Communications in
Commun. Math. Phys. 96, 349—360 (1984) Mathematical

© Springer-Verlag 1984

The Surfboard Schrodinger Equations

Kenji Yajima
Department of Pure and Applied Sciences, University of Tokyo, 3-8-1 Komaba,
Meguroku, Tokyo, 153, Japan

Abstract. We study the large time behavior of solutions of time dependent
Schrodinger equations idu/ot = — (H)Au + t*V(x/t)u with bounded potential
V(x). We show that (1) if & >—1, all solutions are asymptotically free
as t—oo, (2) if «< —1 a solution becomes asymptotically free if and
only if it has the momentum support outside of supp V for large time, (3) if — 1
< o < 0all solutions are still asymptotically “modified free” as t — co and that (4)
if 0 < o < 2, for each local minimum x, of V(x), there exist solutions which are
asymptotically Gaussians centered at x = tx, and spreading slowly as ¢ — co.

1. Introduction

Several years ago Kuroda and Morita [6] proposed the study of the Schrédinger
equations of the form

iou/ot = —HAu+t*V(x/tu, t=1, xeR", (1.1
in conjunction with their study of the equations
iou/ot = —HAu+ tv(x/tPu, t=1, xeR", (1.2)

with B % 1. Equation (1.1) is considered in the Hilbert space L*(R") = # of square
integrable functions and was named the surfboard Schrodinger equation because of
its obvious pictorial analogy with the motion of a surfboard: the potential spreads at
the same rate as a free wave packet. In this paper we shall study the asymptotic
behavior of the solution of (1.1) with o < 2, and show the following results. We write
the propagator for Eq. (1.1) as U(t,s) and Hy = —(3)A.

(I) If &« < — 1, then for every ue#, the strong limit

lim U(L, t)exp(—i(t — )Ho)u = W, u (1.3)
t— 00

exists and the wave operator W, is unitary.

(ID) Ifo= — 1, thelimit(1.3)exists ifand only if Fue I*((supp V)°), the elements in
A whose essential supports are in the complement of the support of V.

(I If 0> a = — 1, the modified wave operator still exists and is unitary.
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(IV) If 0 <« < 2, corresponding to each of the local minima of V(x) there exist
solutions which are asymptotic to Gaussians traveling with velocity one and
spreading at the rate t'/2~%* as t —» co0. A similar result holds true for a =0 if the
eigenvalues of the Hessian matrix {0?V/dx;0x,(x,)} are larger than 3.

We assume for simplicity the following:

Assumption (A). V(x) is a real-valued function on R" and Ve#(R"), the set of
infinitely differentiable functions which are bounded with all their derivatives.

Under this assumption, it is well-known [4] that the operator H(f) =(—3)A +
t*V(x/t) with D(H(t)) = H*(R") is selfadjoint »# and Eq. (1.1) generates a unique
strongly continuous unitary propagator {U(t,s):t,s = 1} satisfying the following
properties: (i) U(t, s) is a unitary operator on J# and is strongly continuous is (t, s);
@) U(t,s)U(s,r) = U(t,r) and U(t,t) =1, the identity operator; (iii) U(t, s)H%R") =
H%R" for any ceR!, and if feH*R"), then id/dt U(t,s)f = H()U(t,s)f and
—i0/0s U(t,s)f = U(t,s)H(s)f- Here H°(R") is the Sobolev space of order ¢ and the
derivatives are strong derivatives in .

In Sect. 2 we shall prove the statements (I) and (II). Since the third statement (I11)is
already proved in Kitada [5] we shall in Sect. 3 present a simpler proof of (ITI) only
for £ < —a < 1. The last statement (IV) will be proved in Sect. 4. For the proofs
of (II) and (IV) we shall use the conjugate transform of Eq. (1.1) which will be
explained at the beginning of Sect. 2.

The following notation and conventions are used in what follows. #(R") = & is
the space of all rapidly decreasing functions and .’ is its dual space. For ue.%”,
supp u is its support and Fu = i is its Fourier transform:

(Fu)(&) = (2m) "2 Rj e Eu(x)dx.

