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Abstract. The uniqueness and the global Markov property for the regular
Gibbs measure corresponding to the interaction

Uip):=4 £ dyx [ do(0) €% 14 (x)

[for A>0, do(x) a probability measure with support in (—2]/;, 2]/;)] is
proved.

0. Introduction

0.1. Definitions and Notations

By & we denote a family of bounded open sets in IR? partially ordered by the
filtering inclusion relation C (i.e. A, A,€F = FA3€F, A S A5, A,CA5).

By %y:={A,eF :4,S4,,},ex We denote a countable base of & (ie.
VAeZF, 3A,eF, ACA,). We always assume that boundary 04 of AeZF is
piecewise-C!-curve. We assume that |J 4,=R?% We write A°:=RAA and
intA:=A\0A. Zo

Let 2 =9,.,(R? be the space of C3(R?) real functions and & = %, (RY) the
space of C*(IRY real rapidly decreasing functions, which are topologized as
usually, e.g. [35, p. 28] for @ and [35, p. 146] for . By 2’ (respectively &) we
denote the real topological dual space of & (respectively &). For ASRY, we write
fe2, (respectively &) if fe D (respectively &) and supfCA. Let for fe D
(respectively &)

o(f): 2 ->R: 2" sn-o(f)():=n(f) (1.1)

(respectively for " we denote this function by the same letters). For arbitrary
ACR? open X, (respectively %,) is the smallest g-algebra of subsets in %’
(respectively &), such that all functions {¢(f):fe 2 ,} (respectively fe &) are
measurable. If A=R* we write ¥ =2y, and #=%Bya For arbitrary ACR? we
define

o= )z, <respectively By= ) 93,1,).

ACA’ (open) ACA’ (open)
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If the function F:2'>R (respectively &'—R) is X, X, (respectively %, %#,)
measurable, we write Fe X, Fe X, (respectively for %, 4 ,).

Let u, uo be the probability measures on (2, 2) [respectively (¥, %4)]. By
u(F), uo(F) we denote the expectations values of F with the measures p and p,,.
For FeL(u) or FeL,(uy) by E (F|X,), E,(FIE)=E, 4F) we denote the
conditional expectations of F associated to u, respectively p, with respect to 2,
(analogously for 4 ,). We write

WCE, F):=p(F - F') = u(F) - u(F). (1.2)

Let 4 (respectively 4°1) be the selfadjoint Laplacean in L,(R% with the
essential domain CP(RY) [respectively Friedrichs extention in L,(A,dx) of A
defined on C§(A)]. For arbitrary but fixed through all the paper m, >0, by G(x, y)
[respectively G°“(x,y)] we denote the kernel of the operator (—A4+md)~*
in L,(RY) [respectively of (—4%4+m3)~! in L,(A,dx)]. As usual

IfI12 1 1= dxdy f(x)GCx, ) f() » (1.3)
1F12 1,00 = dxdy f(x)G*(x, ) f (). (1.4)
Let for x=+y,
K%(x,y):=G(x, y)— G*(x, ), (1.5)
and
K% (x,x):= })1_1:1)16 K%(x,y). (1.6)

The limit in (1.6) exists and K%4(x, x) is the continuous function in intA (e.g. [3],
[21, Chap. 7]).

0.2. Gibbs Measures ([10, 11, 15, 26, 30])

Definition 0.2.1. A local specification is a family & = {E ,.} , . + Whose elements are
the functions

E c: 72" x2-[0,1] ,(AeF)

with the following properties:

1) 3Qe X, Ve, E"(-)is a probability measure on (2’,2), which restriction
to X 4 coincides with the point measure 9,

2) For F € X the function 9’35+ E".(F) is ¥ ,. measurable, being identically
zero for n¢ Q.

3) The compatibility condition holds:

A A, €F, A CAy = EgE (- )=E q0).
Definition 0.2.2. A Gibbs measure for a local specification & is a probability
measure on (2, 2) such that
VAeF, pE ()=u(-). (2.1)

By 4(&) we denote the set of all Gibbs measures for a specification & and by
0%9(&) the set of extreme points of %(&) [i.e. those pue % (&) which cannot be
represented as a convex combination of other Gibbs measures].
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Remark. Equation (2.1) means that for each F e L,(u),
E(F|Z4)(n)=E"W(F) p-ae. (2.2)

for all A€ % (see [30]).
It is known, e.g. [15] that ue %(&) defined on a standard Borel space can be
uniquely represented as the integral over 0%4(&).

Defin.ition 0.2.3. Let FeX , (A€ %) be nonnegative:
D It E(F)eZ,,, VAe, 23)
we say that & is Markov.
ii) If for the probability measure u on (2, 2)
E(FIZ €25, NAeF (2.4)
we say that u has the local Markov property.

iii) If for arbitrary open (with piecewise C' boundary) set Q CIR? and for
arbitrary (nonnegative) Fe X,

E,(FIZ0) € Zsp, (2.5)

we say that u has the global Markov property (GMP) and we write ue GMP.
If pe %(&) and & is Markov then u has the local Markov property, but it can
happen that u¢ GMP (see e.g. the next section).

Definition 0.2.4. Let T;p4={Tr ., (R,a)elO(d)} be the representation of
inhomogeneous Euclidean group 10(d) in d dimensions, whose action is defined on
2 by the action on the functions ¢(f), as follows:

7ZR,a)(P(f) = ‘P(f(R,a)) > (2.6)

Where ﬁR,a)(x) : :f(R - 1(X - a))a
i) & is Euclidean covariant if and only if

VFeZX, V(R,a) e I0(d), Tig,o(E4(F)) = E(&, )y (Tir,0F) » 2.7
where (R,a)A:={xeR%: R }(x—a)e A}.
ii) A probability measure yon (2, X)is called Euclidean invariant ifand only if

V(R,a)eI0@), (T om)(F)=pTig,qoF)=uF). 23)

0.3. The Euclidean Quantum Fields: The Exposition of Problems and Results

One of the possible definitions of the notion: “the (scalar) quantum field with
specified interaction,” can be given (see [12, 24]) in the Euclidean region with the
aid of the notion of a Gibbs measure:

We say that a probability measure u on (2, 2) defines the (scalar) quantum
field with the interaction {U ,€ X} , . 5 (With respect to the “free” measure ) if
and only if

1) VAe Z, His < Hojs 45 (3.1)
i.e. u is locally absolutely continuous with respect to u, and
ne%(é),



198 B. Zegarlinski

where the local specification & ={E ,.} ,.# is given by

EO,AC(e—UA ')('1) (3'2)

EZC(‘):ZW’

and
2) The Osterwalder-Schrader axioms [29] are satisfied by the moments of u:

{u<1_‘[1 qo(f,-)>,fie@, i=1,...n: ne]N}.

