
Communications in
Commun. Math. Phys. 98, 79-104 (1985) Mathematical

Physics
© Springer-Verlag 1985

Symmetries of Einstein-Yang-Mills Fields
and Dimensional Reduction

R. Coquereaux and A. Jadczyk*

Centre de Physique Theorique**, Section II, CNRS - Luminy - Case 907, F-13288 Marseille,
Cedex 9, France

Abstract. Let £ be a manifold on which a compact Lie group S acts simply (all
orbits of the same type); E can be written locally as MxS/I, M being the
manifold of orbits (space-time) and / a typical isotropy group for the S action.
We study the geometrical structure given by an S-invariant metric and an
S-invariant Yang Mills field on E with gauge group R. We show that there is a
one to one correspondence between such structures and quadruplets
(Ύμw Aa

μ, φ
ι

a, haβ) of fields defined solely on M; yμv is a metric on M, haβ are scalar
fields characterizing the geometry of the orbits (internal spaces), φ\ are other
scalar fields (Higgs fields) characterizing the S invariance of the Lie(.R)-valued
Yang Mills field and Λά

μ is a Yang Mills field for the gauge group
N(I)\I x Z(/l(7)), N(I) being the normalizer of/ in S, λ is a homomorphism of/
into R associated to the S action, and Z(λ(I)) is the centralizer oϊλ(I) in R. We
express the Einstein-Yang-Mills Lagrangian of E in terms of the component
fields on M. Examples and model building recipes are given.

I. Introduction

LI. Several Descriptions for the Same Geometrical Structure

Symmetry properties of gravity (metric structure) and Yang-Mills fields (connec-
tions) have been often studied separately, both by physicists and mathematicians.
These two kinds of geometrical structures are however deeply inter-related and
several techniques of "dimensional reduction" allow us to cast a new light on the
subject. Let us suppose that we live in an extended universe U endowed with a
metric g(U) invariant under a group G (description 1), then, in many cases, we can
also describe the same situation by saying that we live in an universe E
(dim£<dimί/) endowed with a metric g(E) and a Yang-Mills field A(E), both
invariant under a subgroup of G (description 2). We can finally describe the same
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situation by saying that we live in a universe M (space-time,
dimM<dim£<dimC/) endowed with a metric g(M)9 a new Yang-Mills field
A(M), a few scalar fields and no symmetries left (description 3). The study of the
link between descriptions 2 and 3 is the aim of this paper. The method that we shall
use is the following: a general result [1], which we recall in Sect. 2, allows us to
obtain the link between descriptions 1 and 2 as well as the link between
descriptions 1 and 3, we will therefore obtain the desired results by comparing the
above two relations. Particular examples of the general situation have been
studied in [2, 3] providing interesting phenomenological models; the interpret-
ation of Higgs fields as Yang-Mills fields has been emphasized in [4-7] where some
properties of symmetric Yang-Mills fields are also studied. The construction given
in the present paper is a natural application of the methods developed in [1] and
may be thought of as an alternative to that of [8], where a direct analyzis of the link
between the descriptions 2 and 3 is made (see also [9]).

1.2. The Mathematical Framework

Symmetries can be studied globally (group actions) or locally (vector fields); here
we study symmetric configurations of coupled Yang-Mills and Einstein fields in
the most general case and we perform this analysis both from the local and global
point of view. The natural mathematical framework used to study global aspects is
provided by the theory of fiber bundles and we will use freely the corresponding
terminology. In plain terms, let us only say that a fiber bundle is a geometrical
object which can be thought of as a collection of "fibers" glued together and
parametrized by a manifold called the "basis"; besides, often there is a well defined
action of a group G on the fibers (the "structural group")-one can think of the base
as being space-time and of the typical fiber as being the internal space (there is an
internal space above every space-time point). Properties of connections are
discussed in the mathematical literature in terms of the connection form (which is a
Lie algebra valued one-form on the bundle space) but physicists prefer to use
Yang-Mills fields (which are Lie algebra valued one-forms on the basis); Yang-
Mills fields can only be defined (locally) via the choice of a (local) gauge ("section"
of the bundle). In the following we will express the results in these two languages.

1.3. Structure of the Paper

In Sect. 2, we show how to construct invariant metrics on fiber bundles and recall
the Reduction Theorem [1]. In Sect. 3, we define and study symmetries of bundles
and connections. In Sect. 4, we analyze the geometrical structure for a space E
endowed with an S-invariant metric and a S-invariant, Lie(.R)-valued Yang-Mills
field; we obtain a generalized reduction theorem and a "dimensionally reduced"
Einstein-Yang-Mills action. In Sect. 5, we discuss examples, model building
recipes and give comments and a summary of our results. The reader who only
wants to get the main ideas of the present paper may read only the summary
section (5.1) as well as Tables 1, 2 (Sect. 4.2). Whenever we give a physical
interpretation to our results, the signature of space-time is + + H—, see also
Sect. 5.4.



Symmetries of Einstein-Yang-Mills Fields 81

2. Invariant Metrics on Fiber Bundles

2.1. Invariant Metrics on Principal Bundles

Let us first recall a result which is well known both in physical and in the
mathematical folklore (see e.g. [10-12]; consider a G-invariant metric g(P) on a
principal bundle P of base M and structure group G, then this metric can be
reinterpreted in terms of objects defined on M: a metric g(M) = (yμv) on M, a gauge

field A{M) = (Aa

μ(x))9 α = 1,2,..., n = dim #, valued in » = Lie (G), and W ^ ^ -

component scalar field h = (haβ(x)) which, for a fixed x, determines a right-
invariant metric in the copy of G above x. Reciprocally, the data consisting of these
three objects allow us to reconstruct back a unique G-invariant metric on the
bundle. For example, if we believe that the "real world" can be described by a space
which is a "local product" of space-time M and the color group SU(3) - the internal
space - then an SU(3)-invariant metric on this 4 + 8 = 12-dimensional space P
splits into a gravity field on M, a color field, and scalar fields haβ(x) characterizing

the "shape" of the internal SU(3) space above x e M notice that there is a

8 x 9
— 36-parameter family of right invariant metrics on SU(3) |.

The scalar curvature τP associated to a G-invariant metric on P is constant
along the fibers and can be written entirely in terms of the fields on M 1

Tχ(P) = τχ(M) + τx(G)-ihaβF
a

μvF
μvβ

-ihaβhy\DμhaγD
μhβδ + DμhaβD%δ)

-Vμ(k"D%fi), {2ΛΛ)

D \ι =d h + Cδ Aγh +Cδ Aγh δ,

where C\β are the structure constants for G.

τx(M) is the scalar curvature of M, and τx(G) is the scalar curvature of the copy
of G over x, which can be interpreted as (minus) the potential term for the scalar
fields2

C ^ (2.1.2)

If one assumes that G [SU(3) in our example] takes, at each point x e M , its most
symmetric standard shape (the G x G-invariant Killing metric), then Dμhaβ = 0, and
we recover the usual Einstein-Yang-Mills action; in that case τG is just a
(cosmological) constant.

