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Abstract. We investigate one-dimensional continuum grandcanonical Gibbs
states corresponding to finite range superstable many-body potentials. Absen-
ce of phase transitions in the sense of uniqueness of the tempered Gibbs state is
proved for potentials without hard-core by first proving uniqueness of the
Gibbs measures for related hard-core potentials and then taking an appropria-
te limit of those Gibbs measures.

Introduction

The absence of phase transitions has been established for a wide variety of one-
dimensional statistical mechanical models. The majority of papers on this subject
have focused on lattice or hard-core continuum systems, due to the technical
difficulties which arise in continuum models without hard-core restrictions. For a
brief survey of results of this type we refer the reader to the introduction of
Dobrushin’s paper [1]. More recently, results have been obtained for the nonhard-
core continuum case. Campanino, Capocaccia, and Olivieri in [2] proved the
analyticity of the infinite volume pressure as a function of the interaction
parameters for superstable, two-body, slowly decaying potentials (without hard-
core) via renormalization group techniques. Suhov [7] proved the uniqueness of
the Gibbs state, and related properties, for positive pair potentials with exponen-
tial decay, and indicated extensions of his results to other classes of potentials.

In this paper we prove, by different methods, uniqueness of the tempered Gibbs
state for finite range, superstable, many-body interactions without hard-core for
one-dimensional systems. The finite range restriction does not seem to be crucial to
the method of proof, but significantly simplifies the arguments, which we believe
may have applications to higher dimensional models.

For a given potential Vwithout hard-core, we prove in Sect. 2 uniqueness of the
Gibbs state corresponding to the perturbed potential V+ ¢y for N=2,3,4, ...,
where ¢y = o0 for configurations with more than N particles in any interval of
length 1, and ¢y =0 otherwise (see Definition 1.1). The method of proofis based on
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a technique of Dobrushin [1] developed for lattice and hard-core models.
Dobrushin’s results establish uniqueness for the Gibbs state corresponding to
V+ @y when N =2, since in this case V+ @y is a hard-core potential in the usual
sense. When N is extremely large so that, for example, N particles in an interval of
length 1 corresponds to a density which greatly exceeds that of any known form of
matter, one would not expect physically significant differences in the behavior of
systems governed respectively by V and V+¢y. A version of this is in fact
established in Sect. 3 where we prove that any extremal tempered Gibbs state for V
is a limit, as N— oo, of extremal tempered Gibbs states for ¥+ ¢y. Uniqueness is
then easily proved.

We remark that perturbed potentials of the form V+ ¢, along with the
corresponding Gibbs states and correlation functions were studied for higher
dimensional models in [3,4].

1. Notation and Definitions

Let X(A) denote the set of all locally finite subsets (configurations) of the Borel
subset A of the real line R. Let B, be the o-field on X(A) generated by all sets of the
form {se X(A):|snB|=m}, where B runs over all bounded Borel subsets of A, m
runs over the set of nonnegative integers, and | - | denotes cardinality. As in [3-5]
we make the natural identification

o]

(X(R). By)= TT (X(Gi+ 1. Bei1)- (11)
Let X denote the set of configurations in X (IR) of finite cardinality, and X y(A) the
set of configurations in X(A) of cardinality N.

For a bounded Borel set A, let T: A¥— X y(A) be the map which takes the
ordered N-tuple (x;, ..., xy) to the unordered set {x, ..., xy}. In a natural way T
defines an equivalence relation on A, and X y(A) may be regarded as the set of
equivalence classes induced by T. For n=1,2,3, ..., let d"x be the projection of
n-dimensional Lebesgue measure onto X y(A) under the map T. The measure d°x
assigns mass 1 to Xo(A)={0}. Define as in [3,4,5]

o N
vald)= T —d'x, 1.2)

n=07l.

where z is chemical activity. The measure v,, when normalized to a probability
measure, is the finite volume Gibbs state for the zero potential in A.

