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Abstract. We unify, extend, reinterpret and apply criteria of Birkhoff [1],
Herman [9], Mather [2, 3], Aubry et al. [4, 5], and Newman and Percival [6]
for the nonexistence of invariant circles for area preserving twist maps. The
criteria enable one to establish regions of phase space through which no
rotational invariant circles pass. For families of maps the same can be done for
regions of the combined space of phase points and parameters. The criteria can
be implemented rigorously on a computer, and give a practical method of
proving quite strong results. As an example, we present a computer program
which proved that the "standard map" has no rotational invariant circles for
any parameter value |fe| ̂  63/64.
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1. Introduction

Given an area preserving map, one often wants to know if it has any invariant
circles, and if so, where they are. This is important on the one hand for confinement
problems, as an invariant circle confines the orbits of points inside it, and on the
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other hand for transport problems, as under certain conditions if there are no
invariant circles separating two points then there exist orbits from any neighbour-
hood of one to any neighbourhood of the other.

There are two approaches to the problem. One is to find regions guaranteed to
contain invariant circles with certain characteristics. The other is to find regions
through which pass no invariant circles of given class. A priori, the results of the
two approaches would be equally valuable.

KAM theory solves the first approach, at least in principle. It can be used to
find most invariant circles, in fact all those with Diophantine rotation number and
sufficiently differentiable conjugacy to rotation. One just has to make coordinate
changes bringing the system successively closer to the standard integrable form:

Θ'=θ+Ω(r)
r =r

near the suspected circle, until any of the versions of the KAM theorem applies.
Versions of the KAM theorem for which useful results can be obtained in a
practical time, however, are only just being developed [7, 8].

In this paper we take the second approach which appears to be much more
practical. We develop "converse KAM theorems," i.e. criteria for nonexistence of
invariant circles of given rotation class through given regions of the phase space.
They can be used quite easily to get results, even rigorous ones, which are close to
optimal.

There are several converse KAM theorems available, of which two are of direct
interest for this paper. The first is based on a theorem of Birkhoff [1] (see also [9]
for a good exposition), and was developed and applied by Herman [9] and Mather
[2, 3]. The second is connected with the action principle for twist maps, was
conjectured and applied by Newman and Percival [6], and independently proved
and applied by Aubry and coworkers [4, 5]. One of the results of this paper is to
show that the two are equivalent, so we will refer to them as "the criterion."

In its elementary form, the criterion is for non-existence of invariant circles of
given rotation class through a given point for a given C1 area preserving map, but
the criterion is such that if it succeeds in proving non-existence for a particular
point for a particular map, then it will succeed for all close enough points of all
close enough maps. Thus, one can prove non-existence of invariant circles of given
rotation class through a whole set of phase space for a whole set of maps. We
present two algorithms which implement this. The first is more efficient; the second
provides, as a bonus, Lipschitz bounds on the slopes of circles that may exist.

Throughout the paper the ideas are illustrated by application to the "standard
map" [10, 11]. This is a one parameter family of maps of a cylinder

k . ^
p =p— —-smlπx

;

KAM theory applies for parameter k small enough. For example, Herman [8] has
proved existence of a rotational golden circle for |fc| rg 1/34. From the other side,
Mather [3] proved non-existence of any rotational invariant circles for |/c|>4/3.



Converse KAM 471

Aubry [5] improved this to \k\ greater than the root (~ 1.23) of some transcend-
ental equation. Numerical work of Newman and Percival [6], using the same
criterion, suggested that there are none for |/c|^1.04, but their result is not
rigorous because they tested only a finite set of parameter values and phase points,
and they did not account for rounding errors.

In this paper, we apply the criterion, with error-bounding interval arithmetic
on a computer, to prove that the standard map has no rotational invariant circles
for all parameter values

\k\^ 63/64 = 0.984375. (1.3)

This result is probably close to optimal, as numerical work of Greene [10], using
the "residue criterion" (Sect. 8), suggests that there is a value

fcc~0.971635406 (1.4)

such that there are no rotational invariant circles for |fe| > /cc, and there is at least
one for \k\^kc.

The organisation of the paper is as follows. In Sect. 2 we introduce BirkhofFs
theorem for area preserving twist maps. In Sect. 3 we show how it leads to a
criterion for nonexistence of circles. Section 4 develops a method for rigorously
following orbits so that the criterion of Sect. 3 can be applied. Section 5 describes
its rigorous application to prove (1.3). In Sect. 6 we describe the formulation of the
criterion in terms of orbits of minimum action, and prove equivalence. Section 7
develops a third way of looking at the criterion which gives considerable
geometrical insight. In Sect. 8, we discuss other criteria for non-existence of
invariant circles, and their relation with the one discussed here. In Sect. 9, we
conjecture that the criterion is exhaustive, discuss generalisations, and summarise
the results. Appendix A contains some remarks on symmetries of maps, and in
order that the reader may check the proof of (1.3), the computer program is
provided in Appendix B.

2. Twist Maps and Birkhoff s Theorem

An area preserving map of a surface may possess invariant circles of several
rotation classes, going around ends of the surface (e.g. encircling a cylinder) or
around fixed points of the map. Consider one rotation class of circles at a time. By
removing the fixed point they encircle, if any, and irrelevant parts of the surface, the
map can be regarded as acting on part of a cylinder.

A common feature of such maps is "twist," also known as "shear." A
continuously differentiable (C1) map T of a cylinder is said to be a twist map if there
exist coordinates (x,p)eSί x R such that, writing

{x\pr) = T{x,p), (2.1)

then

ψ- Φ0, (2.2)
dp x

and hence has constant sign.
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For example, near an elliptic fixed point with multipliers not a third or fourth
root of unity, there are polar coordinates (θ, r) such that

Typically b± φθ, so the map is a twist map near enough to the fixed point.
Other examples of area preserving twist maps are provided by

for arbitrary C1/: S1 -*R. This includes the "standard map" as the particular case

k
f(x) = — — sin2πx. (2.5)

2π
Equivalent maps may be obtained by lifting from the cylinder to the plane, e.g.

by considering x in (2.4) to be on the real line R instead of the circle S1; this
increases the size of the phase space. Conversely, the phase space can sometimes be
conveniently reduced by factorizing out symmetries as described in Appendix A.
We will frequently carry out such transformations without mentioning it.

In all that follows, we will consider C1 invertible, area preserving twist maps T
of a cylinder, homotopic to the identity. Such maps preserve the ends of the
cylinder, and preserve orientation.

We will be particularly concerned with rotational invariant circles, those which
are homotopic to the circle p = 0, i.e. that encircle the cylinder. This is because they
are necessary for confinement, by a corollary of the following important theorem:

Theorem (Birkhofϊ). For the above class of maps, the boundary of any open invariant
set homeomorphic to the cylinder and containing all points below some level and none
above some other level, is the graph {(x, P(x)): x e S1} of some continuous (single-
valued) function P: S1 ->R. In particular, it is a rotational invariant circle.

For proofs of this theorem and the following corollaries see [1, 3, 9].

Confinement Corollary. // the orbits of all points below some level p. remain below
some other level p+, then there exists a rotational invariant circle between levels p_
and p+.

Proof Let U be the set of points (x,p) with p<p_, and

V= U TnU. (2.6)
« = — oo

The idea is to apply BirkhofFs theorem to V, but, although connected, it need not
be homeomorphic to a cylinder, because it could have holes in it. So fill in the holes
first as follows. Consider the complement Vc, and let W be the component of Vc
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containing all points above level p+. Then its complement Wc is V with the holes
filled in, and satisfies the hypotheses of Birkhoff's theorem, so its boundary is a
rotational invariant circle between levels p_ and p+. D

In general rotational circles can intersect vertical lines more than once, but
BirkhoίFs theorem also has the following corollary:

Circle Corollary. Every rotational invariant circle is the graph of some continuous
function P: S1 ->R.

Proof A rotational invariant circle separates the cylinder into two invariant
components, the lower of which satisfies the hypotheses of BirkhofFs theorem. D

In fact, though P(x) is not necessarily differentiate, we always have:

Lipschitz Corollary. The function P(x) in Birkhoff's theorem is Lίpschitz.

A function P: R-+1R is said to be Lipschitz if the slopes

(2.7)

are uniformly bounded, i.e.

3D± such that D~ SD(xί,x2)SD + . (2.8)

For P: S1 ->R, lift to the universal cover. Such a range of slopes we call a Lipschitz
cone.

Proof Since Tis a C1 twist map, the images of all vertical lines have slope bounded
away from vertical in any compact domain, by

Since a rotational invariant circle meets each vertical line only once, it also meets
their images only once. Thus its slopes are bounded above by D +. A lower bound
can be obtained similarly by considering T1"1. D

The circle corollary and its strengthening by the Lipschitz corollary are the
heart of this paper.

3. Cone-Crossing Criterion

The Lipschitz corollary gives immediately a criterion for non-existence of
rotational invariant circles, suggested to us by Herman. A rotational invariant
circle separates the cylinder into two invariant components. If one finds a tangent
orbit, i.e. an orbit of

= (x9p), v = (δx,δp),
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Fig. 1. Impossible situation because a tangent vector crosses an invariant circle, in (x, p) coor-
dinates

for which v sometimes lies above the Lipschitz cone and sometimes below (Fig. 1),
then the base orbit T\X) can not lie on a rotational invariant circle. Otherwise,
there would be a nearby orbit which would cross the circle. We call this the "cone-
crossing" criterion.

To use this in practice, one has to know explicit Lipschitz constants. They
could be obtained from the proof of the Lipschitz corollary. Instead, we will obtain
an explicit cone condition, independent of the map, in a more convenient
coordinate system.

Let πί:S
1x IR-^S1 be the projection onto the first coordinate. Since T is

invertible and preserves orientation, the induced map on a rotational invariant
circle:

x' = fc(x) = π iΓ(x,P(x))

must also be invertible and preserve orientation. Thus for h we have

(3.2)

X1-X9
<OO, (3.3)

By considering T and T * this could be converted back to an explicit Lipschitz
cone in (x, p) coordinates. But it is more convenient to change to (x, z) coordinates,
with:

Then (3.3) gives the cone condition

0 <
X\~X2

• < o o ,

(3.4)

(3.4a)

for points (x l9 z±), (x2, z2) on a rotational invariant circle. This confines the slopes
of rotational invariant circles to a right angle, independent of the map. In fact, since
we know P(x) is Lipschitz, h(x) is also Lipschitz, and so the slopes are confined to a
strictly smaller angle, but which depends on the map.
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As an example of the coordinate change, the map (2.4) becomes

z'=g(z)-x\
x'=z,

where

= 2z+f(z).

(3.5)

(3.6)

The change of coordinates (3.4) is always invertible, by the twist condition (2.2),
though note that the map need not preserve the area dx A dz. Note also that in
these coordinates, the symmetry which collapses the map onto the cylinder is the
unit diagonal translation

(x,z)->(x+l,z+l) (3.7)

rather than the unit horizontal translation. So rotational invariant circles have an
average slope of 1 rather than 0.

Cone condition (3.4a) gives the following criterion for non-existence of
rotational invariant circles, on which most of this paper is based:

Criterion 1. // (δxt) are the δx-components of a tangent orbit (3.1) to an orbit (Xt),
with

δxn ^ 0 for some n > 1,

then the orbit (Xt) does not lie on a rotational invariant circle.

Proof. In (x, z) coordinates, the initial tangent vector

v0 = (δx09 δz0) = (δxθ9 δxj (3.8)

is on one side of the cone (Fig. 2). Let n ̂  2 be the first time for which δxn ^ 0. Then
δxn-1>0, and so

(3.9)

is on the other side of the cone. D

Fig. 2. Impossible situation because a tangent vector crosses an invariant circle, in (x, z) coor-
dinates
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As an application, for the map (2.4) [equivalently (3.5)], there are no rotational
invariant circles if:

m=minflf/(x)^O. (3.10)
X

This is because (3.5) implies that:

δxt+1=g/(xt)δxt-δxt.ί. (3.11)

So choosing

δxo = 0, δx^O, (3.12)

we get

δx2 = g'(x1)δx1. (3.13)

Thus if

(3.14)

then δx2 S 0 and there are no rotational invariant circles crossing the vertical line
x = xx. Every rotational invariant circle most cross each vertical, hence the result
(3.10).

This is the first step in Mather's calculation in [3]. In the particular case of the
standard map,

m = 2-\k\, (3.15)

so there are no rotational invariant circles if \k\ ^ 2. Mather also used the same
criterion, with n = 2 again, to show that there are no rotational invariant circles for
the motion of a billiard ball on a table whose boundary is convex but has a point of
zero curvature [2].