When the dimension of Euclidean space is d =2, the specification & in (3.2) can
be defined with the aid of the “free” measure y, corresponding to the free (scalar)
quantum field, i.e. Gaussian probability measure with mean zero and covariance
G(-,-),and the large class of interaction (additive) functionals {U ,€ ¥ ,, A € F} (at
least for countable %).

It is known (e.g. [1, 3]) that, under the general assumptions on the local
specification (3.2), a Gibbs measure for & exists and in general it can be nonunique.
The existence of many Gibbs measures for & can imply that many different
quantum fields with the same interaction can exist ; and moreover, that the vacuum
vector is not cyclic for time-zero fields. The last is connected with the lack of GMP
(2.5) for the Gibbs measure defining the quantum field. The GMP property is
required if we want to reconstruct the quantum fields in the Minkowski region
through Nelson’s reconstruction theorem [28]. If the Gibbs measure has all the
properties contained in Nelson’s axioms (see [28]) besides GMP, we can
reconstruct the quantum field in Minkowski space through the O-S reconstruction
[29], but the time-zero fields have no vacuum as the cyclic vector. (For other
consequences of GMP see [15] and refs. given there.)

Example. Now we will give the simple illustration to the uniqueness and GMP
problems: Let u, be the Gaussian measure on (2’, ) with mean zero and the
covariance given by G( -, -). Let &, ={E,, 4} 4  # be the local specification given by
[the extension to (2',X) of] a nice version of conditional expectations E, s
associated to u, and with respect to 2 4. It is known (e.g. [13]), that &, is well
defined at least for a countable family # and that &, is Markov [ Definition 0.2.3i)].

As one can see, all measures in 0%(&,) are indexed by the solution of the
equation

(—=4+mdpo(x)=0, xelR?, (3.3

1e.
d

mo I z;X;
Po(x)=[dv(z)e” =1, (3.4)
where dv(z) is a bounded measure on the unit sphere in R?. In fact, we have
Vued%(&,), I(exactly one)dy,  puF(@)=poF(@+do)=ps(F). (3.5)

There exists exactly one solution ¢, =0, which has Euclidean symmetry, and
the corresponding measure y, is the unique measure in %(é,) with the same
symmetry. This is the unique measure with support in &".
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Remark! In general, one can expect that the extremal Gibbs measures correspond-
ing to the interaction of the form

UA((p):=/1£dx Vip):(x) (AeF) (3.6)
are indexed by the classical solutions of the equation
(—A+mdPo(x) + AV ($o)(x)=0, xelR?, (3.7
and the measure pu,, € 0%(&) corresponding to ¢, has the following form:
HooF (@) =g, 3, F (@ + do) (3:8)
where the measure pg 4, has support in &”. In particular, we have
oo @) =g, 4@ +Bo(f) - (3.8)

However, this correspondence cannot be, in general, one-to-one. It follows
from the example of the : Ap* + op? — he:, model. If >0, ¢ <0 and h is sufficiently
small, then there are two solutions of the adequate equation (3.7), which have
Euclidean symmetry, but there exists exactly one Euclidean invariant Gibbs
measure (which is surely an extremal Gibbs measure; the proof of extremality
exists only for the lattice version of this model, see [6, 35]). It follows (see [18]) from
analyticity of pressure in h, Reh=0 [23].

This phenomenon (the phase transition) is not, in general, well understood (at
least by the author), although there exist interesting results concerning the
problem (see [14, 25] and refs. therein).

The whole set (&) is at least of mathematical interest, and in practice we
consider those measures only which are regular in the sense that they are
supported by &".

Let us now discuss the GMP problem for the measures in 4(&,): We have

Peo € 09(80) = 1y, € GMP. (3.9)
However, if we take for example two solutions of Eq. (3.3),
1 . __ ,MoX1
¢‘2’(x)' e (3.10)
PAx):=e Mo,

then for the Gibbs measure
=5 (g + Hga)» (3.11)

one can see that the GMP fails. (This example resembles in spirit that given by
Goldstein in [22, Sect. 2].)
In general, we can expect that for Markov specification &,

0%(8)C GMP. (3.12)

Now this is proved only for the dimension d=1, see [9].

The GMP problem for pe % (&) can also be considered as the uniqueness
problem for conditioned specification, i.e. is there, for any QCIR? (open with
smooth boundary Q) and any n e supppu (for u — almost all ) only one Gibbs

1 See note added in proof on p. 221
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measure for the local specification

Eon ={EhI de 700, fior=moe- (3.13)

Remark! This problem is connected with the uniqueness (in the suppu) of the
solution of the Dirichlet problem in Q with boundary condition in the support of u
for the classical Euclidean field equation (3.7).

In the paper [3] by Albeverio and Hgegh-Krohn the uniqueness and GMP
problems have been solved for Euclidean fields in two dimensions with the
trigonometric interaction with respect to p, with my,>0:

U, (@):=A[dyx :cosa(p+0):, (x), (3.14)

with 1) >0 sufficiently small,

i) o € (—[/%, [/ﬂ). [The double dots in (3.14) mean the normal ordering with
respect to -]

The authors showed that there exists a unique Gibbs measure for the
interaction (3.14), regular in the sense that

1) Mg, <ftoy, » VAEF,
2) uo(f)> el fl%,

(c a positive constant) and that this (extremal) Gibbs measure has GMP.

(3.15)

Remark. The proofin [3] relies on the application of the cluster expansion (see [21,
Chap. 18] and ref. [2] in our [3]) to the conditional measures. This expansion is
uniformly — in volume and boundary conditions — convergent under the
assumptions i) and ii) in (3.14). The existence theorem can be proven (see ref. [2] in
[3]) by the use of the same technique for o’s in the larger interval (— 2]/;, 2[/5). But
in the case of the cluster expansion for conditional measures, in order to have the
stability estimate (independent of boundary conditions) for the conditioned
partition function in the unit cube by the method of J. Frohlich (see ref. [22]in [3]),
the restriction to the smaller interval (—1/2;, [/ﬂ) is needed.

In our work we consider the exponential interaction (with respect to p, with
my>0):

UA(<p):=l£d2xde(<x) e*: (%), (3.16)

where 1) A>0 arbitrary, ii) dg(a) is a probability measure with support in
(—2]/5, 2]/;). We distinguish the space .#, of probability measures u on (¥, %),
which fulfill the following conditions:

1) ﬂI%A<#O|‘%A’ VAegz’

2) e < g 1712 +b1G > fl, (3.17)

a>0,b=0 arbitrary, f for which the right-hand side exists. The elements of .#, we
will call the regular measures. (They are also regular, see Lemma 1.1.1, in the sense
of (3.15) used in [3].) The definition (3.17) appears to be a natural consequence of
one of our technical results (exp bound in Sect. 1.4). It can be shown — using

1  See note added in proof on p. 221
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Dobrushin’s compactness arguments (e.g. [10, 11 and 6, 7]) — that in the space ./,
there exists a Gibbs measure u for &, where & is given by (3.2) and (3.16). In fact, the
measure g4 is unique in %(&)n.4,. It can be obtained exactly as in [2, 17] as the
thermodynamic limit of finite volume measures with half-Dirichlet boundary
condition. Such a measure defines the Euclidean field theory [with the mass gap
=m, for any measure do(x) in (3.16ii), which follows from one of our technical
results: exponential clustering in Sect. 1.5]. We have also that u € GMP. The proof
that ye GMP is given as the proof of uniqueness for conditioned specification
(3.13).

