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Abstract. By means of a spectrum conserving transformation, we show that one
of the 3 coefficients in Symanzik's improved action can be chosen freely, if only
spectral quantities (masses of stable particles, heavy quark potential etc.) are to
be improved. In perturbation theory, the other 2 coefficients are however
completely determined and their values are obtained to lowest order.

1. Introduction

Symanzik's improvement programme [1-6] for lattice gauge theories (and other
lattice theories) is designed to systematically reduce the cutoff dependence of on-
and off-shell amplitudes near the continuum limit. Mainly, this is achieved by
choosing an improved lattice action, which, at the first level of improvement, is
equal to the standard one-plaquette action plus a linear combination of 3
operators1 of dimension 6 with perturbatively calculable coefficients ct(g%} (g0:
bare coupling constant, ί = 1, 2, 3). In addition, gauge invariant lattice operators
are in general also intrinsically cutoff dependent and, in order to obtain improved
correlation functions, must therefore be corrected by subtracting a combination of
higher dimensional operators. The necessity of such subtractions has been
explicitly demonstrated by Symanzik in the case of the non-linear σ-model [3.
Sect. 4].

For the computation of the coefficients ct(g%), the intrinsic cutoff dependence of
operators is a potential source of difficulty, because it must be carefully
disentangled from the "dynamical" cutoff effects, which are to be cancelled by
improving the action. This problem can however be entirely avoided, if only the
improvement of spectral quantities (e.g. the static quark-antiquark potential at
physical distances) is required. Such quantities are independent of the choice of
"interpolating" operator field and it therefore makes no difference whether the
operators one uses have or have not been corrected.

In this paper, we show that the requirement of on-shell improvement places
only two constraints on the coefficients ct(gl] so that without loss one may choose

o) = 0, for example. cv(g%) and c2(#o) are then completely fixed and can be

-* Heisenberg foundation fellow
1 By abuse of notation, we use the word "operator" for any Euclidean (C-number) field, which
can be composed from the fundamental gauge field
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computed straightforwardly by evaluating two distinct spectral quantities in
perturbation theory. We are presently performing such a calculation to one-loop
order and shall here only quote the tree level result (Sect. 4).

In view of the rather non-trivial conceptual structure of the improvement
programme, we include two preparatory sections, which are slightly more
extensive than absolutely necessary. First, we explain what is meant by the
(classical) dimension of lattice operators and present an efficient method to
compute it (Sect. 2). Improved lattice gauge theories are introduced subsequently,
emphasizing the necessity to formulate an improvement condition. In Sect. 4, we
establish the main result announced above by constructing a transformation,
which shifts the parameters in the improved action, but leaves the spectrum
unchanged up to 0(a4) (a: lattice spacing). Apparent discrepancies with previous
calculations of the coefficients c^g^) are resolved in Sect. 5 and conclusions are
drawn in Sect. 6.

2. Classical Dimension of Local Lattice Operators

Consider SU(ΛΓ) lattice gauge fields U(n, μ) living on a four-dimensional hyper-
cubic lattice with sites n e Z4. A simple example for the kind of operators to be
studied below is the plaquette operator

&(n)=ΣK{t-U(n,μ)U(n + μ,v)U(n + v,μΓ1U(n,vΓ1} (1)
μ,v

(μ: unit vector in the positive μ-direction). Some characteristic features of (9(n) are
a) Φ(n) is a gauge invariant polynomial of link variables [7(m, v) located near n.
b) &(ri) moves covariantly under space-time translations of the lattice gauge

field.
All operators that we shall consider later have these general properties, and no

further properties are required to unambiguously define the classical dimension of
an operator.

Any given smooth continuum gauge field Aμ(x\ x e K4, can be arbitrarily well
approximated by lattice gauge fields U(n, μ) in the following way. Let "α" denote a
small distance and superimpose a lattice on R4 with sites x = an, nε Z4. The
(continuum) parallel transporter from an + aμ to an in the field Aμ(x) is then given
by the familiar path ordered exponential2

i
U(n9 μ) = T exp a f at Aμ(an + aμ-taμ). (2)

o

For sufficiently small spacing a, U(n, μ) will be a slowly varying lattice gauge field
"triangulating" Aμ, and one expects that lattice operators Θ(n) evaluated in this
field approximate local (continuum) operators formed from Aμ. Indeed, inspecting
Eq. (2), one easily establishes the existence of an asymptotic expansion

00

a?0 Z0<*°k(Q). (3)

2 We use a notation, where A is an anti-hermitian, traceless N x JV-matrix
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where Ok(x) is a polynomial of Aμ(x) and its derivatives. Due to the gauge
covariance of Eq. (2) and the gauge invariance of 0(0), the Ofe's are actually gauge
invariant, too.

