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Abstract. A family of quantum systems parametrized by the points of a
compact space can realize its classical symmetries via a new kind of nontrivial
ray representation. We show that this phenomenon in fact occurs for the
quantum mechanics of fermions in the presence of background gauge fields,
and is responsible for both the nonabelian anomaly and Witten's SU(2)
anomaly. This provides a hamiltonian interpretation of anomalies: in the
affected theories Gauss' law cannot be implemented. The analysis clearly
shows why there are no further obstructions corresponding to higher spheres in
configuration space, in agreement with a recent result of Atiyah and Singer.

1. Introduction

We say we have an "anomaly" when a symmetry of a classical field theory is not
reflected at all in those of the corresponding quantum theory, or more precisely
when the full set of classical symmetries cannot be preserved in any of the many
possible quantization schemes. When the symmetry in question is an ordinary one
such as scale or chiral invariance, we have a straightforward interpretation for the
effects of the anomaly in terms of states in Hubert space: the symmetry in question
is absent from the full theory. Coupling constants run; tunneling events do not
conserve axial charge. These results are surprising, but not fatal to the theory.

The case of gauged symmetries is very different. Gauge symmetries are
properly to be thought of as not being symmetries at all, but rather redundancies in
our description of the system [1]. The true configuration space of a (3 + 1)-
dimensional gauge theory is the quotient ̂ 3 = J / 3 / ^ 3 of gauge potentials in Λo = 0
gauge modulo three-dimensional gauge transformations1. When gauge degrees of
freedom become anomalous, we find that they are not redundant after all.

* Harvard Society of Fellows. Permanent address: Lyman Laboratory of Physics, Harvard
University, Cambridge, MA 02138, USA
1 We will sometimes omit the superscript 3
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Recently it has become clear that gauge theories with fermion display three
different kinds of anomalies, all related to the global topology of the four-
dimensional configuration space ^ 4 by the family index of the Dirac operator $)4.
These are the axial U(l) anomaly [the "πo(^3) anomaly"], Witten's SU(2) anomaly
[2] [from π ^ 3 ) ] , and the nonabelian gauge anomaly [3] [from π 2(^ 3)]. The
diversity of the manifestations of these anomalies seems to belie their common
origin, however. In the first case we find particle production in the presence of
instanton fields [4], breaking of a global symmetry, and no problem with gauge
invariance. In the second we find no problem with chiral charge, but instead a
nonperturbative failure of gauge symmetry, while in the latter the same thing
occurs even perturbatively.

What is going on? In the following sections we will attempt to give a
hamiltonian picture of the gauge anomalies as simple as the axial anomaly's
particle-production interpretation. Essentially the answer will be that in anoma-
lous theories we cannot formulate any Gauss law to constrain the physical states.
Along the way we will try to make the above differences a bit less mystifying than
they seem in the lagrangian picture. They will all turn out merely to reflect a simple
fact about codimension: removing a point from a manifold can sever it into
disconnected pieces only if its dimension equals one.

The aim of this paper is expository. We will not find any previously unknown
anomalies, but instead will give an approach to understanding them which we
have found illuminating. Our point of departure was a remark in [2] which we
have generalized to embrace the anomaly of [3] as well2. In Sect. 2 we set up our
framework and establish our criterion for a global anomaly to exist. In Sects. 3 and
4 we verify the criterion for the cases of [2,3] respectively, making use of known
results from the lagrangian approach. In Sect. 5 we conclude with remarks.