One can apply Criterion 1 with n > 2 to get stronger results. But we can save
having to take n too large by doing something equivalent, namely improving the
Lipschitz cone.

Knowing some cone constants

D°-<——— <D+, (3.16)
x1 — x2

e.g. D°_ = 0, D+ = oo as implied by (3.4a), we can obtain stronger ones as follows.
The derivative DT on tangent vectors induces an operator on slopes, which,
abusing notation, we represent by the same symbol.

If

ZΛ —Zi

then

-y 7 <maxDT x D+, (3.17)
x\-Xo~ x
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where X = (x, z). So we can replace D+ by maxDTx D + 9 which is smaller for D +
x

large. One can iterate this as many times as desired, but we might as well go
straight to the limit, i.e. set D°+ to the largest root of

D+ = msxDTx D+. (3.18)
X

Similarly, D°_ can be chosen as the smallest root of

D-. (3.19)
x

For example, for the map (3.5)

D = g'(z)-l/D, (3.20)

so we can take D°+ to be the largest root of

D+=M-l/D+, (3.21)

i.e.

(3.22)

Similarly, we can take

(3.23)

This allows us to strengthen Criterion 1 by taking the initial tangent vector

(δx0, δz0) = (1, D+), and stopping if ever —— < D° . Note that it is only the direction
oxn

of the tangent vectors, not their magnitude, that enters; and it is not necessary to
calculate the directions exactly: an upper bound will do while the slope is positive,
since DTX is order preserving on directions. This is important, because it is not
possible to evaluate expressions exactly on a computer. So a more practical
expression of Criterion 1 is

Criterion 2. Take an initial point X and slope D+^D%. Follow an orbit, setting

D'+=u.b.DTx D + , X'=T(X). (3.24)

// at some stage D+<D°- then there is no rotational invariant circle through X.
Throughout this paper the symbol u.b.(x) means any upper bound to x, and

l.b.(x) will mean any lower bound.
Note that Criterion 2 cannot actually produce stronger results than Criterion

1, but it will get the same results with fewer iterations. An alternative way of
deriving Criterion 2 is, given a finite segment satisfying its hypotheses, push the
slopes slightly so that the initial slope strictly exceeds D%, (3.24) is still satisfied, but
the final slope is still strictly less than D°_. Then add iterations at each end using
global estimates on DTX. Criterion 1 will be satisfied for large enough number of
added iterations.
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As an illustration, for map (3.5) the iteration in Criterion 2 is

z'=g(z)-x,

x' = z, (3.25)

D /

+=u.b.[ f lf
/(z)-l/D+].

Applying Criterion 2 with one iteration is equivalent to Mather's calculation [3]
that the standard map has no rotational invariant circles for \k\ >4/3. To get this,
choose z = z0 to minimise g'(z). Then

, (3.26)

which is less than D0. if

m<M-γM2-4. (3.27)

Hence, if this condition is satisfied, there is no rotational invariant circle crossing
the line z = z0, and so none at all. For the standard map it reduces to

|fe|>4/3. (3.28)

Equation (3.27) is also the basis for Herman's constructions of C 3 " ε counter-
examples to the KAM theorem [9].

By taking more iterations, one can obtain stronger results. In Sect. 5, for
instance, by taking orbit segments of length up to 196, we will use Criterion 2 to
prove that the standard map has no rotational invariant circles for

|/c|^ 63/64. (3.29)

All that one needs is a way of following orbits sufficiently precisely. Such a way is
described in the next section.

4. Following Orbits

In this section we describe one way to follow rigorously orbits of compact sets for
discrete time dynamical systems. Such a method is necessary if we want to prove,
with a finite amount of computation, non-existence of rotational invariant circles
through all points, by Criterion 2: we have to follow the orbits of blobs of initial
conditions. The method is completely general. If could also be used, for example, to
establish rigorously regions of the outside of the Mandelbrot set, or regions of the
basins of attraction of periodic orbits. It is just one way among many possibilities,
but works well.

The basic idea is to choose a class of subsets of the phase space, and a way of
bounding the image of such a set by a set of the same form. The simplest form to use
is a parallelepiped. The simplest way to specify it is as the image of the unit box /",
/ = [ — 1,1] under an affine map, where n is the dimension of the space. Thus, we
consider the parallelepipeds

P = {c + Q-s:seΓ} (4.1)

with c a point on the manifold, and Q an n x n matrix.
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We want to find a parallelopiped which is guaranteed to contain the image
F(P) under a map F, or even the images under a whole C^-compact set of maps. An
answer is given by the following:

Lemma. Given a point d and nxn inυertible matrix A and C1 map F, then

F{c + Q s:seIn}c{c'+Q' s:seF}9 (4.2)

where

Qij = Aij™j> (4.3)

with

wt = u .b.Γp" ' • (F(c)-c%\ + u .b .ΣP" 1 .DF X Q)M. (4.4)
L xeP j J

Proof.

Q'-1 (F(c + Q-s)-c% = Q'-1- (F(c)-c\ + (Q'~» DF 4 ί W Q • s),, (4.5)

where

ζi(s) = c + λi(s)Q s for some ^(s)e[0,l] (4.6)

by the Mean Value Theorem. Thus

\Q"' (F(c + Q s)-c%\S l~ί\A-' • (F(c)-c%\ + \(A~'DF^Q• s),|] . (4.7)

Now

\{A-ιDFξάs)Q • s\\ύ max \(A~ιDFξi(s)Q • s\\
seln

seln j

gmaxΣp-'WxQλjl (4.8)
xeP j

Thus

\Q'-1ΛF{c + Q-s)-c')i\^\ (4.9)

by construction of wf in (4.4). D

Remark. This gives close to optimal results if

c'~F(c), A~DFCQ, (4.10)

but A must not be chosen too close to singular. The main problem in applying this
lemma is to choose how to "fatten" DFCQ, i.e. push it away from singular. Some
ways of doing this are discussed in the next section.

To get the bounds on quantities involving DFX, xeP, one can use estimates
like

\Lτ(x-cMΣ\(LτQ)j\, xeP, (4.11)
j

where IT represents a row vector.
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5. Application to the Standard Map

In this section, we describe an application of Criterion 2 to the standard map. The
aim is to establish rectangles Iz x Ik in (z, fc), where Iz and Ik are intervals, such
that for each parameter value kelk there are no rotational invariant circles
through any point of the interval Iz on the line x = 0. In particular, we will establish
this for the rectangle Iz = (— oo, oo), Ik = [63/64, oo), thus proving nonexistence of
rotational invariant circles for |fc|^ 63/64. Note that in the light of remarks in
Appendix A it suffices to take Iz = [0,0.5], and since \k\ >4/3 is already disposed
of, we can take Ik = [63/64, 4/3]. The algorithm we present does not succeed
directly for this rectangle; but the result will be proven by subdividing it into small
enough rectangles on which it does succeed.

As already discussed, to prove nonexistence of rotational invariant circles it
suffices to examine one vertical line. The reason we choose the line x = 0 is that for
k > 0 it appears to be the most sensitive one.

We begin by describing the details of following orbits for a single map and then
generalise to an interval in parameter. Then we discuss the iteration of the slope.
The remaining step is a method of automatic subdivision of rectangles in (fc, z). We
wrote a computer program to implement this algorithm rigorously. It is given
in Appendix B. We conclude this section by presenting and discussing results of
the program.

Because we wrote the program with the order of the coordinates (x, z) reversed,
we will do so also throughout this section. We did not reverse the order in the rest
of the paper, to preserve the usual conventions about horizontal and vertical as far
as possible.

To follow orbits we used the method of the previous section. For initial
parallelograms we took vertical intervals on x = 0, with zero width, i.e.

in coordinates (z, x), where zr is the halflength of the interval. Since the images will
also have zero width, Q will always be close to singular, so we have to find a good
way of pushing A away from singular. We tried various ways and ended up using a
hybrid of two methods.

The first method, which is particularly simple to implement, is to choose the
second column of A always to be vertical, i.e.

So given

c = {zc,xc) (5.2)

and

][£: e."] <53)

set

c'=(z'c,zc) with z;~#(zc)-xc (5.4)
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and

with

A =

481

(5.5)

(5.6)

(5.7)

Then we see that wx fΠ and

w 2 = u.b. I

So we can take

12

(5.8)

β'=
W

2 1

We use this for the first few iterations, while the parallelogram is still very thin.
When its width gets comparable with its length, however, this method begins to
throw away accuracy.

So when the ratio of the length of the two columns of Q exceeds some number
QF we switch to a more general method, which is to use A ~DTC Q, and then to
push it away from singular by rotating the second column through an angle
depending on the anticipated effect of the variation of DT over the parallelogram.
The size of this angle is controlled in the program by the number BF. Then we
apply the lemma in its generality. The values of QF and BF were chosen to
minimise the total time. It turned out not to be optimal to choose QF = 0, which is
why we used a hybrid of both methods.

In fact we want to prove non-existence of rotational circles for a whole interval
in parameter (1.3). One could simply take the u.b. in (5.8) and elsewhere over k as
well as the parallelogram, but in order to reduce the growth of errors, it is better to
treat k as a new coordinate, and consider the map

(5.9)

(5.10)

,x) = (k9g(k9z)-x,z).

We will refer to fc, z, x as coordinates 0, 1, 2 respectively.
Clearly we can take

since k never changes. In the first stage of the iteration we will fix
Initially,

β =

kr
0

0

0
zr

0

0
0

0
(5.11)
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The iteration is

Q'=

kr 0 0 "

flΊθ β'll β'l2

Lflio Q21 o j

with

δίl~0,βll-β21,

β'i2= u b.
fc,zeP

β'uβ 11

S21

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

When the ratio of the size of Column 2 to Column 1 becomes larger than QF,
the program switches to the more general scheme. Rather than describe its explicit
implementation here, we refer the reader to the program (Appendix B).

Next we discuss the iteration of the slopes. We put a constant slope D on each
parallelogram. We could have taken an affine representation for D, i.e.

D=Dc + dDs, sel3 (5.18)

but we did not implement it, although it might considerably reduce the number of
iterations required.

The slope D is updated each step by:

D'=u.b. [_gz(k,z)-\ID-\.
k,zeP

(5.19)

If D ever gets less than D°, (3.23), then there are no rotational invariant circles
through the initial parallelogram, and we say the algorithm has succeeded.

Concerning initial conditions for D, one could start with D%, (3.22), on x = 0, as
in Criterion 2. Going one step backwards, however, if we start with D% on z = 0 we
get slope

gz(k,0)-\/D% (5.20)

on x = 0, which is less than D +. Incidentally, it is less than D0. for k > 4/3, so we get
no circles for fe>4/3 without doing any iteration. This is equivalent to Mather's
calculation [3] again.

But we can also use the reversor (Appendix A),

S(x,z) = (-z, -x), (5.21)

to allow us to start with

(5.22)
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on x = 0, which is even smaller for k < 4/3. The reason we can start with (5.22) is as
follows: Suppose slope Do at some point (ζ, 0) on x = 0 leads to slope Dn < D0. under
T\ Then by reversing, slope 1/DH>D°+ at STn(ζ, 0) leads to slope l/D0 at (0,0 on
z = 0 under Tn. Taking one more iteration leads to slope

Do (5.23)

at(£0)onx = 0. So if
(5.24)

i.e.
(5.25)

then putting all the above together, we have slope \/Dn > D% leads to slope Dn < D°
under τ2n+1, and so there is no rotational invariant circle through (ζ,0).

This completes the description of the basic algorithm for testing a rectangle Iz
x Ik for nonexistence of circles. Our goal is to establish non-existence for Iz
= [0,0.5], 7fe = [63/64, 4/3]. One could simply present the algorithm with the
rectangle Iz x Ik, but precision would be lost pretty fast and it may never succeed
in showing non-existence of circles. What one needs is to subdivide the rectangle Iz

k 2/3

Fig. 3. Regions of the (z, /c)-plane such that there are no rotational circles passing through z on the
line x = 0, invariant under the standard map for parameter value k, marked in black. Undecided
regions left white
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x Ik into small enough rectangles on which the algorithm can succeed before
precision is lost. This can be done automatically by a recursive procedure. The
procedure, which we call RTEST, applies the above algorithm to a rectangle in
(z, fc), iterating until successful or it has lost too much accuracy in following the
orbits to be worth continuing. If successful, its job is done. Else if the rectangle in
(z, k) is not too small it subdivides it into two, in z or in k according to which it
thinks will be most helpful, and calls itself on each part. Else it gives up with a
failure message.

