠ = 0 if and
only if {λ+}n = {λ~}n (i.e. sets {λ+}n and {λ~}n are the same):

0. (6.20)

In any other case one has for 2η<π/2:

RePΠ(ί,U+}M,U-}n)<0 (t*±co;{λ+}Λ*{λ-}J. (6.21)

The behavior at ί-» + oo is as follows:

PΠ(ί, U+}M, {/Πw)->0 (at ί-> ± oo and λ fixed) . (6.22)

Equation (6.14) and (6.17) permit us to calculate the thermodynamical limit
Γnι = limΓnι N (ttj-fϊxed) [the answer is given in (6.26)].

Let us give now the answer for the thermodynamical limit of the meanvalue
(5.1) and (5.2) for the two-site model considered in this section [see (6.1)-(6.3)]. At
this limit state \ψNy at (5.1) goes to |Ω> which corresponds to the physical vacuum
in the Heisenberg model. Using results obtained above one has:

<Q? > = = <Q? >(0) + Σ rκ . (6.23).
\U\iiy κ = 2

Here <Q?>(0) is the thermodynamical limit of <Qf >^0) in (5.2):

<Q?>(0)= (Λi*(t+ W)diY + ί ί+ W)ΛJ x( ί+^)p-(ί)Λf (6.24)
-A \ ZJ '' J -A \ 2J

where we denote

P'(ί) = dP(t, α)/δα|α=0 P"(ί) = <52P(f, α)/<5α2|α=0, (6.25)

and function P(ί,α) is defined by (6.13).
Quantities Γκ are contributions of K-particle limiting irreducible parts Id

κ:

(6.26)

A

Weight ωyl(5) = exp<-(l/2π) J K(s, t)dt> is defined in (6.8). Irreducible parts Id

κ
(. -Λ }

are obtained from Id

κ N (5.9) by changing dressing factors En n to En defined in
(6.17) and (6.19):

• En({λ+}n, {λΊn, Wλ)]) Π /(A/)/' XV) . (6.27)
V/=ι /

Here j/χ are Fourier coefficients of the irreducible part [see (4.19H4.23)]. It
should be emphasized that the behavior of Γκ in coupling constant η is just the
same as of ΓKtN [see (5.11)].
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7. Correlation Function (σ^σ^y for the Heisenberg XXZ-Antiferromagnet

The normalized vacuum mean value of operator Q2(w) (2.20) is obtained from
(6.23H6.27) by substituting for arbitrary functions l(λ) (3.9) and x(λ) (4.8) their
values in the Heisenberg model (3.21) [cf. with (6.1) and (6.2)]:

l(λ) = lζ(λ) /0(λ) = cosh (s - iif )/cosh (s + iη) , (7.1)

x(λ) = ίmd In I0(λ)/dλ = mu(s + iπ/2) (/I - s + iπ/2) . (7.2)

The function w(s + zπ/2)>0 is given by (2.12). It is to be remembered that all the
rapidities λ here are the vacuum ones, so we denote λ = s + iπ/2; Ims = 0 [see (2.8)].
Vacuum rapidities fill the Fermi zone — Λ^s^Λ, "Fermi rapidity" Λ being
defined by magnetic field H [see (2.13) and (2.14)]; Λ->oo at ff->0. Quantities
(Qϊ)(0) and Γκ in (6.23) are thus functions of the "distance" m and we write for them
<Q?(m)><°> and Γκ(m):

<Qf (m)> = <Q?(m)><°> + Σ Γκ(m) . (7.3)
K = 2

Function P'(f) in (6.24) satisfies the following linear integral equation which is
readily obtained from (6.13) and (6.25): 2πP'(ί) - (ΛP') (ί) = 1 . Using Eq. (2.9) for
ρ(s) one has from (6.24) and (7.2):

<Q2(m)>(0) = m 2( ί ρ(s)ds] +m J u(s + ίπ/2)P"(s)ds. (7.4)

Contributions Γκ(nί) of dressed irreducible parts are given by (6.26) with l(λ) and
x(λ) defined in (7.1) and (7.2).

