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Abstract. The uniqueness and the global Markov property for the regular
Gibbs measure corresponding to the interaction

[for Λ>0, dρ(α) a probability measure with support in (— 2J/π, 2]/π)] is
proved.

0. Introduction

0.1. Definitions and Notations

By 3F we denote a family of bounded open sets in Rd partially ordered by the
filtering inclusion relation £ (i.e. A^A^SF => IΛ^e^, AiQΛ39 A2QA3).

By ^0: = {Ane^:AnQΛn+1}new we denote a countable base of 3F (i.e.
V Λ e J*, 3 ylM e J^Q, Λ£/ln) We always assume that boundary dΛ of Ae^ is
piecewise-C1-curve. We assume that (j An = 1Rd. We write Ac: = JRd\Λ and
int^l:=yl\3A °̂

Let 2 = ®reaι(lRd) be the space of C^(R^) real functions and ̂  = ̂ reaι(lRd) the
space of C°°(Rd) real rapidly decreasing functions, which are topologized as
usually, e.g. [35, p. 28] for 2 and [35, p. 146] for ¥. By 9' (respectively &") we
denote the real topological dual space of 2 (respectively ίf\ For yigRd, we write
/e®^ (respectively £fA) if /e® (respectively £f] and sup/gΛ Let for /e®
(respectively £f)

(1.1)

(respectively for &" we denote this function by the same letters). For arbitrary
yi£Rd open ΣΛ (respectively 3SΛ) is the smallest σ-algebra of subsets in Qιf

(respectively £f\ such that all functions {φ(f)'.fε£2Λ} (respectively /e^) are
measurable. If A = Rd we write Σ^Σ^d and St = St^Λ. For arbitrary AQRd we
define

ΣΛ: = Π ΣΛ ("respectively 31A: = Π ^
ΛCΛ' (open) I ΛCΛ' (open)
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If the function F : '̂->1R (respectively y-»IR) is Σ9 ΣΛ (respectively &, &A)
measurable, we write F e Σ, F e ΣΛ (respectively for J*, 0iA).

Let μ, μ0 be the probability measures on (2\Σ) [respectively (y\0S)~]. By
μ(F), μ0(-F) we denote the expectations values of F with the measures μ and μ0.
For FeL^μ) or FeLM by E^FIZJ, £μo(F|£J = £0f^ we denote the
conditional expectations of F associated to μ, respectively μ0 with respect to ΣΛ

(analogously for <9A). We write

, f") : =μ(F - F)-μ(F) - μ(F) . (1.2)

Let zl (respectively AdΛ) be the selfadjoint Laplacean in L2(Rd) with the
essential domain CJ(IRd) [respectively Friedrichs extention in L2(Λ,dx) of zl
defined on Co(AJ]. For arbitrary but fixed through all the paper m0 > 0, by G(x, y)
[respectively GdA(x9yJ] we denote the kernel of the operator ( — Δ+ml)~l

in L2(Rd) [respectively of (-zJ^ + mg)"1 in L2(Λ,dxy]. As usual

(1.3)

11/11-1,^ : = ldxdyf(x)GeA(x, y)f(y) - (1-4)

Let for x φ y,

KdΛ(x,y): — G(x,y) — G6Λ(x,y), (1.5)

and

KdA(x, x): = lim KdA(x9 y). (1.6)
y^x

The limit in (1.6) exists and KδΛ(x, x) is the continuous function in intyl (e.g. [3],
[21, Chap. 7]).

0.2. Gibbs Measures ([10, 11, 15, 26, 30];

Definition 0.2.1. A local specification is a family $ = {EΛC}Λ e & whose elements are
the functions

with the following properties :
1) 3 Ω E Σ, V η e Ω, E\c( ) is a probability measure on (β\Σ\ which restriction

to Z^c coincides with the point measure δη.
2) For F e Σ1 the function 3)r3v\\-+ Eη

AC(F) is ΣΛC measurable, being identically
zero for ηφΩ.

3) The compatibility condition holds :

Definition 0.2.2. A Gibbs measure for a local specification 8 is a probability
measure on (Q)\ Σ) such that

V Λ e ^ ? μE^ HM ). (2.1)

By <S($) we denote the set of all Gibbs measures for a specification S and by
d<&(δ) the set of extreme points of <$(g) [i.e. those μ e ^(<f) which cannot be
represented as a convex combination of other Gibbs measures].
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Remark. Equation (2.1) means that for each F EL±(μ\

Eμ(F\ΣΛC)(η) = E\c(F} μ-a.e. (2.2)

forallyle^(see[30]).
It is known, e.g. [15] that μ e <$(£) defined on a standard Borel space can be

uniquely represented as the integral over

Definition 0.2.3. Let F E ΣA (A E J^) be nonnegative:

l ) I f EAc(F)eΣdΛ9 VΛE^, (2.3)

we say that δ is Markov.
ii) If for the probability measure μ on (β\ Σ)

Eμ(F\ΣΛC)EΣdΛ , V Λ e ^ (2.4)

we say that μ has the local Markov property.
iii) If for arbitrary open (with piecewise C1 boundary) set βcR^ and for

arbitrary (nonnegative) F E ΣQ

Eμ(F\ΣQC)EΣdQ, (2.5)

we say that μ has the global Markov property (GMP) and we write μ e GMP.
If μ E <&(β) and δ is Markov then μ has the local Markov property, but it can

happen that μ φ GMP (see e.g. the next section).