The technique of our proofs is based on the correlation inequalities, so we do
not need the restriction of the interval of «’s as in [3].

The uniqueness and GMP problems for the interactions of the form (3.16) but
with suppde C(0, ¢), ¢ small and s<2ﬁ have been also considered in [19]. We do
the needed improvements of some lemmas. In our proofs of uniqueness we use also
a different idea — of the FKG order (see e.g. [30]). Using this idea we prepare the
extension of our results — in particular, the proof of GMP based on the method
used in [22, 16, 357] — to the case of the interactions (3.16) with the additional term
o :¢”: with 6 <0 and |o| big.

Remark. The problems of GMP (and also of uniqueness) have been also
considered in the following papers:

a) for lattice finite spin systems: [5, 22, 27] (implicitly also in [32]),

b) for lattice infinite spin systems: [31, 7, 6, 35],

¢) for classical gases: [33, 22, 20],

d) solved under the general assumptions in one dimension in [9] (see also refs.
therein for preceding particular results).

In the next section we present our technical results. The main ones are: FKG
order in the set of conditioned measures (Sect. 1.3), the exponential bound (Sect.
1.4) and uniform — in volume and boundary condition — exponential clustering
(Sect. 1.5) for conditioned measures.

The proofs of uniqueness (here it implies extremality) of the regular Gibbs
measure is given in Sect. 2 and of the GMP in Sect. 3.

Summing up, our main result is:

Proposition. Let & ={E".},. s be the local specification given by

Eq 4(e” "4 )(n)

—t (3.2)
Eq, 4(e Y4)(n)

where the interaction (with respect to the free measure yuy with mass my>0) has the
form:

El(-):=

UA(<p):=/1/f1d2xfdQ(oc) €24 (%) (3.16)

with A> 0 arbitrary and do() a probability measure with support in (—2]/;, 21/;).
Let M, be the space of regular measures defined, by (3.17). Then:
1) There exists exactly one point p in 4(&)N M.,
2) ue GMP.
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1. The Technicalities

1.1.

Let Cbe a piecewise C'-curve in R2. Let for g € Co(R?). By w(x) denote the unique
solution of Dirichlet’s problem:

(—A4+mdy(x)=0 for xeR2C,
yy(z)=g(z) for zeC. (L.1)

It is known (e.g. [8]), that i(x) exists and for fixed xeR?\C the function
Co(R?*)3g>yi(x) is positive, continuous and linear. The measure on C
corresponding to this functional is absolutely continuous with respect to the
natural measure dz on C, i.e.

Pe(x)= f dzP(x,2)g(2), (1.2)

where the Poisson kernel P(x, z) is the measurable function on R x C.

Lemma 1.1.1. If ue 4, then there exists ¢>0 such that

po(f)*=clflizy,  feCPR?). (1.3)
So for each x ¢ C there exists an extension of the functional (1.2) to the function
S 3N pi(x) (1.4)

for which e¥"® e L (u) for 1 <p<oco.

Proof. From the definition of ./, [3.17, 2)] we have for arbitrary ¢ >0,
2 1 t —t 2a = 12“1+bt|G><
po(f)?< t_z'u(e o) L gmtoU) < t_zez I lexflle,, (1.5)

Taking t=G| f11%,+b*|G x f|2,)”'/?, we have for some constant ¢, >0,
po(f)* e, G121 +02IG X f7)- (1.6)
But

16 % £, <16 x fl, < 1G] G127, = mio 1621, = mio 1F1es (17)

where || G1/?| is the norm of operator G/ in L,(IR?, d,x). Hence from (1.6) and (1.7)
the bound (1.3) follows with some constant ¢>0. Now let {y,, A€ %,} be a
sequence of characteristic functions and let 4, € C(IR?), h,=0, [ h(x)d,x=1be a
sequence which goes (in %) to the ¢ distribution as ¢—0. Let us define the functions

S’ dzP(x, DM@ =v},, () x¢C, (1.8)

where #,(2) : =n(h,(- —2)).

Now using (1.3) we can prove, by the arguments of [3] that the sequence of
functions (1.8) converges in L,(u), as A /R? [to the element v (x)] and then as
¢—0. Because the sequence e*%:4™ (x ¢ C) has uniformly in ¢ and 4 bounded L, (1)
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norms, hence using the L,(u) convergence of yj; (x) we can prove L,(u)
convergence of e*:4™ as A /R? to e*# and to i ag g0, [

Now using (1.3) we have for ue .4, the following:

Lemma 1.1.2 (see [3, Theorem 2.1 and Theorem 2.2]). Let Fy={A,€ F },x be a
countable base of F and let {Q, e F: Q,CA,},.n be another countable base of F
such that d(, 0Q,)=34d(0, 04 )——> oo and |Q,| L 0(d(0, 02,)), |A4,| < 0(d(0, 64,)"),
where k is a positive constant.

Let p be a probability measure on (&', %) which satisfies (1.3). Let 0 <m<my,
then:

i) There is a subsequence {Q,, A}, Such that

d(2nr,0457) )
lim sup e2 | pn(x)|=0, p-ae.
n' =0 xey
ii) For any open Q CRY with piecewise C*-boundary 0Q there is a subsequence
(Q,, A,)y en (We assume that 0QNOA,, and 0Q 0K, are finite point sets) such that

10407

lim sup e2 "y Po(x) — i@ I(x)| =0, p-a.e.

n' >0 XeQunQ

1.2. The Correlation Inequalities for Conditioned Measures

By y,=w,(«,x) we’ll denote a random variable on (¥, %) being a function in

owe(— 2[/; 21/;) and x e int A, which is one of the following: ay?*(x), +alpi*(x)|,
Iotw,,A (I, apyP(x), Otw,,Q(x)+a|w3Q(X) wytne(x)l, ch,,Q(X) Ifx(w,,Q(x)
wi1"¢(x))| or convex linear combinations of them or identically zero.
Let
U@, p,):=2 f dyx| dQ(a)e‘””‘“”" e (X)

= i{ dyx| do@)e”" ™ TR, %5, (%), @1

where A€ %, do(o) =do , (¢)+do_(x) is a probability measure with suppdg+(oc)
C[O, i2]/;) and : :,, means the normal ordering with respect to ug’.
We define the conditioned measures
gA(e —Uale,vn) . )
.u'A,ipy,( ' ) = 'u(a)A(e—UA((p,wy,)) :

2.2)

In order to prove the correlation inequalities for these measures we define
(following the idea of [19]) the measures u,, vy, aNalogously as in (2.2) but with
1.(2) :=n(h,(- —2z)) instead of x, and their lattice approximations (e.g. [17, 21, 24])

a a(e“ Ua,s@s,¥n,) . )

Bt )= L (¢ T atoain) 2.3
where
n (a,x)— K (nd, nd) ws(n).
Un @) =26 X [do(a )" 1, 2.4)
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with ne?, @i n)=qo( f,, 5) for an appropriate element f, ;€ #_; and measure
5% is the restriction of ud” to the g-algebra generated by {@ (1)} ,5c .- We prove the
convergence of i, ,, 510 fi4,,, as 6—0and then the convergence of p, ,, tO fy,,
as ¢—0. By this procedure the correlation inequalities, which holds for lattice
measures, are carried out on the measures uy .