2. Setting Up

It may seem difficult to arrive at a physical interpretation of a problem which
renders a gauge theory nonsensical. We know, however, that anomalies do not
themselves originate in the gauge sector. We can therefore attempt to quantize a
given theory in two steps, starting with the matter fields; at the intermediate point
we will have a family of quantum systems parametrized by the space of classical
background gauge field configurations J / 3 . Furthermore, the whole collection
should realize the classical gauge symmetry via unitary operators. The situation is
not quite like the usual case of symmetry in quantum mechanics [6], however,
since the transformations in question act both on Hubert space Jf and on
background configuration space j / . They are indeed bundle maps of a family of

Hubert spaces, Jtf -^+s/. A simple example of such a situation is an ordinary
quantum mechanics problem with a Schrόdinger particle interacting with a
classical rotor degree of freedom φ: for fixed position of the rotor the system has no
rotational symmetry, but the full family of theories does have an invariance
expressed as a set of isometries, Ua: Jtf?

φ-
j>34fφ+a.

2 We were also influenced by the work of Rajeev [5]
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The notion of families of quantum systems has recently appeared in several
papers [7-9]. The phenomenon of "quantum holonomy" discussed in these papers
will be crucial to our analysis.

When an ordinary quantum system realizes its classical symmetries, however,
it need not do so in the obvious way, by a unitary action of the symmetry group G
on J«f. Instead, Wigner showed [6] that in general we can demand only that Jf
furnish a projective, or ray, representation of G. When G is a multiply-connected
topological group, 2tf will thus in general have irreducible sectors transforming
under G, the universal cover of G. This is, of course, the situation with the rotation
group, where ffl has a sector of odd fermion number transforming as a "double-
valued representation of 0(3)," i.e., as a true representation of spin (3).

The same sort of thing can occur in parametrized families of quantum systems.
As a simple example, let us return to the case of the Schrόdinger particle and rotor.
Constraining the particle to lie on a circle, we have the hamiltonian

H=-(dφ)
2 + b[δ(φ-iφ) + δ(φ-±φ + πK, (1)

which is continuous for φ e S1. For each φ half of the energy eigenstates of this
system are odd under the translation φ^φ + π. Now let φ vary, and for each value
choose a real energy eigenfunction ψφ with fixed eigenvalue ε. For the odd states it
will be impossible to choose ψφ smoothly; as φ completes a full circuit ψ goes over
to its negative. In other words, the odd energy eigenspaces each form twisted line
bundles over the parameter space S1.

Let us attempt to find a unitary action of the symmetry group U(l) on a given
odd energy eigenspace J^n of J^. Clearly Ug must map 3tfn to itself, but at each point
a decision must be made: there is no canonical choice of sign. This raises the
possibility that no smooth choice may exist. Indeed, any ordinary unitary action of
the symmetry group U(l) must take any given ψ at φ = 0 and give a nonzero
section of Jf. Since no such section exists, this quantum system cannot realize its
U(l) symmetry via an ordinary unitary action.3 More formally, if the Hubert
bundle JΊP admits an action of G = U(1) which projects to the usual action of U(l)
on the parameter space S1, we say it is a "G-bundle" [10]. In this case Jf reduces to
a new bundle ^ defined on the quotient SVU(l) = point, and so is trivial. That is,
any nontrivial bundle on the base (in our case an energy eigenspace) is not a
G-bundle.

If the parameter space consists of many G-orbits it is sufficient to show that any
one is nontrivial in order to rule out an ordinary G-action. In any case the key
feature which makes possible the unremovable minus sign in the group action is
the fact that the orbits are copies of G, which is not simply-connected.

Suppose now that we wish to quantize the rotor degree of freedom as well. The
wavefunctions of the complete system can then be taken as complex functions of
both φ, the particle position, and φt9 the rotor position. Alternatively, however,
they can be taken as functions from S1 into the space of functions of φ, that is, as
sections of the Hubert bundle Jf. We will call the complete Hubert space

3 The reader may well object that we have simply chosen a foolish normalization for the U(l)
generator. Indeed the model has another classical U(l) symmetry which is realized in the usual
way. We will return to this point
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the space of sections. It has a subspace spanned by the even
eigenfunctions, and on this subspace we can define the unitary operator ύiίa by
%axp = ψ\ where ψ'φ = UΛψφ-Λ. On the full J-f, however, we cannot in general define
any %.