Definition 0.2.4. Let T/0(d) = {T(R>α): (R,ά)eIO(d)} be the representation of
inhomogeneous Euclidean group I0(d) in d dimensions, whose action is defined on
Σ by the action on the functions φ(f), as follows :

aj9 (2.6)

where f(Rta)(x):=f(R^(x-ay)9

i) δ is Euclidean covariant if and only if

VF E Σ, V(Λ, a) E I0(d), T(R>a}(EΛC(F)) = £((Λ.βM)β(7JΛf β>F) , (2.7)

where (R, d)A : = {x eIRA R~l(x-d)EΛ}.
ii) A probability measure μ on (β\ Σ) is called Euclidean invariant if and only if

V (R, a) E I0(d) , (7& β)μ)(F) = μT(R,a)(F} = μ(F) . (2.8)

0.3. The Euclidean Quantum Fields: The Exposition of Problems and Results

One of the possible definitions of the notion : "the (scalar) quantum field with
specified interaction," can be given (see [12, 24]) in the Euclidean region with the
aid of the notion of a Gibbs measure :

We say that a probability measure μ on (2\ Σ) defines the (scalar) quantum
field with the interaction {UΛe ΣΛ}Λ e & (with respect to the "free" measure μ0) if
and only if

1) V/LeJ*-, μ\ΣΛ<μ^Λ, (3.1)

i.e. μ is locally absolutely continuous with respect to μ0 and
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where the local specification $ = {EAc}Ae^ is given by

and
2) The Osterwalder-Schrader axioms [29] are satisfied by the moments of μ:

When the dimension of Euclidean space is d = 2, the specification $ in (3.2) can
be defined with the aid of the "free" measure μ0 corresponding to the free (scalar)
quantum field, i.e. Gaussian probability measure with mean zero and co variance
G( , ), and the large class of interaction (additive) functionals { UΛ e ΣΛ, A e ̂ } (at
least for countable 3F\

It is known (e.g. [1, 3]) that, under the general assumptions on the local
specification (3.2), a Gibbs measure for S exists and in general it can be nonunique.
The existence of many Gibbs measures for S can imply that many different
quantum fields with the same interaction can exist and moreover, that the vacuum
vector is not cyclic for time-zero fields. The last is connected with the lack of GMP
(2.5) for the Gibbs measure defining the quantum field. The GMP property is
required if we want to reconstruct the quantum fields in the Minkowski region
through Nelson's reconstruction theorem [28]. If the Gibbs measure has all the
properties contained in Nelson's axioms (see [28]) besides GMP, we can
reconstruct the quantum field in Minkowski space through the O-S reconstruction
[29], but the time-zero fields have no vacuum as the cyclic vector. (For other
consequences of GMP see [15] and refs. given there.)

Example. Now we will give the simple illustration to the uniqueness and GMP
problems : Let μ0 be the Gaussian measure on (<$\ Σ) with mean zero and the
covariance given by G( - , ). Let <ί0 = {E0ίΛC}Λ e& be the local specification given by
[the extension to (β\ Σ) of] a nice version of conditional expectations E0fAC

associated to μ0 and with respect to ΣΛC. It is known (e.g. [13]), that <ί0 is well
defined at least for a countable family 2F and that S0 is Markov [Definition 0.2.31)].

As one can see, all measures in d^(SQ) are indexed by the solution of the
equation

,(*) = 0, xeR«, (3.3)

i.e.

φ0(X) = $dv(z)em°^ZiXi, (3.4)

where dv(z) is a bounded measure on the unit sphere in IRA In fact, we have

Vμeδίί(<?0), ^(exactly one)^0> μF(φ) = μ0F(φ + φ0) = μφo(F) . (3.5)

There exists exactly one solution φ0 = 0, which has Euclidean symmetry, and
the corresponding measure μ0 is the unique measure in <&(δ^ with the same
symmetry. This is the unique measure with support in £f'.
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Remark^: In general, one can expect that the extremal Gibbs measures correspond-
ing to the interaction of the form

UΛ(φ) :=λ\dx: V(φ) : (x) (A 6 &) (3.6)
A

are indexed by the classical solutions of the equation

(-Δ+ mgWoOO + λV'(φQ)(x) = 0 , x 6 Rd , (3.7)

and the measure μφoed(g(£>) corresponding to φ0 has the following form:

μφ0F(<P) = μ*> .Φ0F(φ + Φo), (3.8)

where the measure μ<?>>φo has support in &". In particular, we have

μφMf}) = μ*».Φo(φ(n) + Φ*(f) . (3.80
However, this correspondence cannot be, in general, one-to-one. It follows

from the example of the : λφ4 + σφ2 -hφ:2 model. If λ > 0, σ < 0 and A is sufficiently
small, then there are two solutions of the adequate equation (3.7), which have
Euclidean symmetry, but there exists exactly one Euclidean invariant Gibbs
measure (which is surely an extremal Gibbs measure; the proof of extremality
exists only for the lattice version of this model, see [6, 35]). It follows (see [1 8]) from
analyticity of pressure in A, ReAφO [23].

This phenomenon (the phase transition) is not, in general, well understood (at
least by the author), although there exist interesting results concerning the
problem (see [14, 25] and refs. therein).

The whole set <8($} is at least of mathematical interest, and in practice we
consider those measures only which are regular in the sense that they are
supported by ί f ' .

Let us now discuss the GMP problem for the measures in (̂<f 0)
 : We have

μφoe3W) => μΦoeGMP. (3.9)

However, if we take for example two solutions of Eq. (3.3),

^l(χ) :=έ,mo*ι

f (3.10)
#§(*): = *-m°*S

then for the Gibbs measure

one can see that the GMP fails. (This example resembles in spirit that given by
Goldstein in [22, Sect. 2].)

In general, we can expect that for Markov specification <?,

δ#(<ί)cGMP. (3.12)

Now this is proved only for the dimension d=l, see [9].
The GMP problem for μe <$(<$) can also be considered as the uniqueness

problem for conditioned specification, i.e. is there, for any βClR^ (open with
smooth boundary dQ) and any ^esuppμ (for μ - almost all η) only one Gibbs

1 See note added in proof on p. 221
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measure for the local specification

^Q,n : = (EAC}A ε j^nβ, t\Q° = n\Q< (3.13)

Remark} This problem is connected with the uniqueness (in the suppμ) of the
solution of the Dirichlet problem in Q with boundary condition in the support of μ
for the classical Euclidean field equation (3.7).

In the paper [3] by Albeverio and H0egh-Krohn the uniqueness and GMP
problems have been solved for Euclidean fields in two dimensions with the
trigonometric interaction with respect to μ0 with m0>0:

UA(φ):=λίd2x:cos<*(φ + θ ) : 0 ( x ) , (3.14)
A

with i) λ > 0 sufficiently small,

ii) αe( — |/2π,|/2π). [The double dots in (3.14) mean the normal ordering with
respect to μ0.]

