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Abstract. We consider one dimensional classical lattice systems and an
increasing sequence %, (n=1,2, ...) of subsets of the state space; .#, takes into
account correlations between n successive lattice points.

If the interaction range of the potential is finite, we prove that the
equilibrium states defined by the variational principle are elements of { %}, < o,-
Finally we give a new proof of the fact that all faithful states of &, are DLR-
states for some potential.

I. Introduction

In statistical mechanics one is faced with the problem of computing the free energy
density of a system in equilibrium. The variational principle tells us that this free
energy is the minimum of the free energy functional as a function of the states. In
practice for realistic systems one has to restrict the variation to a parameterizable
subset of the set of states, yielding an upper bound for the true free energy.

Here we are dealing with classical lattice systems. The best known approxi-
mation is the so-called mean field one. It corresponds to restricting the variation to
the set of product states (states without correlations between the lattice sites). The
next approximation would be to take into account the nearest neighbour
correlations. In the physics literature this is called the Bethe-Peierls method [1-3].

For one dimensional lattices we consider increasing subsets of the set of states:
S CHC...CH,C..., where , is the set of states taking into account non-trivial
correlations between n-successive lattice points; % is the set of mean field states,
&, is the set of Bethe-Peierls states; the latter is extended to the so-called Bethe
lattices. It is clear that better approximations of the free energy are obtained if one
considers the variations over the sets &, with increasing values of n.

In this paper we are not concerned with the applications but with the study of
the states ,. These states correspond in probability theory to what is called
Markov chains with memory of length n. We present a new way of defining them
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without using the notion of conditional expectation. Our definition seems to us to
be not only practical for explicit calculation, but might also clarify the Bethe-
Peierls and Kikuchi approximation [3] in the physics literature. Our way of
looking at it might eventually be extendable to the quantum case [4].

As far as we know, what is new however is our proof that the equilibrium state
defined by the variational principle of a system with finite range interactions is
necessarily an element of &, with n<co.

For completeness we add a new proof of the theorem which can be developed
from the works of Dobrushin L. [5], telling that any faithful state of %, is a DLR-
state for some finite range potential. In this proof again, we are not using
conditional expectations (as in the description by Markov random fields) but only
joint distribution functions.

II. One Dimensional Models

Consider the lattice Z; at each site jeZ we associate a copy K; of the set
K={1,...,N}.
For any subset X CZ, let K¥=[]K; be the set of configurations, i.c. the
jeX

J
elements of K* are the functions xy from X into K; if no confusion is possible we
omit the index X of xy; if XnY=0, then we denote by xy X xy=xy vy, the
configuration of X U Ywhich coincides on X with xy and on Ywith x; also if x is a
configuration of X" and X C X’ we denote by xy the restriction of x to X.

Let Cy be the set of real valued functions on K*; Cy stands for the algebra of
observables of the region X. Finally the set of continuous functions on KZ is
denoted by C,. As usual C,, is the inductive limit of the set {Cy| X CZ}.

Any state w of C, is a probability measure on C, it is described by a family of
density distributions, i.e. for any finite volume X, there exists a non-negative
function uy on K* such that:

(i) if AeCy:

o) = 3 ix(IAC). 1)
(i) (normalization)

Z ,u'X(x) = 1 ’
xeKX
(iii) (compatibility condition); if X C X", then
px(X)= 3 pxlxxy).
yeKX' - X

For fixed n e N, suppose that one has given a family of non-negative functions

o7 of the configurations of the interval [i,i+n—1], ie Z. We suppose that they
satisfy

m > =1, @

xeK[hitn-1]
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(ii) if@= YC[i,i+n—1]N[j, j+n—1],let us denote by Y the complement of Y
in the interval [a,a+n—1] (a=i, j), then

20i(xy XXYIC) =2 Q;'l(xY X Xch) (3)
(compatibility). ‘ ’
Finally denote
Q?_l(x)z Z Q?(XXXH.,,_I), xeK[i,i+m_2]- (4)