This is the problem with gauge theory. When we quantize matter in the
presence of background gauge fields, the resulting family of quantum theories in
general realizes its classical gauge symmetry via a perfectly good ray represen-
tation. As far as the fermions are concerned there is nothing wrong with gauge
symmetry. The phases in the ray representation are topologically unremovable;
they prevent us from implementing the symmetry at all in the fully quantized
theory, and in particular from imposing the constraint of gauge-invariance on the
physical quantum states. Equivalently, in the temporal-gauge quantization of
gauge theory [11,12] we require that physical states obey

Ύΐ^Tjy-[j]r)}-iψ%ψ)Ψ = O, (2)

which is the infinitesimal version of

(3)

But this just says that physical elements of J4? must be equίvariant sections of Jf, or
in other words that they must define sections of the reduced bundle M' over the true
configuration space cβ. If Ug is only projectively defined, then $ is not defined and
this requirement makes no sense. If, moreover, the phases which spoil Ug have
global topological content and so cannot be removed, then there is no cure for the
problem. The theory is then anomalous.

A few remarks are in order before closing this section. We have established the
existence of a nontrivial ray representation in a toy model by solving it exactly and
noting the behavior of various eigenspaces of the energy globally over the
parameter space. This brute-force approach will of course have to be replaced by
something more powerful in field theory. Having established that at least one
subbundle of 34f twists on at least one orbit, we conclude that in the full theory the
symmetry is "anomalous," i.e., it cannot be implemented as a true representation.
Since the energy eigenspaces were all one-dimensional the only possible twist was
the Mόbius twist over a noncontractible circle in the symmetry group G. More
generally we have to look for twists of higher-dimensional subbundles of Jf, which
will appear over higher-dimensional subspaces of G. In gauge theory, however, it
will turn out to be enough to obtain a G-action on the vacuum subbundle, which is
one-dimensional, and so there will be no anomalies due to obstructions beyond the
first.

One might object that quantum mechanics involves not the real numbers but
the complex, and that there are no interesting complex bundles over S1. We will
answer this objection in two different ways in the sequel. For the π ^ 3 ) anomaly, it
is important for the G-action to preserve the real structure, while for the π2(^3)
anomaly we indeed must consider two-spheres in ^ (as the name implies). The
former case resembles the obstruction to placing a spin structure on a space [13],
since nontrivial π^3) implies nontrivial two-cells in ̂ 3 , while the latter resembles
the obstruction to defining a spinc structure, since it involves an integer (not Z2)
invariant and three-cells in ^.
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3. Fermions

We begin for simplicity with the theory of [2], an SU(2) gauge theory with a single
isodoublet of Weyl fermions. This theory has a Euclidean Dirac operator which is
strictly real [2]. Thus the energy eigenstates of the first-quantized theory can be
chosen real, and the full second-quantized Hubert bundle J f has a real structure.4

Furthermore, the representation matrix appearing in Gauss' law is real, and so the
required ^-action must respect this real structure. As in our example, it will now
suffice to show that the vacuum subbundle, say, is a Mόbius bundle over any gauge
orbit in order to establish the anomaly.

At each point of gauge configuration space we must now quantize fermions in
the given background. This is not, of course, the usual procedure, in which one
quantizes free fermions and treats gauge interactions perturbatively. Since the
SU(2) anomaly is nonperturbative, we must include the gauge fields from the start.

At the first-quantized level we encounter no difficulties. The Hubert bundle is
trivial, and the group action is Ugv = v\ where v'(x) = g(x)v(x). Thus we expect any
problems to come from second quantization, that is, from the definition of the
Dirac sea. Accordingly let us focus our attention first on the vacuum subbundle
Jf0; we will see that indeed once its ^-action has been defined there will be no
further problems. Now the Dirac vacuum is defined as the state in Fock space in
which all negative-energy states are filled. Since p3 is gauge-covariant, all of its
eigenvalues ef are gauge-invariant and J^o is mapped to itself by any gauge
transformation (as indeed is any 3Ίfε filled to another Fermi level ε). Actually,
though, 34?0 is unambiguously defined only on the subset si' where none of the εf

vanish. This turns out to be a small but crucial point, since unlike si, which is
contractible, si' has nontrivial topology and so admits the possibility that the
vacuum J f0 can be twisted.