ForaeC, aisits complex conjugate. For a nice function p(x, &), P(x, D) is the pseudo-
differential operator with the symbol p(x, &):

P(x, Dyu(x) = (2m) "2 [ ™ p(x, E)a(&)d&
(cf. Kumano-go [7]). Various constants are denoted by C when it is not necessary
to trace them precisely. Thus the constants denoted by the same symbol C are

different from context to context. || /|, is the L?-norm of f and || f'|| = || fI|,.  is
Kronecker’s delta.

2. Conjugate Transform, the Proofs of (I) and (II)

The key technique for the proof of (II) and (IV) which we shall employ is the
conjugate transform of Eq. (1.1) which we explain here. We suppose that V(z, x) is a
smooth real-valued function of t > 0 and xeR" which is bounded with its derivatives.
Then each of the equations

iou/ot=—SAu+V(t,x)u, t>0 2.1
and

iov/ot = —(BAv+t2V(1/t,x/t, >0 2.2)

generates a strongly continuous unitary propagator on the Hilbert space s#. We
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denote it for (2.1) as U(t,s) and for (2.2) as U(t,s). We define for t >0,
T(t)yv(x) = (1/it)"? exp(ix?/2t)v(x/t). (2.3)

Lemma 2.1. Let U(t,s) and U(t,s) be the propagators for Eq.(2.1) and (2.2),
respectively, and let T(t) be the anti-unitary operator defined by (2.3). Then for any
ueH,

lim ||exp(— itHo)u — T(t)d| =0, (2.4)
U(t,s)u=T(0)0(1/t,1/s)T(s)" *u, t,s>0. 2.5

Proof. The relation (2.4) is well-known and we omit its proof here (cf. for example
Reed-Simon [9], p. 60). Since T(t) is anti-unitary and U(t, s) and U(t, s) are unitary, it
suffices to show (2.5) for ue C(R"). For ue C2(R"), u(t,") = T()U(1/t,1/s)T(s)*uis an
&-valued smooth function of ¢ (Kato [4]). Clearly u(s) = u. On the other hand an
elementary computation shows that u(t, x) satisfies Eq. (2.1). It follows by the
uniqueness of the propagator that u(t, ) = U(t, s)u and Eq. (2.5) is proved.

The transformation T(¢) is called the conjugate transform ([2], [10]).

We now prove the statements (I) and (II).

Theorem 2.2. Suppose Assumption (A) is satisfied. Then Statements (I) and (I1) of
Sect. 1 hold.

Proof. (I). By Dunhamel’s identity, we have

t

Ut, u = e~ Doy —j [ 71 9Ho g2 (x /) U(s, 1)u ds, (2.6)
1
t

U(t, Du = e~ DHoy — [ U(t, s)s*V(x/s)e "¢~ DHoy gs, 2.7
1

Multiplying both sides of (2.7) (or (2.6)) by U(t,1)~! (or exp(i(t — 1)H,)), we have

Ut, 1) texp(—i(t — DHou=u+i[ U(1,5)s*V(x/s)e "¢~ Doy ds,  (2.8)
1

exp(i(t — DH)U(t, u = u — i}e‘i‘1 “9Hose Y (x/s )U(s, Luds.  (2.9)

Since o < — 1, the integrands in the right-hand side of (2.8) and (2.9) are both
integrable on [1, o), and the limits

lim U(t,1)" Yexp(—i(t — )Hou = W_u, (2.10)
t— o0
lim exp(i(t — DH)U(t, Du=2Z,u (2.11)
t— oo

exist for every ues#’. Moreover we clearly have

ZWu=W,Z u=u. (2.12)

Since Z, and W, are isometries, (2.12) implies that Z_, and W, are unitary and
W, =731
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(II) For ue#, we write u; = F(exp(iHy)u). Assuming that one of the following
three limits exists, we have by (2.4) and (2.5) that
Wou=1lim U(t, 1) *exp(—i(t — 1)Hy)u = lim U(1, 1) T(t)u,
t—w =

=lim T)U({, t)u,. (2.13)
t—=0
Here U(t, s) is the unitary propagator for the conjugate equation of (1.1):

i0v/ot = —($)Av+ 172"V (x). (2.14)

Suppose now that ue #(R") and supp Fu = supp u, < (supp V). Then by Taylor’s
expansion formula