Turn now to correlator (1.2) and (1.3) which is represented in the following
form (2.23) and (2.24):

<σ(-)σα)> = (l -2 f Q(s)ds}2 + «4m>(#>» . (7.5)
\ -Λ J

To obtain the nontrivial part of this correlator one has to apply the derivative D(2)

(2.22) to <β?(m)> (7.3) [see (2.25)]. The differentiation of <β?(m)>(0) is easily done
due to relations D(2)w = 0; D(2)m2 = 2. Thus one gets:

«σ$W»= Σ Gx(m), (7.6)
K=2

where [see (2.25), (6.26), and (7.3)]

m {λκ}κ} . (7.7)
-Λ\j=ι π

Irreducible part ld

κ(m\ {λ}) is just Id

κ({λ}) (6.27), where the substitution (7.1) and
(7.2) is made; one thus has

• exp{(m-2)πn({s+}n, {s~}J} Π ^"2(^)'o m+2(
V/=ι

• \exp{πn({s+}n, {*-}„)} ( Π /0(A/)/o l(λj)\ - lΐ - (7.8)
L v=ι / J
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The sum here is taken as explained after (4.23) and (5.9) but the term with n = 0 is
omitted as it is annihilated by the derivative. Fourier coefficients <$/% are defined by
(4.23); for K = 2,3 they are given in (4.20) and (4.22). We introduce also the
folio with notation:

}n, {λ~}n)dt

functions Pn here as defined by (6.18) and (6.19). It should be emphasized that
functions πn are the only quantities which are not given in the expression for Gκ(m)
quite explicitly. They are defined in terms of functions Pn which are solutions of the
nonlinear integral equation (6.18). This equation can be solved either perturba-
tively in {(π/2) — 2η} [see (A.41)] or by means of iterations described at Appendix 4
(A.37). The important property of functions πn (7.9) is ReπM ̂  0, which follows from
u(ί + iπ/2)>0 (2.12) and RePM^0 (6.19). More exactly, using (6.20), (6.21), and
(A.41) one has the following statements:

πw({s+}M,{5-}M) = 0 at 2η = π/2; (7.10)

(7.11)

π/2). (7.12)

Formulae (7.6H7.9) give the final answer for correlator <^σ(^σ(^. It is
represented as a series, the Xth term of the series corresponding to making K holes
in the physical vacuum. To clarify the structure of series (7.6) we write down the
first two terms. Function G2 is represented as a double integral. Using (4.20), (4.26),
and (A.40) one has:

cosh s — ί cos8h(s2 + H?)V -2

-^)y

Γ f t ^ίcosh(sί-ίη)cosh(s2 + ίη)\ Ί2

exp{π1(51,52)} — 1-7̂  - ̂  - ττ~^ - τ ) ~ M > (
|_ F X 1V x 2//Vcosh(5ι+^)cosh(52-^)/ J

Weight ω^s) being defined in (6.8), the only quantity which is not given in (7.13)
explicitly is function πx [see (7.9)], which is to be calculated as explained above.
Function π1(s1,s2) enters also the expression for G3(m) which is given by the
following triple integral:

1
I u o IΛ//< V" i/ I ι /• /-\ \ 1 /• /-\

= i J / sιnh(s3 — S t + 2«j) sιnn(s3 — s2 — 2ι;

sinh(,s3 —s2) sinh(s3 — s^)\ sinh(5^ — 52H-2i^)

\sinh (s3 — s1) sinh (s3 — 52) / sinh (s1 — s2 — 2iή)

1 r/ ^ / ,Vcosh(51-m)cosh(s2 + m)N\M~2

-exp{(m- 2)π1(s1, s2)} ( — -̂±—r̂  T^—r^ 1
sinh2(Sl-52

- 2 . _ ,_, . ,
m>3). (7.14)

~[ , / x, coshΓsi — lη) cosh(s2 + iη) Λ Ί
2

exp{π1(s1,s2)}—ττ~^—rr Γ7 rτ~M >FI iv ι» 27J h(^ 77) cosh(s2- wy) J
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Let us discuss now the general structure of the Kth term Gκ(m). It is represented
as the K-multiple integral (7.7). At S;->oo this integral is convergent which makes
possible to put A = oo (i.e. H = 0). The singularities of the integrand at finite real Sj
are reduced to first order poles. It follows from the analysis of the limiting process
discussed in detail in Sect. 6 that the principal values of corresponding integrals
should be taken. With this prescription all the integrals are well defined.

