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Abstract. Some empirical results on the cubic algebra 2a{ = Σ [#/, [#/> ̂ ]] are
j

presented. The algebra is satisfied at the residue of any pole in a solution to
Nahm's non-self-dual equations.

1. Introduction

Recently, there has been some interest in Yang-Mills equations in one dimension,
reduced from four by insisting that all fields be independent of three of the
variables. On the one hand, some work has been done on the mechanical system
which results when the four dimensional theory is defined in Minkowski space and
the reduction is simply to delete all dependence on the cartesian spatial variables x
[1]. This mechanical system has been shown to be essentially chaotic by
Nikolaevskii and Schur and by Savviddy [2]. On the other hand, if we take the
Euclidean version of the four dimensional theory and reduce it by deleting the
dependence on any three of the cartesian coordinates, we obtain a set of equations,
differing from the previous set only by a single sign but which is interesting in a very
different context. In this case, certain solutions to the self-dual equations, which
imply the second order equations, of course, have a remarkable role to play. They
are intimately related via the ADHMN [3] (Atiyah-Drinfeld-Hitchin-Manin-
Nahm) construction to static monopole solutions to Yang-Mills-Higgs theories in
four dimensions in the BogomoΓnyi-Prasad-Sommerfield limit [4]. Indeed, the
ADHMN construction may be viewed [5] as an equivalence between two sets of
self-dual equations (with appropriate boundary conditions), one as described
above in one dimension, the other in three dimensions (reduced from a Euclidean
four dimensional theory by deleting dependence on a single variable); the latter
corresponding to the equations satisfied by the vector potential and Higgs' field in
the BPS limit.

It is known that the SU(2) Yang-Mills-Higgs theory has solutions of finite
energy which do not satisfy the first order self-dual equations but are, nevertheless,
solutions to the second order field equations [6]. Taubes' existence proof of this
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fact is non-constructive and an outstanding problem is to try to find an approach
to these extra solutions, which are to be regarded conceivably as carefully balanced
monopole-antimonopole composites, still static but unstable.

An idea which we should like to explore is the possibility that the Nahm
transformation between two sets of self-dual equations actually extends also to
some sort of transformation between non-self-dual (and possibly even non-static)
solutions. There are enormous technical difficulties in attempting to verify such an
idea and we shall not be able to pursue it very far here. However, it seems a
plausible possibility and suggests that it would be wothwhile cataloguing the
properties of non-self-dual solutions to the one dimensional theory. This is already
a formidable task. In this article our aim is to describe some modest discoveries
that we consider to be quite interesting. In particular, we shall demonstrate the
existence of simple solutions to the second order equations which interpolate
between self-dual and antidual solutions, and explore some of their properties.

2. One Dimensional Yang-Mills Equations

Starting with the full Yang-Mills equations in four Euclidean dimensions,

Z)μΓμv = 0, μ,v = l,...,4, (1)

where

Tμv = dμTv-dvTμ-i[Tμ9Tv']9

rμ=r;, (2)

and demanding all fields be independent of three of the variables, say x l 5 x2>
 xι> we

obtain (setting x4 = z\

=0, U=l,2,3, (3)

= 0, (4)

in the gauge T4 = 0. We shall further suppose the vector potential Tμ to be traceless,
corresponding to an SU(JV) gauge field.

The self-dual equations corresponding to (3), (4) are

Λ'F

(5)

It is easy to check directly that Eq. (5) implies Eqs. (3) and (4).
There is an obvious conserved quantity associated with Eqs. (3),

τt,τy) (6)

= t r i ( ̂  -*ι*JiTm I ( ̂  + iεknpTnTp)l, (7)
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which is not positive for all field configurations. From the second expression (7) it
clearly vanishes for a self-dual or an anti-dual solution. For the analogous
equations to (3) for a theory reduced from Minkowski space, in which z plays the
role of time, one of the two terms in Eq. (3) changes sign and the conserved quantity
£ is a sum of squares. It corresponds to the energy of the mechanical system.

In order to construct monopoles in an SU(2) Yang-Mills-Higgs theory the
starting point is the set of solutions to Eq. (5) defined in the interval |z|^| and
regular except for simple poles at z = ±j. Clearly, the residue of such a simple pole

must satisfy

(8)

In other words, either αf or — αf must satisfy an SU(2) Lie algebra. For the
monopoles alluded to above ± αf must be an irreducible representation of the
algebra at both ends of the interval |z|5^.