N
IV exp(—itHouy || = | Y, V(—itHo)uy/k!
K=0

1
+ [ OVV e 0Ho 4O (— itH o)V * Ly /N1) ’
0

1
< (fONHVHw d9>tN+1 IHG ™ uyI/N?
0

= Cyt" " y? @ D] (2.15)
Since U(1,5)s ™2~ *V(x)exp(— i(s — t)H,)u, converges strongly to U(1,s)s 2 *
V(x)exp(—isHy)u, as t >0, and for 0 <t <s,
101, s)s~ 2~V (x)exp(— i(s — ) Holu; | < Cys >~ s =) [ y* u [ | V],
SCN T2 YUl V s

with arbitrary large N by (2.15), we see that the limit as t —0 of
1
U1, 0uy = exp(—i(1 — t)Ho)u; —i [ U(1,5)s™ 2 *V(x)exp(— i(s — O)Ho)u, ds
t

exists by Lebesgue’s dominated convergence theorem. Hence by (2.13) W, u exists.
Since the set of u’s such that the limits in (2.13) exist forms a closed subspace of
#, W, u exists for all ues# with FueL*((supp V)°).

Suppose, on the contrary, that one (hence all) of the limits (2.13) exists and

[Vull %0,  u;=gexp(iHou). (2.16)
We shall show that this will lead to a contradiction. We denote
u, =lim U(1, tyu, . (2.17)
tl0

Then the following limits trivially exist:
u, =1lim U(t, u, = limexp(itH,)U(t, 1)u,
w0 o (2.18)

t
=eoy, — ilim [ e*Hos =272V (x)U(s, 1)u, ds
tlo 1
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Therefore for any sequence t,—0, t,> 0,

o ~
[ esHos =272y (x)U(s, 1)u, ds

tn

lim =0. (2.19)

0<tp<tm—0

By (2.18), we see that for any ¢ > 0, there exists a é > 0 such that
sup [|O(t, Du, —uy | <e, (2.20)
0<t<9d

sup | (e™ o — VUL, u,| <e. (2.21)
0<t<éd
It follows for 0 <t, <t,, <9,

tm X ~
[ e*fos= 272y (s, 1)u, ds
tnh

1\

tm
|72 *Vu, ds
tnh

tm -
— [ Is™27*V(U(s, Yuy — uy) | ds
tn

tm ~
— [ Is727 %" — )V U(s, u,| ds
tn

ty;l—a_t;l—a

1+a
log(tu/t{ IVusll = Ve —&} if a= —1.

Since ¢ > 0 can be taken arbitrary small, (2.22) contradicts (2.19). This concludes the
proof of Theorem 2.1.

{IVuyll =Vl .6 —e} if a>—1

(2.22)

3. The Case —1 < a <0, the Modified Wave Operator

In this section we assume — 1 < a < 0. In this case the existence and the unitarity of
the modified wave operator are proved by Kitada [5] in a more general situation.
Here, restricting ourselves to the case — 1 < a < —1, we state the theorem and its
proof in a simpler form. We refer the reader to [5] for the general case.

Theorem 3.1. Suppose that Assumption (A) is satisfied and that — 1 <« < — L. Then
the limit

W,u=lim U(t, 1)~ *exp(— itD/2 — it* **V(D)/1 + a))u (3.1)

t— 00

exists for every ue# and the modified wave operator W, is a unitary operator.
We write H(t,D)=tD?*/2 + t* **V(D)/(1 + «). For proving the theorem 3.1 we
need the following two lemmas.

Lemma 3.2. Let fe%. Then for eachj=1,2,...,n,
1((x;/t) — Dyexp(—iH(t, D)) f| < Ct*, t=1, (3.2
[((x/0)—=DYUE DS SCr7, 21, (3.3)

with a constant C independent of t = 1.
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Proof. By elementary computations of commutators we have
(d/dt)e DY x; — tD e~ HED) f = HEDY 9V [0x ) (D))e ~HED £, (34)
(d/dD)U(t, 1)~ 1(x; — tDYU (L, 1) f = U, 1)~ 1(¢X(0V /0x ) (x/) U, D . (3.5)

Integrating (3.4) and (3.5) from 1 to t by t and taking the norm in 2 in the resulting
equation, we obtain
ta+ 1

e = tDJe™ R f 1 < 110x; = DJe™ P [ 4~ 10V/ox;l1 oI f 1, (3.6)

1Gx; = tDYUE DS = 11 (x;— ,)fl|+ |I0V/5x ol SN (3.7

Dividing the both sides of (3.6) and (3.7) by ¢, we obviously have (3.2) and (3.3).