We now define the dimension of a lattice operator &(n) to be the smallest fe for
which O f cΦO. For example, in case of the plaquette operator we have

0(0) = - ζ Σ Tr {Fμv(0)Fμvm + 0(a5) , (4)
μ> v

AV~] , (5)

so that its dimension is equal to 4. We emphasize that the dimension of lattice
operators does not depend on how precisely one approximates continuum gauge
fields by lattice fields. In particular, Eq. (2) could be replaced by

U(n,μ)=expaAμ(an)

without affecting the leading term in the expansion (3). For the actual computation
of the dimension of complicated lattice operators, Eq. (2) is preferable, however,
because it allows us to take full advantage of gauge invariance.

When Θ(n) transforms as a scalar field under rotations and reflections of the
lattice, the operators Ok that can occur in the small "α" expansion (3) are severely
restricted. In particular, Oh = 0 for odd fe, and the lowest operators assume the
general form

04 = r0ΣTr(FμvFμv), (6)
μ,v

Tr(DμFvβDμFvβ)
μ,v μ,v,ρ

r3 Σ TrCD^D^J + ΣSμG,. (7)
μ,v,ρ μ

Here, the numbers rt depend on the operator Θ(n) considered and

DμFvρ = dμFvρ + lAμ,Fvρ]. (8)

Gμ is a linear combination of the fields

which we shall never need to work out explicitly. The coefficients η, on the other
hand, will be required frequently, and the remainder of this section is therefore
devoted to the question of how to compute them efficiently.

Let us begin with the small 'α' expansion of the simple operator

YvU(n,vΓ^. (9)

For any given fixed pair of indices μ φ v, choose the gauge

Aμ(x) = 0 for all x,

Av(x) = 0 for all x with xμ = 0 . (10)

&μv(0) then reduces to
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Furthermore, at x = 0, we have

Λ . 3p

vd
q+1Av = DpDq

μFμv,so that v μ v v μ μv

1 „„

) . (13)

Expanding the exponential in Eq. (11), noting Tr4v = 0 and using (13), quickly
yields the result

0,,(0) = N + ̂  fl

-

^D, + Dv) Jv + 0(aΊ) . (14)

This is a relation between gauge invariant quantities and it therefore holds for all
gauge fields Aμ, including those which do not satisfy the gauge condition (10).

More complicated operators than &μv can be treated similarly by writing them
as a sum of Θ^s plus traces of products of gauge covariant plaquette matrices
such as

Γ1U(n,vΓί-ϊ. (15)

Proceeding as above, these can be expanded and one obtains, for example,

) . (16)

Because Pμv

9s are always multiplied by other Pρσ's, it is not necessary to go beyond
0(a4) in Eq. (16). In this way, all the operators encountered later can be expanded
up to order α6 with little effort (see Sect. 3.3 for explicit results).

3. Improved Lattice Gauge Theories

3.1. 0(a2) Scaling Violations

Suppose we are given an SU(JV) lattice gauge theory with action S[(7] and bare
coupling constant g0. Euclidean expectation values of gauge invariant combin-
ations Q of the field U{n, μ) are defined by
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where Z is a normalizing factor such that <1> = 1 and

®UΓ\=ΠdU(n,μ) (18)
n,μ

\dU denotes the normalized Haar measure on SU(JV)].
Physically interesting quantities M such as the masses of stable particles and

their scattering amplitudes3 can (in principle) be extracted from the Euclidean
correlation functions of suitable local lattice operators. Initially, when expressed in
lattice units, these quantities only depend on g0 and a set of external space-like
lattice momenta collectively denoted by k( — π ̂  kt ̂  π for each component kt)