Expression (7.7) for Gκ(m) contains the Kth power of weight ωΛ(s) (6.8)
possessing property 0^ω Λ (s)rgω A (Λ)< 1 ω0 0=exp{ — ( π — 4 η ) / π } < ! for 0<2η
<π/2, Λ>0 (6.9). Therefore the convergence of series (7.6) seems highly probable,
though we don't know the complete proof yet. It should be mentioned that region
π/2<2η<π of the coupling constant also corresponds to an antiferromagnetic
case. At these η, however, weight ωΛ(s) in (7.7) becomes more than 1 and series (7.6)
seems to be divergent; to obtain correlator (σ^σ^y in this region of the coupling
constant one has to make an accurate analytical continuation from region 0 < 2η
rgπ/2. The convergence of the series is closely connected with the following
phenomenon. S.t.e. (2.4) in the logarithmic form can be obtained from a variational
principle [14,4]. Corresponding action is convex only in our region 0<2τ/^π/2,
which permits us to prove the existence of the solution of system (2.4).

The behavior of Gκ(m) in the coupling constant η is the same as the behavior of
Fourier coefficients [see (4.25) and (5.11)]. At 2η->π/2 one has

Gκ(m)~ί(π/2)-2ηγ-2. (7.15)

This property shows that the perturbative expansion in the coupling constant
[(π/2) — 2ή] is easily obtained from series (7.6). To obtain this expansion up to
[(π/2) — 2ηY, one has to consider n first terms of series (7.6). At 2η = π/2 only the
term with K = 2 survives which gives the correlator for the XX-model. In this case
K(s,t) = Q [see (2.11)]. It means that ρ(s) = (πcosh2sΓi (2.9), ωΛ(s) = l (6.8) and
π1(s1,s2) = 0 (7.10). Integrals in (7.5) and (7.13) can be taken explicitly and one
obtains:

/σ(m).(ικ _ Λ 2<Λ2 4 sin2 [(m-
σ * -1-

f = π/2; 0:g/f <4). Here q is the Fermi momentum which at 2η = π/2 is
given as [see (2.5)]

q = 2 arctg thΛ = arctg(]/4-#2/#). (7.17)

(Fermi rapidity A is simply expressed in terms of magnetic field H for
2η = π/2: cosh2A = 2/H.) The first term at the right-hand side of (7.16) gives the
square of magnetization and the second one represents the nontriviέl part

>. At H = Q (Λ = ao), q = π/2, and the correlator is especially simple:

4sin2[(m-l)π/2]

π2(m-l)2

/ = π/2; H = fy. This formula reproduces the known answer [10,11] for
the XX-model.
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Turn now again to correlator for 0 < 2η ̂  π/2. The most remarkable property*
of series (7.6) is that the correct asymptotical behavior of the correlator at m-> oo is
given already by the first term. Below we discuss the most obvious results
concerning the first two terms of the series.

Consider first G2(m) (7.13). Integrating by parts in sl9s2 and using (7.11) one
obtains

(m>π/2ι/). (7.19)

The following notations are used here, (i) q is the Fermi momentum:

q = 2arctg(tgηihA). (7.20)

(ii) Constant C = C(η,Λ) does not depend on m and is easily calculated in
terms of the function π^Λ, —Λ). Of importance for us is the following property:

C->1 at 2η^π/2. (7.21)

(iii) Quantity a is given by different formulae in the following two regions of m :

a = ωΛ(A) (m>sin(π-4?7)ch2yl),

a = ωΛ(0) (m <ζ sin (π — 4η) ch 2Λ) .

C A Ί
Here ωA(s) = exp< — (l/2π) J K(s, t)dt\ (6.8). It is to be remembered that in any

I -A }
case m> 71/2*7 [see (7.19)].

(iv) Quantities r and κ are:

r= -ReπΛ/l, -Λ); κ = Imπ1(yl, -A). (7.23)

It follows from (7.10), (7.12) that

r = κ = 0 at 2, = π/2,

r>0; r = 0[((π/2)-27/)2] at 0<2η<π/2.