The authors showed that there exists a unique Gibbs measure for the
interaction (3.14), regular in the sense that

2 ) 2 2 l" 0)

(c a positive constant) and that this (extremal) Gibbs measure has GMP.

Remark. The proof in [3] relies on the application of the cluster expansion (see [21,
Chap. 18] and ref. [2] in our [3]) to the conditional measures. This expansion is
uniformly - in volume and boundary conditions - convergent under the
assumptions i) and ii) in (3.14). The existence theorem can be proven (see ref. [2] in

[3]) by the use of the same technique for α's in the larger interval ( — 2]/π, 2]/π). But
in the case of the cluster expansion for conditional measures, in order to have the
stability estimate (independent of boundary conditions) for the conditioned
partition function in the unit cube by the method of 3. Frόhlich (see ref. [22] in [3]),

the restriction to the smaller interval ( — J/2π, |/2π) is needed.
In our work we consider the exponential interaction (with respect to μ0 with

m0>0):

:e^:0(x)9 (3.16)

where i) /l>0 arbitrary, ii) dρ(α) is a probability measure with support in

(— 2|/π, 2|/π). We distinguish the space Jiγ of probability measures μ on (£f\ J*),
which fulfill the following conditions:

1)
2)

a > 0, b ̂  0 arbitrary, / for which the right-hand side exists. The elements of Jir we
will call the regular measures. (They are also regular, see Lemma 1.1.1, in the sense
of (3.15) used in [3].) The definition (3.17) appears to be a natural consequence of
one of our technical results (exp bound in Sect. 1.4). It can be shown - using

1 See note added in proof on p. 221
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Dobrushin's compactness arguments (e.g. [10, 11 and 6, 7]) - that in the space Jίr

there exists a Gibbs measure μ for δ, where δ is given by (3.2) and (3.16). In fact, the
measure μ is unique in &(&)nJ(r. It can be obtained exactly as in [2, 17] as the
thermodynamic limit of finite volume measures with half-Dirichlet boundary
condition. Such a measure defines the Euclidean field theory [with the mass gap
^m0 for any measure dρ(a) in (3.16H), which follows from one of our technical
results: exponential clustering in Sect. 1.5]. We have also that μ e GMP. The proof
that μ e GMP is given as the proof of uniqueness for conditioned specification
(3.13).

The technique of our proofs is based on the correlation inequalities, so we do
not need the restriction of the interval of α's as in [3].

The uniqueness and GMP problems for the interactions of the form (3.16) but
with suppdρC(0, ε), ε small and ε<2j/π have been also considered in [19]. We do
the needed improvements of some lemmas. In our proofs of uniqueness we use also
a different idea - of the FKG order (see e.g. [30]). Using this idea we prepare the
extension of our results - in particular, the proof of GMP based on the method
used in [22,16, 35] - to the case of the interactions (3.16) with the additional term
σ :φ2: with σ<0 and |σ| big.

Remark. The problems of GMP (and also of uniqueness) have been also
considered in the following papers:

a) for lattice finite spin systems: [5, 22, 27] (implicitly also in [32]),
b) for lattice infinite spin systems: [31, 7, 6, 35],
c) for classical gases: [33, 22, 20],
d) solved under the general assumptions in one dimension in [9] (see also refs.

therein for preceding particular results).

In the next section we present our technical results. The main ones are: FKG
order in the set of conditioned measures (Sect. 1.3), the exponential bound (Sect.
1.4) and uniform - in volume and boundary condition - exponential clustering
(Sect. 1.5) for conditioned measures.

The proofs of uniqueness (here it implies extremality) of the regular Gibbs
measure is given in Sect. 2 and of the GMP in Sect. 3.

Summing up, our main result is:

Proposition. Let $ = {Eη

ΛC}Λ e & be the local specification given by

where the interaction (with respect to the free measure μ0 with mass m0 > 0) has the
form:

UΛ(φ): = λ J d2xf dρ(α) :e<% (x) (3.16)
A

withλ>0 arbitrary and dρ(a) a probability measure with support in ( — 2|/π, 2]/π).
Let Jίγ be the space of regular measures defined, by (3.17). Then:
1) There exists exactly one point μ in
2) μeGMP.
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1. The Technicalities

1.1.

Let C be a piecewise C1-curve in R2. Let for g e C0(1R2). By ψc

g(x) denote the unique
solution of Dirichlet's problem :

(-Δ+m$ψc

g(x) = Q for xeR 2\C,

yfβ(z) = g(z) for z e C . (1.1)

It is known (e.g. [8]), that ψc

g(x) exists and for fixed xeR2\C the function
C0(]R

2) 3 g ι-> ψg(x) is positive, continuous and linear. The measure on C
corresponding to this functional is absolutely continuous with respect to the
natural measure dz on C, i.e.

yfg(x)=SdzPe(x,z)g(z), (1.2)
C

where the Poisson kernel Pc(x, z) is the measurable function on R2 x C.

Lemma 1.1.1. // μ e Mr then there exists c> 0 such that

μφ(fY^c\\f\\2^, /eC0-(]R2). (1.3)

So for each xφC there exists an extension of the functional (1.2) to the function

ff»sη^ψe

η(x) (1.4)

for which eψCη(x} e Lp(μ) for 1 5Ξ p < oo.

Proof. From the definition of Jίγ [3.17, 2)] we have for arbitrary ί>0,

ί

Taking ί = (il|/| |_1 + &2 | |Gx/||2,1)~1/2, we have for some constant c^O,

μφ(f)^c^\\f\\2.,+b2\\Gxf\\lί). (1.6)

But

where || G1/2 1| is the norm of operator G1/2 in L2(R2, d2x). Hence from (1.6) and (1.7)
the bound (1.3) follows with some constant c>0. Now let {χA, Ae^0} be a
sequence of characteristic functions and let /zεe C^(R2), /ίε^0, ί/zε(x)d2x= 1 be a
sequence which goes (in &") to the 5 distribution as ε->0. Let us define the functions

iee^^idzPe(x,z)xA(z^t(z) = ̂ lA(x); xφC, (1.8)
C

where ηε(z):=η(hε( -z)}.
Now using (1.3) we can prove, by the arguments of [3] that the sequence of

functions (1.8) converges in L2(μ), as /L/R2 [to the element ψc

ηε(x)~] and then as
ε->0. Because the sequence eψCη^(x} (x φ C) has uniformly in ε and A bounded Lp(μ)
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norms, hence using the L2(μ) convergence of ψηε,Λ(x) we can prove Lp(μ)
convergence of ΛΛ*) as /L/R2 to ev«*> and to e^ as ε->0. D