We will consider Bp-measurable many-body potentials V: Xy—(— o0, + 0]
of the form

V=2 5 40, (13)

yix
ly|=N

where the function ¢y : X y(R)—(— 00, + 0] is called an N-body potential. For
later reference we list some restrictions to be imposed on a potential V.
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Condition 1.1. a) V is superstable (see [6]).
b) inf{gy(y):y€ Xp, |[y|=N,N=1} > — o0, where @y is related to V as in (1.3).
¢) V has finite range, i.e., there exists R,>0 such that if

)

then ¢y(x4, ..., x5)=0, for all N=2.
Definition 1.1. For a configuration x=(x, ..., xy) € Xy(R), let
oo if max|x;—x;<1
o) 2{0 otherl\;vise.
For a given potential V; let
VN=V+oy. (1.4

As in [5] we define the By-measurable set R, C X(IR) so that V(x|s) represents
the energy of the configuration xeX(A), assuming the configuration
s€ R,NnX(A°. The finite volume Gibbs state p ,(dx|s) for the bounded Borel set A
(with positive Lebesgue measure), potential V, inverse temperature 8, chemical
activity z, and external configuration s€ R, nX(A) is given by

wdxls) = W v (d). (L5)

where the constant Z ,(s) makes u,(dx|s) a probability measure. If V satisfies
Condition 1.1,then 1 £ Z ,(s) < 0. If s¢ R ,, define u ,(dx|s) to be the zero measure.
Let {n,} denote the specification associated with f, z, and V (see [5, p. 16])

defined by .
T4(4,5) ZJ, pa(dx|snA°%), (1.6)
where A€ By, A'={xe X(A4):xu(snA°) e A}, and se X(R).
The following definition comes from Preston [5].
Definition 1.2. For positive integers n and m, let I, =[—2n, +2n]CR and
Upm={s € X(R):[sn(I,\],,— )| S 4m} .
For a given potential V] let
D={se X(R): V(y)< oo for all yCs with |y|<o0},

and define U,=D U, and U,=l U,.
nz1 mz1
When Vis specified, let UY correspond to the potential V¥ given in Definition 1.1.
Definition 2.3. A probability measure ¢ on (X(R), Bg) is a Gibbs state for the
ificati if
specification {rn,} i o(,(A, 5)) = 0(4)

forevery A € By and every bounded Borel set A CIR. If in addition, 6(U ) =1, then
o is a tempered Gibbs state.



598 D. Klein

Definition 2.4. For a potential V, Borel sets A C A with positive Lebesgue measures,
and se U, the finite volume Gibbs density r4(x|s) is given by

exp[ — ﬂV(xuylsm/T“)]
X(A\a) Z(snA°%)

Definition 2.5. A function f on X (IR) is a cylinder function if f (s) = f (sn A) for some
bounded set ACR and all se X(IR). A subset 4ACX(IR) is a cylinder set if the
characteristic function for 4 is a cylinder function.

Note that if f'is a B ,-measurable function on X(A), then we may regard fasa
Br-measurable cylinder function on X(IB) by defining f(s) =f(snA) for se X(R).
In this case,

r4(xls)= Via(dy) .

ni(f1) =] f()m(dxls) = X(IA) fra(xls)v4(dx) . (1.7)

2. Hard-Core Case

In this section we prove, for any f and z, uniqueness of the Gibbs state oy
corresponding to the potential V'V (see Definition 1.1) when V satisfies Condi-
tion 1.1. The method of proof relies on techniques developed by Dobrushin in [1].
We note that with Condition 1.1, existence of a Gibbs state for V" was proved in
[4] (see also [5,6]), and it is not difficult to see that any Gibbs state for V'V is
tempered.

The strategy for uniqueness is to prove that for any Byp-measurable cylinder
function f on X(IR),

nlgg s StElIJ)N tnév—n,n](f’ S) - név—n,n](fﬂ t)' =0 ’ (21)

where {r}} is the specification for V'V, 8, z defined by (1.6). Uniqueness of the Gibbs
state then follows from [5, Lemma 9.3].

Let (X, By) be a measurable space and let y; and u, be probability measures on
(X, By). The variation distance between the measures u; and p, is defined as

opy, po)= Sup 11 (A4) — pap(A)]. 22

If u, and u, have respective densities p, and p, with respect to a finite measure v on
X, then defining o(p;, p,) = 0(i1, 1), we have

op1,p2)= 1/232 IP1(x) =pa(x)Iv(dx)=1— }f( min(p; (x), p,())v(dx).  (2.3)

Suppose, now that f is a bounded By-measurable cylinder function with
f(x)=f(xnJ), where J is an interval on IR. Then for s,z UY and any interval
I1>J,

Iy (f,8)—mi(f, Ol = X{J} [ o) [ri(xls) =7 (xl)Iv,(dx)
=Sl X{J) Ir7(x]s) —r7(x[D)]v,(dx)

S20f e Is), 71 (- [0). 24
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From (2.4) we see that (2.1) holds for any bounded measurable cylinder function
provided lim sup, @y, 19): - (- 19)=0 23)

n— o S,t
for all sufficiently large finite intervals JCIR.
The following lemma was proved by Dobrushin in [1].