Our aim is to construct a state o for each given family of functions g?. We do this by
giving explicitly its density distributions uy in terms of the g.
First we consider the case where X is an interval [a, b]:

(@i if b—a=n, then
b—n+1

H 07 (Xpi,i+n—1)) .
Mo, 51(X) = 5= — , if @' Y(...)*0
HQ?-:ll(x[i+1,i+n—1])

)

=0 if some @7 !(...) vanishes,
(i) fb—asn—1
K, 5(X) = 2 02X X Xyt 1,a4n-11) - (6)

X(b+1,a+n-1]

Now in general let X ={i,, ..., i}; i; <...<i, then

Hx(x)= 2 By, g (X X X) @)
x'eKlvsyl-X

Theorem IL.1. The family of functions (Uy)xcz defined by (5)—~(7) are a family of

density distributions and hence by (1) define a state w, of C,.

That (13’xc5 is a family of density distributions follows from the various
conditions on the g and from the definition of the u%. The compatibility condition
for the % follows from conditions (3) and the definitions (4)~(7). The normalization
is then a consequence of (4). [

Denote by %, the set of states determined in Theorem IL.1. Remark that & is
the set of product states and that & C %, C...C %, C.... Therefore we call this
type of states quasi-product states. In probability the corresponding measures
arise in the study of Markov chains with memory of length n [4].

Denote by t the homomorphism of Z into the *-automorphisms of the algebra
of observables C,, describing the space translations: (7,f)(x)=f(z,x), feC,,
x € K%, where (1) ()=x(i+a), ieZ.

Remark that if ¢} - 7,=¢?,, for all i,a € Z, then the corresponding state w, is
translation invariant: i.e. w,-T,=w,; acZ.

Given a translation invariant quasi-product state we are now in a position to
calculate its entropy density.

Lemma IL.2. If w, is a translation invariant quasi-product state of &, determined by
the family {o!}; of functions, then the entropy density s(w,) is given by

s@)=— ¥ di@logei+ >  oi'(vlogei ().
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Proof. We calculate the mean entropy for the interval [ —m, m], and then let m tend
to infinity:

S[ - m,m](wn) _

= n I . .
2m+1 2m+1 xeK[Zm,m] ,U[ m’"’](x) Og/l,[ m,m](X)
Using (5) one gets
m—n+1
St—mmi(@n) _ _ 1 i=I_—Im 0 (Xpi,i4n-17)
2m+1 B 2m41 xegxi=mm ™"

) I Q?—:ll(x[i+1,i+n—1])
i=-m

m—n+1 m—n
) { 2 logof(xy, jin-1)— 2 1089;111(3%4 1,j+n—1])}‘
J=—m

j=—-m
From (4):
S[—m,m](wn) _ 1 m-n+l n n
2m+1 2m+1 j=2—m xeK[j;n—qu(x)lOng(x)
1 m—n _ _
fir XS gi)logdli ).

2m+1 j=—m xeKli+T,j+n~-1

Finally as w, is translation invariant @} =gj - 7;_,, one finds:

St m,mf(@n) _ 2m—n+2

> oi@)loggi()

2m+1 - 2m+1 xeKll;n
2m_n+1 n—1 n—1
—2m—+—1-—xel([l,n—1]el (x)loggl (x)

and with m tending to infinity one gets the result. [

Now take any state w of C, with a family of density distributions {{y} x5 For
afixed given n € N, we associate to w a quasi-product state w, in the following way.

Define the family of non-negative functions o} by 0{(x) = py; ; 4, 1;(X)- Itis clear
that they satisfy the properties (4) and (5). The quasi-product state w, is defined by
these functions g¥(x) as in Theorem IL.1.

Lemma IL3. Let [a, b] be any interval of the lattice. Then

S[a,b](a)) = S[a,b](wn) >

i.e.the entropy of the state w is majorized by the entropy of its associated quasi-
product state.