Now using (1.3) we have for μeJίr the following:

Lemma 1.1.2 (see [3, Theorem 2.1 and Theorem 2.2]). Let J^ = (Λn e ̂ "}Λ6N be a
countable base of 2F and let {Ωne^: ΩnCΛn}ne^ be another countable base of 2F
such that d(, dΩJ=±d(0, dAn) - > oo and \Ωn\ £ φ(d(09 dΩn)

k\ \An\ ̂  0(d(0, dAn)
k\

1 1 n~* °°where k is a positive constant.
Let μ be a probability measure on (£f\3$) which satisfies (1.3). Let 0<m<m0,

then:
i) There is a subsequence {ί2n/,Λπ/}w/e ] N such that

lim sup e2 "'' "' \ψd

η

Λn'(x)\ = Q, μ-a.e.
n'-»oo xeΩn'

ii) For any open βcRd with piecewise C1 -boundary dQ there is a subsequence
(Ωn,, ^On'eN (™e assume that dQr\dΛn> and dQr\dΩn, are finite point sets) such that

lim sup ^d(flnffMn')|v;QW-vS(βnyl>|f)WI = 0, μ-a.e.

1.2. The Correlation Inequalities for Conditioned Measures

By ψη = ψη(u, x) we'll denote a random variable on (ίff, &) being a function in

α e ( — 2|/π, 2|/π) and x e mi A, which is one of the following : αψ^(x), ± α|v^^(x)|,
-lαv^WI, αv^(x), αφf (x) + α|φf (x)-φ^^(x)|, αφf (x) - |«(φf (x)
— i/;^n<2(x))| or convex linear combinations of them or identically zero.

Let
UΛ(φ, Ψη): = λ$ d2x$dρ(κ)e^«^ :e«φ:0 (x)

A

= λ f ̂ xj^ ̂ ''"̂ "1 :e*:M W , (2.1)

where AE^, dρ((x) = dρ + (<x) + dρ-(oC) is a probability measure with suppdρ + (α)
C[0, ±2|/π) and : :δyl means the normal ordering with respect to μd

0

Λ.
We define the conditioned measures

μdΛ(e~uΛ(
VA, Ψη( ')

:= dΛse-vΛ,η

In order to prove the correlation inequalities for these measures we define
(following the idea of [19]) the measures μΛίψη analogously as in (2.2) but with
ηε(z) : = η(hε( —z)) instead ofη, and their lattice 'approximations (e.g. [17, 21, 24])

..dA (P-VΛ, ό(<Pό, Ψηε) . \
// ί v - ^°»^g >
μΛ,ψηε,δ\ ' )' QΛ Se-VΛ>ό(φό,vηε)\ '

where

UΛ,ό(MηJ: = λδ> Σ ίdQ^**-*'**'* :<"»>:„ (2.4)
nδeΛ
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with neZ2, φδ(n) = φ(fnfδ) for an appropriate element /π,δe^-ι and measure
μof«5 is the restriction of μ^1 to the σ-algebra generated by {φδ(n)}nδeΛ. We prove the
convergence of μAtίptlftδ to μΛ^ε

 as δ~*® and then the convergence oϊμAtψηf to μAtψη

as ε->0. By this procedure the correlation inequalities, which holds for lattice
measures, are carried out on the measures μAtψη.

Lemma 1.2.1. Let μεJΐrandΛ<= IF. Then
1. V f / e ^ , Vε>0,

i) UA(φ,ψη), UΛtδ(φδ,ψη)εL2(μd

0

Λl μΛ^ μΛ,Ψηε>δ are well defined.
ϋ) UΛ,δ(φδ,ψη)-^> UΛ(φ,ψη) in L2(μd

0

Λ).

iii) For all FeLp(μf\ l^p^oo, μAf(φδ)—+ μAtψηF(φ) if

2. i) UΛ(φ,ψη)GL2(μdQΛ®μ) and the measure μΛ ψ are well defined for μ-a.a.

ii) UA(φ9ψη)-^+ UΛ(φ,ιpη) in L2(μ

iii) μΛ (F) > μΛ (F) for all F e Lp(μd^\ 1 ̂ p ^ oo and for μ-a.e.

Proof. 1. Because for ε > 0 the function e 2 ' is continuous bounded
the first part follows from [2] and [17] (at least for rectangles).

2. i) The fact that UA(φ, ψη) have the bounded L2(μd

Q

Λ(S)μ) norm follows from
the definition of regularity of μ by simple computations in which we use the
expressions for JfL ί - scalar products of Poisson kernels given in [3] (before

Lemma 2.2). The restriction suppdρ(α)C( — 2|/π,2]/π) is essential.
In order to prove that μΛ>ψη is well defined it suffices to prove that the

denominator in (2.2) is different from zero for μ-a.a. f/e5^. From Jensen's
inequality we have

dΛe-UΛ(φ,ψη)>e-μ$ΛUΛ(φ,<ψη)^ β.S)

and from regularity of μ and the definition of ψη(a, x)

μξ>ΛU(φ, ψη) = λί diXdρWe-' e L,(
A

so is μ-a.e. finite, hence (2.5) is greater than zero for μ-a.a. η e
ii) Let

vyiιev^ *7/ . ̂ αφ. ^^ ^ p.6)

yi π!

then

oo

UA(φ, ψ ) = Σ Uy^φ, ψη), (2.7)
n = 0

and for each π e N
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in L2(μd

Q

A®μ) which follows from the convergence of φMε(α,x) - > ψη(<x,,x) in

Lp(μ\ l^p<co [and the explicit bound on || ψη(κ, x) — ψηε(u, x) || L ^ which follows
from definition of regularity of μ]. Because \\UA(φ9\pη)\\L2(μdΛ9μ) is uniformly
bounded in s [this bound is easily obtainable from definition of regularity of μ in
each particular case of ψηε(a9 x)], we can conclude that UA(φ, ψη) - > UA(φ, ψη) in

~*

iii) Follows from ii) by standard arguments, e.g. [17], due to the fact that
UΛ(φ,ψηε) (ε^O) are nonnegative. D

Definition 1.2.1. The cylinder function F : (&"9 J*)->]R is called increasing if and
only if F(φ) = f(φ(fi)9...9φ(f^)9 where /^O, /je^, i = 1, ...,n (neN), and
F : R"-»R is increasing in each variable.