To save time a non-rigorous version TEST is used first to determine rectangles
on which RTEST is likely to succeed. All the main program NOICS does is to call
TEST on the initial rectangle Iz x Ik for which one wants the result. Various
parameters enter to determine the number of iterations to make before giving up,
and which way to subdivide. The criteria for these are somewhat ad hoc, and their
values were chosen simply by minimising the total time taken.

Preliminary explorations were made on a PERQ at Queen Mary College,
London, though not with rigorous arithmetic. Figure 3 shows a typical output.
The black rectangles are rectangles in (z, k) for which the program claimed there
are no circles. The white ones are ones on which it failed to reach a decision. In this
version of the program, subdivision was allowed down to a minimum width in z of

Table 1. Results of applying NOICS to the intervals between successive values of K and
accumulating the totals. The first 9 cases were run with wfx = le-13, cf=0.135, zrfl = 0.995, QF
= 0.01, BF = 50, and the last 7 with wfx= le-12, cf=0.09, zrfl = 0.999, QF = 0.08, BF = 70

K

1.5
1.0625
1.03125
1.015625
1.0078125
1.00390625
1.0
0.99609375
0.994140625
0.9921875

0.990234375
0.9892578125
0.98828125
0.9873046875
0.986328125
0.9853515625
0.984375

Time (s)

3.2
15.5
47
97
149
244
428
598
846

1,184
1,440
1,764
2,199
2,794
3,631
4,885

Rtotal

1,384
6,964

21,127
44,001
68,042
111,598
196,375
274,961
389,809

548,992
669,369
821,961

1,026,659
1,306,652
1,701,540
2,289,261

Maxiter

12
20
25
33
35
38
48
49
59

65
65
73
78
83
83
96

MinzrΘ

\2Q-A

3.0e-5
1.5e-5
7.6e-6
3.8e-6
3.8e-6
1.9e-6
1.9e-6
9.7e-7

9.5e-7
9.5e-7
4.7e-7
4.7e-7
4.7e-7
2 3e-7
2.3e-7

Minkbr

2.7e-4
1.5e-4
7.7e-5
3.8e-5
3.8e-5
1.9e-5
9.7e-6
9.7e-6
9.7e-6

4 8e-6
4.8e-6
4.8e-6
4.8e-6
2 4e-6
2.4e-6
2.4e-6

Rtotal is the total number of iterations required to prove non-existence of rotational invariant
circles for k ̂  K. Time is the total NAS 9080 time taken, or equivalent if run on the Amdahl 470/V7
(The NAS 9080 runs about 2.16 times as fast as the Amdahl 470/V7). Maxiter is the maximum
number of iterations performed from any one initial parallelogram; the equivalent orbit length in
Criterion 2 is 2 * Maxiter+4. Minzro and Minkbr are the smallest half widths in z and k/2π that
were required
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0.002, and in k of 0.003. The largest black rectangles were decided without any
iteration, and the largest number of iterations required to decide a black rectangle
was 7.

The final program was run on an Amdahl 470/V7 and NAS 9080 at CIRCE,
Orsay, France. It is given in Appendix B. We believe that it is rigorous, as we have
checked it pretty thoroughly. Should the reader find any mistakes, however, we
would greatly appreciate being informed.

Rather than present the program directly with the whole interval [63/64,4/3]
in fe, as we did not know beforehand how strong a result it could prove nor how
long it would take, we worked down from k = 4/3 in steps. In fact, since 4/3 is not
representable in the floating point system we used, we started from 3/2 instead.
Table 1 shows the combined results. The net result is that there are no rotational
invariant circles for

k^ 63/64. (5.26)

We could have gone considerably further, but it begins to take a lot of com-
puter time. Extrapolating from the results of Table 1, it looks as if the time T(K)
the program takes to prove no rotational invariant circles for \k\^K goes like

T(K)oc(K-Koy
v (5.27)

with Ko = 0.975±0.001, v = 3±0.25. It is believed that there are no rotational
invariant circles for

/c>/cc~0.971635, (5.28)

so one might have expected this value for Ko. However, the program uses a fixed
precision (14 hexademical digits), and one probably needs unbounded precision to
get arbitrarily close to kc.

We do not have a good explanation for the exponent v. Self-similarity about the
point

k = kc, z = zc~0.405079193, (5.29)

where the golden circle breaks [20], plus the assumption that it is the last circle to
break, might seem to imply that it would take a factor

(5.30)

longer to get a factor

<Ŝ  1.6279500, (5.31)

closer in k to fcc, i.e.

v = log, y -0.98. (5.32)

But this assumes we are in "scaling coordinates" [20]. In fact the orbits move with
/c, so we have to subdivide more in k. Thus it is reasonable that v >0.98. There is
probably room for improvement, however.



486 R. S. MacKay and I. C. Percival

6. Orbits of Minimum Action

In this section, we describe the criteria of Aubry [4, 5] and Newman and Percival
[6] for non-existence of invariant circles, and we show that they are essentially the
same as Criterion 1. So this gives a second way of looking at the criterion.

The dynamics of area preserving twist maps has a variational formulation, the
principle of stationary action. Given an area preserving twist map
Γ: (x, p)\-^(x\ p")? there exists a generating function L(x, x"), unique up to addition
of a constant, such that

p'=L2(x,x0, ,,Λ,
(6.1)

p=-L1(x,xλ),

where subscript i refers to the derivative with respect to the ith argument. For
example, (2.4) is generated by

L(x,xO=i(x-xO2+ ίf(s)ds. (6.2)

Generating functions always satisfy

(6.3)

the sign being opposite to that of the twist. Conversely, given a function L(x, x')
satisfying (6.3), then the relations (6.1) can be inverted to define an area preserving
twist map T: (x, p)h->(x', p").

From (6.1), if (xt,Pt) is an orbit, then

pt = L2(xt_1,xt)=-Lί(xt9xt+1). (6.4)

Thus

^ ,xt+1)-] = 0, (6.5)

and so orbit segments make the action

Wmn=
nΣL(xt,xt+1) (6.6)

t = m

stationary with respect to variations keeping the endpoints xm, xn fixed.
Conversely, sequences (xt) with stationary action generate orbits via (6.1).

With the convention

L1 2(x,x0<0 (6.7)

a special role is played by orbits of minimum action, i.e. whose finite segments have
minimal action (locally or globally) with respect to variations fixing the ends. In
fact, Criterion 1 is equivalent to the following criterion conjectured by Newman
and Percival [6], and closely related to a theorem of Aubry et al. [4, 5].

Criterion Γ: If an orbit segment is not a non-degenerate local minimum of the
action, then it does not lie on any rotational invariant circle.
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Proof of Equivalence. An orbit segment Xo, ...,Xt9 where Xr = (xr,pr), is a non-
degenerate local minimum of the action iff the matrix

of second variations of the action is positive definite. A matrix is positive definite iff
all its leading minors are positive. Thus Criterion Γ is equivalent to saying that the
minors

Mt = det D2W0t (6.9)

are all positive, for orbits on a rotational invariant circle. The matrix D2W0t is
tridiagonal, so we get the recurrence relation:

M ^ ^ ί L ^ E ί - U ί l + L ^ ^ ί + l D M . - C L ^ E ί - l ^ ] ) ^ ^ , (6.10)

where [ί, ί+1] stands for (x0xt+ί). One can generate the Mt from the initial
conditions

Mo = 0, Mx = l. (6.11)

Now consider Criterion 1. It says that for a tangent orbit to an orbit on a
rotational invariant circle, with

(5*0 = 0, δx±>09 (6.12)

then

δxt>0 Vί>0. (6.13)

The evolution of the tangent vectors is given by differentiating (6.4):

Comparing the recurrence relations and initial conditions, we see that we can
make the following correspondence between tangent vectors and minors:

fix t~1

b (6.15), j Π . i 2 ί D £
OXιs=l

Thus δxt > 0 iff Mt > 0, proving the equivalence of the criteria. D

This proof of equivalence answers most of the questions of Mather [2, 3] and
Aubry [5] about the connection between Mather's method and that of Aubry et al.
Aubry [5], however, actually proved a slightly different result from Criterion Γ,
which is stronger in some respects and weaker in others. Just before we submitted
the manuscript, Mather [21] informed us that he has proved that "locally" can be
replaced by "global" in Criterion Γ.

This formulation of the criterion gives an interesting piece of information. It
tells us that Criterion 1 (or 2) will never succeed on any minimising orbit. Now
there are other minimising orbits besides those on rotational invariant circles, e.g.
a minimising periodic orbit for each rational rotation number, and orbits on
Cantor sets for each irrational rotation number for which there are no rotational
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invariant circles [12]. Thus even if there are no rotational invariant circles, one
cannot expect the criterion to succeed everywhere. This problem was not evident in
Sects. 3 and 5, because we examined only the line x = 0, and apparently there are no
points on this line with minimising orbits for k^ 63/64. In fact we conjecture that
for fc^O all points on x = 0 with minimising orbits lie on rotational invariant
circles. Newman and Percival [6] conjecture that the set of points through which
there is no rotational invariant circle but for which the criterion will never succeed
has measure zero. The viewpoint of the next section will suggest a subsidiary
criterion "killends", which removes some of these points. We conjecture that it can
remove any of them (Sect. 9).

7. Conefields

The criterion has so far always been formulated in terms of following orbits. But
one could equally well stand still and let them go by, i.e. rewrite (3.24) as iterative
improvement of a whole field of directions D+(X):

D+(X): = u.b.DTτ-lχD+(T-1X) (7.1)

starting from the uniform field D+(X) = D°+. The distinction is the discrete time
analogue of that between the Lagrangian and Eulerian viewpoints for fluid flow.
One can do the same for the inverse map

D_(TX) (7.2)

starting from D _ (X) = D0..
The direction fields D+(X), together called a conefield, have an interpretation

as local Lipschitz constants for any rotational invariant circle through
X = (x0, z0), if there exist such:

^ lim inf^—^- ^ l i m s u p ^ ^ - SD + (X). (7.3)

This is because if D±(X) are local Lipschitz constants for any rotational invariant
circle then so are the new D+(X) produced by (7.1) and (7.2).

Now suppose that at some stage D+(X) becomes less than D_(X). Then the
range of (7.3) becomes empty, so there can be no circle through X. This gives a third
way of looking at the criterion:

Criterion 3. Start with any conefield D+ (X) containing D% (e.g. one could take oo, 0
in (x,z) coordinates). Improve it by (7.1), (7.2). If at any stage D_(X)>D + (X),
then there can be no rotational invariant circle through X.

For example, Mather's result that there are no circles for (3.5) if (3.27) follows
from one improvement of D+ on the line z=z0, where g'{z) is minimum.

We now describe one implementation of Criterion 3, which can be used to get
stronger results. In order to perform the iterative step (7.1), (7.2) in finite time, one
has to restrict D+(X) to some class of fields with finite specification. One could
represent D+(X) by something smooth like finite Fourier series, but this requires
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criteria for determining extremes of functions that are difficult to implement on the
computer. So we took D+(X) to be piecewise constant, being constant on the
elements of some finite partition, and taking values in a finite set, namely the
representable floating point numbers on a computer.

We applied Criterion 3 to maps of the form (3.5), using conefields constant on
the elements of an n x n square partition of the (x, z)-plane. Provided g(z) is non-
decreasing (as for the standard map when |/c|^2), the pre-image of the square

is bounded by the rectangle

|_
(see Fig. 4).

Let

W »

ί* = round up ( n*g ( I ) — 1

(7.4)

(7.5)

Ki = round down n*g - I I — 1

(7.6)

(7.7)

where the rounding is performed to the nearest integer in the given direction. Then

(7.5) is contained in the union [j Smi of squares with

tj = Kr-j to (7.8)

Use of the reversor S(x,z) = ( — z, — x) and the symmetry (x,z)^>( — x,—z)
(Appendix A) gives the same bounds on images of squares, but with the indices
interchanged.

Fig. 4. Bounding the preimage of a square
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Let

Λ,= u.b. g'(x).
Γ> >+iΊxi» —\

Then (7.1) can be implemented as

and (7.2) as

where

DΛ : = u.b. \Ri

y: = u.b.Γκ,

(7.9)

(7.10)

(7.11)

(7.12)

z 1/2-ί

Fig. 5. Conefield for rotational invariant circles of the standard map at k~ 1.29. No circles pass
through the black regions
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Any squares for which

491

(7.13)

can have no rotational invariant circles passing through them, and so can be
deleted.