To establish the twist we combine the result of Berry [7], which relates twist to
degeneracies, with the result of Witten [2], which establishes those degeneracies.
Our argument is summarized in Fig. 1. Following Witten, we begin with the
generator g4 of π4(SU(2)) and any point Λ{0) of J / 4 , the space of four-dimensional
gauge potentials. Take Ai0)μ(x, ί) = 0. Since si4 is connected, we can join Ai0) to
D4(0)]ίί?4) by a smooth path A(τ), τ = 0 to 1. For each τ we now transform A(τ) by a
time-dependent gauge transformation g{τ) to put it into temporal gauge; call the
result A('τ). In particular, g(ί) is just (g 4 )" 1 , so instead of an open path of vector
potentials each periodic in time we now have a closed loop of temporal-gauge
histories, each of which ends at A(τ)(£ = oo) = [O] 0 ( τ ) ( ί = o o ), a three-dimensional
gauge transform of A('τ)(£= — OO)Ξ0.

4 In particular, the vacuum subbundle Jfo gets a real structure

Fig. 1. Summary of the steps in Sect. 3



108 P. Nelson and L. Alvarez-Gaume

(b)

o x I
Fig. 2a and b. Disk in <s/3 associated to (a) SU(2) anomaly, (b) axial anomaly

The set of A(τ)(ί), — oo<ί<oo,0<τ<l thus forms a disk in J / 3 whose rim is a
loop t(τ) of gauge transforms of zero (see Fig. 2). Each ί(τ) is in s/', since p0 has no
zero modes on compactified space, and so we can restrict J^o to {. We claim that
3^Q\€ is in fact twisted. For this to happen, there must be a point x on the disk
excluded from si'\ that is, there must be a degeneracy at x.

The presence of such a degeneracy follows at once from Witten's argument [2].
From the mod 2 index theorem, | ) 4 must have a pair of zero modes at some A(τo),
and hence for the corresponding A(τo) as well. We can take these to be eigenstates
φ+ of chirality. Taking Witten's argument one step further, if we choose each A('τ) to
vary slowly in t then φ+ must be slowly-varying functions of time times
eigenfunctions rf± of the Dirac hamiltonian Ht = yo0fτθft). The energy eigenvalues
must pass through zero5 at some ί0, since φ+ are normalizable zero modes of the
Euclidean 04. Then x = (τ0, ίo) Moreover, rf_ has a CT-conjugated partner of
opposite energy and chirality ζ+, leading to the conical arrangement of left-handed
energy eigenvalues shown in Fig. 3a. The number of these crossings will be equal,
modulo two, to the number of Weyl isodoublets present.

When we second-quantize, the Fermi vacuum ray at each point ί{τ) is the ray in
Fock space with all negative-energy states filled. Choose a state |0>0 in this ray at 0.
We can now attempt to adduce a nonvanishing section of J«fol/ by evolving |0>0 in
the slowly-varying backgrounds A(τ)(ί) for each τ. By the quantum adiabatic
theorem [14], the final state will almost everywhere be almost pure vacuum, and
we can project to J f0. This trick fails, however, at y. Here the adiabatic evolution
passes through the vertex of the cone in Fig. 3a, producing the particle associated
to η+ and the antiparticle associated to ζ+. The resulting state has vanishing

5 Here is where the argument fails for the line bundle Jfε filled up to some level other than zero,
since the index theorem tells us nothing about ε-crossings
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Fig. 3a and b. Eigenvalue behavior near x = (r0, t0) for (a) SU(2) anomaly, (b) axial anomaly

projection to J^o. That is, the putative section "rolls over" near y, out of the plane
of J-f0 and into an orthogonal direction provided by J^air. When projected to J*fo> it
vanishes at y. This reflects the twist of Jfo.