Lemma 1.2.2 (correlation inequalities), i) μΛ>ψη e FKG, i.e. for arbitrary increasing
cylinder functions

Fί,F2εL2(μΛ>ψη); μA.ψη(Fl9

and consequently for all functions Ft e L2(μAtψr)9 i=l,2, which can be obtained as
the L2(μΛ>ψη) limits of increasing cylinder functions from L2(μΛ>^ ).

ii) // ιp^(α, x) = ψη( — α, x) and dρ(a) = dρ( — α), then

i.e. for all functions F1,F2eL2(μA^tι) being the polynomials with nonnegative
coefficients or the L2(μAtψη) limits of such polynomials

Proof (see e.g. [21, 24]). This lemma is the corollary following from Lemma 1.2.1
and from the fact,that by definition (2.3) of μAtψvιtδ as the locally perturbed
ferromagnet μAtψvι ^ e FKG in the case of i), and in the case of ii) because of the
symmetry </><-»- φ, we have μAt ψr]ίδe GKS. D

1.3. The FKG Order in the Set of Conditioned and Gibbs Regular Measures

Definition 1.3. For two probability measures μί and μ2 on (£f\3fi\ we say that μί

precedes μ2 in the sense of FKG - we write μ t ^ μ2 - if and only if for each
increasing cylinder function F on (9*', J*) FKG

μι(F)^μ2(F). (3.1)

As one can see, the above relations define the partial order on the set of
probability measures on (Sf'98S). The existence of FKG order in the sets of
measures from local specification and of Gibbs measures for ferromagnetic
specification has very interesting consequences: see [27, 30, 16, 22, 6, 35].
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Lemma 1.3.1 (FKG order in the set of conditioned measures). Let
i) Let ψη = ψη(u, x) be a random variable on (ίf\ £S). Let θη = θη(a, x) mean one

of the following: α^,0, — \aφη\9 where φη — φη(x) is a random variable on (ίf',38)
independent of α. We assume that ψη± a\φη\ and ψη + θη have the same properties as
ιpη in (1.2). Then

y.\φn\ = ^Λ,ψη + θη =
FKG FKG

ii) // V x e i n t Λ , ψd

η

Λ(x)<ψf(x), then

=

Proof, i) We prove only the left-hand side FKG inequality. The proof of the right-
hand side is almost the same. Let F e Lp(μd

0

Λ\ 2 ̂  p ̂  oo be increasing [i.e. cylinder
increasing or the L2(μdQΛ) limit of a sequence of cylinder increasing functions]. Let

θη + (l-s)a\φη\, se[0,l]. Then

= I dsμΛ, (s}(F,-λί d2x$dρ(a)(0 (α,x)-a\φη(x)\)e^(s} :eaφ:0 (x)\. (3.2)
0 \ A

Furthermore,

( *(Φη-\Ψn\) |^o for α<0,

^0 for α>0

so because of the minus sign before λ, using the FKG inequality for μΛ,ψη(S)
[Lemma 1.2.2i)], we see that the right-hand side of (3.2) is nonnegative. Hence
because F was arbitrary increasing it concludes the proof of i). The point ii) can be
proven by the same arguments. D

Lemma 1.3.2. Let the sequences {μ\n}Λne& and {μij^e^ converge weakly to the
measures μ1 and μ2, respectively.

If there exist subsequences indexed by ri e N such that

FKG

then

FKG

Proof. Obvious. D

Lemma 1.3.3 [18]. Let μ^ and μ2 be probability measures on (£f\ $) such that for

s i = l , 2 .
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Let μ^ ^ μ2 and μ1φ(f} = μ2φ(f). Then
FKG

1.4. The Exponential Bounds

Let μΛίψη, + be the measures defined as in (2.2) but with an interaction given by

VA. ±(φ, Ψη): = λS d2x$dρ±(κ)e^«>* :e««:0 (x) , (4.1)
A

where dρ+ are those coming from the decomposition of dρ, see (2.1).

Lemma 1.4.1.

μ>A,vn+ ^ ^Λ,Ψη ^ μΛ,Ψη,-> (4.2)
FKG FKG

(4.3)

Proof. Let μAt ψr)9S for 5 e [0, 1] be the measure defined as in (2.2), for the interaction
UΛ,s(<P9ψη) defined as in (2.1), but with dρs(α):-sdρ_(α) + dρ + (α), instead of dρ.
Let F E L2(μ8

0

A) be increasing. Then

_(α)^<« *> :̂ :0 (x)\ ^0, (4.4)

from the fact that μAtψ seFKG [see Lemma 1.2.2i)].
In the same way we can prove the second FKG inequality in (4.2). The

inequality (4.3) follows from (4.2) and the fact that both ±e±φ(f} (for jΓ^O) are
increasing. D

Lemma 1.4.2 (The Exponential Bounds), i) Let Q^fε@A (Λe^). Then

μ^

where

\ e ' ' G ^ ( f , x) . (4.6)
A

In particular, for φ f/(α,x)= -\aιpd

η

Λ(x)\ or zero

μΛ φ β ±Φω^ e *
l l / l | - 1 ̂  + λίd2Λlβ(β)'β'GaΛ(/»3C)

β (4.7)

ii) For any fe9Λ (Λε&)

μ^^ω^gill/IP-i + H I G x / l l i . ^ (4.8)

where the constant b can be chosen independent of f and
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Proof, i) We prove the bound as in (4.5) for the measures μΛjίp and use Lemma
1.4.1 to obtain (4.5) for μΛ>ψ . Let us change the integration variables in

) as follows:

φ(x) = φ'(x)±GδA(f,x). (4.9)

Then taking into account that (see e.g. [21, p. 171])