Clearly this can be implemented rigorously. All one needs is bounds on g and
g\ and on the operations of reciprocation, subtraction and multiplication. We did
not take the trouble to do so, however, because the implementation of Criterion 2
turned out to be more efficient.

Figures 5 and 6 show results obtained for the standard map by iterating (7.10),
(7.11) until no further change was observed (half a dozen iterations suffice). Our
implementation included special "squares" along the top and right-hand edges, to
represent intervals on the edges x = 0 and z — 0, since these appear to be the most
sensitive places. In Fig. 5, for k~ 1.29, we see that all the special edge squares have
been deleted. Since every rotational invariant circle must cross the edges there can
be none.

Figure 6, for fc~ 1.05, allows rotational invariant circles to exist in the region
where the cones still exist. If, following all slopes allowed by the conefield in one

3/4

z 1/2

1/32

Fig. 6. Conefield for rotational invariant circles of the standard map at /c~ 1.05. No circles pass
through the black regions
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direction or the other from an allowed point, however, one necessarily enters a
region through which no rotational invariant circles pass, then there can be no
rotational invariant circles through that point. This allows one to delete more
squares. For example, it reduces the region of Fig. 6, where rotational invariant
circles can exist to that of Fig. 7. It removes everything in Fig. 5, of course. We call
this supplementary criterion for non-existence of circles, "kill-ends".

At first sight, one can only use killends in conjunction with version 3 of the
criterion, because it needs the Lipschitz conefield, but a weaker version of killends
can be used with the earlier versions of the criterion, using just the initial explicit
Lipschitz cone as in (3.18) and (3.19). Note that the version of killends used in Fig. 7
did not take into account the special edge squares. If it had, it would have deleted
some more squares, as you can see. Also note that, unfortunately, the bottom two
rows of Figs. 6 and 7 got lost in the hardcopy.

As discussed in Sect. 6, some supplementary criterion like killends is necessary
if one is to separate orbits on rotational invariant circles from general minimising
orbits. One might ask what the conefield represents on minimising orbits not lying
on invariant circles. If the orbit is hyperbolic and hence has stable and unstable
directions, then the conefield represents bounds on these invariant directions,
because all directions outside the cones eventually get pushed inside under

z 1/2

Fig. 7. Same as Fig. 6 after application of subsidiary criterion "killends"
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iteration. Note that non-degenerate locally minimising periodic orbits are always
hyperbolic [13].

The main disadvantage of this method is that to get strong results it is necessary
to subdivide a lot, so it requires a lot of space to store the conefields. One can save
some space if the map possesses symmetries (Appendix A). For example, when g is
odd (as for the standard map) one can use the reversor S(x,z) = ( — z9 —x) to put

E-(-z,-x) = D + (x9z). (7.14)

Furthermore, commutation with (x9z)->( — x9 —z) implies that

D ± ( - x , - z ) = D±(x,z). (7.15)

This enabled us to cut down the storage and computing time by a factor of \9

though we didn't actually use it for Figs. 5-7. Killends does remove a lot of squares,
but we thought of no easy way to compress the remaining information. The main
reason that one has to subdivide a lot is that the method does not follow orbits very
accurately. It requires an average of 4 squares to cover the image of one. To retard
loss of precision one could use other classes of functions for D+, e.g. functions
which are linear on elements of some partition (triangles would be better than
squares for this), but we didn't try any.

It is clear that this criterion could also handle a whole C^-ball of maps at once,
since all one needs is bounds on the map and its derivative.

8. Other Techniques

We review here, for comparison, other techniques, whether or not rigorously
based, for indicating regions through which pass no rotational invariant circles.

(a) Residue Criterion

The best practical way to see where there are circles and where there are none is
Greene's residue criterion [10]. The criterion postulates a relation between
existence of invariant circles and stability properties of certain periodic orbits. For
each rational rotation number m/n, there is a pair of periodic orbits, known as a
"resonance." Their linear stability can be measured by quantities known as their
"residues" R±. Two resonances are said to be neighbouring if their rotation
numbers m/n, m'/n' satisfy

mn'-m'n=l. (8.1)

The strongest form of Greene's criterion [19] is that there are some/no invariant
circles between neighbouring resonances if the residues R± are significantly
less/greater in magnitude than

R+ -0.250, R- ~ -0.255. (8.2)

It can be proved that if mk/nk are successive continued fraction approximations
to a Diophantine number v, and if the residues Rk of the corresponding resonances
do not tend to zero as fc->0, then there is no smooth invariant circle of rotation
number v. On its own, this cannot provide rigorous results, because limiting
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behaviour is not rigorously establishable with a finite amount of computation. It
may be, however, that Criterion 2 could be used to save one having to go to the
limit, as will be discussed in Sect. 8(b).

(b) Island Overlap

Chirikov [11] developed an approximate heuristic criterion for nonexistence of
invariant circles between two resonances, based on estimates of the widths of
resonances from standard canonical perturbation theory. If the estimated widths
make the islands overlap, then it is unlikely that there are any invariant circles of
the appropriate class between them. If they don't overlap, there probably are
circles between them. This criterion is closely linked with the residue criterion,
since island width is proportional to residue in first order perturbation theory.

The methods of our paper suggest a possible way of making the island overlap
criterion rigorous. In the islands, the map looks like a rotation, so the tangent
vectors keep getting rotated. Thus there is a neighbourhood of the central periodic
orbit through which the criterion proves that there are no rotational circles. If one
could establish large enough neighbourhoods then there may be suitable
quantities to estimate, e.g. residue, which, if they come out large enough would
guarantee non-existence of circles in between.

(c) Difference in Action

Mather introduced a quantity A Wv^0, for any veR, called a difference in action
[18], which corresponds to a flux across certain curves containing orbits of
rotation number v [17]. If AWv = 0, then there is an invariant circle of rotation
number v (cf. confinement corollary, Sect. 2). Furthermore, for v irrational there is
no such circle if Δ Wv + 0.

Mather proved that A Wv is continuous at irrational v. Thus if it is non-zero at
some irrational v then one might be able to prove it so by estimates on A Wv at
nearby rationals, which could be obtained with a finite amount of computation. To
do this requires an explicit module of continuity, however, which is not yet known.

(d) Climbing Orbits

If one finds an orbit segment which climbs the cylinder sufficiently, then one can
rule out existence of invariant circles separating the endpoints. This is a technique
used by Chirikov [11] and Escande and Doveil [16], for example. We can
formulate it rigorously as follows: If L is a global Lipschitz constant, as in Sect. 3,
and one finds an orbit (xt,pt) such that for some n:

\pH-Po\>L\Xn-Xo\ (8-3)

then there are no rotational invariant circles crossing the straight line between
(x0, Po) a n d (xΛ9 Pn)' For example, the standard map has an "accelerator mode" for
|fc|^2π [11], which is an orbit which climbs vertically by one every iteration, so
there are no rotational invariant circles for \k\ ^ 2π.

This method, however, requires very long orbit segments to decide delicate
cases. It would be hard to follow such long orbits rigorously. The length could be
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reduced by careful choice of initial condition, viz. in the "turnstiles" [17] of the
strongest cantori, but would still require longer orbits than Criterion 2.

(e) Net Flux

For area preserving maps on the cylinder there may be a net flux [17], also known
as the Calabi invariant. It is defined as the net flux across any rotational circle (not
necessarily invariant), the result being independent of the choice of circle, by the
area preserving property. If it is non-zero there can be no invariant rotational
circles, yet the test can be made for any rotational circle. For example, for maps of
the form (2.4) the net flux is

]f{x)dx. (8.4)
o

Clearly, if the net flux is non-zero, then one can prove it so rigorously by precise
enough integration.

It should be noted that the flux has to be measured appropriately. For example,
when (x, z) coordinates are used, as in Sect. 3, the opposite sides of the cylinder are
identified after a vertical shift of 1, so a rotational circle of the cylinder looks like a
helix if the wrong identification is made.

The net flux criterion needs to be used only once if dealing with a single map. If
the flux is non-zero there are no rotational invariant circles and no need for further
tests. If it is zero nothing is achieved and other tests are necessary.

9. Further Discussion

(a) Finite Computation Conjecture

Given a region through which no rotational invariant circles pass, a very
interesting question is whether the criteria in this paper can be used to prove this,
with a finite amount of computation. We conjecture that they can. Let A{M) be the
space of all C1 area preserving, end preserving, orientation preserving twist
diffeomorphisms of the cylinder M = Sι x IR.

Conjecture. Given any compact subset BoϊMx A(M), such that for any (X, T) e B,
the map T has no rotational invariant circles through point X, then the
combination of

(i) the net flux test (Sect. 8(e)),
(ii) cone-crossing (Criterion 1, Γ, 2 or 3),

(Hi) kill-ends (Sect. 7),
will prove so with a finite amount of computation.

After this paper was submitted, Stark [22], with a slightly stronger version of
kill-ends, and a careful definition of precision, has in fact proved this conjecture.

(b) Generalisations

There is nothing special about the vertical. If one has a foliation equivalent to the
vertical, which is twisted by T, that is, the images of the leaves cross the leaves at a
non-zero angle, then by coordinate change Birkhoff s theorem tells us that every
rotational invariant circle cuts each leaf of the foliation precisely once.
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Suppose there are two foliations, one twisted clockwise by T, the other
anticlockwise by T~ \ e.g. the vertical and horizontal in (x, z) coordinates for (3.5).
The horizontals cross the verticals once only, say from left to right. Every
rotational invariant circle can cut each leaf only once. Then one could produce new
such pairs of foliations which restrict invariant circles more, by taking their images
under T and T~* respectively, and this process can be iterated. If at some point a
pair of foliations crosses the wrong way round, then any rotational circle through
that point would have to cut one of the leaves through that point at least once
more, so there can be no rotational invariant circles through that point.

The implementation of this criterion would look very much like that of Sect. 7
for improving conefϊelds. The integral curves of the conefields produced in Fig. 5,
for example, do not give a C1-foliation, buth Fathi [9] has disposed of the
differentiability conditions. A homeomorphism is said to twist a foliation if the
image of each leaf cuts each leaf topologically transversally.

The interesting thing is that this formulation suggests an automatic extension
to other classes of circles, going round fixed points or periodic points. One can
always treat each class separately, by considering the appropriate iterate of the map,
if there are coordinates in which it is a twist map. But with the present method this
may not be necessary. Perhaps, once the foliations have crossed the wrong way,
they will provide restrictions on circles of other classes. This might require keeping
track of the number of half revolutions the foliations make. Birkhoff s theorem has
a generalisation [3] which will probably cope with this: the twist condition can be
relaxed to a tilt condition, allowing non-transverse intersection provided the
number of half revolutions made so far is always positive or always negative.

(c) Continuous Time and Higher Dimensions

Autonomous Hamiltonian systems with two degrees of freedom, and one degree of
freedom systems with Hamiltonian periodic in time, can be reduced to area
preserving maps by using Poincare's surfaces of section. Our results should lift
back to these systems, most directly via the action principle of Sect. 6. We would
expect Criterion Γ to apply directly.

For systems of more degrees of freedom, we would expect to have a vector of
slopes, one for each dxt A dpb and it would be interesting to develop this idea.

(d) Summary of Results

We have obtained rigorous and practical criteria for proving the non-existence of
rotational invariant circles in domains of phase x parameter space for area
preserving twist maps. As an example we have proved that the "standard map" has
no rotational invariant circles for any parameter value \k\ ^ 63/64, which is within
0.013 of the generally accepted optimal but non-rigorous value, obtained by the
method of Greene [10].

We have also shown how to obtain Lipschitz bounds on the slopes of invariant
circles that might remain in the phase space and illustrated the results graphically.

The criteria are obtained by applications and extension of theorems and
methods of Birkhoff, Herman, Mather, and Aubry.

It appears to be easier to obtain rigorous bounds on the domain of phase space
occupied by invariant circles of a given class by using converse KAM theory, where
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regions are found through which no rotational invariant circles pass, as in this
paper, than by using KAM theory, where regions are found guaranteed to contain
invariant circles.

Appendix A: Symmetries

There are two notions of symmetry that we use. One is possession of a symmetry
group. The other is reversibility.