Let us end this subparagraph with a mathematical application: construction of
all possible SU(2)-invariant metrics on the seven sphere S7. First we realize that S 7

can be written as an SU(2) bundle over S 4 (the Hopf fibration), therefore a direct
use of the above theorem tells us that in order to construct a general SU(2)-

1 The factor in the kinetic energy term of scalars is — ̂  and not — \ as erroneously printed in [ 1 ]
2 The last term in (2.1.2) vanishes for all unimodular groups and will be omitted in the rest of
this paper
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invariant metric on SΊ one must choose 1) an arbitrary metric on S4,2) an arbitrary
Yang-Mills field defined on S4 with values in Lie (SU(2)), and 3) an arbitrary
SU(2)-invariant metric on each copy of SU(2) above the points of S4 (there is a
6-parameter family of such metrics).

Remark 2.1.1. The last term of the Eq. (2.1.1) gives no contribution to the field

equation if one takes for the Lagrangian L « τPγ\g(M)\; however, it has to be taken

into account if the volume density is taken to be j/|g(P)|.

2.2. Invariant Metrics on Bundles with Homogeneous Fibers

What we will need in the following is actually a generalization of the previous
theorem to the case when the internal space is not a group G but, more generally, a
homogeneous space G/H.3 Such a generalization was obtained in [1], where the
following result (which we call the Reduction Theorem) was proved.

Reduction Theorem. Consider a right action of G on a local product bundle
E~Mx (G/H) with base M, whose fibers are homogeneous spaces isomorphic to
G/H. Then there is a one-to-one correspondence between G-invariant metrics on E
and triples (yμv,A

a

μ,haβ), where yμv is a metric on the base M, Aa

μ is a Yang-Mills
potential with gauge group N(H)\H, N(H) being the normalizer of H in G, and the
scalar fields h^(x) describe a G-invariant metric in the copy of G/H above x.

Let us recall that the normalizer N(H) of H in G is the biggest subgroup of G in
which H is invariant; we have H = {aeG:aH = Ha}. The tangent space at the
origin of G/H (indices α,β,...) is isomorphic to g/Jί? and is usually not a Lie
algebra, but it contains as a subspace the Lie algebra of N(H)/H (we use &, β,... for
the indices of this subspace). The scalar curvature of E endowed with such a
G-invariant metric, can be, here again, expressed entirely in terms of M-based
fields, and we get [1] an expression similar to Eq. (2.1.1)

τ(E) = τx(M) +

-ih^δ(DμKγD%δ + DμhaβD%δ) - Vμ(h^D»haβ), (2.2.1)

where

DμKβ=dμhaβ + cδ

aμ;hδβ+c%A%δ

and

ϊicί.,+W'χy.cιβσ;ll.+cιβcξι.I). (2.2.2)
The index y in (2.2.2) runs through the Lie subalgebra Jf C@ of the stability group:
Jt = Lie (if).

Example 7. If we take as a model a space E which is a local product of space-time M
and the 16-dimensional complex Stiefel manifold SU(5)/SU(3), then an SU(5)-
invariant metric on this 20-dimensional space E can be constructed out of a gravity
field on M, a Yang-Mills field with gauge group SU(2) x U(l), and a scalar field

3 Throughout this paper G/H denotes the space of right cosets {Ha :aeG}. This is opposite to

the usual convention
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haβ(x) characterizing the shape of the internal SU(5)/SU(3) homogeneous space
sitting above xeM. Notice that the Lie algebra of the normalizer of SU(3) in SU(5)
is indeed the Lie algebra of SU(3) x SU(2) x U(l).

SΊ xSΊ

Example 2. We take as a model the 11-dimensional space E= , which is
SU(2)

constructed as follows: by using the right action peS1, ge SU(2) pg e SΊ of SU(2)
on SΊ, we define the following diagonal right action of SU(2) on
S 7 xS 7 : (p,p0eS 7 xS 7 , geSU(2) {pg,p'g)eSΊ xS\ and define E as the coset
space obtained via the diagonal action; of course we use the fact that SΊ is indeed a
SU(2) bundle over S4 (Hopf fibration). Let us now show that E can also be written
as a non-trivial SΊ bundle over S4; indeed if we define a left action of SU(2) on SΊ by
gp = pg~ι we can construct an associated bundle {class(p,p/)|p,p/eS'7}, where

class(p,pθ= {(P0,0" V) 10 e SU(2)} = {(pg,p'g)\ge SU(2)}.

This associated bundle therefore coincides with E but now it has base S4 and
typical fiber SΊ. Now the group G = Sp(2) acts transitively on SΊ

(S7 = G/tf = Sp(2)/Sp(l)), the normalizer of Sp(l) in Sp(2) being Sp(l)xSU(2);
then G = Sp(2) acts also on £, there is only one stratum, all the orbits are of the
same type (S7) and the manifold of orbits is S4. The most general Sp(2) invariant
metric on E can be constructed out of a gravity field (metric) on S4, a Yang Mills
field Al defined on S4, valued in SU(2) and a scalar field haβ(x) characterizing the
Sp(2)-invariant metric of the copy of SΊ above xeS4 (there is a 7-dimensional
manifold of such metrics [1]). This example could be generalized to the study of

C /Ί-f v CIΉ

G-invariant metrics on spaces of the type E = — considered as bundles
over G/N with typical fiber G/H. N(H)\H

Other examples are given in [1]. Notice that when G/H is an isotropy
irreducible space [i.e. when Ad (if) acts on ^/Jf real irreducibly], then N(H)/H is
discrete. In such a case the Yang-Mills potential is trivial. More material on the
subject can be found in [13, 14].

3. Symmetries of a Principal Bundle

In this section we will introduce the principal concepts and notation used
throughout the rest of the paper.

3.1. Symmetries of Yang-Mills Fields

Let ([/, π, E, R) be a principal bundle with base £, projection π, and Lie structure
group R acting on U from the right. Let S be a Lie group acting on U from the left
by bundle automorphisms, i.e.

s(ur) = (su)r, VseS, rεR,

see Fig. 1. We shall assume that the action of S on U is effective, i.e. su = u,VueU
implies s = e. The action of S on U induces an action of S on E: sπ(u) = π(su). This
induced action on E need not be effective - thus we allow for pure gauge
transformations also called vertical automorphisms (cf. [15-17]).
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We will also use the right action of S on U and on E defined by

us = s~1u, ueU, seS,
1 , seS.

When a possibility of confusion can arise, we.shall write Ls and Rs for the left and
right action respectively.

UΓ

, Γ

u

U y
L

s(ur)-(su)r

,r

su U

y=π(u)

Fig. 1

ττ(su)-sy

Denote by 01 the Lie algebra of R, and let, for each ve0t, Zv denote the
fundamental vector field on U generated by v:

Zυ(u)=—[uexp(tvy]t=0.

Recall that a 1-form ω, defined on U and with values in 01, is a 1-form of a principal
connection if ω(Zv) = v, and R*ω = Ad(r)~1ω, reR. The group S, introduced
above, is said to be a symmetry group of ω if, for all seS,

R*ω = ω. (3.1.1)

The content of the above equation was discussed in many papers and we refer the
reader to the existing literature [6, 7, 18-21]. The brief discussion we give below
has the purpose of introducing notation and concepts we will use later on.