Lemma 3.3. Let F be a C®- function on R" which is bounded with its derivatives.
Then

F(e/f)—FD)= 3 {f (OF /ax;)(0x/t + (1 — G)D)d()} (x;/t — D))
ji=1 (0

+ (i/t)f(l — 0)(AF)(0x/t + (1 — 0)D)do. (3.8)

The identity (3.8) follows directly from the symbol calculus in pseudo-differential
operators and its proof is omitted here (cf. also Enss [11]).

1
Proof of Theorem 3.1. Since V satisfies Assumption (A), [aV/ox0x/t +
0

1
(1 —6)D)do and j(l —0)AV(0x/t + (1 — 6)D)dO are uniformly bounded operators
0

on # fort = 1 by Calderon—Vaillancourt’s theorem [ 7]. Hence combining estimates
(3.2) and (3.3) with (3.8) replacing V in place of F, we have

15V (x/t) — V(D))exp(— iH(t, D)) f || < Ct*%, (3.9)
5V (x/t) = V(D) U(E, D f || < Ce?, (3.10)
with the constant C independent of ¢ = 1. Thus the derivatives
I(d/de)U(¢, 1)~ "exp(—iH(t, D)) f | = t*[|(V(x/t) — V(D))exp(— iH(t, D)) f 1,
and
[ (@d/dr)exp(+ iH(t, D)U(t, 1) f | = t*| (V(x/t) = VIDHU(, DS,
are both integrable on [1, 00) and this implies the existence of the limits
lim U(t, 1)~ 'exp(—iH(t, D)) f = W. £,
t—

lim exp(H(t, DU, 1)f =Z . f.

As in the proof of Theorem 2.1, this implies the unitarity of W, and the proof of
Theorem 3.1 is completed.
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4. The Case 0 < o < 2. The Existence of the Asymptotic Gaussians

In this section we shall show that when 0 <o < 2, corresponding to each local
minimum x,€R" of V(x) with positive definite Hessian matrix {0V /dx; 0x,(x,)},
there exist solutions which are asymptotic to Gaussians centered about tx, with
the width Ct!/2~%* times some oscillating factor. We also show almost the same
statements are true for the case o = 0, provided that the eigenvalues of the Hessian
matrix {0%V/0x;0x(x,)} are greater than .

Postponing the precise statement of the theorem, we begin our discussion with
the following lemma.

Lemma 4.1. Let I(t), 0 <t, be a solution of the Riccati equation

dljde + il*(t)=idt=%27% leC, 4.1)
and I(t) be a solution of
idljdt = 3Tt)(r). 4.2)
Then the function
u(t,x) = lt)exp(— I(t)x2/2), xeR (4.3)
is a solution of the one dimensional Schrddinger equation
i0ufot = — (3)(0%u/ox?) + (3)At 2~ *x2u. 4.4)

This is a result of an elementary computation and we omit the proof here. We
should remark that when AeR (4.1) and (4.2) imply

[t)|* = cRe [(t), (4.5)

with a constant ¢ independent of ¢ > 0. We assume A > 0 hereafter.
When o> 0, the solutions of the Riccati equation (4.1) can be obtained as
fractions of Bessel functions (cf. [1]).

Lemma 4.2. Suppose that o x 0, and set
v=—1/a, s=At"%a 4.6)

Then the general solution l(t) of (4.1) can be written by means of the Bessel functions
J(2./s) and Y,(2./s) as
{ Ity =u(t)/t, u(t) = iasw'(s)/w(s) 47
w(s) = "2 (2/5) + dY,(2,/5)], '

where c and d are arbitrary complex constants and w' = dw/ds.
When o =0, Eq. (4.1) has solutions

l,(O)=(—it./44—1)/2t, 4.8)
and the general solution can be obtained by quadratures.