Lemma 1.2.1. Let uye .4, and A€ F. Then
1. Vpes, Ve>0,
i) Uu(o, ‘Pne) U 4,5(¢s U)rh) ELz(.uo ) #A e Ha,yp,,,s are well defined.
i) Uy o050y, o0 U (o, ’Pna) in Lz(#o )-

iii) For all FeL,u"), 1SpSo, fay,,oF(9)5=0 Hay,F@) if

F (%) —— Flo) in L, (ug").
2. 1) U A0, p,) € Ly(u3"@u) and the measure p v, are well defined for p-a.a.
nes’.
11) UA(<05 qu) 0 UA((pa 1/%,) in LZ(Au )
i) fig,y,, (F) 7 Ha, on(F) for all FeL,(u3"), 1<p< o0 and for p-ae. nes".

. W2 %) = ?K"A(x,x) . .
Proof. 1. Because for ¢>0 the function e is continuous bounded

the first part follows from [2] and [17] (at least for rectangles)

2. i) The fact that U 4(¢, y,) have the bounded L,(u3*® ,u) norm follows from
the definition of regularity of u by simple computations in which we use the
expressions for #_, — scalar products of Poisson kernels given in [3] (before
Lemma 2.2). The restriction suppdg(oc)c(—Z]/;, 21/;) is essential.

In order to prove that u,, is well defined it suffices to prove that the
denominator in (2.2) is different from zero for p-a.a. ne &’ From Jensen’s
inequality we have

_ )
ugAe UA(‘P’Wn)ge MOAUA((ﬂ:‘Pn), (2‘5)

and from regularity of u and the definition of y,(«, x)

Wnle x)—ﬁK“(x x)
iy 2 E

(B)A U((Pr wn) = ’1 £ dzde(a)e Li(#) )

so is p-a.e. finite, hence (2.5) is greater than zero for p-a.a. e "
ii) Let
(w.,e(a X))

U0, )= 4] dox{da(o) P50 ey ), 29
then
Uso. )= 3 UD(0.0,). e

and for each ne N
U@, v) 5> U0 vy) (2.8)
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in L,(ud*®u) which follows from the convergence of Y, (4, x)—> p,(a, x) in

L,(w), 1 =p < oo [and the explicit bound on [|y,(e, X) =, (¢, X) |1, Wthh follows
from definition of regularity of u]. Because |U 4(¢, w,)L 03465 18 uniformly
bounded in ¢ [this bound is easily obtainable from definition of regularity of u in
each partlcular case of , («, x)], we can conclude that U 4(¢, v, ) — s — U (@, v,)in

Ly(u3' @ ).
iii) Follows from ii) by standard arguments, e.g. [17], due to the fact that

U (¢, v,,) (620) are nonnegative. [J

Definition 1.2.1. The cylinder function F: (%", #)—R is called increasing if and
only if F(p)= F((p(fl) S 0(f), where f,20, fies, i=1,...,n (neN), and
F:RR"SR is increasing in each variable.

Lemma 1.2.2 (correlation inequalities). i) p4,,, € FKG, i.e. for arbitrary increasing
cylinder functions

FlaneLz(l‘A,w,,)Q luA,(py,(FhFZ)gOy

and consequently for all functions F;€ Ly(uy,,,) i=1,2, which can be obtained as
the Ly(i4,,,) limits of increasing cylmder functzons Srom Ly(py,,,)-
i) If wﬂ(a x)=y,(—a,x) and do(«) =do(—a), then

fa.,, € GKS,

i.e. for all functions Fi,F,€Ly(uy,,,) being the polynomials with nonnegative
coefficients or the Ly(uy,,,) limits of such polynomials

/"A,(p,,(FlaFZ)gO-
Proof (see e.g. [21, 24]). This lemma is the corollary following from Lemma 1.2.1
and from the factthat by definition (2.3) of u, ,, , as the locally perturbed

ferromagnet u, ,, ;€ FKG in the case of i), and in "the case of ii) because of the
symmetry ¢ <> —¢, we have u, , ;€GKS. [

1.3. The FKG Order in the Set of Conditioned and Gibbs Regular Measures

Definition 1.3. For two probability measures u; and u, on (&', 8), we say that p,

precedes p, in the sense of FKG — we write u; < u, — if and only if for each
increasing cylinder function F on (&, %) FKG
pi(F) S po(F). (3.1)

As one can see, the above relations define the partial order on the set of
probability measures on (&’,4%). The existence of FKG order in the sets of
measures from local specification and of Gibbs measures for ferromagnetic
specification has very interesting consequences: see [27, 30, 16, 22, 6, 35].
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Lemma 1.3.1 (FKG order in the set of conditioned measures). Let A€ Z.

i) Let {p,=v,(«, x) be a random variable on (¥, %). Let 0, = 0,(o, x) mean one
of the following: ag,,0, —|og,|, where ¢,=¢,(x) is a random variable on (¥, )
independent of o. We assume that p,+ «|¢,| and v, + 0, have the same properties as
p, in (1.2). Then

B, 5+ ol chéc K, ipy+6, F%G B, iy~ ald] -
i) If VxeintA, pii(x) p%\(x), then

Ba,apgr 2 M ap@r-
Y fKG i

Proof. 1) We prove only the left-hand side FKG inequality. The proof of the right-
hand side is almost the same. Let F € L ,(u%), 2< p< oo be increasing [i.e. cylinder
increasing or the L,(u2*) limit of a sequence of cylinder increasing functions]. Let
V,(8): =y, +50,+ (1 —s)alg,l, se[0,1]. Then

L d
ﬂA,q),,+0,,(F)_MA,W,,+a|¢,,|(F)= gds%ﬂA,w,,(s)(F)

= L5t (F. =] ] (@) (0,,) =g (0D 26720 (). (32
Furthermore,

a(p,—d,)) };0 for a<O0, (3.3)

0, )—alg, () =]  —old,|
{(—|a|—a>1¢,,| =0 for a>0

so because of the minus sign before 4, using the FKG inequality for p, ,,
[Lemma 1.2.2i)], we see that the right-hand side of (3.2) is nonnegative. Hence
because F was arbitrary increasing it concludes the proof of i). The point ii) can be
proven by the same arguments. [J

Lemma 1.3.2. Let the sequences {p} }, & and {3 } 4.5 converge weakly to the
measures pu* and u*, respectively.
If there exist subsequences indexed by n’€ N such that

1 2
:u'An/ _S_ Ha,. s
FKG

then

Proof. Obvious. [

Lemma 1.3.3 [18]. Let i, and u, be probability measures on (', %) such that for
fe2

uetNV<owo, i=1,2.
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Let ungG tz and pio(f)=p,(f). Then
Hi=Ha.