From the point of view of the self-dual equations (5) the simple pole is a
fundamental solution in the sense that it is the unique functional form for which the
ansatz

7J = α(z)αi, i=l,2,3, (9)

where the α; are constant matrices, can work.
For the second order equations the ansatz (9) and a convenient choice of

scaling leads to the pair of equations

2α£= Σ [>;,K-,aJ], (10)

Equation (11) is easily solved in terms of elliptic functions [7] and its general
solution is

- - z 0 ) (12)
o)

with the elliptic functions all defined for fc=l/]/2, the symmetric point. The
constants σ, z0 are arbitrary. To arrange poles at z= +i with a(z) regular within

|z| 5̂  we would choose z0 = 0 and σ = 2K(l/J/2), where K(k) is the complete elliptic
integral of the first kind. A single pole may be arranged as a special limit by sending
σ to zero.

For these solutions the conserved quantity simplifies and is given by

E = σ4tφμi). (13)

It is clearly positive except for the single pole, where it vanishes.
Equation (10) is not so easily analysed and it is to this that we wish to

concentrate our attention. We note it must be satisfied by the residue of any pole of
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TJ(z) even if the solution to Eqs. (3), (4) is not of the simplest type just discussed.
Clearly, if ±αί satisfies the SU(2) Lie algebra, then Eq. (10) is satisfied identically.
However, we are interested in discovering other more general solutions than these.
For brevity we shall refer to (10) as a "cubic algebra".

3. Exploring the Cubic Algebra

Clearly, any solution to the cubic algebra is part of a continuous family of solutions
obtained as an orbit under the product group SO (3) x SU(JV). The action of this
group on at is given as follows :

α^Oyl/^t/, OeSO(3), l/eSU(JV). (14)

The cubic algebra is invariant under this set of transformations because of the
orthogonality of 0 and unitarity of U.

There are many invariants that may be constructed from the α's, but two
important ones which will allow us to distinguish all the solutions we shall
consider are q, ί given respectively by

9 = tr(αlα<), (15)

f=-iεy ktr(α ία/χ f c). (16)

We note the value of ί is bounded by q

q>\t\ (17)

whenever the α's satisfy the cubic algebra. Moreover, q = ± t if and only if ± αt

represents the SU(2) algebra. To see (17) we note the inequality,

0 ̂  tr {(α; ± iswctptjfa ± ie^aj} = 2(q + ί) ,

which follows directly from the cubic algebra.
It is convenient sometimes to write the cubic algebra in a complex form, setting

α+=α 1 ±iα 2 , α0 = α3, (18)

in which case the algebra reads

4α0 = [α+, [α_, α0]] 4- [α_, [α+, α0]] ,

4α+ = [α+, [α_, α+]] + 2[α0, [α0, α+]] .

A natural nonlinear mapping of the α's which we shall consider is to replace the
three α's by the commutators of each pair. Thus

), (20)

where

«o = 2 [«+>«-]> α± = ±[α0,α±]. (21)

Obviously, if α represents the SU(2) Lie algebra then it is a fixed point of this
mapping. We shall find that other solutions also have special distinguished
properties under (20), though it is not always the case that ά solves the cubic
algebras when α does. We also note that the commutator mapping preserves the
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quadratic invariant q when α solves the cubic algebra. It does not, however,
preserve the cubic invariant ί except in special cases.

We now turn to a detailed study of the two and three dimensional cases.

JV = 2. In this case there are just three inequivalent types of solution. The matrices
±α either represent SU(2) or are equivalent to

,<T2,0). (22)

This is easy to prove. We may write each of the matrices α, as a real linear
combination of the Pauli σ-matrices

*t = Aifj/2. (23)

Then the cubic algebra reads

AATA = A(tr (ATA) - 2) , (24)

and each of the matrices AAT and ATA satisfies

x2 = x(trx-2). (25)

Thus, either x is invertible, in which case it must be the identity, or it has one zero
eigenvalue. Otherwise, x = 0 is the only other possibility. Up to the equivalences
(14) A can be chosen to be either ( + ) the identity or to be diagonal with entries

For the solution (22) the invariant £, Eq. (16), vanishes. This solution is singular
in the sense that applying the commutator mapping (20) to it fails to produce a new
solution, but applying it twice yields zero, the trivial solution. We can also think of
this solution as a "twisted" linear combination of the two self-dual solutions,
α ( ± )= ±^σ, in the following way. It is equivalent to α(f) when

α(θ) = α(+) + #(θ)α<-), (26)

where R(θ) is an SO (3) rotation about the third axis through an angle θ.
None of the two dimensional solutions belongs to an orbit depending on the

full six parameters of SO(3) x SU(2). Indeed, the self-dual solutions α(±) have a
"spherical" symmetry in the sense that any SO (3) transformation can be
compensated by a corresponding SU(2) transformation; their orbit is described by
just three parameters. The singular solution (22) has a similar "cylindrical"
symmetry and its orbit depends on only five parameters.