Say a group G of maps is a symmetry group for a map T if

\/geG3g'εG such that gT=Tg'. (A.I)

Then as far as T is concerned, one can identify points if they are related by an
element of G, i.e. identify x and y if

3geG such that g(x) = y. (A.2)

For example, the group generated by the unit horizontal and vertical
translations is a symmetry group for (2.4), so (2.4) can be regarded as acting on the
unit square, with edges identified to form a torus. If / in (2.4) is odd, then the
symmetry group can be enlarged by including the reflection

ΓΊl (A 3)

as a generator. So (2.4) can be regarded as acting on the rectangle

O ^ x ^ l , O^pSh (A.4)

with edges identified to form a sphere. Thus, in particular, to find all rotational
invariant circles of (2.4), it suffices to examine the interval 0 ^ p 5 ^ o n x = 0.

Next we define reversibility. Say a map S is a reversor for Tif it is an involution,
i.e.

S2 = identity (A.5)

reverses orientation, and conjugates T to its inverse, i.e.

sτs-i = τ-i ( A 6 )

For example, when / is odd, (2.4) possesses the reversor

and (3.5) the reversor

S(x,z) = ( - z , - x ) . (A.8)

Finally, note that the standard map is conjugate to itself under changing the
sign of k, by the translation x->xH-|. So it suffices to consider fc^O.

Appendix B: Computer Program

In this appendix we present the computer program which implemented the
algorithm of Sect. 5, plus a sample output.
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A couple of remarks about the program are in order here. Firstly, it is written in
Pascal, which is the nicest language for rigorous programs, because the compiler is
very careful not to let you do things you did not intend to, though the version at
CIRCE unfortunately lacks many desirable features. It is described in CIRCE's
PASCAL manual [14], and has been used sufficiently that one hopes can trust the
manual.

Secondly, in order to write rigorous error bounding arithmetic, one either has
to write one's own floating point routines: UPSUM, DOWNSUM etc., returning
rigorous bounds on sums, products etc., or one has to find out how arithmetic is
done on the machine and modify the answers to get rigorous bounds, e.g. define
functions low, inc, up, and down such that:

i) the true product (quotient) of two numbers A and B lies between \ow(A * B)
and inc(A * B) [low(A/B) and inc(Λ/B)],

ii) the true sum (difference) of two numbers A and B lies between down (A ± B)
and up(4±B).

The former is the most satisfactory as one can be sure exactly what is going on,
but the latter is much easier and faster running, although one is forced to trust the
manuals. We adopted the latter. The machines we used are supposed to be
completely IBM 370 compatible. IBM 370 floating point arithmetic is well
described in the IBM 370 Principles of Operation Manual [15]. On IBM 370
machines the function "low" can be taken to be the identity, so we did not define it.
We could have written the program in a machine independent way, apart from the
definition of these functions, but we also took advantage of other features deduced
from the Principles of Operation Manual, which are commented on where they
appear.

Constant, Type and Variable Declarations

(*T- NO EXECUTION TESTS: THE ONLY ONE THAT MIGHT HAVE MATTERED IS DETECTION
OF OVERFLOW ON INTEGER MULTIPLICATION, WHICH IS NOT DETECTED BY THE
HARDWARE, BUT ONE CAN EASILY A PRIORI BOUND THE INTEGERS OCCURING IN
INTEGER MULTIPLICATION IN THIS PROGRAM AND SEE THAT OVERFLOW WILL NEVER
OCCUR •)

PROGRAM NOICS(INPUT.OUTPUT)

TYPE ΪNTPAIR-RECORD 11,12:INTEGER END;
STRING4-PACKED ARRAY(.1..4.)0F CHAR;
STRING8*PACKED ARRAY(.1..8.)OF CHAR;
STRING16-PACKED ARRAY(.1..16.)OF CHAR;
INTERVAL-RECORD L,R:REAL END; (*SO INTERVAL I IS I.L,I.R*)

VAR MAXNEG,N16,N255,ORDO,ORDA10:INTEGER
TWOPI.TWOPII:REAL;
ITWOPI.ITWOPII:INTERVAL;

WFCOUNTER,NRECT
 f
 RNRECT,RNFAILRECT,NUSEFULRECT,

RTOTAL,USEFULTOTAL,TOTAL,RFAILURES
 f
 RMAXITER,N,NMAX,CLOCKO:INTEGER

WF,WFX,BF
f
QF,ZRMAXO,CFACTOR,MINZRO,MINKBR,ZRF1:REAL;

IZO,IK,IWORSTZ,IWORSTK,IMINZZ,IMINKZ,IMINZK,IMINKK:INTERVAL

C,OPTION,OK:INTEGE R
XC,ZC,ZR,D,ZCO,ZRO.ZRMAX,K1,DO,TEMP,S,KM,ZCN.KB,
022,W1,W2,DET,QP12.
B,E,COL1,C0L2,M1O,M12,M21,HWQ1O,ADET,TEMP2

f
OP21,QP22,

KBR,O1O,011,012,O2O,021
f
0P1O,0P11,M2O,DZC:REAL;

IO1O.IO11,IQ12.IM21,IM22,IC,IGZ,IZ,IKB,IS,IZ1,IK1,
IM11,IM12,IDET,IZC,ITEMP,ITEMP2:INTERVAL
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Rounding Routines

(•CONVENTION: LARGE/SMALL, INC/DEC REFER TO ABSOLUTE VALUE,
HIGH/LOW, UP/DOWN REFER TO ORDER ON REALS •)

PROCEDURE INITROUND; (•REQUIRED ONLY BECAUSE THIS COMPILER IS SO INFLEX1
BEGIN

N16:»16;
N255:=255;
ORDO:*ORD(Ό');
ORDA10:ORD( Ά ' )-1O;
MAXNEG:«PRED(-MAXINT)

END;

FUNCTION INC(X:REAL) -.REAL;
(* FOR XOO THIS RETURNS THE NEXT LARGER REPRESENTABLE NUMBER, OR HALTS

IN CASE OF OVERFLOW. NOT TO BE APPLIED TO X»O *)
VAR XIrINTPAIR;

S-.STRING4;
BEGIN

X1:-INTPAIR(X)
WITH X1 DO

IF I2-MAXINT THEN I2:=MAXNEG
ELSE BEGIN

I2:~SUCC(I2);
IF 12=0 THEN
IF (I1«MAXINT)OR(H

S
-1) THEN HALT( OVERFLOW IN INC)

ELSE BEGIN
S C C ( ) ;

S:«STRING4(I1);
IF 0RD(S(.2.))-O THEN S(.2.):«CHAR(N16)
I1:-INTEGER(S) END ENO;

INC:-REAL(XI)
END;

FUNCTION DEC(XΓREΛL):REAL;
(* FOR XOO THIS RETURNS THE NEXT SMALLER REPRESENTABLE NUMBER, OR HALT!

WITH AN UNDERFLOW ERROR. NOT TO BE APPLIED TO X O *)
VAR S:STRING4;

ORDS:INTEGER;
X1rINTPAIR;

BEGIN
XI:«INTPAIR(X);
WITH X1 DO

IF I2=MAXNEG THEN I 2 : MAXINT
ELSE IF 12-0 THEN BEGIN

I2:«-1
11 :«PRED(Π);
S:-STRING4(I1);
IF ORD(S(.2.))-15 THEN BEGIN

0RDS:-0RD(S(.1.));
IF (0RDS*O)0R(0RDS = 128) THEN HALT( ' UNDERFLOW IN DEC)
ELSE BEGIN

S(.1.):-PRED(S(.1 ) ) ;
S(.2.):-CHAR(N255) END;

I1:-INTEGER(S) END END
ELSE I2:-PRED(I2);

DEC:-REAL(X1)
END;

FUNCTION UP(X:REAL):REAL;
(• FOR XOO THIS RETURNS THE NEXT HIGHER REP. UP(O)*O *)
BEGIN

IF X>0 THEN UP:«INC(X)
ELSE IF X<O THEN UP:«DEC(X)
ELSE UP:*O

END;
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FUNCTION DOWN(X:REAL):REAL;
(* FOR X o O THIS RETURNS THE NEXT LOWER REP. DOWN(O)K) *)
BEGIN

IF X>0 THEN DOWN:»DEC(X)
ELSE IF X<0 THEN DOWN:=INC(X)
ELSE DOWN:«O

END;

Hexadecimal Output Routines

FUNCTION HEX(M:INTEGER):CHAR;
BEGIN

IF M<10 THEN HEX:=CHAR(ORDO+M)
ELSE HEX:=CHAR(0RDΛ1O+M)

END;

PROCEDURE WRITEHEX(X:REAL)
VAR I .-INTEGER;

S.-STRING8;
T:STRING16;

BEGIN
S:»STRING8(X);
FOR Iί i TO 8 DO BEGIN

T(.2 I-1.):-HEX(ORD(S(.I.)) DIV 16);
T(.2*I.):-HEX(ORD(S(.I.)) MOD 16) END;

WRITEC ',T)
END;

Simple Functions

FUNCTION ROUNDDOWN(X:REAL):INTEGER;
(•ROUNDS X DOWN TO THE NEAREST INTEGER *)
VAR T:INTEGER;
BEGIN

IF X>=0 THEN ROUNDDOWN:=TRUNC(X)
ELSE BEGIN

T:«TRUNC(X);
IF T»X THEN ROUNDDOWN:«T
ELSE ROUNDDOWN:«T-1 END

END;

FUNCTION ROUNOUP(X:REAL):INTEGER;
(* ROUNDS X UP TO THE NEAREST INTEGER *)
VAR T:INTEGER;
BEGIN

IF X<«0 THEN ROUNDUP:-TRUNC(X)
ELSE BEGIN

T:=TRUNC(X);
IF T«X THEN ROUNDUP:=T
ELSE ROUNDUP:=T+1 END

END;

FUNCTION MAX(A,B:REAL):REAL;
BEGIN

IF A>B THEN MAX:=A
ELSE MAX:=B

END;

FUNCTION MIN(A
t
B:REAL):REAL;

BEGIN
IF A<B THEN MIN:=A
ELSE MIN:=B

END;

FUNCTION USORT(Λ:REAL):REAL; (*RETURNS U.B. ON SQRT(A) *)
VAR X,E,X2:REAL;
BEGIN

X:=SQRT(A); (*APPROXIMATE SORT *)
X2 *

 =
X*X

IFX2<A
§
THEN BEGIN

E:»INC(A-X2);
USORT:»INC(X+INC(E/(2*X))) END

(* USING D/DX(X*X)«2*X
f
 INCREASING FOR X>0 »)

ELSE USORT:«X
END;
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Interval Arithmetic Routines

FUNCTION RMAXERROR(I:INTERVAL Z:REAL):REAL; (* U.B. ON ABS(Z-I) *)
BEGIN RMAXERROR:=UP(MAX(ABS(I.R-Z),ABS(I.L-Z))) END

FUNCTION IABS(I:INTERVAL):REAL; (* MAX(ABS(I)) *)
BEGIN IABS:=MAX(ΛBS(I.L).ABS(I.R)) END;

FUNCTION RΓMIN( I: INTERVAL) :REAL;
BEGIN

IF I.L*I.R<-0 THEN RIMIN:=-1
ELSE RIMIN:=MIN(ABS(I.L),ABS(I.R))

END;

(* THE FOLLOWING WOULD BE BEST DEFINED AS FUNCTIONS, BUT THIS
COMPILER DOES NOT ALLOW FUNCTIONS TO RETURN RECORDS OR ARRAYS *)

PROCEDURE RISDIFF(I:INTERVAL S:REAL VAR J:INTERVAL);
(* RETURNS AN INTERVAL CONTAINING I-S •)
BEGIN J.L:=DOWN(I.L-S);J.R:«UP(I.R-S) END;

PROCEDURE RSIDIFF(S:REAL I:INTERVAL VAR J:INTERVAL);
(* RETURNS AN INTERVAL CONTAINING S-I *)
BEGIN J.L:«=DOWN(S-I.R);J.R:«UP(S-I.L) END;

PROCEDURE RIDIFF(I,J:INTERVAL;VAR K:INTERVAL);
(• RETURNS AN INTERVAL CONTAINING I-J *)
BEGIN K.L:«DOWN(I.L-J.R) K.R:«UP(I.R-J.L) END;

PROCEDURE RISPROD(I:INTERVAL S:REAL VAR J:INTERVAL);
(* RETURNS AN INTERVAL CONTAINING I*S *)
(* COULD SAVE A LITTLE ACCURACY BY EXAMINING SIGNS AND USING ONLY INC *)
BEGIN

IF S>«0 THEN BEGIN
J . L : «DOWN( I. L *S ) J . R : =*UP( I. R*S ) END

ELSE BEGIN
J.L:»DOWN(I.R*S);J.R:-UP(I.L*S) END

END;