1.4. The Exponential Bounds
Let py4,,,, + be the measures defined as in (2.2) but with an interaction given by

Uy, (0, p,):=4 £ dyx[dg . (0)e¥ ™™ 162, (x), @.1)

where dg, are those coming from the decomposition of dg, see (2.1).

Lemma 1.4.1.

Baoygt = Barpy = Ha,py —» 4.2)
FKG FKG
so for 0=feP, (AeF)
.“A,w.,ei(p(f)§ll/1,w,,,: e*?), (4.3)

Proof. Let uy,,, sfor s € [0, 1] be the measure defined asin (2.2), for the interaction
U ,5(p,p,) defined as in (2.1), but with doy(a) : =sdg () +dg + (), instead of dp.
Let F € L,(u%") be increasing. Then

1 d
,UA,w,,(F)_HA,w,,, +(F)= (y)dS%:uA,tp,,,s(F)
1
= (j;dsuA,%s<F, —l;fidzxfdg_(oc)ewn(a,x) e, (x)> >0, (4.4)

from the fact that u, ,, ,€FKG [see Lemma 1.2.2i)].

In the same way we can prove the second FKG inequality in (4.2). The
inequality (4.3) follows from (4.2) and the fact that both +e*°Y (for f>0) are
increasing. [

Lemma 1.4.2 (The Exponential Bounds). i) Let 0= fe 9, (A€ % ). Then

B, p et oD < et 1112 1,00+ 240() 4.5)
where .
A(f):= | dax[de(@)lole™ ™ TRNG(f ) (4.6)
In particular, for y,(a,x)= — |oc1p§’l‘[(f>ﬁ)2| 10; iirjodzxdg(a)lam"/‘(f Y
fa, etV se a . 4.7)
ii) For any fe D, (Ae%F)
fig 0€®) SF I +bIGTlny (4.8)

where the constant b can be chosen independent of f and Ae F.
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Proof. i) We prove the bound as in (4.5) for the measures y1,,,, ~ and use Lemma
141 to obtain (4.5) for u, . Let us change the integration variables in
H,p,,5 € ? as follows:

P(x)=0'(x) £ G*(f,x). (4.9)
Then taking into account that (see e.g. [21, p. 171])
o' (- £ G™(f. ) (@) =e M2 10a=0' D)

dug"
we have
04, — U, +(0T GI(f,"), py)
+ 1 2 Ho € )
Wi, q €TOD =t 1112100 e Uar @ (4.10)
0
Let
pile Vi
F+(s): —W’ se[0,1], (4.11)

where US; + (@ £sG*(f, ), p,).
The functions F+(s) are differentiable and

) d ..
d pite Vs <_£UA,¢>
%F¢(S)= ‘uaAe_UA'*

1 _
ﬂ 94,-Ua, = 'uO < vas (_lidﬂd&’?(“)

. e¥n(@ x)J'rsaG""(f,x)( +aGo(f, x)) 1%, (x)>> =0 4.12)

(because the integrand is nonnegative).

We have
_ d
d ugte Vs <_£UA,¢>
2 Fx(9)= iUz F+(s). (413)

The following inequality holds

I\

) d .
'uDAe U$y *( %UA,¢> —ﬁKﬁA(_x 9
0 74,-U%, 7 =4 /{ dyxdo=(@)le? ™ 27 TUGH(f,x). (4.14)

Ko €

Using (4.10) and (4.12)4.14) we can conclude (4.6).
Let us now prove (4.14): We consider the measures
piie=vas )

o, 7\ )= T e o (RS O,l . 415)
ﬂ,+() #gA(e UA’;) [ ] (

As it follows from Lemma 1.2.2i) u, - e FKG.



Markov Property for Euclidean Fields 209

The functions

d
B%(0): = s, % <E(Ui, x)) (4.16)
are differentiable in ¢ and
L B (0)= g (= Uy ) (~ U ) @17)
do FO)=Us, T ds A, F) A, F §0 .
which follows from FKG. From (4.17) we have

B4(0) < B%(0)
= 15" dyed 5 @GP (., x)e

2
Vn(o,3) = 5 KOA(x, x) £ 2GIA(S, %)

6% (x). (4.18)

Hence (taking also into account that e~ 116”*(>% < 1) the inequality (4.14) holds.
This ends the proof of i).
ii) Let us change the variable of integration ¢ — ¢+ G%(f,-). Then we have

o) 217112 104 i~ Ualo+GP(F, )
Hy o€ '=¢€ B

oA
Mo €
=11, aAﬂA’Oe-(UA(w GUM(f,-N=Ualo) (4.19)

But
e~ Walo+Go(S, )~ Ualo)
Sexpd [ dyxfdo (@)(1—e"U9) e (x)
An{GOA(f,x)> 0}
-expA | dyx[do (a)(1—e0™"U>9) 1% (x). (4.20)
An{Goa(f,x)<0}
The first factor on the right-hand side of (4.20) is decreasing and the second is
increasing, hence using FKG we obtain

Ly o€~ (Uale+G4(f, )~ U ap)

SHaocxp(2 dyvdg (@) (1= )1 ()

An{Go4(f,x)> 0}

“fs. 0 €XD (z dyxdg (o) (1 — G U>) g2 (x)>. (4.21)

An{GoA(f,x) <0}
We now find the bound for the first factor on the right-hand side of (4.21) (for the
second the analogous bound can be found by the same arguments). Let us consider
the function of se[0,1]:
Fy(8):=fia,0€XP (z [ dyxdo (2)(1—e=0"09) 0% (x)>,
AN {GPA(f,x)> 0}

4.22)
which for s=1 is equal to the first factor on the right-hand side of (4.21). We have

d ”
2571 =0 (/1 | dyxdg ()| G*(f, x)e "V e (X)>

An{GP4(f,x)> 0}

Fi(s)20, (4.23)
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where

1 A(f,x o
Haol+)i=—— uA,o(<eXp/1 | dyxdg _(2)(1 =9 e (X)>->,
A,s

An(G%(f,x)> 0}

(4.24)

Z 4 ; a normalization factor.
Applying FKG (and taking into account that e*6*'0>® < 1) we have