MH = 0 and 2η->π/2, r = (π — 4η)2. So all the notations used at the right-hand side
of (7.19) are explained.

Discuss now asymptotics (7.19) in more detail. There are three different scales
M1?M2,M3 in the asymptotics:

M^πβη; M2 = r~1; M3 = sm(π-4η)ch2A. (7.25)

At m^>M1 the integrand in (7.13) does oscillate and one thus obtains asymptotics
(7.19). The second scale M2 [see (7.23) and (7.24)] characterizes the region where
oscillations in the asymptotics exist. For m<M2 there are oscillations
(~exp[(m— 1)(— 2ΐg + i%)]); for m>M2 they disappear. These two scales are
essentially defined by coupling constant η [i.e. by internal anisotropy A (2.1) of the
antiferromagnet]. The third scale is M3~ch2Λ As A is defined by external
magnetic field H, M3 is also essentially defined by the magnetic field. For m>M3

and m<^M3 one has different a in (7.19). Though we are discussing now the first
term of series (7.6), the existence of these three scales has grave physical meaning
and they have to be present in the exact correlator C^a"^1^ also
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Note that M1 = 1, M2 = oo, M3 = 0, and a = (0A(A) = ωΛ(G) = 1 for the XX-case
(2η = π/2). Using (7.24) and (7.21) one restores then correlator (7.16H7.18) (it is to
be mentioned that asymptotic formula (7.19) appears to be exact in this case).

For 2η<π/2 terms Gκ(m) (K^3) of series (7.6) also contribute to the
asymptotics of the correlator. The contribution of G3(m) (7.14) can be easily
calculated. It is of the same form as (7.19) resulting in corrections to coefficients α
and C there, these corrections being especially simple for the nonoscillating terms.
Summing up contributions of G2(m) and G3(m) one obtains the following results
for correlator (7.6).

For nonzero magnetic field H>0 the "far" asymptotics and the "near"
asymptotics have to be distinguished:

2 f
π2(m-l)2

(0<H<4sin2^;0<2/7<π/2;m>max{M1,M2,M3}); (7.26)

π2(m-r

M2}).(7.27)

Weight ωA(s) and function K(s91) are defined in (6.8) and (2.11). For M l j 2 ? 3 see
(7.25). [It is worth mentioning that for A sufficiently large the square bracket in
(7.26) turns into [l—4ωΛ(A)lnωΛ(Λ)']9 and the square bracket in (7.27) - into

To obtain the asymptotics of the correlator at zero magnetic field one puts
Λ-+OO. As M3->oo at A-+CO, one has to use Eq. (7.27). The result is:

<σ§fl)σ(

3

1)> = Cσ^V/^ ̂  G2(m) + G3(m)

2exp{-2(π-4ι/)/π}Γ1 t A(π-4η)/π}Γ
27 7^2 i H- H exp <2 - I *n2(m-\Y

(H = 0, Λ = oo 0 < 2?7 < π/2 m > max {Ml9 M2}). (7.28)

So we have calculated the asymptotics of the first two terms of series (7.6)
representing the correlator. It is obvious that other terms Gκ(m) (K^4) do not
change behavior ~ 1/w2, changing only the coefficients.

Equations (7.26H7.28) are already sufficient to obtain the asymptotics of the
correlator up to the first order in [(π/2) —2^] (i.e. near the .Of-model). After
elementary calculations one has at nonzero magnetic field

«4m)4υ» = -

(H>0;0<2^<π/2;m>max{M1,M2?M3}); (7.29)

(H>0;0<2ί/<π/2;M3^m>max{M1,M2}). (7.30)
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For H = 0 one has

(ff = 0;0<2ι;<π/2;m>max{M1,M2}). (7.31)

It is to be emphasized that we obtain asymptotics (7.31) at H = 0 as a limit Λ-* oo of
"near" asymptotics (7.30). [The matter is that "far" asymptotics (7.29) is valid if
m^>M3 = sin(π — 4η)ch2A. At (π — 4η) small (but fixed) the corresponding region
does not exist at A = oo.] The first order correction thus obtained is twice as large
as the corresponding correction of paper [13] where the correlator at H = 0 was
calculated. If one takes the limit Λ-+ oo not in (7.30) but in (7.29) then the coefficient
is just the same. Our limiting procedure seems to be more accurate.