PROCEDURE RIPRODP( I, J : INTERVAL VAR K .INTERVAL);
(* RETURNS AN INTERVAL CONTAINING I*J. ASSUMING I>0 *)
BEGIN

IF J.L<0 THEN K.L:-INC(I.R J .L)
ELSE K.L:-I.L*J.L;
IF J.R<=0 THEN K.R:-I.L*J.R
ELSE K.R:*INC(I.R*J.R)

END;

PROCEDURE RIFATTEN(S:REAL VAR I:INTERVAL)
(*IF S IS A PRODUCT OR QUOTIENT OF REALS, THIS RETURNS AN INTERVAL

CONTAINING THE TRUE ANSWER*)
BEGIN

IF S>0 THEN BEGIN
I.L:-S;I.R: INC(S) END

ELSE IF S<0 THEN BEGIN
I.L:«INC(S);I.R:-S END

ELSE BEGIN
I.L: 0;I.R:-0 END

END;

Nonrigorous Interval Arithmetic

(• NONRIGOROUS ROUTINES FOR QUICK AND DIRTY ESTIMATES •)

FUNCTION ICENTRE(I:INTERVAL):REAL; (*APPROXIMATE CENTRE OF INTERVAL*)
BEGIN ICENTRE:»I.L+O.5*(I.R-I.L) END;

FUNCTION IHWIDTH(I:INTERVAL):REAL;
BEGIN IHWIDTH:«O.5*(I.R-I.L) END;
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Nonrigorous Interval Arithmetic (continued)

PROCEDURE ISDIFF(I:INTERVAL S:REAL VAR J:INTERVAL);
BEGIN J.L:-I.L-S;J.R:-I.R-S END;

PROCEDURE SIDIFF(S:REAL I:INTERVAL VAR JrlNTERVAL);
BEGIN J.L:-S-I.R;J.R:-S-I.L END;

PROCEDURE IDIFF(I,J:INTERVAL VAR K:INTERVAL);
BEGIN K.L:-I.L-J.R;K.R:-I.R-J.L END;

PROCEDURE ISPROD(I:INTERVAL S:REAL VAR JrlNTERVAL);
BEGIN

IF S>«0 THEN BEGIN
J.L:»I.L*S;J.R:*I.R*S END

ELSE BEGIN
J.L:-I.R*S;J-R:-I.L*S END

END;

PROCEDURE IPRODP(I,J:INTERVAL VAR K:INTERVAL);
BEGIN

IF J.L<O THEN K.L:-I.R*J.L
ELSE K.L:-I.L*J.L;
IF J.R<0 THEN K.R:*I.L*J.R
ELSE K.R:-I.R*J.R

END;

PROCEDURE ICOSTP(Z:INTERVAL VAR C:INTERVAL);
VAR NL.NR.DN:INTEGER;
BEGIN

NL:=ROUNDDOWN(2 *Z.L) NR:-ROUNDUP(2 *Z.R)
DN:*NR-NL;
IF DN<«1 THEN

IF ODD(NL) THEN BEGIN
C.L:-COS(TWOPI *Z . L ) 0. R :=COS(TWOPI*Z.R) END

ELSE BEGIN
C.L:=COS(TWOPI *Z . R) C. R :«COS(TWOPI*Z.L) END

ELSE IF DN-2 THEN
IF ODD(NL) THEN BEGIN
C.R : -1 C.L:=-COS(TWOPI*MIN(Z.L-NL/2,NR/2-Z. R)) END

ELSE BEGIN
C.L:—1;C.R:«COS(TWOPI*MIN(Z.L-NL/2.NR/2-Z.R)) END

ELSE BEGIN
C.L: —1;C.R:-1 END

END;

Trigonometric Routines

(* FOR X SMALL ENOUGH, THE SERIES FOR SIN AND COS ARE ALTERNATING AND
DECREASING, HENCE ALTERNATE PARTIAL SUMS PROVIDE UPPER AND LOWER BOUNDS.
IN PARTICULAR, THE FOLLOWING ARE VALID FOR 0<ABS(X)<-1.
THEY WOULD BE VALID FOR X<SQRT(342) IF I SUMMED THE SERIES DIFFERENTLY,
BUT I NEED Y ALWAYS POSITIVE FOR THE FOLLOWING TO WORK *)

FUNCTION DCOS(X:REAL):REAL; (* LOWER BOUND TO COS(X) *)
VAR X2,Y:REAL;
BEGIN

X2:=INC(X*X)
:=DEC(1-INC(X2/3O6)); (* INTEGERS ARE CONVERTED EXACTLY *)

1-Y*X2/24O);
=DEC(1-INC(Y*INC(X2/182)));
= INC(
=DEC(

(

Y
Y
Y
Y
Y
Y
Y
DCOS:«DEC(1-INC(Y*INC(X2/2))) END;

FUNCTION UCOS(X:REAL):REAL; (* UPPER BOUND TO COS(X) *)
VAR X2,Y:REAL;

(
•INC(

-Y*X2/132) ;
- INC(Y*INC(X2/9O)) ) ;
-Y*X2 /56) ;
- INC(Y*INC(X2/3O)) ) ;
-Y*X2/12)
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Trigonometric Routines (continued)

BEGIN
X2:=X*X;

=DEC(1-INC(X2/24O));
= INC(1-Y*X2/182)
=DEC(1-INC(Y*INC(iC2/132)));
= INC(1-Y*X2/9O);
=DEC(1-INC(Y*INC(X2/56)));
=INC(1-Y*X2/3O);
=DEC(1-INC(Y*INC(X2/12)));

Y
Y
Y
Y
Y
Y
Y
UCOS:=INC(1-Y*X2/2) END;

FUNCTION DSINO(X:REAL):REAL;
VAR X2,Y:REAL;
BEGIN
X2:=X*X;

(* LOWER BOUND TO SIN(X)/X *)

=DEC(1-INC(X2/21O));
=INC(1-Y*X2/156);
=DEC(1-INC(Y*INC(X2/110)));
=INC(1-Y*X2/72);
=DEC(1-INC(Y*INC(X2/42)));

C(1-Y*X2/2O);

Y
Y
Y
Y
Y
Y
DSINO:=DEC(1-INC(Ϋ*INC(X2/6))) END;

FUNCTION USINO(X:REAL):REAL;
VAR X2,Y:REAL;
BEGIN

X2:=INC(X*X);

(* UPPER BOUND TO SIN(X)/X *)

DEC(1-INC(X2/272));
=INC(1-Y*X2/21O);
=DEC(1-INC(Y*INC(X2/156)));
= INC(1-Y*X2/ΠO);
OEC(1-INC(Y*INC(X2/72)));
=INC(1-Y*X2/42);
DEC(1-INC(Y*INC(X2/2O)))

Y
Y
Y
Y
Y
Y
Y
USINO:=INC(1-Y*X2/6) END;

FUNCTION DECSIN(X:REAL):REAL; (* SMALLER BOUND ON SIN(X) *)
BEGIN DECSIN:=X*DSINO(X) END;

FUNCTION INCSIN(X:REAL):REAL; (* LARGER BOUND ON SIN(X) *)
BEGIN INCSIN:*INC(X*USINO(X)) END;

PROCEDURE CΛLCITWOPI;
(* SETS ITWOPI TO AN INTERVAL CONTAINING 2*PI. BY FINDING AN INTERVAL

CONTAINING THE FIRST ROOT OF .SIN(X)«=0.5 *)
VAR X,X1

t
X2:REAL;

BEGIN
X1:-O.5235;X2:=O.5236;
IF (INCSIN(X1)>0.5)OR(INCSIN(X2)<0.5) THEN (*DYADIC RATIONALS GET

CONVERTED EXACTLY, PROVIDED THEY ARE REPRESENTABLE *)
HALTC BAD INITIAL INTERVAL IN CALCITWOPI.L')

REPEAT
X:«X1+O.5*(X2-X1); (*IT DOES NOT MATTER THAT THIS MAY NOT BE EXACT,

AS LONG AS THE LOOP TERMINATES *)
IF INCSIN(X)<«0.5 THEN X1:»X
ELSE X2:=X

UNTIL X2=INC(X1); (* SO SIN(X1)<=O.5, BUT IS VERY CLOSE *)
ITWOPI.L:-12*X1;
ITWOPII.R:»INC(1/ITWOPI.L);
X1:=0.5235;X2:=0.5237;
IF (DECSIN(X1)>O.5)0R(DECSIN(X2)<0.5) THEN
HALT(' BAD INITIAL INTERVAL IN CALCITWOPI.R')

REPEAT
X:*X1+O.5*(X2-X1)
IF DECSIN(X)<0.5 TJHEN X1:«X
ELSE X2:«X

UNTIL X2»INC(X1); (* SO SIN(X2)>«0.5, BUT CLOSE *)
ITWOPI.R:~INC(12*X2);
ITWOPII.L:-1/ITWOPI.R;
WRITEC TWOPI LIES BETWEEN HEX:');
WRITEHEX(ITWOPI.L);
WRITE(' AND');WRITEHEX(ITWOPI.R)
WRITELN

END;
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Trigonometric Routines (continued)

FUNCTION DCOSTP(Z:REAL) .-REAL; (* LOWER BOUND TO COS(2*PI*Z) *)
BEGIN

Z : =*ABS(Z-ROUND( Z )) ( *EXACT* )
IF Z<0.25 THEN

IF Z<0.125 THEN
IF Z=O THEN DCOSTP:=1
ELSE (• 0<Z<.125 *) DCOSTP:«DCOS(INC(ITWOPI.R*Z))

ELSE (• .125<=Z<.25 *) DCOSTP:«DECSIN(ITWOPI.L*(O.25-Z))
(* (0.25-Z) IS EXACT HERE. AND THE SAME GOES FOR ALL SIMILAR CASES WHICH

WILL OCCUR *)
ELSE IF Z<0.375 THEN

IF Z O . 2 5 THEN DCOSTP: =0
ELSE (* .25<Z<.375 *) DCOSTP:»-INCSIN(INC(ITWOPI.R*(Z-O.25)))

(* SIGN CHANGE IS ALWAYS EXACT •)
ELSE IF Z O . 5 THEN DCOSTP: — 1
ELSE (• .375<-Z<.5 *) DCOSTP:»-UCOS(ITWOPI.L*(0.5-Z))

END;

FUNCTION UCOSTP(Z:REΛL):REΛL; (* UPPER BOUND ON C0S(2*PI*Z) *)
BEGIN

Zt^ABSίZ-ROUNDίZ))
IF Z<0.25 THEN

IF Z<0.125 THEN
IF Z O THEN UC0STP: = 1
ELSE (* 0<Z<.125 *) UCOSTP:=UCOS(ITWOPI.L*Z)

ELSE (* .125<=Z<.25 *) UCOSTP:=INCSIN(INC(ITWOPI.R*(0.25-Z)))
ELSE IF Z<0.375 THEN

IF Z O . 2 5 THEN UC0STP:«O
ELSE (* .25<Z<.375 *) UCOSTP:«-DECSIN(ITWOPI.L*(Z-O.25))

ELSE IF Z O . 5 THEN UC0STP:«~1
ELSE (* .375<«=Z<.5 *) UCOSTP : «-DCOS( INC( ITWOPI . R*(0. 5-Z )))

END;

(* THE FOLLOWING SHOULD BE FUNCTIONS *)

PROCEDURE RICOSTP(1:INTERVAL VAR J:INTERVAL);
(•RETURNS AN INTERVAL CONTAINING C0S(2*PI*I) *)
VAR NL.NL1,NR

f
NR1,DN,NN:INTEGER

ZL,ZR:REAL;
BEGIN

NL1:«ROUNDDOWN(I.L)
ZL:-I.L-NL1;
IF ZL<0.5 THEN NL:=2*NL1 (*RIGOROUS EVEN THOUGH ZL MAY NOT BE EXACT*)
ELSE NL:=2*NLΊ+1;
NR1:«ROUNDUP(I.R);
ZR:*NR1-I.R;
IF ZR<0-5 THEN NR:«2*NR1
ELSE NR:~2*NR1-1;
DN:=NR-NL;
IF DN<«1 THEN

IF ODD(NL) THEN BEGIN
J.L:-DCOSTP(I.L) J.R:*UCOSTP(I.R) END

ELSE BEGIN
J.L:-DCOSTP(I.R) J.R:-UCOSTP(I.L) END

ELSE IF DN»2 THEN
IF ODD(NL) THEN BEGIN

J.R: = 1
NN:«NL1+1
J.L:=DCOSTP(MAX(NN-I.L

f
I.R-NN)) END (*ARGUMENTS TO DCOSTP ARE EXACT •)