K0 (l d,xdg ()|t GPA(f, x)es*C™ 3 g2 (x))
An{GO4(f,x)> 0}

Shao s (F e @IG 0% (). (429

An{GOA(f,x)>0

Now using our exp bound i) at the end we have that the right-hand side of (4.25) is
estimated by

a2i
Ag2mm? | dyxdo ()|l G(f, x), (4.26)
An{G1(f,x)> 0}
where & =max {|«|: « € suppdg}. Hence from that and (4.23) we have for a constant
b>0,
Fi(1)<exp (b I dyxdo —(0)lelG(f, X)>- (4.27)

An{G1(f,x)>0}

Analogously, we can prove the following bound for the second factor F,(1) on the
right-hand side of (4.21):

Fy(l)=exp (b [ } d,xdg 4 (@) G*(f, x)l) : (4.28)

An{GP(f,x)<0

Combining (4.19) with (4.21), (4.26), and (4.27) we obtain
Ha,0” Sexp (% ||f”2—1,aA+b£d2de(a)|al 1G*(f, X)I>

<expGl fI21+61Gx fllL).- (4.29)

The analogous bound for y,(«, x)=0 can be obtained for any y,(a, x) =ap?*(x)
with # =, where cis a constant [with constant b’ independent of ¢ for d(supp f, 04)
sufficiently big]. O

1.5. Exponential Clustering for Conditioned Measures
Uniform in Volume and Boundary Conditions

Lemma 1.5.1. Let f,ge 2, and f=0 or £0, g=0 or <0, then

0= piy,,(sign fe?), signge?)
o) 5nn 9|
/2 V2
Remark. We do not take the bound with p, , e/ *? in the right-hand side
because the case we are interested in is when we take :e*:, (x) instead of e?®@.
Proof. We have

B, wn(e¢(f)’ ew(y)) =%HA, wn®/z/1, w,,(e(p(f) — e&(f)) (ew(g) _ e‘f’(-")) , (5.1)

3 +gn2 |1 ,,0479 o3
S(p, €T 9)? 5 pug2sinh
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where fi,,, =[i4,,, Let us change the integration variables in the right-hand side
of (5.1) as follows:

P(x)= ﬁ(q(X) +p(x), ¢(x)= V% (9(x)—p(x)). (52)
Because
d/‘gl,l¢®l‘g/,1(7’ _ (5 3)
d“g/}q®ll(a)/,1p B .

(where the superscripts denote the integration variables), it follows that

1
1y w"(ew(f)’ e¢(9))= _2_22_#0 q®'u (e WUal, v+ U, wp) g, p))
4

b

f) @)
) egﬁ 2sinh P (f ) eti/g 2sinh (i) ) (5.4)
where
Zy,i= e Ualowwn) (5.5)

UACw)+ U4 0))a D) =U4(0(g, ), ;) + UA(qo(q, P),¥y)
—H d,xdo(a)e?® : eV_ i (x)2:cosh ‘/I% 0 (%)
=V, (010) - (5.6)
Because
pgte a0 for pit-aa ged’,
we can write (5.4) in the form
L,y (e(p(f)’etp(y))
— 1 o4
273 Fo

af +g)
~[e VZ (ugte” P amloyye <2sinhp—(f) 2sinh@>], (5.7)
A
where

()= T )
A ¥n - ’ubz’l (e” V4, w,,(l’"l))

(5.8)

We will show that

0=v% ,, ((sgn f)2sinh % (sgng)2sinh %)
L PO in P9

< ud? (sgn f)2sin W(sgngﬂsm ﬁ (5.9)
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Hence, from (5.9) and (5.7) by a simple change of integration variables [opposite to
(5.2)] the lemma follows.

Let us prove (5.9): Let us consider the measures v¥ ,, , defined as v , in (5.8)
but with g,(x):=q(h,(- —x)), where h, =0, h,e C2(R?), h,©=% §_, instead of q.
Because

VioP19) —=5 Varo,(PlD) in Lo(u6",®ua?), (5.10)
and
Vi, 0,014 20, (5.11)
it follows that
Ve 0 (F) —5 Va, v, (F) (5.12)

for any F e L(ud"), 1<s< 0.
Now we can define the lattice approximation for the measures v% , () as in
Sect. 1.2, and because of symmetry,

VA,lpy,(plqs)z VA,tpy,(_plqg)a (513)

we can prove GKS inequalities for lattice measures, and by the adequate limiting
procedure we can prove GKS for v% , . Using the GKS inequalities we get

%v‘}f n <sgnfsinh%sgng sinh l{}‘?)
=%, <sgn fsinh pl(/g) sgng smh% -V, W(p|q€)) <0 (5.14)

Hence

0=v%,, <sgn fsinh % sgng sinh l;;gi) )
<ug! (sgn f sinh%sgng sinhp—‘([“;—)> (5.15)

and using (5.12) we obtain (5.9). [

Remark. We can also prove this lemma by taking first the lattice approximation of
(5.1) and then using the lattice version of this lemma proved in [35].

2. Existence and Uniqueness

In this section we prove our first main result (see Sect. 0.3): 1) Existence of exactly
one point in ¥(&)NM,.

Proof . It is known (see [17, 2]) that the limit = hm E"Z° exists. We can also prove
by simple compactness arguments that lim E"Z x ex1sts for any constant ae R. It

Fo
follows from our exponential bound Lemma 1.4.2ii), that these limits belong to
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Y(8)NM,. Having any measure u € (&) .4,, we know that lim E%. exist for y-a.a.
Zo

ne S’ (e.g.[15,30]). In order to show that 4(&)n .4, consists of the unique point, it

suffices to prove that lim E"«(F) are independent of n for p-a.a. ne %’ and

any pe%E)nNA,, and any continuous cylinder function Fe L (u)n U B 4.
Because

ENF(0) = i, pga F (@ + 977 (1)
and y34(x)—0 locally uniformly as d(0, 34)— oo [see Lemma 1.1.2i)] for p-a.a.
ne s, so it suffices to prove that the limit lim p1, ,,24, Which exists for p-a.a. n, is

independent of 4, p-a.e. It follows from  *°
Lemma 2.1. For y-a.a., ne¥’
lg(l)l Ha, +alpda] = lg? Ha, —alpg4] (2)

If (2) holds then, because from Lemma 1.3.1i) we have
:uA,alwaAléluA an,AéluA —a|pdi|> (3)
Ha, alpdi| <1u/1 OSiuA —alpdl|- (4)

Hence using Lemma 1.3.2, we can conclude that

lim gy gpga=limpy o, 5)
Zo ZFo
sO
limE%.=limp, o, p-ae. (6)
Fo Fo

for any pe %(&)nA,. This ends the proof of uniqueness. [

Proof of Lemma 2.1. Because {j, 94} 4 « 7, cOnVerges for p-a.a.n € #, so from (3)
if we prove that for fe 9, f=0,

Hm (g, — o301 9(f) — Bt 211 0(F)) =0 ()
Fo
for u-a.a. n and for a dense in s#_, countable set {f;€ D};.
Ha, ialw?,/‘lew(fi) < C(r]afz) <o (A € 970) (8)

for u-a.a. n [where c(y, f;) is a constant independent of A], then we’ll conclude that
the limits in (2) exist and are equal for p-a.a. n € . (Here we use Lemma 1.3.2 and
Lemma 1.3.3.)