4. In
order to study the continuum limit, it is convenient to introduce a lattice spacing
"α" by defining scaled quantities m through

m(p,g0,a) = a~δM(ap,g0), (19)

where δ is the engineering dimension of M and p = k/aa "physical" momentum.
In a lattice gauge theory with perfect scaling it would be possible to find a

function g0(ά) such that

a-^m(p,g0(a)9a) = 0 (20)

for all quantities m. For a generic action this will however not be possible and,
according to perturbation theory, the best one can achieve is approximate scaling
near the continuum limit, i.e. for α->0 we then have5

a-^m(p,g0(a),a) = 0(a2). (21)
da

Note that there are many functuions g0(a\ which lead to approximate scaling. For
what follows, it is helpful to remove this ambiguity by choosing once and for all a
physical condition, which fixes g0(a) uniquely. For example, one may require that
the mass gap is equal to 1 GeV for all a. Or, more suitable for perturbation theory,
that the force between heavy quarks is equal to Cg2/4πGeV2 at a distance of
IGeV"1 \_g a fixed small number, the "renormalized" coupling, and
C = (N2 — 1)/2ΛΓ|. Ultimately, it does not matter what condition is chosen, but we
shall assume that it is the same for all theories considered and that it has the
general form

mo(g0(a)9a) = m0, (22)

where m0 is some spectral physical quantity and m0 a fixed value.
It is possible that different lattice actions S and S' yield the same physical

amplitudes within an error of order a2k. In more precise terms, this means the
following. Any given physical quantity can be computed in the two theories so that
one has two sets of functions m(p, 00, α) and m'(p, 00, a) (the bare coupling constant
g0 is just a parameter in the action and we are free to denote it by the same symbol

3 I.e. full propagator amputated, connected n-poίnt functions evaluated on the (lattice) mass
shell
4 Other external length scales may occur but are omitted here for simplicity
5 We use a sloppy notation, where 0(a2) may also stand for a term of order α2(lnα)r
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in all theories). In particular, g0(a) and g^a) may be determined and the
approximate physical equivalence of S and S' is then expressed through

m(p, 00(4 a) = m'(p, <fo(4 a) + 0(α2fe) . (23)

Due to universality, a large class of actions are expected to have identical
continuum limits and are hence equivalent up to 0(a2). Examples of actions S' that
are physically indistinguishable from a given action S [i.e. no error term in
Eq. (23)] are also easily constructed by local, gauge co variant substitutions of the
field variables U(n, μ). Such transformations affect correlation functions, but do
not change spectral quantities. This fact will be exploited in Sect. 4.

3.2. Improvement Conditions

The aim of Symanzik's improvement programme is to reduce the 0(α2) scaling
violations in Eq. (21) down to 0(α4) by choosing an improved lattice action.
Actually, in his study of the ^4-theory [2], Symanzik was able to show that not
only spectral quantities can be improved, but also the (properly normalized)
n-point functions of the fundamental field in momentum space. In the 2-dimen-
sional non-linear σ-model, the situation turned out to be not so simple, in
particular, the n-point functions of the lattice spin field φ could not be improved by
merely choosing an improved action [3]. However, the n-point functions of a
corrected field operator

Φ'=Φ + cΊ(ί/o)(Φ Πφ)φ + c2(<7o)Πφ, (24)

can be improved, provided the coefficients ct are chosen appropriately and
provided one subtracts certain contact terms from the correlation functions. For
gauge theories, no in depth analysis of 0(a2) scaling violations has yet been made
and it is not known whether e.g. the improvement of uncorrected (but normalized)
Wilson loops is possible to all orders of perturbation theory.

An improvement condition is a statement specifying which quantities are to be
improved. In general, different improvement conditions require different improved
actions. Moreover, some do not determine the improved action uniquely and still
others may be inconsistent as discussed above. Here we shall adopt the "minimal"
improvement condition, which requires that the error term in Eq. (21) be reduced
to 0(a4) for all low lying energy values m6. This includes, in particular, the force
between heavy quarks at physical distances and the spectrum of the field
excitations in a periodic (space-) box of physical size [8]. Because of the relation
between finite size effects on the mass spectrum and scattering amplitudes [9], we
expect that the improvement of the energy spectrum implies the improvement of
the latter, too. In any case, lattice theories satisfying our condition will be called
"on-shell improved."