8. Conclusion

We have calculated the simplest correlation function <σ(

3

m)σ(31}> for the one-
dimensional Heisenberg antiferromagnet. The method used is quite general,
results of Sects. 3-5 of this paper giving a background for calculation of practically
any correlation function for integrable models with the β-matrix of the .Of Z-type.
In particular, we'll calculate the field correlator for the sine-Gordon model in our
next paper. The method permits also calculation of the dependence of the
correlation radius on the temperature for such models; for the One-Dimensional
Bose Gas it was done in [20].

Appendix 1

"Scalar product" S# is defined as follows:

S* = <0| Π Cμ?) Π Bμ*)|0> . (A.1)
j=ι fc=ι

Here λ^ φ λζ (j φ fe) λ* φ λ* (jή=k). The properties of SN necessary for us are given
below [18]. Scalar products can be in principle calculated by means of (3.2) and
(3.7). So one has for example

§t = <0|Cμc)BμB)|0> = g(λc, λ») \r(λc) - r(λ^ , (A.2)

where g and r are defined in (3.4) and (3.9). For N arbitrary the dependence ofSN on
vacuum eigenvalues r(λ) can be explicitly extracted:

(A.3)
p a r t \ y = l /

The sum here is taken over all the partitions of the set {λc}Nv{λB}N into two
disjoint subsets {λ(pr}}N and {λ(ab)}N (subindex N in {λ}N means the numbers of
elements in this set). Coefficients KN do not depend on r(λ) and are functions of2N
rapidities λ?, λ%, the dependence on each individual λ at all the other /Γs fixed being
as follows:

KN = exp(/l)jΓ(exp(2/l)) = exp( - λ) jf(exp( - 2/1)) . (A.4)
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Here jf, Jf are rational functions of their arguments decreasing at infinity:

Scalar product SN depends on the values of the arbitrary function r(λ) at 2N points
λc, λB. Due to the arbitrariness of this function these values can be considered as
independent variables r£, r?:

ή = τ^; rj=r(λf). (A.6)

So the scalar product is the function of 4N complex variables:

Sκ = SMλc}N, {λ»}N, {/"%, {rB}N) , (A.7)

which is symmetric with respect to

ίf) or (rM#,if)

(separately). The most important property oίSN is that it has a first-order pole at
λ*j-+λ* (/, /£= 1, 2, ..., JV), all the other arguments being fixed. At λ%-+λ*-+λN one
has (the general case is obvious due to the symmetry):

1; {A*}*- 1, {fc}N_ !, {/"%_ ,) . (A.8)

Here fN

Bjc=f(λN,λfc) (3.4) and

f(λ) = r(λ) (f(λ, λN)/f(λN, λ)) . (A.9)

Function SN_ 1 in (A.8) does not depend on rN; SN_ ^ also depends on λN only due
to modification (A.9).

It should be emphasized that SN has this pole only if function r(λ) is not smooth
at λ = λN. In physical cases r(λ) is a smooth function [see, e.g. (3.21)], and the
residue at λ = λN is equal to zero. Then the dependence of SN on the vacuum
eigenvalue at point λN is represented naturally in terms of two variables : rN = r(λN)
and zN = idlnr(λ)/dλ\λ=λN. The dependence on ZN is linear, the coefficient at ZN

being easily obtained from (A.8).
At the limit A?->A* ->Λ7 (j = 1, 2, . . ., N) (all λj are supposed to be different) the

scalar product depends on 3N complex variables:

§* = SN(WN, {Z}N, {r}N) ({λc}N = {λ»}N = {λ}N) . (A.10)

Here z7 is defined in (3.18). SN is a linear function of each z7 .
The case where λj in (A.10) satisfy s.t.e. (3.12) is of primary importance, because

SN gives the "norm" Jf of eigenfunction (3.10):

*, {z}N)

= SN({λj}N9 {zj}
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The norm also is a linear function of each zp the coefficient being obtained from
(A.8):

k = l

The modification of Z to Z is defined as follows:

where KjN = K(λpλN) (2.11). Equation (A. 12) was the basic one in obtaining
explicit formula (3.16) [18].