Global description of a gauge field involves a principal connection 1-form ω.
Locally a gauge field is described by an ^-valued 1-form on E rather than on U.
Let σ: £-• U be a local cross-section (gauge), then Λσ - the Yang-Mills potential in
the gauge σ - is defined by Aσ = σ*ω.

Let S be a symmetry group of ω, and let us see what can be said about the local
representative Aσ. Of course the cross-section σ will not be, in general, invariant
under S. Its noninvariance is described by a compensating function r = rσ(s;y)
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taking values in the gauge group R, defined by (see Fig. 2):

σ(ys) = [σ(y)s]r

85

(3.1.2)

Fig. 2

σ(y)r

σ(ys)=[σ(y)s]r

" σ(y)s

ys

Because of noninvariance of the gauge σ, also the Yang-Mills potential Aσ will not
be invariant; indeed, using (3.1.1) we find

RfΆσ = (R;1oσ°Rs)*ω = (σr)*ω = Άσr = r-1Aσr + r-1dr. (3.1.3)

Therefore Rf Aσ differs from Aσ by a gauge transformation.
Let £f be the Lie algebra of the symmetry group S. With ξ e 9> let t\-+exp(tξ) be

the 1-parameter subgroup generated by ξ. Denote by Zξ the fundamental vector
field generated by ξ:

Z()

With s = s(t) differentiate (3.1.3) with respect to t at t = 0. From the very definitions
of Lie and covariant derivatives, we obtain LZξA

σ = DAσ(ξ), where

For a fixed y e E, Aσ( - y) is a linear map from y to 01. It will play an important
role later on. Let us analyze it a little bit closer. Choose y e E and denote by / the
stability group of y, / = {s e S: sy = y}. Choose ueπ~ι{y), and let, for every 5 e /,
λu(s) be the unique element of R satisfying

su = uλu(s) (3.1.4)

(see Fig. 3). Then λu: I-*R is a homomorphism of Lie groups. Comparing (3.1.2)
and (3.1.4) we find

, sel,
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and thus 51—>rσ(s;y), when restricted to se/, is a group homomorphism. Let
J = Lie (7) be the Lie algebra of/. It follows then that Λσ restricted to ξ e J> is a Lie
algebra homomorphism, which coincides with the derivative λ'σ(y) of λσ{y). We thus
see that Λσ restricted to J depends only on the action of S on U, and not on the
connection. What does depend on ω is the restriction of Aσ to a complement, say
9, of S in Sf. Write ^ = </ + ̂  with Ad(/)^C^ (reductive decomposition), and
define φσ( y) to be the restriction of Λσ to 0*. The field <̂  defined in this way will
be later on interpreted as the Higgs field resulting from dimensional reduction of
the Yang-Mills field.

"SU=uλM

Fig. 3

y=π(u)

3.2. Several Bundle Structures of the Principle Bundle U

As before, consider a principal bundle ([/, E, π, R) with base E and structure Lie
group JR, and let S be a Lie group acting on U by bundle automorphisms. We want
to discuss now in more detail the structure arising from such an action. We will
assume that both R and S are compact although, with proper care, our discussion
could be carried through for non-compact groups admitting biinvariant, nonde-
generate metric, with essentially the same results.

We recall from the previous subparagraph that there is an induced action of S
on the base E. For every yeE denote by Sy the stability group of y:Sy

= {seS:sy = y}. There are then two natural equivalence relations in E. One is:
y~y\ if S3, and Sy> are conjugate; the other, stronger one, is: y « / iff Sy = Sy>. The
equivalence classes \_y] = {y'eE:y'~y} are called strata. In general E will be an
union of several strata and, since S is compact, one of them will be open and dense
(see [22, 23]). Let us restrict our further discussion to one of these strataί Or, better,
let us assume that E consists of a single stratum only4. Thus Sy and Sy, are
conjugate for all y , / e £ . Consider now the second equivalence relation. The
equivalence class [[)>]] = {/e£:/«j;} is conveniently called the substratum of 3;
[24]. We choose, once and for all, one of these substrata, call it F, and denote by U
the stability group common to all the points of P: P = {yeE:Sy = I}. P is a

4 £ is then called simple S-space and the action of S on E is called simple
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x M
Fig. 4. Notice that E = [y] and P = \_[y]~\. P is a subbundle of E. The Killing vectors Zξ, ξeSf,
introduced in Sect. 3.1 are vertical in E, those corresponding to ξ e Lie(iV(/)) are, at the points of
P, tangent to the submanifold P

submanifold of E, and E can be thought of as a collection of orbits of type S/I, the
collection being parametrized by a manifold M - the manifold of orbits. In other
words £ is a fiber bundle of base M and fiber S/I - see Fig. 4. It is important to
realize that P is a subbundle of £, it is a principal bundle with the same base M and
structure group K = N(I)/I, N(I) being the normalizer of / in S (see [22,23, also 1]).

For our further discussion it is important to notice that the direct product
group G = S xR acts on U via the following right action:

With the terminology introduced above we will assume that this action is simple,
i.e. that U consists of a single stratum. To fix a substratum Q of U let us choose
UGU such that π(w) e P [see Fig. 4] and let 77 = Gu be the stability group of this u.
We take for the substratum QcU the substratum characterized by 77:

Q = {u e U : s ~1 ur = u iff (s, r) e 77}.

Since <2 = [[w]] and π(w) e P, it follows that π(β) C P. As before U is a fiber bundle
with (the same as E) base M and fiber G/iί, and (Q, M, N(H)/H) is a principal
bundle. The space [/ can therefore be fibrated in several ways5 and Fig. 5 below
summarizes the results.

In Sect. (3.1) we already introduced the group homomorphisms λu: Sπ{u)-+R.
Let us observe that λu remains constant while u varies in Q. Indeed, by the very
definitions we have Gu = {(s, λu(s)): s e Sπ{u)}. When u runs through β, then GU = H
and Sπ{u) = I are both constant, and thus λ = λu is constant too. Thus we have

H = {(/, λ(i)): i e 7} = diag(7, λ(I)) C G.

The stability group 77 is isomorphic to 7, but it is not equal to Ix{e}. Because of
this fact the normalizer of 77 in G = S x R is not isomorphic to N(I) x R. Let us see
what is the relation between iV(77) and N(I). By using the definitions we find

\s E N(I) and
ι) Vie7.

5 Other fibrations are also possible but we will not need them here, see [22]
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G/H

N(H)/H
1

Fig. 5

Consider the centralizer Z of the image λ(I) of I in R:

Z = {reR:rλ(ΐ)r'1=λ(ι)9y/ίeI}.

By the embedding Z^Zx{e},Z can be considered as a subgroup of N(H)\H, and
one easily gets the following important result [8].

Proposition 3.2.1. Z is an invariant subgroup of N(H)\H, and N(H)\H is locally
isomorphic to (JV(/)|/) x Z, N(I) being the normalizer of I in S.

3.3. Lie Algebra Decomposition and the Vielbein

We introduce the Lie algebra ^ Λ Jί{l\ X of 5, /, JV(J),
decompose the Lie algebra ^ of S as follows (cf. [1,8]):

= N(Γ)\I, and

and let us introduce the Lie algebra bases Tα, Γά, Tα, 7|, Tt in «/, jf, ^ , «2T, and ^
respectively - see Fig. 6.