The scalar field theories for which Symanzik has worked out the improved
action are also on-shell improved. His improvement conditions can however be

6 Energy values can be read off from the exponential decay of correlation functions at large
times. Equivalently, they can be identified with the eigenvalues λ of the transfer matrix T of [7]

through m= — \n(λ/Λ) (Λ: ground state eigenvalue of T)
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Table 1. List of the sets yf of elementary loops # on the lattice. Only the
loops of Fig. 1 occur in the improved action. The other loops are
generated by the field transformation discussed in Sect. 4

Set Description of elements No. of
elements/site

^o Plaquettes (Fig. la) 6
&ι Rectangles (Fig. Ib) 12
^2 Parallelograms (Fig. Ic) 16
^ Bent rectangles (Fig. Id) 48
<f4 Double plaquettes (Fig. 2a) 6
5̂ Twisted rectangles (Fig. 2b) 12

^6 Bent twisted rectangles (Fig. 2c) 48

more restrictive. For example, in the ^4-theory, the requirement that all π-point
functions of the field be improved completely determines the coefficients on the
improved action, while some of them remain free, if only on-shell improvement is
required (cf. Sect. 4).

3.3. Ansatzfor the Improved Action

Following [4] the improved action is written as7

2 3

:-2 Σ Ct(gl) Σ &W, (25)
0o «=o

where the &?s denote sets of elementary loops # on the lattice as described by
Table 1. A given set ίf{ contains all loops of a definite shape that can be drawn on
the lattice. Loops # that differ by orientation only are considered equal and the
weight & (<g) is defined by

&(<g) = Re Tr [1 - t/(<f)], (26)

[/(#) being the ordered product of the link variables U(n, μ) along #. Finally, the
coefficients ct(gl) are regular at g^ = Q and are normalized such that

CotoS) + 8Cltog) + 8c2(flfg) + 16c3tog) = 1. (27)

This is merely a convention. It could always be enforced by renormalizing gθ9 if it
should not hold initially.

The structure of the improved action becomes more transparent if we rewrite it
in terms of local lattice operators. Thus, pick a set of operators (9i(n\ scalar under
rotations and reflections, such that

). (28)

1 Our notation differs from [4—6] by an interchange of c2 with c3
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"~ I

Fig. la-d. Elementary loops ̂  on the lattice, a and b are planar loops, while c and d extend in 3
dimensions. Dashed lines are drawn to guide the eye

Table 2. List of the coefficients rt [Eqs. (6) and (7)]
that occur in the small "α" expansion (3) of the
operators Θfyi) defined in Sect. 3.3

Γ0 rl Γ2 r3

«»0

01

ί>2

03

04

0s

^6

4 24

-2 f
-2 *
-4 4
-i 4

o -i
-4 2

0

0

4
0

0

0

0

0

0

4
I

0

0

—\

Following the method explained in Sect. 2, the classical small "α" expansion (3) of
the Φjs can be worked out. The results are listed in Table 2.8 It follows from these
that &Q is an operator of dimension 4 and that the operators

tf -^-S^o, (28a)

0'2 = 02-800, (28b)

(28c)

8 Note that the coefficients rt are independent of the choice of the operators 0f as long as (27)
holds. The divergence terms ΣdμGμ, on the other hand, are dependent and we shall (and may)

μ
assume that Σ^μ^μ = 0 fc>r all operators Θt
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are all of dimension 6. In terms of these operators the improved action reads

s = 4 Σ {00(Ό + Σ c,fo§)« j - (29)
00 n ( i = l J

In other words, this is the Wilson action plus a linear combination of 3 operators of
dimension 6.

Actually, the operators Θ'i9 i = 1, 2, 3, from a basis in the space of all operators of
dimension 6, which transform as a scalar field under rotations and reflections.
Namely, any such operator & can be represented by

0= ΣWi+ΣWt+a* (30)
i=l μ

where ^μ and & are lattice operators of dimension 5 and 8 respectively and dμ

denotes a lattice derivative (dμf(n)=f(n + μ)—f(n)). Thus, up to operators of
dimension 8, the Ansatz (29) is the most general one can write down.