\ = e-*\\f\\2-l,dΛ-φ'(

we have

,,dA^-l

Using (4.10) and (4.12H4.14) we can conclude (4.6).
Let us now prove (4.14): We consider the measures

Let

Fτ(s):=μ^λ

e_TJ

Λ>3F , SE [0,1], (4.11)
μβoAe UΛ *

wheκU°Atτ(φ±sGdA(f9.)9ψη).
The functions F+(s) are differentiable and

(because the integrand is nonnegative).
We have

ι&*-ui \ Λ. - , , ,
(4 13)

The following inequality holds

0^ QΛ -u?S =λ$ d2xdρ + (ψ\a\eφ«(«>x}~ΎKδΛ(x'X}GδA(f,x). (4.14)

As it follows from Lemma 1.2.2i) μσ > τ eFKG.
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The functions

(4.16)
\US J

are differentiable in σ and

which follows from FKG. From (4.17) we have

Hence (taking also into account that e~^GdΛ(f'x)^l) the inequality (4.14) holds.
This ends the proof of i).

ii) Let us change the variable of integration φ-+φ + GdA(f, •). Then we have

e - Λ φ

ι,dΛμ e~(UΛ(φ + GSΛ(f> ))-UΛ(φ)) ^ (4.19)

But

e - (UΛ(φ + Gδ*(f, . )) - UΛ(φ))

J d2xjdρ_(α)(l -^M</ *>) :eα% (x)
Λn{GdΛ(f,x)>0}

f d2xjdρ + (α)(l -e*GdΛv *>) :e«φ:0 (x) . (4.20)

The first factor on the right-hand side of (4.20) is decreasing and the second is
increasing, hence using FKG we obtain

~ (UΛ(φ + G^Λ(f, - ) - UΛ(φ))„ e

J d2xdρ.(oc)(l -e«GdΛ^) :eα% (x)
Λn{GdΛ(f,x)>0]

. (4.21)

We now find the bound for the first factor on the right-hand side of (4.21) (for the
second the analogous bound can be found by the same arguments). Let us consider
the function of s e [0,1]:

P f < Λ . _ / y pγn/Λ f ί\ Ύίln (ri\(\ — p^GdΛ(f,x)\ . pa.φ. ( \\
1 1 \y) — r^A 0 ^•'Vt' I Λ* J (Λ ^J^U,^ _ \£)\ι tί ) tί .Q yAy J ,

(4.22)

which for s= 1 is equal to the first factor on the right-hand side of (4.21). We have

j

Λn{Gί>Λ(f,x)>0} ' ° )

(4.23)
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where

(4.24)

ZΛtS a normalization factor.
Applying FKG (and taking into account that eSCίG8Λ(f'x}^l) we have

(α)|α|Gδyl(f x)es<κGdΛ^ιX) 'e*φ' (x)\
)

d2xdρ_(φ\GdΛ(f,x) :e««:0 (x)\. (4.25)

Now using our exp bound i) at the end we have that the right-hand side of (4.25) is
estimated by

λe^ ί d2xdρ_(α)|α|GM(/,x), (4.26)
Λn{GdΛ(f,x)>0}

where ά = max {|α| : α e supprfρ}. Hence from that and (4.23) we have for a constant

ί d2xdρ_(α)|α|GM(/,x)V (4.27)

Analogously, we can prove the following bound for the second factor F2(l) on the
right-hand side of (4.21):

F2(ί) ^ exp (b ί d2xdρ + (α)α| GM(/, x)| V (4.28)
V Λn(G*Λ(f,x)<0}

Combining (4.19) with (4.21), (4.26), and (4.27) we obtain

||2-ι + & Ί I G x / | | L l ) . (4.29)

The analogous bound for ψη(ot9 x) = 0 can be obtained for any ψη(&9 x) = uψd

η

Λ(x)
with η = c9 where c is a constant [with constant b' independent of c for d(supp/, dA)
sufficiently big]. D

7.5. Exponential Clustering for Conditioned Measures
Uniform in Volume and Boundary Conditions

Lemma 1.5.1. Let f,ge@Λ and /Ξ>0 or ^0, 0^0 or ^0, then

1/2 1/2

Remark. We do not take the bound with μΛtψ eφ(f+g} in the right-hand side
because the case we are interested in is when we take :eα% (x) instead of eφ(9).

Proof. We have

4, V,(^
ω - ̂ (/)) (e<P(9} - eΦ(9^' (5 !)
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where μΛtψfl = μΛtψη. Let us change the integration variables in the right-hand side
of (5.1) as follows:

), φ(x) = (q(x) ~ X*)) - (5.2)

Because

dμdo,φ^ro,φ = { ^

(where the superscripts denote the integration variables), it follows that

- e ,
1/2 1/2

where

Z . _ ,,SΛp - UΛ(φ, ψη)
Λ,η' — A*0 e 9

'> V,))(«, P) = UΛ(φ(q, p), ψη) + UΛ(φ(q, p), ψη)

(5.4)

a)eψ''(Λ ** :e^:0 (x) 2 : c o s h : 0 (x)
j/2

(5.6)

Because

μ^pe~λVΛ'^(plq)>0 for μ^-a.a. q ε f f " ,

we can write (5.4) in the form

HdΛ—

U(2sinh^2sinh^)l (5.7)V 1/2 |/2 / J

where

vq (Λ - °'p
'v>7 μdΛ (e-

We will show that

0^ vq

Λfip ί (sgn/)2sinh—^(sgn0)2sinh

(5.9)
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Hence, from (5.9) and (5.7) by a simple change of integration variables [opposite to
(5.2)] the lemma follows.

Let us prove (5.9): Let us consider the measures V%tψrι9 defined as vq

Λ ψη in (5.8)

but with qe(x): = q(hε( -x)), where Λ f i^0, /zεeCJ(]R2),\^» δx, instead of q.
Because

in L20#,®/C). (5.10)

and

VAtψrι(p\q^09 (5.H)

it follows that

v i F ) (5.12)

for any F e Ls(μd

0

Λ), 1 ̂  s ̂  oo.
Now we can define the lattice approximation for the measures v^e

>v ( ) as in
Sect. 1.2, and because of symmetry,

VA,Ψη(p\qε) = VΛ,ψη(-p\qε), (5.13)

we can prove GKS inequalities for lattice measures, and by the adequate limiting
procedure we can prove GKS for vq£ψη. Using the GKS inequalities we get

0. (5.14)

Hence

(5.15)
|/2 * * 1/2 /

and using (5.12) we obtain (5.9). D

Remark. We can also prove this lemma by taking first the lattice approximation of
(5.1) and then using the lattice version of this lemma proved in [35].