Lemma 2.1 (Dobrushin). Let (X, B, v;) be a measure space for j=1,2,3 and let

g
(X, By, v) = n (X;,B,,v)
L

be the product measure space with measure v=v; X v, X v5. Let p*(-) and p*(-) be
densities with respect to v for probability measures on (X, By). Consider the marginal
densities ; ;
pi(x) =1 p'(xy, x5, x3)vo(dx,)vs(dx,),
Pi1 (%1, X2) =[ p'Cxy, X5, X3)v3(dx3), for i=1,2,

and the similarly defined densities p5(x,), p5(x3), ' 3(x1, X3), and p2 3(x,, x3) for
i=1,2. Suppose there exist conditional densities p'(x,|x,,X3) and pi(x;|x;) for
which
P(x 1> X3, X3) =Pl (x4]%5, xs)l’z, 3(x2,X3),

Pi1, 2(%15X3) =pi1/2(x1|x2)p§(x2) (i=1,2).

Then _
o(p1, p) S0o0(p3, p3) + do(1 —0(p3, 13)) » (2.6)
where do=_Sup_o(pi(-Ix2, X3), P+ 182, %5) @.7)
J i 2)
0_CO = xszlélgf)z Q(p}( : ’x25 X3), p%( : lx25 £3)) . (28)
x3,X3€X3

Most of the remainder of this section is devoted to using Lemma 2.1 to establish (2.5)
and (2.1).

Let f be a bounded measurable cylinder function satisfying f(x) = f (xnJ), and
let the interval J = (b, ¢] be chosen so that the range of the potential V¥ is less than
c¢—b. Let sy, s, € UY be given and satisfy s, n(c, c0) =s,n(c, ). Define a=2b—¢
so that the interval (a, b] has the same length as (b, c]. Assume that n is large
enough so that [ —n,n] > (a, b]u(b, c]. In the language of Dobrushin’s lemma we
make the following identifications:

(X1, By)=(X((b,c]), By,ep) »
(X3, By)=(X((a,b]), B 1) » 2.9)
(X3’ B3)(X([ —n, a]): B[—n,a]) .
Given a configuration x € X(R), let x, =xn(b, c], x, =xN(a, b], x3=xn[—n,a],
and V=V X Vs X Va -
Fori=1,2, let
p(x1> X2 xs)—r[ n, n](x17x2a X3ls;) . (2.10)
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It follows as in [1] that for i=1,2,

Pi(xy) =r{%d a(x4ls) (2.11)
Piz(xz) = rE[i:Z],n](xZISi) ) (2.12)
pil(xllxz, X3)= ri’i:f.]](xl Ix,Ux3U(s\[—n,b])). (2.13)

Remark 2.1. For the probability densities just defined, the conclusion of Lem-
ma 2.1 can be modified, with no change in Dobrushin’s proof, so that

o(p1, p}) See(ps, p3)+ a1 —e(p3, p3)], (2.14)
where
a=sup{o(pi(-|X,,x3), pi(-1%2, X3)) 1 x,Ux3€ U,
L N N : (2.15)
&=Sup{g(pi( ' |x2’ X3), p%( : 'x27 £3) S Xy EXZs X3, £3 eX39
and x,Ux;e UY, x,uX;e UN}. (2.16)

Lemma 2.2. Let f,z>0 and an integer N =2 be given. Let a potential V satisfy
Condition 1.1 with range less than c—b, and let J be an interval on the real line of
length ¢ —b. Then

sup [ exp[—pV™(xls)]v,(dx)< o0 (2.17)
22 xo

Proof. From the proof of Theorem 3.1 of [3], we have V¥(x|s)= —D|x| for all
xe€X(J)and se UY such that snJ =0, where D >0 depends only on c—b and N.
The proof now follows from the definition of the measure v, given in (1.2).

Lemma 2.3. With the same hypotheses as in Lemma 2.2 and with the identifications
given by (2.9) through (2.16),
a) 4=0.
b) a<1—h, for some h>0 depending only on c—b, V¥, B,z (and not s, or s,).
Q) (5150, 28 (- 1520) S (1= ol Is ) HE (- I52),
where h is given in part b).