This can all be made more precise using the result of [7]: For a loop of real
hamiltonians, adiabatic transport around the loop returns to a state which is (-1)"
times the original, if the loop encircles n simple degeneracies. (Note that the
adiabatically-continued wavesections of this paragraph and one preceding were
chosen only for convenience. Once we know that one section twists, we know they
all do.)

While Berry's result is elegant, we have given the pair-production picture as
well in order to point up the physical similarities between the present case and the
axial anomaly (see Figs. 2b and 3b). Usually the former is thought of in terms of
phases, the latter in terms of particle production, but we can see that this really just
a matter of emphasis. Particle production is crucial to both.6 In the case of the
SU(2) anomaly, however, it occurs only for a special value τo; since it is not the
generic behavior we do not find an important effect on the vacuum structure.
Nevertheless, production is important, as it gives the sign twist which characterizes
the anomaly. In the axial anomaly, on the other hand, it is production which is
important in suppressing vacuum tunneling [11] while the phases do not matter.
After all (Fig. 2b), in this case the rim of the disk is two points and so admits no
twisted bundles.

Another important qualitative defference between the anomalies also comes
from the codimension of x. In the SU(2) case, the level crossing had to be absent for
points τ not exactly on τ0. For this to happen γf+ to have a partner ζ+, leading to
zero net chirality production for the SU(2) anomaly. No such considerations apply

6 J. Goldstone has pointed out to us that our argument for the SU(2) anomaly is similar to one
of his, summarized in [12], in which particle production also plays a key role
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in the axial anomaly, and indeed (Fig. 3b) only η*+ or (+, not both, appears. Thus
we get net production of chirality and a global symmetry is broken.

We can summarize the above discussion mathematically [15] by stating that
the πo(^3) anomaly is given by the simplest invariant of the family index lnd04 (a
real virtual bundle over ^ 4 ) , namely its net dimension. Histories A'(ί) for which this
is nonzero will have particle production with net change in chirality. The
dimension is invariant to perturbations, so production is generic. The πx(^3)
anomaly comes from the next invariant of Ind$ 4 , its twist over circles in (€4. We
have shown (Fig. 1) that this twist equals that of J f0 over circles in J / 3 and so gives
the obstruction to finding the ^3-action needed to quantize the theory correctly.7

For paths in jtf3 for which the lowest invariant vanishes, particle production gives
no net chirality change and so comes from points where the null space of 04 jumps;
i.e., production is not generic. No further invariants of 04 are relevant to J^o.

Unlike the πo(^3) anomaly, which is an integer, the π ^ 3 ) anomaly can be
cancelled by adding a second Weyl fermion of either chirality. Now a second pair
state becomes degenerate with the vacuum and, by Berry's theorem, there is no
sign change as we traverse /.

We can also attempt to evade the anomaly by passing to the cover # 3 , as
suggested in an earlier footnote. We now get a true ^-action on Jf0 provided we
map the nontrivial element g covering the identity to the unitary operator — 1, and
hence a # representation on 3>fr0 as in Sect. 2. If we take Gauss' law to mean that
wave sections are equivariant under #, however, we must in particular require that
they be invariant under g. Instead, all states have eigenvalue — 1 under °U$! That is,
we have succeeded only in defining on J f a ray realization of ^ of the type studied
in [6]. All states of J f are "fermionic." This construction recovers the formulation
of the anomaly given in [2].

