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Abstract. For classical gases with suitable pair interactions such that
&(r)~(Inr~1)? as r—0 (p e N), the Taylor expansion in B of the correlation
functions and the pressure are summable at =0 by the Borel-Le Roy method
of order p+1.

I. Introduction

As it is known [5], for classical continuous systems with stable and regular pair
potentials the correlation functions and the pressure admit a convergent power
series expansion in the activity z, while the typical analyticity region in S
(B=(kT)!')is the half plane Re > 0. As recently proved by Wagner [7], if the pair
potential is bounded and absolutely integrable, the correlation functions and the
pressure turn out to have Borel summable Taylor expansions at §=0 (for Borel
summability, see e.g. [4, 6]). Among other facts the proof uses analyticity for
Ref>0 and the bound [ |®(x)["dxZ (| D] )" [ D|,.

Here the aim is to prove the Borel-Le Roy summability ([3, 2]) of these power
series, under suitable hypotheses on the pair potential &(r). Hypotheses (1), (2), (3)
below include, in particular, the asymptotic behaviour &(r)~(Inr~')? as r—0

(peN). These assumptions allow us to analytically continue the correlation
1

functions beyond the right half plane, to a region containing ) f/Re /ﬁTP> 0} on the
Riemann surface of Inf, which is suggested by the analytic structure of
f(e #*®—1)dx in these cases (Proposition 2.1). Moreover the power series
remainders are proved not to grow faster than ((p+ 1)n)!, which is somehow
suggested by bounds of the type [ |®(x)["dx <c(pn)!, and by a further factor (n!)?
that can be expected in the estimates of n™ derivatives of correlation functions.

In the case v=2, p=1, conditions (1), (2), (3) include potentials exponentially
decreasing as r— + oo and with the asymptotic behaviour of two-dimensional
Yukawa potentials (see e.g. [8, 1]) as r—0, although &(r) =e~“(Inr~ ") is not in this
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class owing to the technical requirement of the existence of an inverse function
r=Y(t) [Hypothesis (1)].

II. Notations

Let us assume the following hypotheses on the pair potential &(r), r>0:

(1) &(r)is the restriction tor € R, ofa function analytic in some angular sector
containing R ,, which admits an inverse function ¥(t) analytic for |arg(¢)| < pr/2
(for some peN);

(2) @(r)~c(Inr~)? as r—0, for some ¢>0;

(3) @(r)~c’e *r*(Inr)™ as r— + oo, for some ¢’,a>0, n,meZ. As a conse-
quence, taking from now on c¢=c¢'=1, the inverse function ¥(¢) admits the
asymptotic behaviours:

Y(t)~exp(—t?) as t—o0 4
Y()~a 'Int™! as -0 ®)]

in the analyticity sector.

An example is provided by &(r)=e "(Inr~1)?(1—r)" 2.

By these assumptions @(r) is a monotone and positive potential and it satisfies
stability and regularity [5], with stability constant given by zero. Then, in order to
represent the infinite volume correlation functions [5, Chap. 4.2], on the space E of
sequences @ =(¢(x),),n Of complex functions such that

ll@ll =sup ess sup [¢(x),| < 0,
n21 (x),eRv?

we can define the operator I} such that

(Tpo) (x1) = 21 ()™ [ d)uK 5(x1, D)@ (6)

(I39) ()= (X1 + él ()™ WK 01 DP((=1, 0D (D

where (x);,— 1 =(X3, X3, ..., X,,) and

Kyer, 00 = T (exp(—po(x, ~3) = 1). ®
On the same space we can define
(450) (X)m=xp (= W (X)) P(X) » )

where
Wi(x)n=0 for m=1, W\Qp=3 ®(x;—x) for mz2. (10)
=2

If Ref>0, K;=4,I} is a product of bounded operators in E and |IKg|
<exp(C(P)), where C(B)=] e #®® —1|dx < oo by regularity. For

|z <exp(—C(B)), Rep>0,
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the sequence of the infinite volume correlation functions belongs to E and can be
written as: o(B,z)=1— z]Kﬂ) 1, (11)

where a(x,)=1, a(x),,=0 for m>1. -
Under assumptions (1), (2), (3) we can consider the extended function C(f)
defined in the following proposition.

Proposition 2.1. The integral | (e #®® —1)dx admits an analytic extension C(B)
Rv

for Re P >0, such that |C(B)| £ k|| (k> 0) uniformly with respect to the phase
of B.