Let us prove (7): We'll prove that for fe 2, =0,

1;}? I:uA, ialu),,/llq)(f) —H4, - |oz(p,‘?/‘|q0(f)’ =0. (9)

We have with y,(s) :=(—sa—(1 —s)loc[)[w,‘j/‘(x)l, se[0,1],
Uy, —a|ypdt I(p(f) Ky, - = |ayga I(p(f) .[dS /"A lp,,(s)q)(f)

1 n(s) (@, %) — ﬁK‘?A(x,x) @
= dsuA,w(s)(q)(f), — 2] dyxdo@ (o]~ (ole”™ 2T ey, (x)>.
(10)
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From Lemma 1.5.1 (uniform clustering), we have

I“A,tp,,(s)((p(f ), €754 (%))

ag

< . >2 1,4 N2
= Ma,pn € ? 04 (%)) —=|u0"0(f)2 ismhﬁ&m ()| (11)
Because of FKG order [Lemma 1.3.1i)], for a <0,
a(a a(o
KA, ) e? (X)) Ha, —jarpgac) - e, (x)=const, (12)

where we have used Lemma 1.4.2i) [exp bound (4.7)], together with the adequate
limiting procedure (because of : :,,). From (10), (11), and (12) follows

0= 4, - ajpga1 () — B4, - ayga !‘P(f)

2, JewdA(x)| - K A(x, x)

<const 5 d,xdo _(x)o [w3(x)|G*(f, x) . (13)

Let us now take the countable bases {Q, CA, €%}, as in Lemma 1.1.2i).
Then we conclude from this lemma that

J daxdo (e o 015K o 1GoAS, )
<3 sup (WG |G x £, —— 0 (14)

for y-a.a. ne &
The second component has estimation, with 1<p,

lelwgAx) - K A(x, x)

G™(f,x)

) {Q dzxdg_(oc)azhpf,/‘(x)l
apfA(x _ goa %, %
plavAteal = Ko )Ga"(f,x). (15)

1
< dzde-(d)lalﬁe

We have from regularity of y, if p? <2,

aZ
play§t(x)| — 5 K04(x,x)

G™(f,x)

1 p2-1 2K 94(x, x) + bp|a| - const
< d,xdo _(a)|ot| ——e 2

n’\3én’

1
uof ,d2XdQ—(0‘)|°¢| p_—fe

n’\3én

G*(f,%)

<const| f1 e~ "0 | 4,\Q,, (16)

so for the sequence of {Q,, A4, } as in Lemma 1.1.2i) the right-hand side of (16) goes
to zero as n’— oo. Hence there exists the subsequence, for which the left-hand side
of (15) goes to zero for u-a.a. n € &#’. Analogously, we can prove (9) for the second
case. This ends the proof of (7).

In order to prove (8) it suffices to consider this bound for f =0 and for f<0
continuous with compact support. Then from Lemma 1.4.2i) we have

fa, sappguie” OO S et 17112 100t dtiafaSD 17)

with
lawd(x)| — K A(x, x)

Al (f )= f dyxde(o)|ele G(If1, ). (18)
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Because Af;,‘pg,.(l f1) converges in L,(u) to {do(e)|e| |G % f.;, for some subse-
quence of A’s, Al%g,‘(l f1) are bounded for p-a.a. 5. Hence for any countable family
of continuous functions with compact support the bound (8) holds (for some
countable base %,). U

3. The Global Markov Property

Let u be the unique measure in 4(&)N.#,. Let Q CIR? be an unbounded set with
piecewise C'-boundary dA4. We now show that for any F e %,nL,(n),

E(F|%Bg) € Bsg» (1)

i.. that 4 has GMP.
As we have stated in the introduction, the GMP problem is equivalent to the
uniqueness problem for conditioned specifications

€0, ={Eling A€ F }yjog=ilo0> 2

which must be solved for u-a.a. 7€ &’ Thus, the proof of GMP for the unique
HEYG(E)n M, will be carried out analogously as in Sect. 2. (uniqueness).

Remark. For our purposes it is sufficient that & is countable and contains a base
Z, which invades R?. The measures Ef,.,,. depend on 5 through the functions
Pl D(x). Let

‘szggn A)(X) = B 'faQ dzP, a(QnA)(xa 2)n(z)

sond) for xeint(AnQ) (3)
PMEDN (x):= 0 IaA dZPE(QnA)(xo 2)n(z)

(in the sense of Sect. 1.1). We have that
W) =y V() +yp8 (x),  xeint(4nQ), 4)

where the sum means the sum of two functions in L,(u), 1 <p<co. Under the
above notation (3), the symbolic expression 7,9 =150 in (2) means the equality

P 2o(x) =pi2ra(x) )

for d,x-a.a. xeintAnQ (in fact, for a countable dense set in QA because the
Bochner integral used in the definition of measure x4 ,, can be approximated by
adequate sums).

Proof of GMP. We need to show that the limits
lim Bl 0y =iivo (6)

(which exists for p-a.a. #fj from the martingale convergence theorem) are indepen-
dent of the sequences 1y,4 (A€ %) for p-a.a. e S
Because from Lemma 1.1.2ii) we have that [pJ2(x) — i@ 4(x)| YTy 0 for

x eintQ, it suffices to prove that the following limits (which exist u-a.c.) are
independent of {1y.,4: A€ %y} p-ae.,

Ig(l;l 'uAnQ,aw‘?,(A"Q) . (7)
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In order to do that it suffices (analogous to Sect. 2) to show that
hm HANQ, a2 +alopia » | = 1%1 HAanQ,apie —alspdrne| -

Because of FKG order (Lemma 1.3.1) we have

Kang,ay? 9Q +a|oygane| :U'AnQ,aupé,AﬁQ = HRAnQ,ayp 92 — ¢|pdane| s
FKG n
where
Sy 2(x) = 200 — pi¥(x) .