As already pointed out, the improvement programme has not yet been shown
to work in the case of gauge theories. However, in view of the experience with
scalar theories, we are confident (and shall here assume) that there is at least one
choice of the coefficients Ci(g%) such that the theory described by the action (25) is
on-shell improved. There is also a further structural property of improvement,
which we expect to hold and which we shall make use of in Sect. 4. Namely,
suppose S is an on-shell improved action and suppose we add a term

, (31)
00 »

where ε is infinitesimal and Θ(n) a dimension 6 lattice operator scalar under
rotations and reflections. In general, this leads to 0(a2} scaling violations in the
energy spectrum, and we expect to be able to cancel these effects by adding another
term of the form

, (32)
00 n i = l

where the coefficients Δ^g^; S) are computable in perturbation theory (as we shall
see in Sect. 4, they are however not uniquely determined). Decomposing the
operator &(n) as in Eq. (30), we may take

Now, & is an operator of dimension 8 and it therefore does not induce 0(a2) effects
at the tree level of perturbation theory. Such effects may however show up at
one-loop order, but to cancel these, it is sufficient to choose Af(g^; S) = 0(g%), so
that altogether we may assume

4fto§;S) = A l + 0(f lf§). (33)

We emphasize again that although the properties just described are highly
plausible they really have the status of an unproven hypothesis at present.



68 M. Lϋscher and P. Weisz

3.4. Applicability of Ordinary Perturbation Theory

The only practical way known today to calculate the coefficients q(0o) is by weak
coupling expansion about the (locally) pure gauge configurations. Also, all
structural statements [Eq. (33) for example] ultimately rely on perturbation
theory. Now it can happen that for an action S of the form (25) the classical vacuum
U(n, μ) = 1 is a false vacuum, i.e. that there are other field configurations with S < 0.
In such a case the perturbation expansion about the pure gauge configurations is
not relevant to the continuum limit and any conclusions based on it may be
completely misleading. For example, we have found an action, which is on-shell
improved at tree level of ordinary (false) perturbation theory, but turns out to be
unimproved when expanded about the absolute minima of the action.

Perturbation theory enters our analysis at many places and the conclusions
reached therefore apply only in cases where the improved action S is positive for g0

-»0 in the sense that
S[E7]>0, (34)

for all lattice gauge fields U(n, μ), except for (locally) pure gauge configurations.
This condition restricts the admissable tree level coefficients ct(0) to some convex
domain P in the plane defined by Eq. (27). P could be determined numerically, but
it is easier to establish some inequalities, which in many cases of interest are
sufficient to decide whether the improved action is positive or not. For example, if

o

c0 + ̂ c2<0 or c0 + 8c3<0, (35)

one can show quickly that the action is not positive by exhibiting a field
configuration with S<0 (details are given in Appendix A). On the other hand, if

80
0, (36)

where for all i, cί = -(ci — \ci\), one can prove that the action is positive and that

ordinary perturbation theory is hence trustworthy. Note, however, that the
domain P is certainly larger than the region characterized by the inequality (36).

4. Isospectral Transformation of Improved Actions

In order to determine the coefficients ct in the improved action (25), we have
computed the energies of a number of excited states of the lattice gauge field
enclosed in an L x L x L space box with twisted periodic boundary conditions (the
twist is introduced for purely technical reasons to simplify the perturbative
calculations). We found that in all cases considered the 0( a2) scaling violations
could be removed at tree level provided,

- , (37)

c2(0) = 0. (38)
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To this order, Eq. (37) also insures the improvement of the heavy quark potential
at physical distances [4]. Equation (38) is however a new result (cf. Sect. 5).

While our computations prove that the relations (37) and (38) are necessary for
on-shell improvement, it is not immediately clear that they are also sufficient,
because we have only considered a subset of spectral values. This question is
resolved by our main result, which is summarized by the following

Theorem. Suppose S is an on-shell improved action of the form (25). Then there
exist coefficients A{(cfa\ S) such that

(39)
dθ n i=l

is an on-shell improved action to first order in ε, and such that

^(0;S) = 1, (40a)

Λ2(0;S) = 0, (40b)

Λ3(0;S) = 1, (40c)
for all actions S.