Proof. By assumption (1), for >0, the above integral is equal to
k] @7 = 1)¥@ "W (o)di=k, | (exp(—p1 P ')~ 1)
0 0
. lp(,cﬁ—p(l +p)~ 1)v— 1 ‘P'(‘L'ﬁ_"“ +p)” ‘)ﬁ—p(l P (12)

The last integral is absolutely convergent for Ref"*?"*>0. Indeed, setting
B=|ple’, t=a|fP?* V" and using assumption (1):

ICBI<k, ff (1 —exp(— |Bloe®®* 1)

- P(oe P D Y (gm0 DT gy (13)

Since e”*— 1= —ze™* for some e=¢(z), 0=<e=1, we have by (4),(5):
~ 1 0
IC(BI<k, | IBIGeXp<—8|ﬁIGCOS——> lng~!""le" 'do
0 p+1

+k, Oj: |B|aexp<—slﬁ|a cosp—_?_—1>

.exp<~vo"“cosz—n%> o ' "ldo <kl (14)

if |6] < (p+ 1)x/2, for some k,, k5 >0. The uniformity of (14) with respect to 6 can be
checked by the equivalent substitution t=(fe?)?®* V™" in (12), with y real and
small. Indeed the consideration of complex f leads to the estimate (14) with 6
replaced by 8+ y: whence the uniformity near 0= —(p+ 1)n/2 and 6 =(p + 1)7/2 by
assuming y>0 and y <0 respectively, and the assertion is proved.

Let ze €C': we say that |Imz| £ d if the imaginary part of each component is not
larger than d. Let S;={(z),eC™/Imz;|<é for j=1,2,...,n} and let
T3 ={(2), € S3/z, =z, for some j=+ 1}. We can consider the space F; of sequences of
functions ¢(z), analytic [in each one of the vn components of (z), ] at least on SH\Ty'
and bounded on S}, such that

||(P||5=§‘~lel) (ZS)uEgglw(Z)A <o0. (15)

Of course € () F;and ||a| ;=1 for all 5. Moreover, by the properties of e #® on
>0

C’, 9(B, z) belongs to these spaces for f>0.
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III. Analytic Continuation and Estimates

Proposition 3.1. There is some d >0 such that if € F 4 (9> 1) the expressions (6),
(7) admit analytic continuation () (x),, to Ref* *P~" >0 such that (I;p) € F 4 1)4

and ~ ~
130l 1)a = k1 exp (ko CB) |l 4a (16)
with k,, k, independent of q.

Proof. It is sufficient to consider (7). For >0:

(30) On=0 (-1 + 3 ()"

[ "1(e‘ﬂ"’(’f’—1)(—1)"r;-1dr,~)

(R+)" Ty j=

(O m— 15 X1 =T 1 f15 s X =T fr) Ay - (17

In these integrals r;=|x; —y;| =1,2,...,n), x, — y;=r;f;, where f; only depends

on the angular part of the v-dimensional polar coordinates, and | dp, denotes the
T,

integration over such angular coordinates for all j. By the substitution
rj=ql(l;—p(1+p)‘1tj)

(10) (=9(yor+ T ()7F T T (1—exp(@*7)

R4+ Tpj=1
. ‘I’(tjﬁ—p(l +P)")v—1¥1/(tjﬁ‘l-7(1 +p)“)dtj)ﬂ—pn<1 +tp!
R (E) T (Y R A
—T(t"ﬂ_p(1+p)_1)f;,)d/,tn, (18)

where the f;’s are independent of § and ¢;. Now, the right-hand-side of (18) makes
sense as an analytic function of § for Ref**»~">0. Indeed the integrand is
analytic by assumption (1). Moreover, after the substitution ¢;=1||* *?"'? we
have by (4),(5):

P(re 0PA+P ) Lexp(—P e PATATY a5 100, (19a)
Im P(te PP+ Y~ Lipf(1+p)~! as 1-0. (19b)

As a consequence:
[Im P (re™ PPN <d (20)
for some d >0, uniformly for || < (p + 1)n/2. On the other hand | f}| <1, therefore:
(XY= 1, X1 — P(r,e”0PO*D" 1)fn LIS “§0“qa 1

if Imx,|=<(qg—1)d. Comparing (18) and (21) with (12) we obtain (16) and the
assertion is proved.

Proposition 3.2. Let o€ F,; (q,d as in Proposition 3.1). For fixed R>0 there are
Ay, A, such that, for Reﬁ%1+”’“l>0, IBI<R,

ID3(F30) ()l £ A1 (A2) (@ + 1)) |0l 40 22)
for (X),, € 8f - 1)a €N,
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Proof. It is sufficient to consider the m > 1 cases and to bound the s™ derivative with
respect to | . By the substitution ¢;=1,/8" *?"" in (18), the only term depending
on |f| is

IT (exp(—|Ble,e® P —1).
j=1
Hence, by the same argument of Proposition 3.1 we have:

" © !
DinG) Ol SI0laat X )7 E ol

$1,08n20 Spla.
S1+ ... tsp=s

(S 1Plhesp(— e 27 -1
P(rje T OPAF Ry (g g iR D) l)d‘L'j|> . (23)
Now, by (19) [compare with (14)],
T IDfp fexp(— Blre™® P )= 1 p(ze 4707y 1 re 0000 e

1 ©
Sk, [1Ble* Hint] " e e+ ky | |Bles*!
0 1

)r”_"ldr§k3 ) (k,)’, (24)

exp(—v”c"_lcos 0
p+1

where the constants are independent of |f| for |f|<R and can be chosen
independent of 0 by the argument used in Proposition 2.1. By combining (23) and
(24):

D5 (F50) (Xl 101l 30 ;0 (n!) ™1 A%(s!) (k3)"(ps) ! (K4)° s (25)

since s; +5,+ ... +s,=s, and the estimate (22) is proved.