N = 3. This case is already too difficult to analyse completely at present. Clearly,
there are two inequivalent ways of embedding the SU(2) Lie algebra in the Lie
algebra of SU(3). One of these, the maximal embedding, organizes the eight
generators of SU(3) into two multiplets, of dimension three (the embedding) and
five. The other organizes the generators into a triplet (the embedding), two
doublets and a singlet. The latter is what one might call the Gell-Mann isospin
embedding. For each of these there is a pair of dual solutions and a singular
solution, just as for the case N = 2 discussed above. They are distinguished by the
invariants (q, ί) which have the values (3/2, + 3/2), (6, ± 6) for the two embeddings,
and (2. 0). f 8. 0) for the corresoondine sineular solutions.
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However, these solutions do not exhaust the possibilities. There are others. In
particular, we have discovered a continuous family of inequivalent solutions
interpolating the ( + ) maximal embeddings. It was originally found during a
computer search (for special cases of the parameter) but can be understood in
terms of the maximal embedding in the following way.

It is convenient to choose a Chevalley basis for the generators of the SU(3)
algebra in terms of a pair of simple roots α, β satisfying

and the conventions [8] :

, r r , i f r i s a n y r o o t j

„£_,] = 2r.H,

[β±Λ,E±β]= ±

ΓF F 1 F (27)

lL-β^a + βΔ= -£«>

[E_Λ,Ea+β]=Eβ,

Er

+ = E_ r , if r is any root.

Using these there are many equivalent ways of choosing a maximal embedding.
However, a particularly nice one is to write

,

H.

With respect to this choice the other five generators are an SO (3) quintuplet, which
we may write as

0 = = ( a
V6

where the normalizations have been chosen so that the standard commutation
relations

•/ = w

are obeyed. In addition, we may also note that amongst themselves the only non-
zero commutators of the Q's are
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together with their hermitian conjugates. The algebras (28), (30), and (31) are all
nicely graded. However, to obtain a solution to the cubic algebra different from
any of those preceding we must break the graded structure.

If we let

2)» (32)

with λ, μ real, then we find Eqs. (19) are satisfied provided

λ2 + μ2 = l. (33)

To check λ, μ are not merely SO(3) x SU(3) parameters we compute the invariants
(q, t) and find,

(ί,f) = (6,6λ), (34)

indicating a whole range of solutions for \λ\ ̂  1, running between the maximal
embedding (λ = 1) and its anti-dual counterpart (λ=— 1).

The action of the commutator mapping on these solutions is interesting.
Suppose we let

(35)

and compute ά. We find

α0 = J0, α ± =λ/ ± T2μβ τ l = C/(-0μ±C7(θ), (36)

where [7(0) is given by

[7(0) = exp0(β2-β_2). (37)

Thus, we can transform α+ to J+ by an SU(3) transformation, and α0 becomes

2). (38)

Comparing (38) with (32) we see that α(0) is SU(3) equivalent to α(-20). In other
words, the commutator map generally yields a different solution within the same
family. It is equivalent to the mapping

0^-20mod(2π) (39)

as far as the parameter θ is concerned.
Notice, the mapping (39) has three fixed points 0 = 0, 2π/3, 4π/3. The point θ = 0

corresponds to the maximal embedding itself but the other two correspond to
values of 0 for which the α algebra does not close but fails to do so by a conjugation.
That is,

[αί,αj.] = ϊε ί ι /fcwα f cw
t, (40)

where w is a matrix, Eq. (37), whose eigenvalues are the three roots of unity.
Repeated applications of maps such as (39) have been much studied by those

interested in chaotic behaviour. See, for example, [9] and references therein. The
evolution of successive iterations depends sensitively on the starting point. Apart
from the above-mentioned fixed points there are cycles of any period as well as
very erratic orbits whose evolution is essentially random. Whether these facts have
any relevance in the present context is not known, however.
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Besides the SU(2) embeddings and their associated singular solutions, and the
continuous parameter set, we have come across one more isolated solution. Given
in terms of the maximal embedding Eqs. (28)-(31), an expression for it is