Postponing the proof of the theorem, we note that at one-loop order (and
beyond) the coefficients Δ^gl S) must be expected to depend on S so that a
non-linear differential equation must be solved to integrate up the infinitesimal
transformation (39). According to Eqs. (40), this differential equation however
degenerates to a linear one at gl = 0 and it immediately follows that all actions S
with coefficients ct(gl) satisfying (37) and (38) are tree-level improved. Thus, to
lowest order g^, the most general on-shell improved action is given by

Co(0)=^-24x, (41a)

Cι(°H"έ+x? (41b)

c2(0) = 0, (41c)

(41d)

where x is a free parameter restricted only by the requirement that the action be
positive (cf. Sect. 3.4). In particular, it is necessary that

*<^ (42)

On the other hand, all values x with

W<^, (43)

yield a positive action and are hence allowed. For example, x = 0 is possible, but
X=T [which would imply c1(0) = 0] violates (42) and is therefore excluded.
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Fig. 2a-c. Elementary loops ̂  generated from the one plaquette loop by the field transformation
(46). a winds twice around a single plaquette

Our theorem is also useful at higher orders of g%. For suppose we have already
calculated the c/s up to the (f — l)th loop order and suppose we wanted to compute
the next order coefficients c(f\ Then, by choosing the parameter ε in Eq. (39)
proportional to g$*, one deduces that these are only determined up to a shift

cf^cf (44)
Λf} v >-»00 i ι ,L>3 *-'3 ~τ~ y 5

where y is arbitrary. In particular, we may choose

c3foo) = 0, (45)

to all orders in perturbation theory. This choice is the most convenient one for
weak coupling calculations, but we emphasize that for Monte Carlo simulations it
may be advantageous to take c 3 ΦO to keep away from phase transitions at
intermediate values of g%. Incidentally, we note that Wilson [10] also chose c3 = 0
for his improved action for a reason not disclosed to the reader.

We now proceed to prove the theorem. Essentially, the idea is to invent a
transformation Φ of lattice gauge fields U(n, μ), which does not affect the energy
spectrum but which changes the improved action by an additive term of
dimension 6. Allowing for an error of order α4, the transformed improved action
may then be replaced by the standard improved action (25) with new coefficients ct

so that altogether we have constructed a transformation, which shifts the cf's, but
which does not generate 0(a2) scaling violations.

Φ maps any given lattice gauge field U(n, μ) onto a new field U(n, μ). In order to
preserve the basic structure of the action, this mapping should be local and
invariant under rotations and reflections of the lattice. We are thus led to make the
Ansatz

where ε is infinitesimal and Xμ(n) the anti-hermitian traceless part of another field

Xμ(n)=Yμ(n)-Yμ(ri)+ - (47a)

\-ί

-U(n,μ)U(n-v + μ,vΓ^U(n-v,μ) lU(n-v,v)}. (47b)
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Fig. 3. Graphical representation of t/(w, μ) [cf. Eq. (46)]. The vertices n and w + μ are indicated by
dots, link variables by arrows and the whole drawing is in the (μ, v>plane

The transformed field U(n, μ) is shown graphically in Fig. 3. Note that it depends
on the old field U(n, μ) in a gauge covariant fashion.

In the classical continuum limit one finds (cf. Sect. 2)

1

and Φ reduces to
(48)

It follows that for any lattice operator 0 with dimension d we have
β[U] = Θ[U~\ + β [̂I7], where 9 is an operator of dimension a + 2. In particular,
the improved action (29) transforms as

Σ
i = l

(49)

^o and the ^j's being operators of dimension 6 and 8, respectively.
We are now ready to complete the proof of the theorem. Thus, suppose 5 is an

improved action of the form (25). As discussed at the end of Sect. 3.3, we may
replace S by

λ \ ά ά I

(50)
ί/o «

3

:Ό-Σ
ί=l

without affecting the energy spectrum except perhaps at order a4. In Eq. (50), the
coefficients Λ{ are given by

(51)

Secondly, we perform a substitution of integration variables in the functional
integral (17) replacing U(n, μ) by U(n, μ). Because this change of variables is local,
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the exponential decay of correlation functions of local operators is not affected and
the energy spectrum is exactly the same as before. The action, however, changes
according to Eq. (49), and in addition there is a Jacobian, which is calculated in
Appendix B. Collecting all terms, the new action reads

- Σ 4(0§;$0ί(n)>, (52)
i = l J

where C = (N2 — ί)/2N. Finally, we replace Q\ by g% — ε2Cg& after which the action
(52) assumes the form (39) with

/ Λ \

(53)