Lemma 4.3. Let o =0 and aeC be an arbitrary constant. Then the general solution
It) of (4.1) can be written as follows:
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(i) When A> 1%,
(1) = _(i+« /42 —1)(1 —aexp(i /44— 1logt + ip)), 9)
2t(1 — aexp(i /42— 11logt))
with exp(ip) = — /44— 1)/i + /44— 1).

(i) When A=1%,

i 1
= —st— .
1 2t+at+itlogt

(4.10)
(iii) When 1 <1,
i+ ST e - T 42)) 1)

20t/ — a)

Lemma 4.2 and Lemma 4.3 are well-known and we refer to Chapter 3 of Davis
[1]. Using these expressions and the well-known asymptotic formulae for
Bessel functions at real infinity z — + oo,

J(z) = \/gcos<z—(2v_: D”)+0<§), 4.12)
Y,(z) = \/%m&-@%o(é), @.13)

and their derivatives

Ji(2) = — /% sin <z _@ ’; D") + 0(2), (4.14)
Y'(2) = \/gcos<z—(2v: 1)”)+0(-i—>, (4.15)

(cf. Magnus et al. [8]), we have the following lemma.

I(t) =

Lemma 4.4. Suppose that o > 0. Set
v=—1/a, s= it"’/ocz,}
ps) =2/s— (2v + /4. (4.16)

Then with arbitrary real constants A and B, the real part Rel(t) of the general
solution of (4.1) has the following asymptotic behavior as t | 0:

Rel(t)= “\t/; {(A cos p(s) + sin pl(i))z + B2 cos? p(s) + 0(5) } (4.17)
Proof. By Lemma 4.2 and the relations (4.12)-(4.15), we have
It)= io‘_s{_"_ — csin p(s) + d cos p(s) + O(s " /%) }
t |2s \/E(c cos p(s) + dsin p(s) + O(s ~ /%))
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Hence, writing ¢/d = A + iB, we see
scsin p(s) — d cos p(s) + O(s~1/%)
t ccos p(s) + dsin p(s) + O(s~ /%)

oc\/E (A sin p(s) — cos p(s)) + iBsin p(s) + O(s ~*/%)
t Acosp(s)+ sin p(s) + iB cos p(s) + O(s~ /%)

NG I — E— (4.18)
t (Acosp(s)+ sin p(s))* + B? cos® p(s) + O(s /%)

Rel(t) =1

=Im

Here in the final step we used the fact that g(s)= (4 cos p(s) + sin p(s))* +
B?cos? p(s) =7y > 0 for some y > 0, since g(s?) is periodic in s and never vanishes.
Equation (4.17) results from (4.18).

Taking the real parts in (4.9)~ (4.11), we have the following asymptotic
formulae for Re I(t) for the case o =0.

Lemma 4.5. Suppose o =0 and let A and B stand for arbitrary real constants. Then
as t]0, Rel(t) has the following asymptotic expression:

(i) When 4> 1,

Rel(r) = (A%~ 1)y/4i— 1 . (4.19)
2t(A* —2A cos( /44— 1logt+ B)+ 1)

A 1
(i) When A <1,

Rel(t) = VIJ_ (1400 ), —1<A<l. 421)

Combining Lemma 4.1 ~ Lemma 4.5 with the estimates similar to those used in
semi-classical theory (cf. e.g. [3]), we shall obtain the solutions of the conjugate
equation,

(i) When L=1%,

i0v/ot = —(B)Av +t 2"V (x) (4.22)

of (1.1) which are asymptotic to Gaussian functions as ¢|0. We let x,eR” be a
local minimum of ¥(x) and assume that the Hessian {0V /dx; 0x(x,)} is positive
definite there. After choosing suitable coordinates we may assume without losing
generality that {02 V/0x;0x(x,)} is diagonal with positive eigenvalues 0 < 4; <
Ay A3 <+ < 4,. We denote by I(t) a solution of the Riccati equation (4.1) with
A; replacing A which satisfies (4.17) with B> 0 when o > 0; (4. 19) with 4 > 1 when
cx—O and 4;>7; (4.20) thh A>0 when a=0 and A;=7; and (4.21) with
A>0whena=0and0< 4;<%. We also denote by T(t) a solutlon of (4.2) with It)
replacing I(z).
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Lemma 4.6. Let 0<0<2 and let x,eR", 0<i, < - <4, L(),...,1(t) and
T.(t),...,[(t) be as above. Suppose that when a=0, i, >%. Then the conjugate
Schrodinger equation (4.22) has the solution v(t, x) which satisfies

lim
t|0

ot x) - { TT THexp(— o), - xo,-)2/2>}exp(it- Ly (el + o) | =
(4.23)