ELSE BEGIN
J.L: — 1 ;
J.R:-UCOSTP(MIN(ZL

f
ZR)) END (* ZL.ZR ARE EXACT IN THIS CASE •)

ELSE BEGIN
J.L:=-1 J.R:=O END

END;

PROCEDURE RSINTP(Z:REAL VAR I:INTERVAL);
(* RETURNS AN INTERVAL CONTAINING SIN(2*PI*Z) *)
VAR Z1:REAL;
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Trigonometric Routines (continued)

BEGIN
Z:«Z-ROUND(Z); (*f=XACT*)
IF Z>=0 THEN
IF Z>0.375 THEN
IF Z*0.5 THEN BEGIN
I.L:-O;I.R: O END

ELSE (• .375<Z<.5 •) BEGIN
Z1:K).5~Z; (*EXACT*)
I.L:«DECSIN(ITWOPI.L*Z1);I.R:-INCSIN(INC(ITWOPI.R*Z1)) END

ELSE IF Z>O.125 THEN
IF Z-0.25 THEN BEGIN
I.L:-1;I.R:-1 END

ELSE (• .125<Z<«.375 *) BEGIN
Z1:=O.25-Z;
I.L:-DCOS<INC(ITWOPI.R*Z1)) I.R:-UCOS(ITWOPI.L*Z1) END

ELSE IF Z O THEN BEGIN
I.L:-O;I.R:«O END

ELSE (* 0<Z<.125 *) BEGIN
I.L:=DECSIN(ITWOPI.L*Z);I.R:»INCSIN(INC(ITWOPI.R*Z)) END

ELSE IF Z<-O.375 THEN
IF Z~-O.5 THEN BEGIN
I.L:-O;I.R:-O END

ELSE (• -.5<Z<-.375 •) BEGIN
Z1:-O.5+Z;
I.L:—INCSIN(INC(ITWOPI.R*Z1));I.R: — DECS IN( ITWOPI .L*Z1 ) END

ELSE IF Z<-0.125 THEN
IF Z«-O.25 THEN BEGIN
I.L: —1;I.R: — 1 END

ELSE (• -.375<Z<-.125 •) BEGIN
Z1:~O.25+Z;
I. L : *-UCOS (ITWOP I.L *Z1);I.R:—DCOS(INC( ITWOPI. R*ZD) END

ELSE (* -.125<Z<0 *) BEGIN
Z1 :«-Z;
I.L:«-INCSIN(INC(ITWOPI.R*Z1 ));I.R:=-DECSIN(ITWOPI.L*Z1) END

END;

Rigorous Test Procedure

(• THIS PROCEDURE TESTS WHETHER THERE CAN BE ANY INVARIANT CIRCLES
UNDER THE STANOARO MAP. PASSING THROUGH INTERVAL IZO ON THE LINE X*O,
FOR THE PARAMETER INTERVAL IK, WITH RIGOROUS CONTROL OF ROUNDOFF ERRORS.
IF IT FINDS THAT THERE CAN BE NO CIRCLES, EXECUTION RETURNS TO THE PLACE
FROM WHICH THE PROCEDURE WAS MOST RECENTLY CALLED,
ELSE, IF IZO OR IK IS TOO SMALL .IT HALTS EXECUTION WITH AN ERROR MESSAGE,
ELSE IT SUBDIVIDES IZO OR IK AND CALLS ITSELF ON THE TWO PIECES *)

(• NUMBERS IN BRACKETS REFER TO EQUATION NUMBERS IN THE TEXT •)

PROCEDURE RTEST(IZO,IK:INTERVAL)
BEGINBEGIN
C:«O;

XC:*O;
IZ:»IZO;
ZCO:«ICENTRE(IZ);
ZC:«ZCO;
ZRRMAX

•ASSUMES 0<IK.L<2 •)
•SET ITERATION COUNTER •)

•INITIALISE PARALLELOGRAM: •) ( 4.1 )
• (ZC.XC) + O.UNIT CUBE •)
•SPECIFYING BOUNDS ON ORBIT •)
•OF INITIAL INTERVAL (IZO,O) •);

ZR:«RMAXERROR(IZ,ZC);
ZRO:«ZR;
Q1O:«O;Q11:«ZR;Q12:*O; (*5.11*)
02O:«O;021:«O;022:«O;

KM:»ICENTRE(IK); (•INITIALISE K *)
RIPRODP(IK,ITWOPII,1KB)
KB:-ICENTR6(1KB)
KBR:"RMAXERROR(1KB.KB)

K1:-INC(1+INC(O.5*IK.R)); (^INITIALISE SLOPES: •)
DO:«DEC(K1-USQRT(INC(INC(K1*K1)-1))); (^GLOBAL SLOPE *) (*3.23*)
D:-INC(1-O.5*IK.L); (*INITIAL SLOPE ON X-0 •) (•5.22*)

(• WE COULD TEST HERE IF D<DO, IN WHICH CASE WE ARE DONE.
THIS DISPOSES OF ALL INTERVALS WITH IK.L>-2, AND INDEED, ALL SHORT
ENOUGH INTERVALS WITH IK.L>4/3.
IN ORDER TO PROCEED, I NEED D>0, HENCE THE RESTRICTION IK.L<2 •)
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Rigorous Test Procedure (continued)

RICOSTP(IZ,IC); (• EVALUATE BOUNDS ON G'(Z) •)
RIPRODP(IK,IC,ITEMP)
RSIDIFF(2.0,ITEMP,IGZ);

D:~UP(IGZ.R-1/D); (*UPPER BOUND ON SLOPE AT IMAGE *)(*5.19*)

OPTION:«1; (*START WITH FIRST METHOD OF FATTENING*)

WHILE (D>=DO)AND(ZR<=ZRMAXO) DO BEGIN
(*SLOPE NOT YET SMALL ENOUGH, AND PGM NOT YET TOO LARGE, SO ITERATE *)

C:«SUCC(C); (^INCREMENT COUNTER *)

RSINTP(ZC.IS); (*NEW CENTRE *)
RIFATTEN(2*ZC.ITEMP)
RISDIFF(ITEMP,XC,ITEMP2)
RISPROD(IS,KB,ITEMP)
RIDIFF(ITEMP2,ITEMP,IZC); (* T: Z':-2Z-KB*SIN(2*PI*Z)-X *) (*5.4*)
XC:-ZC; (* X':-Z *)
ZC:«ICENTRE(IZC);
DZC:*RMAXERROR(IZC.ZC)
ZC:»ZC-ROUND(ZC) (*EXACT*)

RISPROD(IGZ,Q1O,IQ1O); (* IO:-IDT.O •)
RISPROD(IGZ,011,1011)i
RISPRODdGZ.012,1012);
RISDIFF( 1010,020,1010)
RISDIFF(1011.021,1011)
RISDIFF(IZ,0.25,ITEMP);
RICOSTP(ITEMP,IS); (* I SHOULD HAVE WRITTEN RISINTP •)
RISPROD(IS,KBR,ITEMP)
RIDIFF(1010,ITEMP,1010)
(* I02J:*0U. J: 0,1.2 *)

0P1O:«ICENTRE(I01O); (*BEGIN TO SET OP:=ICENTRE(10)•)(*5.15*)
OP 11: = ICENTRE(I011); (*5.13*)
(* 0P20:O10 •)

IF OPTION-1 THEN (*FIRST METHOD OF FATTENING*)
IF ΛBS(012)<0F*011 THEN BEGIN
021:-INC(011+ABS(012)); (*0P21 *) (*5.14*)
RIFATTENC0P11/021,ITEMP2) (• IM:«0P**-1 . 10 *)
M2O:«RMAXERR0R(I01O,0P1O);
RISPROO(ITEMP2,011.ITEMP)
RIOIFFC1011,ITEMP,IM21)
RISPR0D(ITEMP2,012,ITEMP);
RIDIFF(1012,ITEMP,IM22);
011:*0P11 (* NEW 0 *)
012:*UP(IABS(IM22)+UP(IABS(IM21)+UP(M20+DZC))) ENO ( *5.17*)

ELSE OPT ION:-2;

IF OPTIONS THEN BEGIN (• SECOND METHOD OF FATTENING: OP IS A OF &4 *)
RISDIFF(I012,022,1012); (* OP:

β
ICENTRE(10) *) (*4.10*)

0P12:-ICENTRE(P012);
0P21:=011 0P22:=012
TEMP: O P 1 1*OP22;TEMP2:OP12*OP21; ( *SEE IF OP NEEDS FATTENING*)
DET:»TEMP-TEMP2;
COL 1:*ABS(OP 11)•ABS(0P21) C0L2:-ABS(OP 12)+ABS(0P22)
B:«BF *COL1
E:»B*C0L2;IF E»O THEN E:-1;
ADET:*ABS(DET);
IF ADET<«E*C0L1 THEN BEGIN (* FATTEN OP *)

IF DET*0P2K0 THEN E:»-E;
OP12:«OP12-E;
TEMP2:OP12*QP21;
ADET:=ABS(TEMP-TEMP2) END;

(*GET NONRIGOROUS EXPANSION FACTORS W1.W2.
COULD GET RIGOROUS W1.W2, BUT CANNOT MULTIPLY COLUMNS EXACTLY BY THEM,
SO EXPAND A LITTLE MORE THAN NECESSARY (WF), AND THEN CHECK IT IS OK*)



Converse KAM 507

Rigorous Test Procedure (continued)

HW01O:~IHWIDTH(I01O);
M1O:»ABS(HWO1O*OP22); (* IM:»OP**~1 . 10 *)
ISPROD(1011,0P22,ITEMP) ISDIFF(ITEMP,TEMP2,IM11)
M12:*ABS(RMAXERR0R(I012,0P12)*0P22);
M2O:

a
*ABS(HWQ1O*OP21 )

M21:-ABS(IHWIDTH(1011)*0P21)
ISPROD(1012,0P21,ITEMP) ISDIFF(ITEMP,TEMP,IM22)
W1:«WF*(ABS(0P22)*DZC+M1O+IABS(IM11)+M12)/ADET; (*4.4*)
W2 : «WF * (ABS (0P21 ) *DZC+M2O+M21 +1 ABS ( IM22 ) ) / ADET
0K:*0;

REPEAT
OP21:-QP21*W1;OP22:«OP22*W2; (• EXPAND PGM *) (*4.3*)
OP11:

β
0P11*W1;0P12:«0P12*W2;

RIFATTEN(OP12*OP21,ITEMP); (• CHECK RIGOROUSLY THAT IT IS OK *)
RIFATTEN(0P11•0P22,ITEMP2)
RIDIFF(ITEMP2,ITEMP,IDET)
ADET:*RIMIN(IDET);
HW01O:*RMAXERR0R(1010,0P1O);
M1O:==UP( ABS(HW01O*0P22) )
M20:-UP(ABS(HW01O*0P21))
RISPROD(1011.OP22,IM11);RIFATTEN(QP12*011,ITEMP)
RIDIFF(IM11,ITEMP,IM11)
RISPROD(IO12,OP22,IM12);RIFATTEN(OP12*O12,ITEMP);
RIDIFF(IM12,ITEMP,IM12);
RISPROD(1011,0P21,IM21);RIFATTEN(0P11•OI1,ITEMP)
RIDIFF(IM21,ITEMP,IM21)
RISPROD(I012.0P21,IM22);RIFATTEN(0P11^012.ITEMP)
RIDIFF(IM22,ITEMP.IM22)
W1:=UP(IABS(IM11)+UP(IABS(IM12)+UP(M10+UP(ABS(0P22^DZC))) ) ) (*4.4*)
W2:«UP(IABS(IM22)+UP(IABS(IM21)+UP(M2O+UP(ABS(OP21*DZC)))));
IF (WK~ADET)AND(W2<~ADET) THEN OK: — 1 (•IT IS OK*)
ELSE BEGIN

W1:*WF*W1/ADET; (*TRY EXPANDING A LITTLE*)
W2:«WF*W2/APET;
OK:«SUCC(OK);
IF 0K>9 THEN HALT(' 0K«10');
WFCOUNTER:»SUCC(WFCOUNTER) END

UNTIL 0K»-1
021:«0P21;022:«0P22; (• NEW 0 *)
011:*OP11;O12:«OP12 END;

02O:«01O; (*FINISH UPDATING 0 *) (*5.16»)
010:=OP10;