Since all transformations applied conserve the energy spectrum up to at most an
error of order α4, we have thus generated a new on-shell improved action. It
remains to show that the coefficients At(gl; S) satisfy Eqs. (40). Using Eq. (33), we
have

/j.(0; S) = Δf°(Q;S) = λi9 (54)

where the λt

9s are to be determined from the classical expansion (30) of the operator
&Q. To this end, we first recall that ̂ 0 is obtained from the single plaquette operator
00 by replacing U(n, μ) by U(n, μ) and subtracting the old 00. Thus, with the help of
Fig. 3, one finds

where here and below divergence terms and operators of dimension 8 are
neglected. Next, from Table 2 it follows that

04 = 400, (56a)

05 = 800-01? (56b)

06 = 3200 -03, (56c)

and hence &0=—2AΘ0 + Θi + Φ3. In other words, λ1=λ3 = l and λ2 = 0 as
required.

5. Comparison with Earlier Calculations of Improved Actions

A computation of the coefficients c^gl) to lowest order was first attempted in [4]
and the following two relations were obtained:

O. (58)

Later, Curci et al. [6] provided an argument for

0 (59)
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by studying the heavy quark potential at one-loop order. Equation (59) was also
derived from a purely classical consideration in [5]. Taken together, the
conclusion was that the choice

c0(0) = -, c^O) - - —, c2(0) = c3(0) = 0 (60)

is necessary for improvement.
At first sight, there seems to be a discrepancy with our result, which asserts that

there is a whole one-parameter family of tree level improved actions of which (60) is
but one member [cf. Eqs. (41)]. The origin of this mismatch is that the authors of
[4-6] use improvement conditions, which differ from the one adopted here
(Sect. 3.2). It is instructive to trace in each case how the improvement condition
influences the outcome of the calculations. In [4], for example, the requirement
was to improve all physical size Wilson loops. This includes in particular the heavy
quark potential at physical distances L, which to lowest order of perturbation
theory is given by

^2 f ^2 Γ 1 Ί /^4 \^

(61)
4πL

(C = (N2 — l)/2N as before). Now we can see that while the improvement of all
Wilson loops leads to Eqs. (57) and (58), the single relation (37) already insures the
improvement of the quark potential and this would in fact be the only result that
can be extracted from the calculations of [4] once one adopts our on-shell
improvement condition.

In their work, Curci et al. consider the Fourier transform F(p) of the heavy
quark potential at one-loop order. Besides other 0(a2) contributions, there are two
terms proportional to

3

α2ln(02p2) and α2(p2)"2 Σ ptIn(α2p2).

If one requires F(p) to be improved, the coefficients of both terms must vanish and,
in conjunction with Eqs. (57) and (58), this yields c2(0) = c3(0) = 0. However, from
the point of view of our improvement condition, we do not expect F(p) to be
improved, because it is a sum of energy values F(L), which also includes energies of
the order of the cutoff (F(L) for L = α, for example). On the other hand, for physical
L the 0(a2) contributions to the quark potential at one-loop order are propor-
tional to a2L~3 InL/α and a2L~ 3. Now it turns out that the first term disappears as
soon as (37) holds, and no further relation for the tree-level coefficients q(0) is
obtained from the second term, because it can be made to vanish by adjusting the
one-loop coefficients. Summing up, we have found that also at one-loop order
Eq. (37) is in fact the only constraint on the coefficients cf(0), which is implied by the
improvement of the quark potential at physical distances. In the framework of our
improvement condition, Eq. (38) is therefore a new result.



74 M. Luscher and P. Weisz

In [5] a purely classical argument in favour of Eqs. (60) was presented. The
starting point was the small V expansion of the improved action S, which reads

S = - A f d4* JΣ Tr(F^v) - \c2a
2 Σ Ύτ(DμFvρDμFvρ)

^9θ U*>v 3 μ,v,ρ

- (lei - 2c3 + ̂ )a2 Σ Tτ(DμFμvDμFμv)
\ O/ μ, v

(62)

The classical action may be considered a generating functional for the vertex
functions at tree level and one may therefore expect them to be improved, if the
0(a2) terms in Eq. (62) are absent. This is the case if and only if the coefficients cf(0)
assume the values (60). On the other hand, for the on-shell improved actions (41),
Eq. (62) reduces to

so that at the classical level on-shell improvement apparently means the
improvement of the action for solutions of the equations of motions only.9

We fin ally remark that Symanzik was quite aware of the possibility to shift
parameters in the improved action by making use of the Schwinger-Dyson
equations. He has, however, never considered doing so at the tree level, probably
because he primarily wanted to improve the correlation functions of the
fundamental lattice field without explicit subtractions of the field operator.