The homomorphism λ:I->R introduced in 3.2 induces the homomorphism
λ': J^M of Lie algebras, and we define the matrix elements λ\ of λ' by
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:K

Fig. 6. Decompositions of the Lie algebras £f and ffl. JΓ denotes the Lie algebra of the centralizer Z

The Lie algebra ^ of the direct product group G = SxR can be decomposed in two
ways

where
= {ξ + λ\ξ) :

is the Lie algebra of the stability group H. It is the second decomposition which is
used in the reduction theorem for G/H. To apply this theorem we have to
introduce a new basis in ^, with tilda, adapted to the second, reductive,
decomposition: ~ _

(3.3.1)
0»),

It is important to notice that the Lie algebra of N(H)\H is composed of Jf and 2£
(see Proposition 3.2.1, also [8])

(3.3.2)

We shall use the index A = (α, ϊ) to label generators of this algebra. Thus

The structure constants of the adapted (non-product) basis in ^ = £f + ffl, which
differ from those of the product (non-tilda) basis, are the following ones

— — CΊ

(3.3.3)

Observe that
fi 0 (3.3.4)

Let now gv be a G-invariant metric on U. In particular, being S-invariant, gυ

induces a metric gE on £ (Sect. 2.2), and gE is S-invariant. Thus gE induces a metric
gM on M. We recall that M = E/S = U/G, therefore gM can be also induced directly
from gυ. For our purpose it will be enough to assume that gv, restricted to the fibers
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of the principal bundle U^E, induces a fixed biinvariant metric k on R. We will
call it the Killing metric.

Let u be a point in Q, y - its projection in P, and let x be the projection of y on M
(see Fig. 5). We introduce the following vector fields:

dμ - a holomorphic moving frame (vierbein) around xeM,
eμ - the horizontal, i.e. orthogonal to the fibers of E-+M, lift of dμ,
ea - fundamental fields ea = ZTa in E,
eM = (eμ,eOί) - the vielbein around y,
Ea - fundamental fields Ea = ZTχ in U,
Et - fundamental fields Et = ZTi in U,
EA = (£α, Ei) - vertical vielbein around u in U,
Eχ = (E^E ) - vertical vielbein around u in Q,
Ea - the horizontal, i.e. orthogonal to the fibers of [/-•£, lift of ea.
The components of the fields appearing in the following discussion will refer to

the vielbeins introduced above. In particular we will use the following notation
(some of the formulas will be explained later):

GAB = θu(EA, EB) = (gφ gai, gυ), gAB = (the inverse of gAB),

KN = 9E(EM, EN) = (hμv, haβ), hMN = (the inverse of hMN),

Kβ = QE(^ Cβ) = Qu(Ea, Eβ), haβ = (the inverse of haβ),

7μv = QM(8μ, dv) = gE(eμ, ev) = hμv, yμv = (the inverse of yμγ).

Let ω be the principal connection form on U induced by gυ (considered as
i^-invariant, see Sect. 2.1).

We define the fields φ[ by
ω(Ea(u))=-φi

a(u)Ti. (3.3.6)

Then one easily finds the following relations

Ea = Ea-φ%

Φ% xihΛllΦι

where /cy are the components of the Killing metric of R. The G = Sx Λ-invariance
of the metric gv implies that φ = (φι

a), considered as a linear map from 3P to M,
satisfies the constraint of Ad (iί)-invariance

°^, iel, (3.3.8)

or, infinitesimally,

In particular φ\ = 0 if i φ ί and φ\ = 0 if α φ &, which means that φ(Jf) C Z£ and that
^ ( i f ) π ^ = {0}.

We also have
l β γ βγ = 0, (3.3.9)

which expresses the /-invariance of haβ.
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4. Reduction of the Einstein Yang-Mills Action

4.1. Outline of the Method

As was already explained in the introduction, our aim is to investigate dimensional
reduction of ̂ -invariant Einstein-Yang-Mills fields in a multidimensional uni-
verse. Thus we start with an S-invariant metric gE on E, and an ̂ -invariant
principal connection ω on U. We also fix a biinvariant metric fci<7 on the initial
gauge group R. The logic followed in this section is summarized by the Tables 1
and 2.

Table 1 stresses the equivalence between three possible descriptions of the same
geometrical structure (we called them Description 1, 2, and 3 in our introduction).
The links between any two boxes of this chart are provided by the use of the
Reduction Theorem (recalled in Sect. 2). The main goal of our work is to connect
Description 2 and 3 (Link No. 1), and this will be done via Description 1.

Table 2 summarizes the formulae associated to the links LI, L2, L3, L4, L5 of
Table 1 via the use of the Reduction Theorem; all these relations are of course
obtained and analyzed in the subsequent paragraphs. We introduce the following
notations: YM (base, group) denotes the lagrangian for a Yang-Mills field defined
on the space "base," valued in the Lie-algebra of "group"; KE (base, fiber) denotes
the kinetic energy term containing "base derivatives" [Eqs. (3.1) and (3.4)] of the
metric on the space "fiber"; finally, the scalar curvature of a space F is denoted by
τF or τ(F).

4.2. The Link No. 2

We start with Description 2: a multidimensional Universe E furnished with an
S-invariant metric g(E) = (hMN) and an ^-invariant Yang-Mills field Aι

N with values
in the Lie algebra &oϊR; the S-invariance was discussed in Sect. 3.1. The Einstein-
Yang-Mills Lagrangian is given by the expression

EYM (£) = τ(E) - ̂ h^h^F^F^, (4.2.1)

where τ(E) is the scalar curvature of E for the metric hMN, and Fι

MN is the Yang-
Mills field strength associated to Aι

N. Provided that we add to this expression a
constant τ(R) with value equal to the scalar curvature of the group R (endowed
with the Killing metric) we can use the Reduction Theorem of Sect. 2.1 to
construct, out of these three pieces, an ^-invariant metric g(U) on U considered as
an K-principal bundle over E. This metric g(U) will be actually S x K-invariant
because we started with the ingredients which were themselves 5-invariant (here
one also exploits biinvariance of the Killing metric fe). The scalar curvature of U,
associated to this metric g(U) is

τ(U)u = τ(£) y + τ(R) + YM(£, M)y, (4.2.2)
where

YM(£, R)y = -ϊkjh^h^F^MFUy),

u being any point in the i^-fiber of U over y. This geometrical structure, described
in terms of the space U, constitutes what we called Description 1 in our
introduction.
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L
L2

r

I

L
Γ"

r = S x R invariant metric on U

• S invariant metric hMN on E.

• S invariant Yang Mills field Λι

N on E
valued in Lie (R).

• Killing metric ki} on R.

a

L3

• S invariant metric hXβ on S/I parametrized by xeM.

•Yang Mills field Aa

μ on M valued in Lie(ΛΓ(/)//).

• Metric yβV on M.

_r ~ i

• Metric yμy on M.

•Yang Mills field (i4J, Λμ) on M valued in the Lie algebra of

• G invariant metric ^ ^ on G/H parametrized by x e M

•K invariant metric fcιV on Λ

• S invariant metric haβ on 5/7 (parametrized by xeM).

• S invariant Yang Mills field <pa on S/I, valued in Lie (R)
and parametrized by xe M; the Higgs field.