2. Existence and Uniqueness

In this section we prove our first main result (see Sect. 0.3): 1) Existence of exactly
one point in <&(S)nJir.

Proof. It is known (see [17,2]) that the limit μ = lim Eηβ ° exists. We can also prove

by simple compactness arguments that HmEη

Λ^
a exists for any constant αeR. It

follows from our exponential bound Lemma 1.4.2U), that these limits belong to
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ίr. Having any measure μ e y(δ)r\Jtr, we know that lim Eη

ΛC exist for μ-a.a.
^0

η G ̂ '(e.g. [15, 30]). In order to show that ^(S)r\Jίr consists of the unique point, it
suffices to prove that limEV(F) are independent of η for μ-a.a. ηείf' and

J^o

any μe^(S>)nJ^ry and any continuous cylinder function FeL^)n (J &Λ.
Because *Q

E«ΛCF(φ) = μΛ^SηΛF(φ + ψ6

η

A) (1)

and ιpδ

η

Λ(x)-^0 locally uniformly as d(0, <M)->oo [see Lemma 1.1. 2i)] for μ-a.a.
η e Sf\ so it suffices to prove that the limit limμ^ αφ^, which exists for μ-a.a. η, is
independent of η, μ-a.e. It follows from °̂

Lemma 2.1. For μ-a.a.,

*k l̂0 0

If (2) holds then, because from Lemma 1.3.1i) we have

f*A,&\v$A\ =^Λ,^Λ = ̂ Λ, -α\ψ$Λ\ -> (3)

^Λ,<x\ψ^Λ\=^Λ,0=^A, -Λ\ψ^Λ\ (4)

Hence using Lemma 1.3.2, we can conclude that

o J (5)

so
lim E\c = lim μ^ 0 , μ-a.e. (6)
^0 ^0

for any μ e ^(S)r\Jίr. This ends the proof of uniqueness. D

Proof of Lemma 2.1. Because {μAtΛψξ>A}A 6 j^0 converges for μ-a.a. η E <9% so from (3)
if we prove that for /e 2, f Ξ> 0,

0 (7)

for μ-a.a. η and for a dense in Jf_ x countable set {ft E 3)}i e N

/U ±«ι^ι^(/ί) < Φ,/i) < oo μ e J^o) (8)

for μ-a.a. η [where c(η,ft) is a constant independent of A]9 then we'll conclude that
the limits in (2) exist and are equal for μ-a.a. η e £P. (Here we use Lemma 1.3.2 and
Lemma 1.3.3.)

Let us prove (7): We'll prove that for /e®, /^O,

We have with ^(s):-(-sα-(l-5)|α|)|t/;^(x)|, se[0, 1]

J
(10)
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From Lemma 1.5.1 (uniform clustering), we have

1/2

Because of FKG order [Lemma 1.3.1i)], for α<0,

1/5'
(11)

(12)

where we have used Lemma 1.4.2i) [exp bound (4.7)], together with the adequate
limiting procedure (because of : :8Λ). From (10), (11), and (12) follows

(13)

Let us now take the countable bases {Ωn,cΛn,E^}n,e]χ as in Lemma 1.1.2i).
Then we conclude from this lemma that

J
Ωn,

^ά sup
xeΩn>

x/|| t l (14)

for μ-a.a. η e Sf'.
The second component has estimation, with

ί

. f

^ \Λn>\Ωn>
(15)

We have from regularity of μ, if p2 < 2,

fJ
Λn \Ωn

Λn'\Ωn>

Λ A „ .
GδΛ(f,x)

'KAfl^l, (16)

so for the sequence of {Ωn/, Λn} as in Lemma 1.1. 2i) the right-hand side of (16) goes
to zero as w'->oo. Hence there exists the subsequence, for which the left-hand side
of (15) goes to zero for μ-a.a. η e £ff. Analogously, we can prove (9) for the second
case. This ends the proof of (7).

In order to prove (8) it suffices to consider this bound for /^O and for /^O
continuous with compact support. Then from Lemma 1.4.2i) we have

with

4VI/D = \, x) . (18)
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Because ^f^XI/l) converges in L^(μ) to Jdρ(α)|α| | |Gx/||L 1, for some subse-
quence of yl's, 4f4#*(l/D are bounded for μ-a.a. η. Hence for any countable family
of continuous functions with compact support the bound (8) holds (for some
countable base ^0). D

3. The Global Markov Property

Let μ be the unique measure in ^(S)r\Jίr. Let βcR2 be an unbounded set with
piecewise (^-boundary dΛ. We now show that for any FeJ^nL^μ),

£μ(F|^QC)e^aα, (1)

i.e. that μ has GMP.
As we have stated in the introduction, the GMP problem is equivalent to the

uniqueness problem for conditioned specifications

SM : = {£(W> A e ̂ }^Q=WQ > (2)

which must be solved for μ-a.a. ήe&". Thus, the proof of GMP for the unique
ίr will be carried out analogously as in Sect. 2. (uniqueness).

Remark. For our purposes it is sufficient that 3F is countable and contains a base
cF0 which invades R2. The measures Eη

(Λr,Q)c depend on η through the functions
V>ίJMnβ)(x). Let

VX^M- ί dzPd(Q^(x,z)η(z)
Λ"dQ for xeint(Λnβ) (3)

V>SίfcA)(*):= f dzPd(QnΛ}(x,z)η(z)
QndΛ

(in the sense of Sect. 1.1). We have that

ZΛ\x) , x e int (ΛnQ) , (4)

where the sum means the sum of two functions in Lp(μ), 1 ̂ p< oo. Under the
above notation (3), the symbolic expression η\SQ = ή\dQ in (2) means the equality

<gΓyl)W=v?ίgΓκ)W (5)
for d2x-3,.a. xEmtAr^Q (in fact, for a countable dense set in Qr\Λ because the
Bochner integral used in the definition of measure μΛtψ can be approximated by
adequate sums).