0. (41)

For this solution the two invariants are calculated to be

(β,0 = (¥,0). (42)

It is the only solution, apart from the embeddings and singular ones, which has a
symmetry; in this case a U(l) subgroup of SO(3) x SU(3). It also has a dis-
tinguishing feature with regard to the commutator map. For all the other solutions
at least a double application of the map yielded a new solution. However, (42) is
rather different. Starting with it repeated applications of the commutator map lead
eventually (after an infinite number of steps) to zero, without encountering any
other solutions on the way. Thus, incidentally, providing a counter-example to the
at first plausible hypothesis that a finite number of applications of the map might
produce a new solution from an old one.

The question of whether these solutions are the complete set in three
dimensions is not yet answered, as such evidence as there is inconclusive. To study
the solutions further we may regard them as stationary points of a particular
functional and investigate the nature of these stationary points.

The cubic algebra is the condition for the stationary points of the function

S = trα2+itr{[α<,αJ][αi,αJ}. (43)

S is not positive, but at a stationary point it takes the value ̂ trα2 which is certainly
positive, vanishing only when α vanishes. Zero is a local minimum of S but the
character of the other stationary points is not easy to compute since it depends on
knowledge of the eigenvalues of the quadratic fluctuation matrix, M, given by

-(α/XiUV (44)

It is worth remarking that this matrix also appears in a different context.
Suppose we set out to solve Eqs. (3), (4) for TJ(z). We might begin by writing a
formal power series

>+... (45)

near a pole. In which case, besides the cubic algebra for α we would find

y(7 - 1)A = [«> [α, Ml + [«,, [ββ αj] + Lβj, [a,, αj] , (46)

, βj] = 0. (47)
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Equation (46) can be recast in terms of the fluctuation matrix M to read

Myft={2-Ky-l)}A, (48)

and the eigenvalues of M determine the possible choices of y. Only y being a
positive integer or zero is acceptable in the sense that we are interested in solutions
which are analytic apart from two poles at z = ±^. Thus, only certain eigenvalues
and the corresponding eigenvectors βt are acceptable, namely 2,0, — 4,..., corre-
sponding, respectively, to y = 0,1,2,3,... . The solution represented by Eqs. (9), (12)
corresponds to y = 3, in fact, with eigenvector αf itself, incidentally demonstrating
that no solution to the cubic algebra apart from zero is a local minimum of S, Eq.
(43). The problem of guaranteeing the existence of a further pole at z=\ is very
difficult, however.

Returning to the nature of the solutions to the cubic algebra, the least we ought
to be able to do is discover the number of degrees of freedom of each solution, or,
equivalently, to count the number of zero eigenvalues of M, in each case. For the
maximal embedding the computation can be done algebraically and it turns out to
have fifteen zero modes. Eight of these are the group freedom [taking into account
the SO(3) invariance of the SU(3) embedding] but the other seven appear to be
extra degrees of freedom. We might guess that four of these at least are involved in
the deformation into the one parameter solution described above, Eq. (32), [the
SO(3) plus one more parameter]. That this is indeed the case is also suggested
numerically since the one parameter set has precisely twelve degrees of freedom
[SO(3) x SU(3) plus a single parameter], at least at each of the points we have
examined carefully. So, there might appear to be three extra degrees of freedom
remaining. However, with respect to the SO (3) group under whose action the
maximal embedding is invariant the whole set of seven degrees of freedom
orthogonal to the group freedom are a septet (rather than a quartet and a
triplet, or two triplets and a singlet both of which are impossible here). This
suggests that the situation is actually rather like the vertex of a cone (say
z2 = x2 + y2). At the origin, a formal calculation suggests three degrees of freedom
although we know the cone has just two. The maximal embedding has a symmetry
which is clearly broken by neighbouring solutions, just like the cone. Thus we may
regard the apparent seven degrees of freedom as the "ambient" space into which
the four dimensional "cone" of solutions fits. There could be several more such
cones disconnected from each other, but we have not in fact been able to find any.
Indeed, we suspect there are none.