Proof. We write

o(t,x) = { f[ Tj(t)exp(— L{e)(x; — xoj)Z/Z}exp(it' 122 (x0)/1 + o).

Since AV /0x{x,) =0 and 0>V /0x;0x,(xo) = 4,05, Lemma 4.1 implies that #(t, x)
satisfies the equation

105/0t = (—HA5 + rz—«{ Vixo)+ 3. 0V/0x,x0)(x; — X;0)
i=1

+ (%)Zk 0? V/axj axk(xo)(xj - ij)(xk - ka)}ﬁ(t, X). (4.24)
Js
By the choice of /{t) and T{(1) as above, i(t, x) also satisfies the estimate
727 xRt %) [ gy < P(8), (4.25)
where
Ct™ 2 s({UD+ @43 = Cp= D@4 when o> 0,
Ct (V)3 =Ct™ Y2, when a=0and A, >%.
plt)=

Ct™2(t'?logt)® = Ct~*(logt)®, when a=0and A, =%
Ct ™20~ 1AV1=80y3 — C=0A=32V1-4 - when o =0 and 4, <%. (4.26)

We note that p(t) is integrable on [0, 1] if 4, > % when « = 0. By (4.24)
f(t,x)= {io/ot + B)A — ¢t ™2~V (x)} i(t, x)

=727 { V(x)— Vixg) — (%)jzl Ax? } iz, x), 4.27)
and by Taylor’s formula and Assumption (A),
V(%) — V(xo) — (%)Fi1 2| < Clxl. 4.28)
It follows from (4.25)—(4.28) that
i I £t )|l L2@m dt < c0. (4.29)

Writing the evolution operator for (4.27) as U(t, s) and solving Eq. (4.27) for i(t, x),
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WwWe sec
i(t, x) = O(t, Dix1,-) — ij: U(t,s)f(s,")ds
=0, 1)[5(1,-) — if 0a,s) f(s,~)ds]. (4.30)
1
When we set
ut)=0(, 1) [5(1, ) —if0Q,s) f(s,~)ds} (4.31)

we obtain from (4.29) and (4.30) that
[v(t) — (¢, x) | < (jt, If(s,-) 1 ds >0, (4.32)

as t | 0. Since (¢, x) is a solution of (4.22) by Definition (4.31), we have the statement
of the lemma.

Combining Lemma 4.6 with Lemma 2.1 about the conjugate transform, we
finally obtain the following theorem.

Theorem 4.7. Let V(x) satisfy Assumption (A) and let 0 <a <2. Suppose that
xo€R" is a local minimum of V(x) with the positive definite {0*V)0x;0x(x,)}.
Suppose further that the smallest eigenvalue of {0V [0x;0x(X,)} is larger than %
when o = 0, and the coordinates, the functions l{(t) and Tj(t), are taken as in Lemma 4.6.
Then Eq. (1.1) has the solution u(t, x) which satisfies the asymptotic formula

u(t, x) {(l/lt f[ [(1/t) }exp[— it* TV (xo)/(1 + o) + ix- X

lim

t—> o

—itx3/2 + Z {(i/20)—(I (l/t)/tz)}(x —txoj)z)] H (4.33)

We note that modulo the oscillating factors which are bounded from above
and below we have
Ct!/2=%4%  when o >0
Ct'?, when =0 and A;>§
2V -1/2 > i 4
{Re(I{(1/t)/t*)} Ct'?logt, when a=0and 4;=13,
CIHVI=42 when o =0 and 4; <4,

as t— oo and the second function in the norm of (4.33) represents a slowly
spreading Gaussian function with a linearly moving center tx,.

Proof. Combine (4.23) with (2.3) and (2.5) to obtain (4.33).
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