Proof. &= 0follows immediately from the fact that the range of V'V is less than ¢ — b.
From Lemma 2.2 we see that
sup Zj(s)< oo,
si\EJU:(D
where Z%(s) is the normalizing constant in (1.5) corresponding to V'~ and J. Let
denote the empty configuration in the interval J. Since exp[—pBV™(0,ls)]

=exp0=1, we have
“2,§v {0,},0)=h>0. (2.18)
teUx

By consistency of the specification {n}} (see [5]), for any interval I>J,

m ({053, 8) =1 2 ({0}, Onf (dt. 5). (2.19)
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From (1.7) and since v,({0}) =1, it follows that =,({0,}, t) =r{(0,]t), and thus from

(2.18) and (2.19),
mf r1(@,s)=h>0. (2.20)

Now combining (2.3), (2.13), and (2.15), we obtain
a=1—inf [ min[p}(x,x,, X3), p3(x;|%,, X3)Iv,(dx,) ,

where the infimum is taken over the same set of x, X;’s as in (2.15). Combining this
with (2.20) gives a <1—h.

The proof of part c) of the lemma follows directly from parts a) and b),
Lemma 3.1, and Remark 3.1. This concludes the proof.

Theorem 2.1. Let V satisfy Condition 1.1. For any f,z>0, and any integer N=>2,
there is exactly one Gibbs state for V¥, B, z.

Proof. We first observe that a simple induction argument, together with conclusion
c) of Lemma 2.3, shows that for any integer k>0,

({2 (- 150, 12 (- Is2)) S (L= h)* (2.21)

for all n sufficiently large.
Now given any s,te UY, let s, e UY be chosen so that s;n(c,0)=s, and
s;N(—oco, b]=t. By the triangle inequality,
Q(r{lﬁﬁ],,,](- Is), r{b—’ful,n](‘ It))éQ(VEE;] n]( [s), "(b f.] n](' Is1))
+o(r (- s, 2 (- 1) 222
Given any integer k >0, we can conclude from (2.21) that the first term on the right
side of (2.22) is bounded by (1 — h)* for large enough n. Using the relation proved in
obvious analogy with (2.21), we can conclude that the second term on the right side

of (2.22) is also bounded by (1 — h)* for sufficiently large n. Since & is independent of
s,te UN, it follows that

Jim_sup, o( 5L 19, {25+ 10) =0

Applying the remarks preceding (2.5) and (2.1) we obtain the conclusion of the

theorem.
The following cluster property is analogous to Dobrushin’s result [1,

Corollary 3].

Corollary 2.1. With the same notation and assumptions as in Theorem 2.1, let
DeBy, ) and CeB_,, ,, for some k>0. Then

lon(CnD) —ox(C)on(D)| S an(CO)F (k), (2.23)
where lem F(k)=0.

Proof. From general measure theory it suffices to prove the upper bound in (2.23)
for all D € By, ,,; and all m such that k <m< co. Since the specification {nj} can be
regarded as a system of conditional probabilities for oy (see [5]) we have

on(D)= .[ n{v_ k, m](D9 s)ay(ds)
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and
O.N(CmD) =£ 7tév—k,m](D9 S)O-N(ds) .
Consequently,
lox(CnD)=0oy(C)an(D)|=on(C) sup, 7k my(Ds 8) — 7 i (D5 D]

Since Yy py(D, 8)={ n_; (D, O)m; m(dt, ), it follows that
lon(CND)—on(C)on(D) S on(C) Sup, 7k, 1g(D5 ) =7 (D, D).

Let F(k)= sup [n 1y(D,s)—n s (D, t)l. From the proof of Theorem 2.1 it
s,tel o

follows that
klim F(k)=0.

This completes the proof.

3. Nonhard-Core Case

Existence for all f§,z>0 of a tempered Gibbs state for a potential satisfying
Condition 1.1 follows from results in [4]. In this section we prove the uniqueness
for all B, z> 0 of the tempered Gibbs state for such potentials. This is accomplished
by proving the existence of precisely one extremal tempered Gibbs state
corresponding to V,f,z. The technique of proof relies on Theorem 2.1, the
methods developed in [4], and the general theory of Gibbs states as developed in
[5]