N>3. Here the issue is very complicated because of the variety of embeddings
possible, both of SU(2) and the other sorts of solution described above. However,
we should like to confine ourselves merely to a couple of remarks concerning the
maximal embedding of SU(2) into SU(N). At first sight one might think that the
maximal embedding solution to the cubic algebra would have more degrees of
freedom in a larger group than SU(3). However, that is not the case, as the
argument sketched in the appendix shows. In fact, the number of degrees of
freedom is always exactly seven more than the dimension of SU(JV), just as it was
for SU(3). The maximal embedding organizes the generators of SU(JV) into
multiplets, one of dimension 3 (the embedding), and one each of dimension
5,7,..., 2N — 1. However, it is always the quintuplet that has the extra freedom to



268 E. Corrigan, P. R. Wainwright, and S. M. J. Wilson

allow other solutions connected, but not equivalent, to the embedding itself.
The rest correspond only to SU(iV) transformations.

It is worth making the following parenthetical remark.
The distinguished role of the quintuplet in this context means that if we tried to

restrict our α's to be linear combinations of hermitian generators to groups other
than SU(ΛΓ) there would be no chance of finding any solution at all connected to
the maximal embedding. It is easy to see, examining the Dynkin diagrams, that it is
only for SU(iV) that the maximal embedding organizes the generators to include a
quintuplet. Remarkably, this phenomenon occurs for no other simple Lie algebra.

Having said that we have so far failed to find a set of solutions for N>3
connected to the maximal embedding, as we managed to do in the case N = 3,
Eq. (32).

4. The Dirac Equation

In this section we shall make a few preliminary remarks about the Dirac equation,
but our analysis is far from complete.

In order to construct the self (anti) dual BPS monopoles via Nahm's
construction it is necessary to solve the one dimensional left (right) handed Dirac
equation [3]

\~ - )]Φ) = 0σ (x + T(z))Jφ) = 0 (49)

on the interval |z|:g^, picking out a complete set of normalizable solutions with
respect to the inner product

1/2

(Ό,Ό)= J dzv^Ό. (50)
-1/2

Here, T(z) satisfies (5) (taking the + sign) and has a simple pole at z = ±% with a
residue which represents the SU (2) algebra irreducibly. Under these circumstances
the left (right) handed part of Eq. (49) has precisely two normalizable solutions on
the interval, whilst the right (left) handed part has none. The final step to construct
the static SU(2) gauge field Ai9 and Higgs field Φ in three dimensions uses these
solutions organized into a single matrix

v = (υι,υ2)9 (51)

via the transformation

1/2

Φ= J dzv^zv, (52)
-1/2

(53)
-1/2

where v is assumed to be normalized:

1/2

1= 1 d z t f υ . (54)
-1/2
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It is then guaranteed that Φ, At satisfy the BogomoΓnyi equations and represent a
monopole with magnetic charge N [if T is an SU(N) gauge field], and with a finite
energy 4πN in suitably chosen units.

When T(x) satisfies the second order equations (3), (4) instead of the self dual
equations (5), both the left and right handed Dirac equations will be expected to
have normalizable solutions [which is also the case when T(z) is a constant triple of
three numbers a, corresponding via the above transformation to a single
monopole (or antimonopole), depending on which choice of Dirac equation is
selected to make the transformation]. There is no nice vanishing theorem as in the
self-dual case when the right-handed equation has no normalizable solutions at all
(for N^.2). The question is whether there is a choice of T(z) leading via the above
transformation to a solution to the second order SU(2) Yang-Mills-Higgs
equations in the BPS limit.

Not much is known about the behaviour of solutions to the Dirac equation in a
non-dual background and we are not able to solve Eq. (49) in general.

Here we shall confine ourselves to a discussion of some consequences of the
poles in T(x) at z = ±{. If the residue of a pole represents the SU(2) algebra, then it
is easy to see (as Nahm pointed out), since σ α is then a "spin-orbit" coupling, that
the solutions of Eq. (49) near the pole fall into two classes corresponding to the two
eigenvalues of σ α. That is,

*%>, i = l , 2 , (55)

where, if we denote the spin of the irreducible (N x N) representation α of SU(2)

(56)

with the dimensions of the corresponding eigenspaces being

ΛΓ-l), (57)

respectively. In other words, the effect of a single pole is to reduce the number of
normalizable solutions from a possible 2N to N + 1 (for the left handed equation),
or AT— 1 (for the right handed equation).