Proposition 3.3. There is a scale of spaces F5 ,CFs ,_1C ... CF; o=F; (withnorms
[+ ll58 6>0, heNy) such that, if |B| <R, (9), (10) define a bounded operator 4,
from F; 4.4 to Fs , and

”(D;Aﬂ)(pné,hé(A3)S(S!)”(P”5,h+1 > (26)

uniformly for se Ny, >0, he N, |B|<R.

Proof. We can simply consider the space F; ; of vectors ¢ € F; such that
l9ls.n=5up sup exp(hR1W (X)) loGo)nl <0 @7

where R’> R and W(x),, is defined by (10). Then the first assertion is immediate.
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Since
(D345)P(X) = (— W' (X))* €xp(— BW (X)) 0(X)ys »
lexp (hR'| W (x)l) (D34 )(x)l S €Xp((h+ DR|W (%)) W (),
-exp((R—R) W (X)) |0(),l
Ss!lolls,ne1(43)°,

28)

and the proposition is proved.

Lemma 3.4. Let R>0 be fixed, Reﬁ‘1+"":> 0, |BI<R, I} and 4, as in Proposit-
ions 3.1 and 3.3. Then the product K= 4,1} is a bounded operator from F g, , to
Fy_1ya,n such that:

DGR 518525 " < Ao A"((p+ 1) (29)
uniformly for ¢>1 and h,reN,,.

Proof. By definition of the weighted norms (27) in F; , (6 >0, he N,) it obviously
follows from Proposition 3.2 that

D3ROl g 10,8 = A1 (A (@ + 1)) [ 9l (30)
for all p € F,, ;. Thus by (30) and Proposition 3.3

~ ro(r _ s (g —
IDRA I 25" < ZO<S> ID3A,1E= 10 A+ 1 1D5 TRl 25"
=

ésgo 27(A3)s! A, (A) > (p+ D (r—9))!
S A4oA(p+Dr)! (31
and the lemma is proved.

Lemma 3.5. For any R>0 there is R, >0 such that, for |z| <R, 9(B, z) admits an
analytic continuation §(B, z) in F, to the region Ref* P~ >0, |f| <R. Moreover

I1D3&(B, 2)lla = 121BoB((p + 2)r)! (32)
uniformly with respect to f, z.

Proof. Since a(x;)=1, a(x), =0 for m>1, ||a|/;,=1 for all 6 and h. Hence the
partial sums of the geometric series associated with (11) satisfy:

N

> (2Kp)ze

h=0

d
N

§h;0 |Z’h+ ! ”]Kﬁ”g’d(,)l HKAI%Z% “]Kﬂ”?::i-hl_)dl,h”a”(h+ 1)d,h

<lzl(1—1z]dp) 7" (33)

uniformly with respect to N, by Lemma 3.4. Thus, given R >0, there is R, =(4,) ™!
such that g(B, z) exists for || <R, Re 1 *P 7" >0, |z| < R, as a uniform limit, in F,,
of analytic approximants.
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Moreover, by Lemma 3.4:

o i r!
ID3(B, D)lla=| X 2" ——— (DFK,) (DFK,) ... (DFK )
h=0 Flsenes rn20 T Ty d
ri rhn=r
@ r! B
=Xl 3 _,—,IIDZ‘KxII%’af’lIIDF]K/:”%Z:i DR | L
h=0 TP -Y I SR A

ST S A A (D! AN+ D!

h=0 r:...,r:gg
<1zl(B) (1= z14o) ™' A"((p+2)r)! (34)

and (32) is proved.

A bound of the type (32) can be easily extended to the function Bp(B, z), where
p(B, z) is the thermodynamic limit of the pressure, as well as to f(¢(f, z)), where fis
any linear functional defined on F, (see [7]). As a consequence, the remainders of
the Taylor expansions of such functions satisfy the criterion for Borel-Le Roy
summability of order p+ 1, which is implicit in Watson-Nevanlinna theorem
concerning Borel summability (see [2, 3, 6]).

Theorem 3.6. If @ satisfies assumptions (1), (2), (3), the power series expansion at
B=0 of Bp(B,z) and f(0(B,z)) (where f is any linear functional on F,) admits a
convergent Borel-Le Roy sum of order p+ 1.
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