ZR:«INC(ABS(O11)+UP(ABS(O1O)+ABS(O12))); (•NEW IZ •) (*4.11*)
IZ.L:«D0WN(ZC-ZR) IZ.R:=UP(ZC+ZR)
RICOSTP(IZ.IC); (•BOUNDS ON G'(Z) •)
RIPRODP(IK,IC,ITEMP)
RSIDIFF(2.0,ITEMP,IGZ);

D:-UP(IGZ.R-1/D) (*UPPER BOUND ON SLOPE AT IMAGE *)(*5.19*)

END(•WHILE LOOP*);

RTOTAL:«RTOTAL+C; (*UPDATE RECORD OF WORK DONE*)
RNRECT:-SUCC(RNRECT)
IF ORMAXITER THEN BEGIN

RMAXITER:=C;
IW0RSTZ:»IZO;
IWORSTK:-IK END;

IF D<DO THEN BEGIN (^SUCCESSFUL •)
IF ZRO<MINZRO THEN BEGIN
MINZRO:-ZRO;
IMINZZ:«IZO;IMINKZ:«IK END;

IF KBR<MINKBR THEN BEGIN
MINKBR .-KBR;
IMINZK:-IZO;IMINKK:-IK END END

BEGIN
RFAILURES:«RFAILURES+C;
RNFAILRECT:»SUCC(RNFAILRECT)
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Rigorous Test Procedure (continued)
IF KBR>(C-M)*CFACTOR*ZRO THEN ( •TRY TO SUBDIVIDE IN K •)
IF (KM«IK.L)OR(KM»IK.R) THEN (*CANNOT BECAUSE IK IS TOO SHORT*)
HALTC CANNOT SUBDIVIDE ANY FURTHER IN K IN RTEST')

ELSE BEGIN (• OK *)
IK1.L:«KM;IK1.R:*IK.R;
IK.R:«KM;
RTEST(IZO,IK1);
RTEST(IZO.IK) END

ELSE (*TRY TO SUBDIVIDE IN Z •)
IF (ZCO«IZO.L)OR(ZCO«IZO.R) THEN (*CANNOT BECAUSE IZO IS TOO SHORT*)
HALTC CANNOT SUBDIVIDE ANY FURTHER IN Z IN RTEST')

ELSE BEGIN (* OK *)
IZ1.L:-IZO.L;IZ1.R:-ZCO
IZO.L:-ZCO;
RTEST(IZI.IK);.
RTEST(IZO.IK) END END

END;

Nonrigorous Test Procedure

(* TO SAVE TIME, THIS NONRIGOROUS VERSION OF RTEST IS USED FIRST TO FIND
RECTANGLES ON WHICH RTEST IS LIKELY TO SUCCEED.
IF TEST IS SUCCESSFUL, IT PASSES THE RECTANGLE TO RTEST
ELSE IT SUBDIVIDES AND TRIES AGAIN WITH TEST,
UNLESS IK OR IZO IS TOO SMALL, IN WHICH CASE IT HALTS •)

PROCEDURE TEST(IZO,IK:INTERVAL)
BEGIN
C:-O;

XC:=O;
IZ:*IZO;
ZCO:«ICENTRE(IZ);
ZC:=ZCO;
ZR:»IHWIDTH(IZ);
ZRO:»ZR;
Q10:0;Q11 :«ZR;012:O;
Q20:O;021 :«O;Q22:»O;

KM:= ICENTRE(IK);
ISPROD(IK,TWOPII.1KB)
KB:«ICENTRE(IKB);
KBR:»IHWIDTH(IKB);

K 1 : O 5 ;
DO:«K1-SORT(K1*K1-1)
D:-1-O.5 IK.L;

ICOSTP(IZ.IC);
IPRODP(IK,IC,ITEMP);
SIDIFF(2.O

f
ITEMP.IGZ);

D:»IGZ.R-1/D;

ZRMΛX .-ZRMAXO;
OPTION:-1;

WHILE (D>«DO)AND(ZR<=ZRMAX) DO BEGIN
C:«SUCC(C);

S:=SIN(TWOPI*ZC);
ZCN:»2.O*ZC-KB*S-XC
XC:=ZC
ZC:«ZCN-ROUND(ZCN);

ISPROD(IGZ,010,IQ1O)
ISPRODdGZ, 011,1011);
ISPRODίIGZ,012,1012);
ISDIFF(1010,020,1010)
ISDIFF(I011,021,1011);
ISDIFF(IZ,O.25,ITEMP);
ICOSTP(ITEMP,IS)
ISPRODCIS,KBR,ITEMP);
IDIFF(1010.ITEMP,1010)
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Nonrigorous Test Procedure (continued)

OP1O:*ICENTRΞ(IO1O);
QP11:«ICENTRE(IQ11);

IF OPTION-1 THEN
IF ABS(O12)<QF*O11 THEN BEGIN

021:=Q11+ABS(Q12);
TEMP: O P 11/021
M2O:»IHWIDTH(I01O);
ISOIFF(1011,TEMP*011,IM21)
ISDIFF(I012,TEMP*012.IM22);
01 1 :=QPΪ 1
012:=M2O+1ABS(IM21) +1ABS(IM22) END

ELSE 0PTI0N:=2;

IF OPTION-2 THEN BEGIN
ISDIFF(IO12

f
O22,IO12);

0P12:=ICENTRE(I012)
TEMP:=0P11*012;TEMP2:OP12*011;
DET:=TEMP-TEMP2;
C0L1:*ΛBS(0P11)+ABS(011);C0L2:-ABS(0P12)+ABS(012);
B:=BF*C0L1
E:»B*C0L2;
IF E-0 THEN E:*1
ADET:«ABS(DET);
IF ADET<«E*C0L1 THEN BEGIN

IF DET*011<0 THEN E:«-E
OP12:-OP12-E;
TEMP2:*0P12*011
ADET:«ABS(TEMP-TEMP2) END;

HW010:-IHWIDTH(1010);
M1O:=ABS(HW01O*012)
ISPROD(1011,012,I TEMP) ISDIFF(ITEMP,TEMP2,IM11)
M12:*ABS(RMAXE RROR(1012,OP 12)*012)
M20:=ABS(HW010*e)1 1 )
M21:=ABS(IHWIDTH(1011)*Q11)
ISPROD(1012,011,ITEMP) ISDIFF(ITEMP,TEMP,IM22)
W1 :«=(M1O+IABS(IM11)+M12)/ADET;
W2:«(M2O+M21+IABS(IM22))/ADET;
021:=011*W1;022:=012*W2;
011:-0P11*W1;012:=0P12*W2 END;

020:=010;
010:«OP10;

ZR:=ABS(010)+ABS(011)+ABS(012);
IZ . L : =ZOZR IZ . R : =ZOZR

ICOSTP(IZ.IC);
IPRODP(IK,IC,ITEMP);
SIDIFF(2.O,ITEMP,IGZ);

D:=IGZ.R-1/D;

ZRMAX:=ZRMAX*ZRF1

END;

TOTAL:-TOTAL+C;
NRECT:*SUCC(NRECT);

IF D<DO THEN BEGIN
USEFULTOTΛL:=USEFULTOTAL+C
NUSEFULRECT:=SUCC(NUSEFULRECT);
RTEST(IZO.IK) END

ELSE IF KBR>(C+1)*CFACT0R*ZRO THEN
IF (KM=IK.L)OR(KM»IK.R) THEN
HALT(' CANNOT SUBDIVIDE ANY FURTHER IN K IN TEST')
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Nonrigorous Test Procedure (continued)
ELSE BEGIN

IK1.L:*KM;IK1 .R. -IK.R;
IK.R:=KM;
TEST(IZO.IKI);
TEST(IZO.IK) END

ELSE
IF (ZCO«IZO.L)OR(ZCO=IZO.R) THEN
HALTC CANNOT SUBDIVIDE ANY FURTHER IN Z IN TEST')

ELSE BEGIN
IZ1.L:»IZO.L;IZ1.R:-ZCO;
IZO.L:-ZCO;
TEST(IZ1

f
IK);

TEST(IZO.IK) END

END;

Main Program

BEGIN
INITROUND CALCITWOPI
TW0PI:*8.O*ARCTAN(1.0) TWOPII:-1/TWOPI (*NONRIGOROUS, FOR USE OF TEST •)
WR1TE(' COMPARE NONRIGOROUS VALUE:');WRITEHEX(TWOPI) WRITELN;
REΛDLN(NMAX)
FOR N:-1 TO NMAX DO BEGIN (*LOOP TO TEST DESIRED RECTANGLES *)

READLN(CFACTOR,ZRMAXO.WFX,ZRF1,QF.BF)
;
 (*PARAMETERS GOVERNING

TERMINATION AND SUBDIVISION CONDITIONS IN TEST AND RTEST *)
WF:«1+WFX;
WRITELN;WRITELN;WRITELN(' INPUT:') WRITELN;
WRITELN(' CFACTOR=', CFACTOR,' ZRMΛXO-'.ZRMΛXO,' WFX-',WFX);
WRITELNC ZRF1-'

t
ZRF1,' QF-',QF,' BF-'.BF);

READLNCIZO.L,IZO.R) (^INTERVAL IN Z ON LINE X=O *)
READLN(IK.L,IK.R); (^INTERVAL IN PARAMETER K *)
WRITELNC IZO.L-',IZO.L,' IZO.R-',IZO.R)
WRITELNC IK.L =',IK.L,' IK.R =',IK.R);
RMAXITER:-O;WFC0UNTER:-O; (*INITIALISE COUNTERS FOR WORK DONE*)
RTOTAL : -O; RFΛILURES : ̂ O; TOTAL : -O;USEFULTOTAL : *O;
RNRECT:=0;RNFAILRECT:=0;NRECT:-O NUSEFULRECT:=0;
MINZRO:*IZO.R-IZO.L MINKBR:-IK.R-IK.L;
IMINZZ:-IZO IMINKZ:-IK IMINZK:-IZO IMINKK:-IK;IWORSTZ:-IZO;IWORSTK:-IK;
CLOCKO:-CLOCK

TEST(IZO.IK); (*TEST FOR CIRCLES THROUGH RECTANGLE IZO.IK •)

(•IF EXECUTION DID NOT HALT, THEN TEST WAS SUCCESSFUL *)
CLOCKO:-CLOCK-CLOCKO;
WRITELN WRITELNί' RESULTS:') WRITELN;
WRITELNC THERE ARE NO CIRCLES INVARIANT UNDER THE STANDARD MAP',

' FOR K IN THE INTERVAL:');
WRITE(' HEX:') WRITEHEX(IK.L);WRITEHEX(IK.R)
WRITELNC I.E. :' .IK.L, IK.R);
WRITELNC PASSING THROUGH THE INTERVAL:');
WRITE(' HEX:') WRITEHEX(IZO.L) WRITEHEX(IZO.R)
WRITELNC I.E.:'.IZO.L,IZO.R);WRITELN(' ON THE LINE X=0')
WRITELN WRITELNC OETAILS OF WORK DONE:') WRITELN;
WRITELNC NO. OF RECTANGLES EXAMINED BY TEST= '.NRECT);
WRITELNC NO. PASSED TO RTEST= '.NUSEFULRECT)

OF ITERATIONS MADE BY TEST- '.TOTAL);
OF USEFUL ITERATIONS-'.USEFULTOTAL)
OF RECTANGLES EXAMINED BY RTEST«',RNRECT)
OF FAILURES**', RNFAILRECT);

ITERATIONS MADE BY RTEST- ',RTOTAL);

WRITELN(
WRITELN(
WRITELN(
WRITELN(
WRITELN(
WRITELN(
WRITELNC
WRITELN(
WRITELNC
WRITELNC
WRITELNC
WRITELNC
WRITELNC
WRITELNC

END
END.

NO
NO
NO
NO
NO

LARGEST* NOT^OF" I TERATIONS^IN* RTEST FOR ONE RECTANGLE- ' , RMAXITER)
1

FOR IZO-',IWORSTZ.L,IWORSTZ.R.' IK-',IWORSTK.L,IWORSTK.R)
SMALLEST ZRO-'.MINZRO);

___ _ iκ-'.IMINKZ.L,IMINKZ.R);

OF
OF FAILURES-',RFAILURES)

FOR IZO-'.IMINZZ.L.IMINZZ.R
SMALLEST KBR-'.MINKBR);
FOR IZO='.IM1NZK.L.IMINZK.R
WFCOUNTER-'.WFCOUNTER)
CPU TIME TAKEN-'.CLOCKO,' MILLISECONDS')

IK-'.IMΪNKK.L.IM1NKK.R);
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