If T(z) is self dual we also know that the right handed equation has no
normalizable solutions at all on |z| ̂  so the other pole must be neatly arranged so
that those AT— 1 solutions with a zero at one end all become singular at the other.
This change over is reflected in N— 1 of the left handed solutions, too, so just 2 of
the N + 1 can have zeros at both ends of the interval and hence be normalizable.
This is, of course, precisely what is required to construct SU(2) gauge fields via the
mapping (52, 53) and demonstrates that self duality together with the special pole
residue is a powerful combination. For non-dual solutions there is no vanishing
theorem and therefore no such strong principle. Nevertheless, we should like to
point out the behaviour of a solution to Eq. (49) near a pole whose residue satisfies
the cubic algebra. Indeed, for the case N = 3wQ have a whole set of pole residues
interpolating self/anti-dual irreducible representations of the SU(2) algebra and
we ought to be able to track the behaviour of the solutions as the parameter θ is
varied.
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For general θ we find three eigenvalues of σ α each of multiplicity 2. Thus,
setting /l = sinθ, instead of (35) for convenience, the eigenvalues are

fc = 0,l ,2. (58)

For θ=+f the eigenvalues (multiplicities) are ±1(4), +2(2), respectively, in
agreement with Eq. (56), (57). For — f <0<f there are three distinct eigenvalues.
Notice, the eigenvalues flow with θ in such a way that the quantity v defined by

v = (number of nonsingular left hand solutions -

number of nonsingular right hand solutions) (59)

jumps from 2, in the range 0<θ£Ξf, to -2 in the range —f ^θ<0. At 0 = 0 v
vanishes, θ = 0 is a crossover point, where one pair of eigenvalues changes sign, the
other pairs have the same sign over the whole interval. Some singular solutions are
normalizable, however, and for these the corresponding v jumps when
sin 0/3 = —J. Thus, there is an interval in which there are only two normalizable
left-handed solutions even for a single pole.

To date we have failed to find a convincing way of approaching a Taubes'
non-dual monopole via this method. We have not been able to solve the various
equations. Nahm's second order Eqs. (3) and linear Eq. (49), in particular, in
enough detail to test the hypothesis. Nevertheless, we feel the cubic algebra by
itself is an interesting problem that would repay further study and warrant the
digression we have made. We were surprised at the complexity already present
for JV = 3.

Many questions remain. With regard to the cubic algebra itself we should like a
classification of all the possibilities, particularly, those that have extra degrees of
freedom. At the moment we do not even have a convincing proof that for a given
dimension the quadratic invariant q is bounded on the set of solutions. The
commutator map appears to divide the configuration space of the three matrices
into two pieces, one for which all iterations eventually converge, the other for
which they do not. We do not know the detailed nature of these two pieces. For the
second order differential equations we should like to know the possible
developments away from the poles, and which pole residues can occur in
combination at z= ±%. Finally, we need to know more about the Dirac equation
(49), we have not found any case so far for which we can carry out the Nahm
transformation to test the hypothesis.

Appendix

In this section we sketch a proof of the statement in Sect. 3 concerning the zero
modes of the fluctuation matrix M, and the quintuplet of generators. We can argue
directly from Eqs. (19), setting

αί = J. + ft, ΐ = ± l , 0 , , (A.I)

and satisfying the equations to first order in β. Since the maximal embedding
organizes the generators into spin multiplets, one of each integer spin from 1 to
N— 1, we may write

βi=NΣ Σ #,OW, (A.2)
7=1 m=-j
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where the T®J=l, ..., N— 1, \m\ ̂ j are the generators of SU(JV). To first order in
β the Eqs. (19) will not mix spins so we may consider each; separately in Eq. (A.2).
In addition, for each j the coefficients satisfy

[with the conventional choice T£ = ( — )mT_m], to ensure the hermiticity of αf.
For each;, Eqs. (19) imply:

+ ι=0, (A.4)

£+!=<), (A.5)

where the coefficients N* are defined by

Nm =[(j+tri)(j±m+ 1)]1/2. (A.6)

If jφ2 we may solve Eqs. (A.4), (A.5) to find:

/2

b~-,, (A.7)

«C» + 3))t- (A_8)

Hence, in this case each of b^ is determined by the fc° which, in view of the
hermiticity requirements (A.3) carry 2/ + 1 parameters. These correspond to the
freedom of SU(ΛΓ) transformations generated by T^\

lίj = 2 there are two cases |m| = 2, |m|Φ2. For m= ±2 (A.4) and (A.5) are
identities. Otherwise, for |m| < 2 we have a single relation

-m\1/2

Q _ - -bm~
2\2-m

Thus, for; = 2 the available parameters are contained in fc^, |m| ̂  2 and b°> a

of 12. Five of these are SU(ΛΓ) transformations, but the other seven are the extra
ones referred to in the text.
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