Appendix 2

To investigate properties of irreducible parts (4.14) at N arbitrary it is necessary to
introduce form factors. Form factor F^ is matrix element (4.1) between different
eigenfunctions (3.10) and (3.15),

Al λc

jy λ
B here are different and satisfy s.t.e. (3.12) (each set {λc}9 {λB} separately). It

means that variables mB in (4.2) can be expressed in terms of λB and 1B, and variables
mc - in terms of λc and lc [see (3.9)]. So the form factor depends on 4N independent
variables:

n = F*N({λc}N, {λ*}N, {lc}N, {/%) . (A.15)

The irreducible part /# (4.14) can be obtained as some limiting value of the form
factor [1]:

Φfc

\\mF«N({λj}N, {λj+ε}N, {lj
ε-»0

The investigation of form factor (A. 15) is similar to the one made for the XXX-case
[1]. The difference is in analyticity properties in λ's of scalar products [see (A.4)
and (A.5)]. Taking this into account one proves the following representation for
the form factor:

= Σ(U l(λc

pr)\ (Π I' 1(λB

r)\ RN(part) .
part \pr J\Pr )

Here the sum is taken over all the partitions of set {λc}N into two disjoint subsets
{λ%r}n and {λab}N-n and over partitions of set {λB}N into two disjoint subsets {λB

r}n

and {/&}#-«• These partitions are independent except that

card [λc

pr}n = card {λB

pr}n = n; cardμS,}^ =card{λB

ab}N_n =N-n.

Product Π'(^pr) denotes the product of n factors l(λ*j); /l^ e {/!,£,.}„. Product
pr

Π /" X^fr) denotes the product of n factors /~ l(λ^)\ λB e {λB

r}n. So form factor F*N is
pr

a linear function of each l(λ^) and a linear function of each l~l(λB). Coefficient
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RN(part) does not depend on / and is a function of λ's only, having the following
representation:

R^part) = «#{£},, UUK-Λ{&}*-.> {&W

• {Π Π S($n ft)} IΠ Π f(ft, λB

pr)} . (A.18)
[pr ab J [pr ab J

Product Π Π denotes the independent products over all λ e {λpr} and all λ e {/1Λ J
pr αfc

this product contains n(N — ή) factors. Functions σ%({λc}n, [λB}n) (n = 0, 1, ...) are
functions of 2n rapidities λc'B and are uniquely defined by the following properties.

(1) σ* is a rational function of exp(λj); λje{λc}nu{λB}n.
(2) It depends on λ^ at other A's fixed as follows [cf. with (A.4)] :

Here <τ* is a rational function of exp(2/£) decreasing at n^ 1 at infinity:

σl = 0[exp( - 2J£)] (exp(2An

c)^ oo n ̂  1) . (A.20)

(The dependence of σ* on λB is similar).
(3) Function σ£ is a symmetric function of λ*j and a symmetric function of λB.
(4) The only singularities of σ* (A. 19) are first-order poles at

β"1(^,Aj) = 0; j=l,2,...,n

[̂ f is defined in (3.4)], the residue at λ% = λB = λn being equal to

π-1 «-l

Π fC SB Ύ-Ύ f B f C
JjnJnj ~~ 1 1 JjnJnj

7=1 7=1

(5) A t n = 0, 1:

σS = l; σϊ(Ac,AB)=^c,AB){exp(α)-l}. (A.22)

Remark also the following important property:

)σ,Γ
α({Ac}π, {AB}n) . (A.23)

To investigate irreducible part IN of the meanvalue of operator Q \ one needs
form factors of operators Q^ and Qf, which can be obtained from (A.14) by
differentiation with respect to α at α = 0. One has then from (A. 17) and (A. 18):

ι ) V ) { A ί i } J V ) ) (A.24)

where σ'N is defined as

/δαUo. (A.25)
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Properties of functions σ', which is easily restored from properties (l)-(5) of
functions σα, define them uniquely and allow us to calculate them. The first three
functions are