L5

J
where

U=

and

7 = typical stabilizer of the S action on £,
JV(7) =normalizer of 7 in S,
2(7) = homomorphic image of 7 in K characterizing

the 5 action on U,
S/I Z(λ(I)) = centralizer of λ(I) in G = S x R
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Table 2

L 2 : τ ( [ / ) = τ ( £ ) + τ ( Λ ) ()

^ 3 : τ ( £ ) = τ ( M ) 4- τ ( S / / ) + YM(M, JV( J) |/) + KE(M, S/7),

^4: τ ( ϋ ) = τ ( M ) + τ{G/H) + YM(M, JV(H) |H) + KE(M, G/H),

L5: τ ( G / H ) = τ ( S / / ) + τ ( R ) + YM(S/J,£).

Also

YM(M, N(H)\H) = YM(M, W(/)|/) -f YM(M, Z(λ(/)) + A cf. Eqs. (4.4.2H4.4.5),

YM(S/J, K) = - K(λ, $ cf. Eqs. (4.5.3) and (4.5.4),

KE(M, G/tf) = KE(M, 5//) + KE(^) cf. Eqs. (4.3.5) and (4.4.6)

4.3. The Link No. 3

This link is a standard application of the Reduction Theorem of Sect. 2.2 to a
S-invariant metric #(£) on E. For the scalar curvature of £, endowed with this
metric, we get [see (2.2.1) and (2.2.2)]:

τ(E) = τ(M) + τ(S/I) + YM(M, JV(/)|/) + KE(M, S//), (4.3.1)

where, with the notation given in Sect. 3.3,

(4.3.2)

β Ί y y β β βCiΊ), (4.3.3)

YM(M, N{1)\I) = -i/zά ά7μ μ Ϋv'FίvF
ά

μ,v,, (4.3.4)

KE(M, S//) = -kh«βWδ{DμhayD%δ + DμhaβD
uhyδ)

-VμQfβD»Kβ). (4.3.5)

4.4. 77u? Linίc No. 4

As explained in Sect. 3.2, U is also a G/# bundle over M (recall that, since
U ^ £ x R, the manifold M of G = 5 x K-orbits in U is the same as the manifold of
S-orbits in £); here again we can use the Reduction Theorem. The G-invariant
metric g(U) on U can be expressed as being built out of the following three pieces: a
metric g{M) = (γμv) on M (usually interpreted as space-time metric), a Yang-Mills
field AA

μ valued in Lie (N(H)/H) = Jf + & [see (3.3.2)], and a scalar field hAB(x)
which can be interpreted as a G-invariant metric in the internal space Ux ̂  G/H
above x e M. The scalar curvature τ(t/) of (7 can now be written entirely in terms of
M-based quantities:

τu(U) = Tχ(M) + τ^G/H) + YM(M, N(H)\H) + KE(M, G//ί), (4.4.1)

where

τ(G/H) = - gAA\\Cc

ABC
B

A,c+ϊgBB'gcσC
c

ABC
c

A,B, + C%CA,C),

YM(M, N(H)\H) = - V V v'ί7Aέf ίv^'v»

KE(M, G/H) = -bμYBgCDΦμgACDvgBD + DμgABDvgCD),
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and

These formulae may be understood as referring to a certain local cross-section

The tildas refer to the reductive basis in ^ (3.3.1). To reduce further the above
expressions we apply the relations (3.3.3) and (3.3.7) with the result

where

and

YM(M, N(H)\H) = YM(M, K) 4- YM(M, Z) + A,

YM(M, X) = - | y μ μ 'yvv'hβF%F^f,

YM(M, Z) = - i/μVv'fcyFJLFiv >

(4.4.2)

(4.4.3)

(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

Notice that when K = N(I)/I [respectively Z = Z(λ(/))] is discrete, then the 2n d

(respectively 3rd) term of (4.4.7) vanishes as well as (4.4.5). We omit the result one
gets for τ(G/H) since it will be derived in a different way in the discussion of the
Link No. 5 below.

4.5. The Link No. 5

The term τx(G/H) in (4.4.1) is the scalar curvature of the fiber Ux of the bundle
(17, M, G/H). It is easy to see that the projection π: U^E makes Ux ^ G/H into a
principal bundle with base EX~S/I and structure group R (Fig. 7):

Ά— 4/ 7 KijΨaΓ μvWβΓμ'v' ΔΓμ'

We also get KE(M, G/ίΓ) = KE(M, S//) + KE(^), where

with

UV=G/H

E =

Fig. 7
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The metric gAB [see (3.3.5)] is S x .R-invariant on Ux and therefore, a fortiori,
jR-invariant. Therefore we can apply the Reduction Theorem in its principal
bundle version (Sect. 2.1): gAB can be expressed entirely in terms of an (S-in variant)
metric haβ on Ex, an (S-invariant) Yang-Mills field φ\ on Ex, valued in M, and the
metric ktj on R (the Killing metric). The explicit expression of gAB in terms of its
building blocks has been already given in (3.3.7). Applying the Reduction Theorem
of Sect. 2.1, we also get

τ(G/H) = τ(S/I) + τ(R) + YM(S/J, R), (4.5.1)

where τ(R) and τ(S/I) already appeared in (4.2.2) and (4.3.1) respectively. Let us
discuss now the Yang-Mills term. Since S acts transitively on the base EX~S/I of
our bundle, we are in the situation of the Wang Theorem (see e.g. [25]), and we
could simply refer to the literature. However, it is both instructive and convenient
to obtain the desired expression directly. Denoting by ω = (ωjj and F = (F^) the
connection and curvature form of the induced Yang-Mills field, from the very
definition of the curvature we get

Faβ = Dω(Ea, Eβ) = Eaω(Eβ) ~ Eβω(EJ -

while the S-invariance of ω implies

0 = (LEω) (Eβ) = Eaω(Eβ) - ω([£β, Eβ~\).

Combining the two formulae we get

Faβ = ω([£α, Eβ\) + [ω(Eal ω(Eβy\ . (4.5.2)

Now

ω([Eβ, Eβ\) = ω(ClβEγ + C\βEy) = Clβω(Ey) + Clβω(Ey),

and we can use the formula (3.3.6) as well as the fact that Ey + λι

yEi vanishes on Q
[see (3.3.1)], to get

ω(lEa,Eβy=-(Clpφ\ + ClβfyTi9

and consequently

F[β = - (Cy>ι

y + Clβλ\ - C)kφiφk

β). (4.5.3)

The Yang-Mills term of (4.5.1) gives therefore the potential energy for the Higgs
field φ :

- V(φ) = YM(S//, R) = -ih^h^'kijFiβFi.β, (4.5.4)

with Fι

aβ given by (4.5.3).

4.6. The Link No. 1

By simple collecting of the results obtained so far we find the following theorem.