We have suggested that the anomaly is a second-quantization phenomenon,
preventing us from finding an appropriate family of vacuum states. To go further,
let us suppose that we have cancelled the obstruction and so have a well-defined
^-action on f̂0. To get a ^-action on the rest of Jf, we proceed as usual to define
the Fock space creation operators aA

ι on fflA associated to the eigenfunctions ηι

A

with energy &A > 0. (Similarly, bA creates the mode r\A with energy εj

A < 0, and we
reinterpret bι

A as a destruction operator.) We can choose ηι

A smoothly in an open set
Fin j / 3 , and since there is an unambiguous ^-action on first-quantized states we
can demand ηlAg)(x) = g(x)ηA(x)'

Now define

Ug(aψ ... aψ)\0yA = a% ... a\%Ug\0}A, (4)

for any vacuum state |0>^, and similarly with the fcf. This definition is not arbitrary,
but rather is dictated by the requirement that the quantum field built from a and b1"
have the same unambiguous transformation law as its first-quantized counterpart.
Since there are no phase choices to make, there is no possibility of any obstruction
to making them smoothly. Equation (4) defines a ^-action on a dense subspace of
£FA, ΛeV. Furthermore, if on some other patch Vγ we choose a different

7 Since these twists are pure torsion, we cannot establish this fact by the use of real characteristic
classes
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orthonormal expansion ηj

A1 (still equivariant under ^), we end up defining the
same ^-action for J^A, AeVnVί. Even as we approach a degenerate point, where
J4f0 is not defined, we can extend this definition. Thus a ^-action on f̂0 extends
without further difficulty to J f, and thence as we have seen to the full Jf.

We have therefore found that the higher invariants of Ind|) 4, like the lowest
one, are irrelevant to implementing Gauss' law. All that matters is the twist of the
index over circles. For the case to be discussed in Sect. 4, this agrees with the result
of Atiyah and Singer [16], who use the path-integral formulation. It disagrees,
however, with [15].

4. The Nonabelian Anomaly

The nonabelian anomaly presents almost no new features. An example of an
affected theory is massless QCD with a triplet of left-handed Weyl "quarks." Since
π5(SU(3)) = π ^ 4 ) = Z, we can consider the loop [17] in J / 4 given by transforming
zero with each one of the noncontractible loop of Ad gauge transformations given
by the generator g5. Again following the procedure outlined in Fig. 1, we then
arrive at a three-ball in J / 3 whose boundary S2 consists of three-dimensional
gauge transformations of zero. Again by the family index theorem, D4 generically
has a pair of zero modes at one isolated value τ0, again leading to a conical
vanishing of a pair of energy eigenvalues at some x in the interior of the ball. As we
follow the trajectory given by τ0, we again find particle pair production
obstructing the definition of a smooth nonvanishing vacuum section on the
boundary of the ball. Berry's result for complex hamiltonians now says that indeed
JΊ?0 is a twisted (monopole) line bundle over this S2; its integer invariant is the
nonabelian anomaly of the theory. Any action of 9 now must have a string
singularity somewhere, and so no acceptable version of Gauss' law exists.

Let us now attempt to pass to °lίg as before. Having established that J^o twists
we can now forget about the interior of the orbit {/(τ)} and locally define our
projective ^-action on j ^ 0 \ € as follows: Choose an S2 metric on the orbit {. If r̂ is
near the origin of ^ and takes P to Q, P, Q e *?, consider the geodesic from P to Q as
a slowly-varying history and evolve any vacuum state |0>P in this background.
Call the result Ug\0}P e J^0\Q. Now suppose that h takes Q to R, also on the orbit;
then (hg)'1 takes R back to P. By a redefinition of phases we can now arrange for
the adiabatic transport on the geodesic triangle so defined to return |0)P multiplied
by eιΩ/2, where Ω is the solid angle subtended by PQR [7]. The \ is fixed by the
requirement that the phase factor be smoothly defined even for large g, h since then
Ω is ambiguous by 4π; this "Dirac quantization condition" on the normalization of
the anomaly just reflects the fact that the anomaly is quantized due to its origin as a
bundle twist.8

Thus Uί;g

1UhUg\0yP = eiΩ/2\0)P, and so %-g

1%%Ψ[_P'] = eίΩ/2ΨlP']. Choosing
P to be any point where Ψ does not vanish we find once again that no state in J>fr is
gauge-invariant.