λf }2) = 2 cos2ηg ~ \λc, + λc

2,

λB )g(λϊ , λfo (λ£ Af) . (A.26)

The following property is obtained from (A.23)

σ'N({λc}N, {λ*}N) = - σ'N({λB}N, (λc}N) . (A.27)

One has from (A.25) and (A.21) the following relation

-ι({λcU-ι,{λ1Vι), (A.28)

which permits us to establish the behavior of σ' in the coupling constant η :

G'v-n™-1 fo-Ό),
^-[W-ff]2*-1 (»ί^π/2), (A.29)

Turn now to the form factor of operator Qf :

F* = <ΨN({λc}N)\Ql\ΨN({λB}N)y . (A.30)

Using (A. 17) and (A. 18) one has

/=ι
l^n^N-l

+ 2 " Σ σ'n({λc

pf}n, {λ°pr}n)σ'^n({λB

ab}N-n, (λc

ab}N.a)
part

• {Π i(λc

pr)r \λ»r)} in Π /£, ̂ )1 {Π Π /(Af6, 4)1 .
(pi } [pr ab } [pr ab J

The sum here is taken as is explained after (A. 17) but we have written down
explicitly the two terms corresponding to the partition {λ^} = 0; {λfr} = 0 and to
the partition {λc

pr} = {λc}N; [λB

pr} = {λB}N. We denote card [λc

pr}n = card {λB

jr} = n

Let us now consider irreducible parts using Eq. (A. 16). One obtains from (A.24)
that /jγ ) ==0, (4.18). For irreducible part Iffi = IN of the meanvalue of operator Q^
one gets from (A.31) representation (4.23). It should be noted that Fourier
coefficients ja/jj (n ̂  1) in (4.23) are expressed in terms of functions σ' only, function
σ" entering only coefficient j/# which can be expressed as a linear combination of
^ (n^l) due to (4.24). Using (A.29) one comes to (4.25).
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Appendix 3

Some important properties of operator ft (2.10) and (2.11) are discussed here. At
0<2η<.π/2 (2.2) and λ = s + iπ/2, lms = 0 (2.8) one easily obtains the following
estimate for the quadratic form of matrix φ' (3.17):

Σ υjφfa = MΣ vJu(Sj + iπ/2)
j,k j

+ Σ(vk- ^)2K(sk, Sl) > M Σ vJu(Sj + iπ/2) > 0. (A.32)
k<l j

Here Vj is an arbitrary vector with real components; functions K(s,t) and
u(s + ίπ/2) defined in (2.11) and (2.12) are positive at 0<2η<π/2. Going to the

Γ A Ί
thermodynamical limit which corresponds to changing Σ ->M J dsρ(s) one

L j -Λ ]
has for arbitrary real function ψ(s):

f φ(s)[δ(s-ί)-(l/2π)X(s,ί)]φ(ί)ώdί>(l/2π) J ιp2(s)u(s + iπ/2)ρ-1(s)ds.
-A -A

(A.33)

Using this formula one gets that eigenvalues of operator ft satisfy the following
inequality:

l-ε>|ft/2π|>0, (A.34)

where ε is positive constant (for #>0), going to zero as fί-»0.
It should be mentioned that the determinant of the linear integral operator

(1 — ft/(2π)) [entering, e.g., (6.6)] is thus a finite positive number at H>0; as #->0
one has due to (2.14):

°° In 1 -det(l -ft/^π))^ =exp <j - -

and

~ °°

— oo

Appendix 4

Consider the following system consisting of the nonlinear integral equation and
the inequality for function P(ί):

2πP(ί) - exp {α(ί) + (ftP) (ί)} -1 (Re α(ί) - 0), (A.35)

(A.36)

Operator ft is given by (2.10) and (2.11); given function α(ί) is supposed to be pure
imaginary, system (6.13) is obtained from (A.35) and (A.36) at α(ί) = α = Const; for
system (6.18) and (6.19) function exp{α(ί)} is given by the product of factors/in
(6.18). Prove now that for 0 < 2η <; π/2 (2.2) a solution of system (A.35), (A.36) does
exist and that the solution is unique.
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To prove the existence of a solution consider the following sequence of
functions Pk(t) (fc = 0, 1,2, ...):