6. Concluding Remarks

From a practical point of view, our main results are
a) that one coefficient in the improved action remains free if only spectral

quantities are to be improved, and
b) that the most general tree level on-shell improved action is characterized

by j
cι(0)-c3(0)=-- and c2(0) = 0.

(We remind the reader that the improved action must also be positive. See
Sect. 3.4.)

One particularly natural choice of the undetermined parameter in the action
18 c3(ff§) = 0

not only because perturbative calculations are greatly simplified, but also
because in addition to the spectral quantities many other quantities get improved
as well, at least to lowest order of perturbation theory.

One may also try to fix the free coefficient in the action by adding a further
improvement condition, for example that all physical size (and properly norma-

9 We do not know of an independent argument to this effect and we are therefore unable to
prove Eqs. (37) and (38) by inverting the above reasoning
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lized) Wilson loops should be improved. However, one must be very careful not to
run into inconsistencies, especially so beyond the tree level. The danger is that at
some stage one gets more independent equations than there are free parameters in
the action. For this reason we prefer to stick to spectral quantities, which are
anyhow the only objects of physical significance.

Appendix A: Positivity of Improved Actions

o

We first show that the improved action S cannot be positive if c0 + -c2 < 0. To this
end, choose

U(n,μ) =

0

v = 0
(Al)

The sums

are then easily evaluated and one finds

Σ= Σ (A2)

where Ns is the number of sites in the lattice (we assume periodic boundary
conditions for convenience). It follows that

i.e. the action is not positive.
Next, suppose c0 + 8c3<0. Then, replacing sμ in (Al) by

we have for this configuration

(A3)

00

and it follows again that the action is not positive.
Finally, we prove that the inequality (36) implies the positivity of the improved

action. The basic ingredient in the proof is the following corollary of the
Cauchy-Schwarz inequality:

Lemma. Suppose U and V are ίwo unitary matrices. Then

F), (A4)

where the equality holds if and only if U=V=1.
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Now let ̂  be any rectangular loop as shown in Fig. Ib. Writing it as product of
two plaquette loops ^ and #2, the lemma yields
Summing over all rectangles, we have

(A5)
1 0

Similarly, one derives

^^80Z-^~^~Zw> 2-^^Z, (Ao)
2 3 o 3 o

These inequalities together with Σ ̂  0 imply

_ 2 / ,_ 80 Λ (A?)

Thus, if (36) holds, the improved action is bounded from below by a positive
multiple of the Wilson action and is hence positive.

Appendix B: Computation of the Jacobian of the Transformation Φ

The calculation of the Jacobian of Φ can be greatly simplified with the help of a
lemma from the general theory of Lie group (e.g. [11, Chap. X]). Thus, let G be a
Lie group with Lie algebra ©, dμ(g) a (right-) invariant measure on G, and Φ: G-» G
a differentiate invertible mapping. For every g e G a linear mapping φg: ©->©
can be defined through

Φ(etzg) - Φ(g)~ί = exp{tφ g (Z) + 0(t2)} (Bl)

for all Z e ©. The lemma alluded to above then reads

Lemma. For every integrable function f: G->C the following substitution rule holds:

J dμ(g)f(g)= f dμ(g)\detφg\f(Φ(g)). (B2)
G G

In our case, the group G is equal to the set of all lattice gauge fields, i.e. it is
isomorphic to [SUίΛΓ)]4^, where Ns is the number of sites in the lattice.
Correspondingly, the Lie algebra © is identified with the set of all fields Zμ(n) of
traceless anti-hermitian N x JV-matrices. For example, if the group element g
stands for the field U(n, μ), we have the correspondence

Inserting this into the definition (46) of the transformation Φ, it is trivial to
compute φg, and one finds to first order in ε,

7
N~\. (B4)

This is in fact the Jacobian we are looking for, because the integral (B2) has exactly
the form of the functional integral (17), if we identify dμ(g) with the measure ̂ [ί/]
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