Einstein-Yang-Mills Reduction Theorem. There is one-to-one correspondence
between pairs (g(E), Λ(E)) of S-symmetric Einstein-Yang-Mills systems on E and the
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quadruples (g(M),A(M),φ,h) of fields on M. The Einstein-Yang-Mills Lagran-
gian EYM(£) of E, when expressed in terms of the component fields on M reads

EYM(£) = τ(y) + Y M ( 4 , A% + KE(haβ) + KE(^) - V(h) - V(φ), (4.6.1)

where
τ(y) is the scalar curvature of the metric g(M) = (yμv),
YM(A[,Al) = YM(M,N(H)/H) is given by (4.4.2)-(4.4.5),
KE(λβ/ϊ) = KE(M,S/J) is given by (4.3.5),
KΈ(φi

a) = KE(φ) is given by (4.4.6), (4.4.7),
V(h) = τ(S/ί) is given by (4.3.3),
V(φ) is given by (4.5.4).

As a by-product we also get the reduction formulae for the Yang-Mills term
alone:

YM(E, R) = YM(M, Z(λ(I)) + KE{φ) + A- V(φ), (4.6.2)

where, however, the terms KE(^) and A depend on the connection Aa

μ in the
(P, M, K) bundle too.

One has to remember that the scalar fields φ\ and haβ satisfy the algebraic
constraints (3.3.8) and (3.3.9).

Remark 4.6.1. The expressions (4.6.1) and (4.6.2) can be still multiplied by
|det/zαi3|

1/2, compare Remark 2.1.1.

5. Examples, Comments, and Summary

5.7. Summary of the Results

Space-time is, in this paper, identified with the manifold M of orbits of a compact
group S (global symmetry group) acting on a manifold E (extended space-time,
multidimensional universe). Thus each space-time point xeM has internal
structure of a homogeneous space S/I. I is the isotropy group characterizing the
orbit of S over x.

Let g(E), A(E) be an Einstein-Yang-Mills system in E, consisting of a (pseudo)
Riemannian metric g(E) and a Yang-Mills field A(E) on E with gauge group R. We
show how such a system can be interpreted in terms of fields on M, when a
constraint of S-symmetry is imposed. It is proved that there is a one-to-one
correspondence between 5-invariant Einstein-Yang-Mills systems (g(E),A(E))
and quadruples (g(M), A(M), φ, h)9 where g(M) is a metric on M, A(M) is a Yang-
Mills field on M with the effective gauge group N(H)/H described below, while φ
and h are scalar fields. g(M) and h originate from g(E), φ originates from A(E),
while A(M) takes its origin from both g(E) and A{E).

The effective gauge group is the quotient N(H)/H, where N(H) is the
normalizer of H in G = SxR, and HcG is defined as H = d iag(7x ! (/) ) ,λ :I^R
being the group homomorphism determined by the action of symmetry group S on
the gauge field (see below). Locally N(H)/H is isomorphic to the product
(N(I)/I) x Z, where N(I) is the normalizer of/ in S, and Z is the centralizer of λ(I)
in R.
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The homomorphism λ.l^R, where Iis the stability subgroup of S at y eE, is
defined by the action of S on the principal jR-bundle U over E on which the initial
gauge field A(E) lives. Let u e [/ be such that π(w) = y. Then for each sel,su = uλ(s).

The derivative /I': J ^>0l of /I is a homomorphism of Lie algebras, λ' and φ are
parts of the map A\Sf^0t defined as follows: every ( e ^ is an infinitesimal
symmetry of AE. Thus the Lie derivative LξAE is an infinitesimal gauge
transformation - there exists a function Ay\ξ^Ay{ξ)e0t such that LξAE

= DA(ξ). For ξel, A(ξ) = λ\ξ). On the other hand write S? = J + 0> with 0> such
that Ad(/)^C^. Then φ(ξ;x) = Λy(ξ) for x = π(y). Thus φ{x) is a linear map
φ(x): 0>^0t. It is constrained to satisfy

The field ft, originating from gE, describes an S-invariant metric on the
homogeneous space S/I at x; algebraically h = (haβ) is an Ad(/)-invariant scalar
product on 0>.

The Einstein-Yang-Mills lagrangian for (gE,AE) on E when represented in
terms of (g(M), A(M), φ, ft) is given in Eq. (4.6.1). The field φ splits into two parts
φx and φy, where JΓ is the space of/-singlets in 0* and if is a complement of JΓ in
Sf. The fields ft and φ^ interact with A{M) by the minimal interaction while φπ

interacts also directly with the Yang-Mills strength. The potential energy term for
φ% and φy is quartic.

The results improve those of [19-21] - the new ingredient is the part N(I)/I of
the gauge group (with Lie algebra isomorphic to Jf) which may be present iϊS/I is
not isotropy irreducible.

5.2. The Space of Hίggs Fields φ

Let us first remember that we have a linear m a p A from &? =

into ^ = Lie(i?) and that A has to coincide on the subalgebra J of Sf with the

algebra homomorphism λr which characterizes the 5 action. The Higgs field φ was

defined as the restriction of A to the complement 0> of J in <f\ it is also convenient

to split φ in φ = φ# + φ^>, where φ^ = (φι

ά) maps Jf into 2£ C 01 and φ# maps i f into a

complement W of i f in 01 (see also Sect. 3.3). Schematically:

&>= j f + f + JS?

(/)) + λ\I)\C(λχi)) +

where ^(A^/)) is the normalizer of ;/(/) in 0t, C(λ'(I)) the center of//(/), and W a
supplementary subspace.
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It is easy to show that, under the action of the group N(H), the map A
transforms as follows: let (σ,ρ)eN(H)cSxR and se6f. Then

(5.2.1)

Moreover [see (3.3.8)], A satisfies the constraint

Λ(isΓ1) = λ(ι)Λ(s)λ(ΐ)~1 for ίel. (5.2.2)

From this we can deduce the transformation properties of φx and φ# under the
gauge group N(H)/H whose Lie algebra is iΓ +Jf* in particular:

- K acts on φx via the coadjoint representation, and Z via the adjoint - this can
also be seen from the fact that φ = (φ^) has lower indices in JΓ and upper indices in
2£. There are no constraints on φx coming from (5.2.2),

- K and Z act as above on the space of φ# fields, however now φ# has to satisfy
t h e c o n s t r a i n t φ#(isi~ί) = λ(ΐ)φg>(s)λ(ΐ)~i for iel seίf.

The representation of the gauge group on the space of φ fields is usually
reducible; in order to find which irreducible representations appear, it is
convenient to decompose S£ into irreducible representations of the product I K
by looking at the branching rule for ad S into IK and to decompose W into
irreducible representations of λ(ΐ) Z by looking at the branching rule for ad# into

5.3. Extrema of Potentials

a) The potential V(φ) for the Higgs field can be written as the norm of the Yang-
Mills strength Fι

aβ for a connection φ\ on G/H considered as a i^-principal bundle
over S/I (see Sect. 4.5); V(φ) is therefore automatically invariant under R and in
particular under the subgroup Z.