Proof of GMP. We need to show that the limits

(which exists for μ-a.a. ή from the martingale convergence theorem) are indepen-
dent of the sequences ηQndA (Ae^) for μ-a.a. ήe&".

Because from Lemma 1.1.2U) we have that \ψ8

η

Q(x)-ψd

η

(Qr"Λ\x)\ - ? 0 for
Λ * IR

xeintβ, it suffices to prove that the following limits (which exist μ-a.e.) are
independent of {ηQndΛ'. Ae^0} μ-a.e.,

Q . a v Q ) - C7)
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In order to do that it suffices (analogous to Sect. 2) to show that

UttiμΛnQ,QLψη

dQ + <z\δψ$,Λ n Q\= lim/^ln<2,αt/4Q-α|<5ι^n<2| (8 )
«^Ό «^Ό

Because of FKG order (Lemma 1.3.1) we have

^ΛnQ.α^Q+αW^QI — ^ΛnQ.αvg^Q = ^yln(2,αψ^Q-α|δφ^nQ| ? (9)
FKG

where

<5vCnβ(*) : = vCnβ(*)-V>SQ(*) 0°)

So from (9) using Lemma 1.3.2 and Lemma 1.3.3 it suffices to show that for /e 2,

for μ-a.a.
Let us prove (11): We have for /^O, /e®Q analogous to Sect. 2

a'ψ8

ηQ(x) + \a'δ
- e

' SUP
se[0,l]

where we have used exponential clustering (Lemma 1.5.1).
From FKG order and exp bound [Lemma 1.4.2i)] we have

j. \<*'\<P~~

± l f l

where

>(x):= j

and for the total countable set {/fE^Q, /^O and for /i^O},

ex) (12)

(13)

(15)
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So we have from (13)-(15)

ί d2xdQ(*)\δψtΛ«Q(x)\

^2λά2(
VΊnβ

, (16)

where — h - = 1 with 1 <p<2 and - + - = -.
p 4 r 5 g

The first factor on the right-hand side of (16) goes to zero : For {Ωn, An}nel$ as in
Lemma 1.1. 2ii) we have

ί d2x\δψΰ

η

Q^(x)\ΛGeQ^(f9xγ19. (17)

The first component on the right-hand side of (17) goes to zero from Lemma
1.1. 2ii). The second goes to zero in L^μ) - it follows from exponential decay of
QdQnAn uniform in Λn and the fact that J μ\δψd

η

QnAn(x)\sd2x has the bound
(Λn\Ωn)nQ

proportional to the \d(Λn\Ωn)rιQ\, which grows by our assumptions at most as a
power of distance d(dΛn, Ωn) =%d(Q, dΛn). For the second factor on the right-hand
side of (16) we have (using the regularity of μ),

f J J / \ *Ί«Ψi7~l*)+l«'
μ J d2xdρ(tt)e

ΛnQ

2

Γ>
Λ(x,x)~\

const xGaQnΛ(f,x)
χ χ}-. χ χ

^ ί d2xdρ(a)2x const xe 2 GdQ"A(f,x), (18)
Λr\Q

where we ^have used the fact, that

(x,x) . (19)
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But the right-hand side of (18) is uniformly bounded in Λ, so we can choose the
subsequence {Λn e ̂ o}ne^9 for which the second factor in the right-hand side of (16)
weakly converges and so μ-a.e. is bounded (uniformly in Λn).

The third factor on the right-hand side of (16) is bounded for μ-a.a. ηe&",
which easily follows from the estimation

A«*(x)ZR(η)(l+d(0,xf) (20)

with R(η) a constant dependent on η and 0 </?<!.
This ends the proof of (11).
We now prove the estimation (20) in the following two lemmas :

Lemma 3.1. Let {A^^^ be the cover of Q by unit disjoint cubes with centres at the
points i e TL2. Let for k e N,

2, J d2y(:e&^Q{y):)p<kd(09i)
pf\ (21)

Λ nQ

with \<p'<p and p(2p - I)α2<4π, where

then

μ / U Ω*l=l . (22)

Proof of Lemma 3.1. We have (using Tchebyshev's inequality and regularity of μ)

=μίηεy':3ieZ2, J d2y(
I ΔiCΛQ

d

(23)
κ~

because K6Q(y, y) has the singularity — — lnd(dQ,y), so if p(2p— I)α2<4π, then

the integrals J d2yep(2p~ί}*2κdQ(y'y} exists and are uniformly bounded in i e TL2,

and because //> 1 so

ίΣ2^2F<°° i24)

Hence, because the right-hand side of (22) goes to zero as /c-»oo, the lemma
follows. D
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Lemma 3.2. For μ-a.a. η e f f "

,xY) (25)

with 0<β< 1 and R(η) a constant dependent on

Proof of Lemma 3.2. We have from definition (15) of A^Q(x) and Holder's

inequality with 1 < p<2 and - + - = 1,
P 9

£ ΣΪdQ(*)\*\ ί d2y(:e«^'.γ J dtfG^y)**. (26)

Now using Lemma 3.1 with ά = max{α: α e suppdρ} we obtain with the constants
c(η) and a,

<Γr < Λ M c < t v ί A(ϊ\ vΛ P V o~ mθ(<*(x, 0) J_ V A(v Λ P o ~ Ήθ<Όx, ί)^consi x i u^u, Λ^K / , β ~r / , u^Xyi) e

(27)

with JR(ι/) a constant and β= — <l. D
P

In order to end the proof of GMP we need to prove the exp bound (12): It
suffices to consider the case /e^Q, /^O and also /^O, so we can use Lemma
1.4.2Ϊ), which gives

where

— — v Y

•β 2 i G f l ^fl( |/ | ,x). (29)

But the right-hand side of (29) converges for μ-a.a. ηe&" (eventually, if we take a
subsequence) so (12) follows. This ends the proof of GMP. D
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Note added in proof. Concerning the remarks on pp. 199 and 200: see the BiBoS paper "The
Gibbs measures and partial differential equations" by the same author.