- (A.37)
l

Due to the fact that kernel K(s, t) (2.11) of operator ft is a positive function
[_K(s, t) > 0 for 0 < 2η < π/2 and s, t φ + oo] one easily sees that RePfc(ί) ̂  0 for any
fc. Let us prove now that the sequence (A.37) converges which means that the
limiting function P(t) = limPk(t) (at fc->oo) exists and is a solution of (A.35) and
(A.36). As Reα(ί) = 0, one has from (A.37):

\Pk+ 1(0 -Λ(ί)l = |exp{(*Pfc) (f)} -exp{(ftPk. 0

Kernel K(s, ί) (2.11) of operator ft is positive for Q<2η<π/2. So

for any fc. Using inequality \exp(zi)— exp(z2)|^|z1 — z2\ for Rez^O, Rez2^0,
one has

|Pfc+1(0-^(OI^I(W-^-^^

Due to (A.34) this means that the limit of Pk(t) at k-+ oo exists. Thus the existence of
the solution is proved. The uniqueness of the solution can be proved in a similar
way. Suppose that two solutions P(1)(ί) and P(2)(ί) of (A.35) satisfying (A.36) do
exist. Then the following inequality must be fulfilled:

|P(2)(ί) - P(1)| ̂  (ft|P(2) - P(1)|) (ί)/(2π) .

Multiplying both sides of this inequality by |P(2)(ί) — P(1)(OI and integrating them
over ί, one comes to contradiction with (A.33) if P(2)(ί)φP(1)(0 So the existence
and uniqueness of the solution of system (A.35), (A.36) is proved. It should be
mentioned that if α(ί) = Const and A = oo one has that P(ί) = Const. Hence the
solution of (6.13) for Λ = oo is particularly simple.

The most important property of the solution of system (A.35) and (A.36) is that
if function α(ί) is not equal to zero identically then the real part of function P(ί) is
strictly less than zero at finite t:

ReP(ί)<0 (ίΦ±oo,α(ί)φO). (A.38)

To prove it suppose that ReP(ί0) = 0 at some ί0φ ± oo. Taking the modulus of
both sides of (A.36), one has:

Γ Λ

[l+(2πImP(ί0))2]1/2 = exp^ f K(ί
(-Λ

Due to property K(t0, s) > 0 it can be valid if and only if ReP(s) = 0 at any s. One
can easily see then that ImP(s) = 0 at any 5, and hence P(s) = 0 at any s. This can be
so only if α(s) = 0 at any s. Equation (A.38) is thus proved. The behavior of function
P(t) at £-> ± oo is defined by the behavior of function α(ί) In particular

P(ί)-»0 at ί-> ± oo if α(ί)->0 at ί-> ± oo . (A.39)

Equations (A.38) and (A.39) lead to Eqs. (6.20)-(6.22).
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Now we list important properties of functions Pn(t, {λ+}n, (λ~}n) which are
solutions of (6.18) and (6.19):

(1) These functions are symmetric in all λf and in all λ]~ (separately). They also
possess the following property:

P*(ί, {λ+}n, {λ~}n) = Pn(t, {λ- }„, μ+}B) . (A.40)

(2) P.(t,μ+},,,μ-}1I)l«=Air=P1,-ι(ί,U+}.-ι,U-}.-ι)
(3) |pπ(ί,μ+}n,μ-}n)|^(i/π).
(4) Pn -» 0 at 2η -> π/2, the first two terms of the expansion in ε = (π/2) — 2y/ being

equal to:

Pn(i) =-~Σ [tanh (s/ - ί) - tanh (57 - ί)]
π j=ι

ε2 ί "
-- < Σ [tanh (s/ - ί) - tahn (57 - ί)]

π =ι

ί » Γ
+ is2 < Σ coth(sr + ί) - coth(s/ + ί)

u = ι L

sinh2(s/+ί) si

Λ7(5) At η-+Q function PΠΦO only if \t-sϊ\ = η (j=l,...,ri).
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