Again we have seen that in the complex case the next-to-lowest invariant of the
family index, in this case a two-form on ^ 4 , is the only thing obstructing the

8 See also [17]
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definition of a ^3-action on J"f. Now, however, the obstruction is even more
noticeable than in the previous case: since on a sphere we have nontrivial quantum
holonomy even on infinitesimal loops,9 we expect that the π 2(^ 3) anomaly should
be visible even in perturbation theory. This is of course the case.

5. Remarks

There is an even more direct way to relate the lagrangian derivations of the
anomaly to the hamiltonian picture. While it is less physical than the one given
above, it does give the quickest way to find the sign of the integer invariant in the
previous section, something we cannot do by examining the behavior of the energy
eigenvalues alone. This sign was irrelevant in the Z 2 case; now we need it in order
to recover the anomaly cancellation condition.

The lagrangian derivations show that the fermion partition function e~Γ[A] is
actually a twisted section on cβA. In particular, it must vanish somewhere. But

e-nA] j s j u s t t k e v a c u u m expectation value of the time evolution operator
[7(oo, — oo) in the presence of the time-dependent vector potential Aμ. Gauge
transforming to temporal gauge as before, we get

exp -Γ[A(τ)-] =,(τ)<0|£/Aίτ)(oo, - oo)\θyx. (5)

Here {|0> }̂ are a set of vacuum states on the various J^[0]g. Now as τ makes a
complete circuit in the π ^ 3 ) case, A('τ) returns to zero and so does its evolution
operator. Since e~Γ[Λ] changes sign, it must be that the ^-action is twisted, as we
found in Sect. 3. Furthermore, the single vanishing of e~Γ[A] which requires that it
be twisted is just the signal of pair production again, since at τ 0 the evolved vacuum
has no projection onto the transformed vacuum.

Repeating the argument in the case of the nonabelian π 2(^ 3) anomaly, we find
that not only must the ^-action be twisted, the twist in fact agrees in sign with that
of the family index bundle. Hence the condition for the cancellation of the
anomalous phases is that this bundle have no net twist, in agreement with [17]. In
particular, ordinary QCD is safe.

From the hamiltonian point of view, the character of the gauge anomalies is
determined by the structure of the possible real or complex line bundles over ^ 3 .
Loosely speaking, if over a gauge orbit Jίf0 contains a unit of "flux" then it cannot
be "squeezed" to zero, i.e., the theory does not factor through to one properly
defined on ^ 3 . We have shown that the "flux" in a given theory's configuration
space can be computed solely in terms of the second invariant of its Ind$ 4 . The fact
that Witten's anomaly appears only for symplectic groups like SU(2), while the
nonabelian anomaly appears for unitary groups like SU(3) also comes naturally

9 This is codimension once again: on S1 there are no interesting paths in a neighborhood of 0
which do not intersect 0. Note however that we do not claim to have obviated the perturbative
analysis of gauge anomalies. As is well known, there are anomalies which the global analysis fails
to uncover, either in the hamiltonian or lagrangian form. All we are saying is that when the global
obstruction is present, it is clear why it makes its presence felt in perturbation theory
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from our construction, since in order to get interesting real (respectively complex)
vacuum bundles over gauge orbits we needed nontrivial π ^ 3 ) [respectively
π 2(^ 3)]. This follows for the groups mentioned by the periodicity theorem.

While the higher invariants of the index are not related to gauge anomalies,
they may still have interesting physical meaning, just as the lowest one does. The
hamiltonian approach may yield further insight into this issue as well.

Note added. Some of the constructions in this paper have already been considered by I. M. Singer;
see for example [19]. We thank the referee and Prof. Singer for bringing this work to our attention.
After this paper was completed we also received the preprint by Faddeev [18], who discusses
similar topics.
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