@)

©

(10)

So from (9) using Lemma 1.3.2 and Lemma 1.3.3 it suffices to show that for fe 2,

fz0
hm |uAnQ apf@ — aIéwaAf‘QI((p(f))_/"AnQ,oup'?,Q+a|6w§,A“Q[((p(f))|= 0

and for the total countable set {f;€ Z,, f;=0 and for f;<0},
M 140, appe +afspgrnale®/? < 0
for y-a.a. ne &
Let us prove (11): We have for =0, f€ 2, analogous to Sect. 2
lﬂAnQ ap?d Q+a|6w’3A“Q|((p(f))_:uAnQ apie - |aawaAﬂQ|(<P(f))|
<4 I dyxdo(o) (jor] £ o) oy "o(x)|

ea an(x)+ |’ 61340 Q(x)] -—K“"Q(x x)
_(p 2
- su ( ( 2 (x)))
P \H4anQ,avde + (£sa—(1 —s)lahlovirne ‘4nQ)
se[0,1]
A
: IfxllGa nQ(f’ X) )

where we have used exponential clustering (Lemma 1.5.1).
From FKG order and exp bound [Lemma 1.4.2i)] we have

L3 I¢ ))2
<luAnQ,auan+(:tsa (1-s)|opgrne < (x)

( 41l )2
Hano, apf@ — |adypdanQ| N2 2 :0(AnQ) (x)

éella’lAﬁA”Q(x) ,

where

a2
apf(y) — 5 K2 0 A(y, )

AZ(QM)(x):=AI deyda(oc)locle G*4"%(x, y)

ayfQ@(x)— K 2(y,y)

= <I_> dyyde(a)lale G*(x,y)

=1 Al9(x).

(11)

12)

(13)

(14)

(15)
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So we have from (13)15)
,.uAnQ, apiR iazléwg/""q((P(f)) - .uAnQ,aup‘zQ - Iaéng”Q|((p(f))|
<28 | dyxdg(@)|dwi*2(x)|
AnQ

Fife) 240 _% roan
apiR(x) + |adypir 0 C(x)| Ko40Q(x,x) ,—»
e d 2 elaA,,Q(x)Gi)QnA(f’ x)

s\ 1
=2/5* <A§ . d,x|opy " U(x)PG2A(, X)">?

2
fR(x) +[adpd @ (x)| — S-KI4nQ(x,x)

-(A f{ dexdg(oc)ep(w GoerA(f, x)>

r\1
. (g dzxerl&AQ,Q(x)GaQ(f’ x)q_>7’ (16)

1
.

The first factor on the right-hand side of (16) goes to zero: For {Q,, 4,},.x as in
Lemma 1.1.2ii) we have '

[ dyx|opi2tn(x)PGPeAn( £, x)
AnnQ

=<I + )d2x|5w3QM"(x)|sGaQ°A"(f,x)s/"- (17)
2,00 (An\2n)NQ

1 1 . 1
where — + — =1 with 1<p<?2 and1+—=
P q ros

The first component on the right-hand side of (17) goes to zero from Lemma
1.1.2ii). The second goes to zero in L,(u) — it follows from exponential decay of

G?" 4= uniform in A4, and the fact that | uldpi"*(x)|d,x has the bound
A2

proportional to the |0(A4,\2,)NQ|, which grows by our assumptions at most as a
power of distance d(04,, 2,) =+d(0, 4,). For the second factor on the right-hand

side of (16) we have (using the regularity of p),

2
20 +labyf 2] - G KRN, )

g § dyxdo(w)e” (o G 4( £, %)
AnQ

2
pz_pazK(M NQ(x, x)

< 1 dixdo(o) e

p2a?

+e 2

2
(4K9Q(x, x) ~ 4K010Q(x, x)+ K?4nQ(x,x) -~ goo ’Vl(x,x):|
e

-const x G?2M4(f, x)
p(_p_—l)aZKaAnQ(x,x)

< | dyxdo(®)2 xconstxe 2 -G (£, x), (18)
AnQ

where we have used the fact, that
K%(x, x) = lim (G — G*9(x, y) < lim (G — G2 (x, y) = K2 4(x, x). (19)
yox yox
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But the right-hand side of (18) is uniformly bounded in A, so we can choose the
subsequence {A, € %, },n, for which the second factor in the right-hand side of (16)
weakly converges and so p-a.e. is bounded (uniformly in 4,).

The third factor on the right-hand side of (16) is bounded for u-a.a. ne &,
which easily follows from the estimation

APx) S R()(1+d(0, x)) (20)

with R(n) a constant dependent on # and 0<f<1.
This ends the proof of (11).
We now prove the estimation (20) in the following two lemmas:

Lemma 3.1. Let {4.};.4- be the cover of Q by unit disjoint cubes with centres at the
points i€ Z?. Let for ke N,
Q.= {n €S VieZ? | dy(:e™PO:)P<kd(0, i)"'} (21)
Ai('\Q

with 1 <p’<p and p2p —1)&* <4n, where

_ a2
awiR(y) — 5 K%2(y,y)

0
160 = ,

then

ﬂ{u Qk}=1. (22)

keN

Proof of Lemma 3.1. We have (using Tchebyshev’s inequality and regularity of y)

WP\ =p {n e iel? ) ) . d,y(: ™0 )P > kd(0, i)”}

1 1
< api2(»).\2p
= Zz a0 )

1 @p?—2p) L K90y, )
<const—- k2 lefiz (0,127 ( | dyye 2 >
const’
2 (23)

. 1 .
because K%(y, y) has the singularity — Zlnd(@Q, y), so if p(2p— 1)&* < 4r, then

the integrals d,yeP2p~ 1)2K?20.3) exists and are uniformly bounded in i€ Z?,
g Ao 2) y
in
and because p’>1 so

1
2 40,77 <® 24

Hence, because the right-hand side of (22) goes to zero as k— oo, the lemma
follows. O
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Lemma 3.2. For p-a.a. e &’

A7) <R(m)(1+d(0, x)") (25)
with 0<f <1 and R(n) a constant dependent on ne &".
Proof of Lemma 3.2. We have from definition (15) of A7%(x) and Holder’s
inequality with 1 <p<2 and % + % =1,

L S
AL 3 [do@lal( [ daye 0Py ([ dayGe(eyyye. (26

Now using Lemma 3.1 with & =max {«: & € suppdg} we obtain with the constants
¢(n) and aq,

A0S S [do@lalcl)d(0, 9P a- e ok
iezZ?

2 , . )
<const x <d(0, X)P Y e UL 3 d(x,i)p e ol ")

<R (0, x)P +1) V)

’

with R(n) a constant and = % <l. O

In order to end the proof of GMP we need to prove the exp bound (12): It
suffices to consider the case fe Py, f =0 and also f <0, so we can use Lemma
1.4.2i), which gives

2 QoA
Pang,avie salsppaneie” S eI /IEroatdtuigeaoizrall/l, (28)

where

AR5k sprne)(f) S A§Q d,xdo(or)|orfe*wHPE) +ledvit 02l
n

a2
— —K040Q(x, x)

2 G f],%). (29)

But the right-hand side of (29) converges for u-a.a. € &’ (eventually, if we take a
subsequence) so (12) follows. This ends the proof of GMP. [
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Note added in proof. Concerning the remarks on pp. 199 and 200: see the BiBoS paper “The
Gibbs measures and partial differential equations” by the same author.