Therefore the zeros of V(φ), which are at the same time absolute minima, are
those maps φ which extend λ to Lie algebra homomorphisms; this observation was
already made in [21]. Then it is not too difficult to prove [using (5.2.1)] that the
"unbroken" gauge group (the stability group of φ) has Lie algebra isomorphic to
2tA + X, where 2SAQ2£ is the commutant (centralizer) of Λ(£f) in 01, and
Jf = Lie(iV(J)/J).

b) The potential V(h) = - τ(S/I) for the scalar fields haβ(x) is more difficult to
analyze. First, the scalar curvature τ(S/I) for the metric h = (haβ) is not necessarily
of a fixed sign (for example, it is not necessarily positive even if S/I is compact and
haβ is positive definite). Next, it is well known that the saddle points of the

functional A-> f τ(S/I;h)dvol(h) when h varies in the space of all metrics with
S/I

fixed volume element, coincide with Einstein metrics on S/I [29]. In many cases,
however, saddle points oΐτs/I(h) when h varies in the space of S-invariant metrics
(with fixed volume) coincide also with S invariant Einstein metrics on S/I. Notice
that these saddle points are usually neither minima nor maxima. The potential
V(h) is clearly invariant under the whole group of diffeomorphisms of the
differentiable structure of S/I; it is in particular invariant under the group
N(I)/I x S. All the metrics we are considering (all the fields haβ) are, by assumption,
S-invariant; their full isometry group can of course be bigger; if h®β is a saddle point
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of V(h) and if the isometry group of h° is included in N(I)/I x S [it will then be of
the kind FxS, with F c N(Γ)/Γ] we will say that the N(I)/I piece of the gauge group
is "broken" to F.

5.4. Normalization and Units

a) Sign Conventions. If M is interpreted as a four dimensional space-time with
signature — h + +, then, the Einstein lagrangian with cosmological term is

— — (τ(M) — 2A). For positivity reasons, the signature of the "internal" metric on
lΌTlK

S/I has to be spacelike, i.e., of positive sign with the above convention. Notice that
the cosmological "constant" is in our case a function of xeM; however, if we
expand the internal metric hΛβ around some background h%β we obtain indeed a
constant [coming from the τ(S/I) term] to be identified with the cosmological
term; however, if τ°(S/I) = τ(S/I; h°) is a positive scalar curvature, then A will be
negative and vice versa.

If we choose the signature H on M, the "physical" conclusions are of
course the same, but one has to remember that in order to be spacelike, the
signature of the "internal" metric haβ has to be taken negative; the scalar curvature
of a standard 2-sphere S2, for example, would therefore also be negative. In what
follows, we assume that our choice for M is —I- + +, therefore haβ (and k^) are
positive definite.

b) Dimensions. When computing the Einstein-Yang-Mills action o n £ ^ M x S/I
for a symmetric configuration of the metric and of the Yang-Mills field, we have to
integrate over the "internal" space S/I. The integration itself is quite trivial
(because of the symmetry under the S group) and we obtain, at each point x e M,
the volume V(x) of the "internal" space. This quantity V{x) needs not be a constant
unless we impose this new constraint. Let us however assume that, in the following,
V= V(x) is constant; if this is not the case we will just have to multiply the final
four-dimensional lagrangian by a real valued function on M [compare Remarks
(2.1.1) and (4.6.1)]. We start with the following dimensionless Einstein-Yang-Mills
action:

A = \

where K and g2 are a priori independent quantities. Let us then make the following
changes (in that order):

1) Set haβ^R2^, R being some (length) scale.

2) Set V=RnV, V being the volume of S/I for the metric h.

3)
IΌTIK

4) Define l/g2 = Rn + 2V/\6πK and l/g2

R = RnV/g2.

5) Rescale the fields A%= -A% 4 = — 4> $ = Έ~Φ* a n d %=
9s 9R KQR "



100

We find

R. Coquereaux and A. Jadczyk

where

and where

j C{βX\

y = |det(yμv)| and τ s / J = τs/I(h),

The previous action is still dimensionless but now, all quantities have standard
dimensions: let [L] be some length, then

A
— 2

R

Notice that all coupling constants can be expressed in terms of the independent
quantities K, #, and gR; K is the Newton constant X= 16 x 10~66cm2, î  is a
fundamental length (in cm) and gR is a dimensionless constant; the relation

l indicates that if ^ ^ 1 then K^ 10~33 cm. If we expand the "internal"
1

2

2

tometric haβ around some fixed background fζβ, we obtain a constant

be identified with the cosmological term — — , that is A = — τ^ιj/2R2. Here, we do
loπX

not get any contribution from the Higgs mechanism for φ\ since the potential is
zero at the minimum (see Sect. 5.3).

c) Normalization of Generators. Notice that in a conventional theory, one
introduces usually different coupling constants for the simple components of the
gauge group; also, one makes use of the Killing metric associated to each simple
component. Finally the covariant derivatives, acting for example on the Higgs field
which belongs to some representation ρ of the gauge group, are written by using a
representation of the generators with some standard normalization. In our case,
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however, the simple components of JV(J)/J [or of Z(λ{I))~] are coupled to the Higgs
fields via the same gs (or gR); also, the covariant derivative acting on the Higgs field
is written by using the structure constants of S - or G - [see Eq. (5.4.1)]. In order to
make contact with a conventional theory, one has therefore to specify the
representation content for the Higgs fields and to rescale our generators (or the
fields) according to some conventional normalization.

One obtains different coupling constants for the simple components of Z(λ(I))
[or of iV(/)/7] but their ratios (mixing angles) become entirely computable
quantities.

5.5. Model Building

One can distinguish two classes of models: those where the group N(I)/I is discrete
and those where this is not the case; all models studied so far in the literature
belong to the first category [2, 3, 5, 30]. One has just to choose an extended space-
time E which can be written locally as M x S/I; when the pair (S, /) (symmetric or
not) is an isotropy irreducible space, the group N(Γ)/I is indeed discrete and we are
in the first situation; notice that Tables 1 and 2 of [1] can be helpful to provide
examples where N(I)/I is not discrete. In any case, this choice being made, one has
to choose a group R containing a subgroup isomorphic with / (or / divided by a
normal subgroup of /), this allows one to define the group homomorphism λ: /
-+λ(I)cR. As already stressed, this map λ does not characterize the "geometry"
but rather the action of S on the local product ExR. If we now choose a Lie(R)
valued, S invariant Yang-Mills field on E and a S invariant metric on E, the
dimensionally reduced Einstein-Yang-Mills field lagrangian will in particular
contain a Lie (Z(λ(I)) + Lie(iV(/)//) valued Yang-Mills field on M. In general one
chooses the group R big enough, in such a way that the centralizer Z(λ(I)) oϊλ(I) is
not discrete, but one could of course find an extreme situation where Z(λ(I)) is
discrete and where N(I)/I is the only piece left! (see example below). The Higgs field
will now belong to some representation of the final gauge group Z(λ{I)) x N(I)/I,
and this representation can be found through the technique explained in Sect. 5.2.
If one is now interested in possible "symmetry breaking," one should use the
comments of Sect. 5.3; in particular, if one wants to be in a situation such that the
potential V(φ) = 0, then, rather than choosing λ9 one can directly construct a global
homomorphism A from S into R by choosing a group R containing a subgroup
isomorphic with S (or divided by a normal subgroup). The final work is of course to
restore the dimensionfull constants (using Sect. 5.4) and to analyze the physical
spectrum of the model. Let us now analyze several examples:

1) S = SO(3) [respectively St/(2)], / = SO(2) = U(1), K = SU(3). These models
have already been studied in [3]. S/I is the two sphere S2. The homomorphism λ
maps J = SO(2) = U(1) onto a U(l) subgroup of SU(3). From the one hand, the
centralizer of the image is Z = SU(2)xU(l)/Z2, from the other hand, the
normalizer N(I) of SO(2) in SO(3) [respectively SU(2)] is SO(2)xZ2 [respec-
tively SO(2)], therefore N(I)/I = Z2 (respectively [e]) is discrete. The Lie algebra
of the final gauge group emerging from the reduction of the Einstein-Yang-Mills
system is Lie(SU(2) x U(l)); in this case the Einstein part of the Lagrangian on
M xS2 does not bring anything new (but for a factor Z2); also the haβ field is
quite trivial since S2 admits only one - up to scale - SO (3) [respectively SU(2)]
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invariant metric: haβ(x) is therefore a real valued function h(x) and is even a
constant if we keep fixed the volume of S/I; then KE(h) = 0 and VQί) is just a
(cosmological) constant. The branching rules for the adjoint representation of
SO(3) or SU(2) into U(l) and of the adjoint of SU(3) into SU(2) are

0 Γ + l - l Ί 0 0 Γ + l - l Ί

3 x l - h [ l + l j and 8->3 + l + |_2 + 2 J, where the upper subscript refers to
the U(l) eigenvalues; these eigenvalues can be obtained by writing 3 x 3 = 8 + 1
and by specifying the eigenvalues of the U(l) generator (hypercharge) in the
fundamental representation (3) of SU(3), a conventional choice is

diag(2/3; —1/3, —1/3). The most general φ\ field would map the 1 + 1
Γ + l - l Ί

subspace of Lie(SU(2)) into the [ 2 + 2 J subspace of Lie(SU(3)); however we

can further specify the model by considering only those φ fields which map 1
+ 1 - 1

into 2 and whose restriction to 1 is just zero. This last choice allows us to
make contact with the phenomenology of the Weinberg Salam model where φ is
a doublet of SU(2) with hypercharge +1. Notice that here there is no direct
coupling of φ to the field strength [Eq. (4.4.5)], φ\ is zero since N(I)/I is discrete.
Absolute minima V(φ) = 0 for the Higgs potential are associated with the
existence of algebra homomorphism A from Lie(S) into Lie(jR) - see Sect. 5.3.
The group SU(3) has two maximal subgroups (defined up to conjugacy)
= and SO(3); correspondingly, the Lie algebra of SU(3) has two

maximal simple subalgebras that we call Lie(SU(2)) and Lie (SO (3)) although
they are isomorphic. The homomorphism λ from J = U(l)cS = SU(2) into
Lie(SU(3)) can be extended in two possible ways: either we set Λ(Lie(S))
= Lie(SU(2)) or we set Λ(Lie(S)) = Lie (SO (3)). Only in the first case the stabilizer
of the minimum (the "unbroken" gauge group), i.e. the centralizer of
Λ(Lie(SU(2))) in Lie(SU(3)), is not zero, we get Lie(U(l)); indeed the centralizer
of SU(2) in SU(3) is U(l) whereas the centralizer of SO(3) in SU(3) is discrete
[(SU(3)/SO(3) is an irreducible symmetric space]. Notice that there is a
difference between the two cases because an algebra homomorphism cannot
necessarily be lifted to a group homomorphism: there are homomorphisms
SO(3)->SO(3), SU(2)-»SU(2), and SU(2)->SO(3) but no homomorphism SO(3)
->SU(2). One can now compute mixing angles [3].

2) S = U(2,#) = Sp(2) —2 by 2 unitary matrices over the quaternions H.
J = U(l,#) = Sp(l) = SU(2); Λ = SU(5). The "internal" space S/I is the seven
sphere SΊ. The maximal subgroup of SU(5) are SU(4)xU(l), SU(3)xSU(2)
x U(l) and Sp(2) (in this section we no longer mention the discrete Zp factors). We

choose λ as a homomorphism from SU(2) onto an SU(2) subgroup of SU(5). From
the one hand, the centralizer of the image is SU(3) x U(l), from the other hand, the
normalizer Nil) of / = Sp(l) in Sp(2) is Sp(l) x Sρ(l) = SU(2) x SU(2), as is clear by
representing Sp(2) by 2 x 2 matrices over the quaternions; therefore we get in this
case a non-discrete Lie group N(I)/I = SU(2). The full gauge group emerging from
the reduction of the Einstein-Yang-Mills system is therefore SU(3) x SU(2) x U(l).
Besides the SU(2), the Einstein part of the lagrangian on M xSΊ brings us also a
non-trivial haβ field; indeed, the space of Sp(2) invariant metrics on SΊ has
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dimension d = l (one decomposes the tangent space at the origin of SΊ into
Ad(Sp(l)) real-irreducible representations: 7 = (1 + 1 + 1) + 4 and construct an

3 x 4
Ad(Sp(l)) invariant bilinear symmetric form, therefore d= —- 1-1=7, see also
[1], Sect. 4.1). 2

Let us now consider the Higgs field φ; the branching rule for the adjoint
representation of Sp(2) into Sp(l) = SU(2) and of SU(5) into SU(3) x SU(2) are

_ 0 0 5/3 - 5 / 3 0

[10]->[3] + [1 + 1 + 1] + [2 + 2] and 24->(8, l) + (l,3) + (3,2) + (3,2) + (l, 1) where
the upper subscript refers to the eigenvalue of the U(l) generator Y. These
eigenvalues are obtained by specifying (arbitrarily) 7 = (2/3,2/3,2/3, — 1, — 1) in
the fundamental representation 5 of SU(5) - as in the conventional SU(5) model of
Georgi - Glashow - and writing 5 x 5 = 24+ 1. The most general Higgs field φ\
would map the [1 + 1 + 1]+ [2+ 2] subspace of Lie(Sp(2)) into the (3,2)+ (3,2)
+ (1,1) subspace of Lie(SU(5)); however we can further specify the model by
imposing that the restriction of φ to 1 + 1 + 1 + 2 vanishes; in such a way we obtain
an SU(3) triplet of Higgs with hypercharge 5/3. In this theory we obtain a
Weinberg angle equal to the one found in the conventional SU(5) model but the
analogy stops there: we can find a homomorphism A of S = Sp(2) onto Λ(S)
= Sp(2)cSU(4)cSU(5), the centralizer of Λ(S) in SU(5) is then U(l), the SU(3)
group is "broken" and the N(I)/I = SU(2) piece of the gauge group stays unbroken;
this example is therefore for illustration only but cannot be used in phenome-
nology. Notice finally that, with the above assignment for the Higgs field, there is
no direct coupling between the Higgs field and Fa

μv or Fμv, this would not be true if
we suppose that φ\ is not zero.

3) Let us conclude this section by just giving an example where N(I)/I is not
discrete but where Z(λ(I)) is discrete: S = SO(5), /-SO(3), and R = SO(4).

S/I = F5? 2 is the Stiefel manifold of 2-planes in R5 and ^ ^ - SO(2) = U(l), but if

>!(/) = SO(3)CSO(4), then Z(λ(I)) is discrete. Notice that

v = + s
5 ' 2 SO(3) Sp(l)

although SO(5) - respectively SO(3) - is isomorphic with respectively
Sp(l) Z 2
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