The proof of Theorem 2.2 of [ 5] shows that any extremal tempered Gibbs state
a* for V, B,z is obtained via the limit,

o*(A)=lim m;_, ,.(4,5) (3.1)

for some se U, and any cylinder set 4 € By. It also follows from Theorem 2.2 of
[5] that for any Gibbs state o corresponding to V, 5,z and any A € By,
a(A)= [ a*(A)a(ds), (3.2)
where ¢° is an extremal tempered Gibbs state for each se U, and is given by (3.1)
for all s in some subset of U, of g-measure one (see [ 5] for further details). We see
from (3.2) that the existence of one and only one extremal tempered Gibbs state
implies the existence of one and only one tempered Gibbs state.
Let a potential V satisfying Condition 1.1 be given and recall from Definiti-
on 1.1 that VN =V+ . It is easily checked that (see Definition 1.2)
U,=U UY. (3.3)
Nz2
Now given se U, and f8, z >0, suppose that ¢° is a tempered extremal Gibbs state
for V, B, z and is given by (3.1). From Theorem 2.2 of [4] and (3.3) above it follows

that ox(A)=lim z_, (4,s) (34)
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for all N sufficiently large and any cylinder set A € By, where oy is an extremal
Gibbs state for ¥V, B, z. We show in Theorem 3.1 below that for appropriate

seU,, .
z\lrlm on(A)=0%(4)

for any cylinder set A € By,.

Lemma 3.1. Let 8, z >0 and a potential V satisfying Condition 1.1 be given. Let ¢ be
any tempered Gibbs state for V, B, z. Then for any 6>0,

o{te U, :m_, o(Uy,, t)>1—6 for some fixed m and all n}=1.

Proof. By hypothesis a(U,)=1. Therefore, given ¢>0, we can choose m large
enough so that ¢(U,,)>1—e¢. Let

Imp=0ite U :m_, (U, t)<1—ke}.

Since m;_, (U, t)<1 for all te U, it follows that
l—e< O-((]m) = a(n[—n,n](Uma t)) <1 _ﬂ'n,k + /ln,k(l - kS)

1
or 1 —e<1—4, ke, and consequently 4, , < T We have shown that

o{teU,:m_p(Upt)<l —ks}<% (3.5)
foralln=1,2,3,.... Replacing ke by ¢ in (3.5), we see that given any d >0 and any
integer k=1, there exists an m>1 such that

T (Ups 1) >1 =6

foralln=1andallte U inaset of ¢-measure greater than 1 — 1/k. The conclusion
of Lemma 3.1 now follows from the fact that k can be chosen arbitrarily large.

Remark 3.1. Lemma 3.1 is valid for higher dimensions.

Theorem 3.1. Let ¢ be an extremal tempered Gibbs state for V, 5,z and assume V
satisfies Condition 1.1. Then there exists ans € U, such that o = ¢° and such that for
any cylinder set A€ By,

lim o3(4)=0%(4), (3.6)

where ¢° and a% are given by (3.1) and (3.4), respectively.

Proof. From Theorem 2.2 of [ 5] and Lemma 3.1 above it follows that there exists an
se U, satisfying: 1) 0 = ¢°, where ¢° is given by (3.1), 2) given any ¢ >0, there exists

>1 such that
me 7 such tha (U $)> 11— (3.7)

uniformly in n. With (3.7) the proof of Lemma 3.1 of [4] yields the following. Given
any ¢>0 and any cylinder set A € By,

I (A, 8) = T (A4, S)] < (3.8)
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for all N sufficiently large uniformly in n. By the triangle inequality,

|o3(A) — a* (A S loy(A) = 7f- (4, 5)]
+ |nfv—n,n](A9 S) - n[—n,n](Aa S)] + In[——n,n](A5 S) - GS(A)l . (39)

Combining (3.1), (3.4), (3.8), and (3.9) and first choosing N and then n large, we see
that the right side of (3.9) can be made arbitrarily small and thus

Alrim oy(A)=0%(A4).
This concludes the proof.

Remark 3.2. Theorem 3.1 holds for arbitrary dimension provided Lemma 3.1 of
[4] holds for arbitrary dimension. In contrast to the statement of Lemma 3.1 of
[4], the proof, as given in [4] is valid only for one-dimensional systems.

Theorem 3.2. Let V satisfy Condition 1.1. For any inverse temperature [ and
chemical activity z, there is exactly one tempered Gibbs state o corresponding to

V, B, z. Furthermore,
Allim on(A)=0(4) (3.10)

for any cylinder set A € By, where oy is the unique Gibbs state for V¥, B, z given by
Theorem 2.1.

Proof. From Theorem 3.1 and the remarks preceding (3.4) it follows that for any
s,teU,, ayy=o0% for all N sufficiently large. From Theorem 3.1 it follows that all
extremal tempered Gibbs states for ¥, f, z are identical and consequently from (3.2)
there exists precisely one tempered Gibbs state o for V, f, z; ¢ is clearly given by
(3.10). This concludes the proof.

Remark 3.3. The results on the decay of correlations given in [4] hold for the
potentials satisfying Condition 1.1 considered here.
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