Proof. If b—a<n then clearly S;, ,;(w) =S, y(®,). Suppose now b—a=n, then

S[a,b](a)) - S[a,b](wn) = KZ[; o {ll?a, b](x) IOg'u?a,b](x) - :u[a,b](x) IOgﬂ[a,m(x)} .

Using the convexity of xe[0,1]—xlogxelR:

Xologx,—xlogx < (xo—x)(1+logx,),
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one gets
S[a,b](w) - S[a, b](wn) = I; . (#?a, b](x) — Hia, b](x)) a+ 10g.u'?a,b](x))

= X (/l?a,b](x)_ﬂ[a,b](x)) Iog#E'a,b](x) >
xeKla, bl

which vanishes because loguf, ;(x) is a sum of terms depending only on the

configurations of intervals of length equal to n or n— 1. On these intervals u=u".

Corollary IL.4. With the above notations, if w is a translation invariant state, then
also the corresponding quasi-product state o, is translation invariant, and the
entropy densities satisfy s(w)<s(w,).

As usual let ¢ be a translation invariant potential of range n, i.e. a map from the
finite subsets X of Z in ¢(X) € Cx such that ¢(X)=0 if X is not contained in a
interval of length less than or eqal to n.

The corresponding local Hamiltonians are then, for ACZ:

Hy= > #(X).
Xxca

Let w be any translation invariant state. Then its free energy density is defined
to be f(w)=e(w)— Ps(w), where

e(w)= lim w(H,)

, |A]=volume of A, and f>0.
1]~ |4

Now the state »” is an equilibrium state of the system at inverse temperature , if it
minimizes the free energy density.

Theorem ILS. If ¢ is a translation invariant potential of range n then the equilibrium
State is a quasi-product state, element of &,

Proof. One computes (¢ X))
ew)= 3 — =
oex | X]
As ¢ has a range equal to n, e(w)=e(w,), Where w, is the quasi-product state
associated to . Hence, using Corollary IL4: f(w)=e(w)— fs(w)
=e(w,)— ps(w,)=f(w,). Therefore
inf f(w)= inf f(w,),
(o} WOn€ESH
and the existence of a solution in %, is guaranteed by the usual arguments of
semicontinuity of the map w— f(w). It is known that the solution is unique [6].
Remark that the variational problem characterizing the equilibrium state is a
problem with a finite number of variables (¢"(x)). For this reason it is called a
soluble model. Moreover by [5-7] and Theorem II.1 we know the quasi-product
structure of the equilibrium state, i.e. we know not only the thermodynamics but
all correlations. At this point one might refer to an earlier reference [7, 8]. In [7]
the equilibrium state is studied by the transfer matrix method and compared with
the variational approach. In [8] explicit equations for the correlation functions are
studied for the nearest and next nearest neighbour Ising chains.
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Next one can ask for the inverse question: namely, given any faithful state
w, € ¥, is that state an equilibrium state of a certain model? The answer to this
question is known (e.g. [5]). However we want to add it not only for completeness
but also we want to take this opportunity to write down our form of
DLR-equations which evidently holds for any dimension.

Let Q be the group of local bijections of KZ into itself: i.e. Ue Q if there exists a
finite ACZ such that: (Ux) (i)=x(i) for all i€ A°, x € K% The smallest set A with
this property is called the support of U. Furthermore, denote by U the transposed
of UeQ to C,,ie (Uf) (x)=f(U 'x), feC,, xe K~

Definition I1.6. A map 4 from Q into C,, is called a relative Hamiltonian if for any
pair U;,U,€Q holds: 4y,,,=U, 4y, +4y,.

Proposition IL7. For a given relative Hamiltonian A there exists a family of local
Hamiltonians H , € C, such that for We Q: Ay,=lim WH,—H ,.
A

Proof. Fix x € K% For any A CZ we construct H ,. Take ye K% and ACZ; denote
by Q, all transformations with support in A; one finds at least one U € Q ,. such
that x,=Uy,.

Define H ,( y)=4,(x,). H, is well defined. Indeed, take any other map Ve Q,
such that x,=Vy, then we prove that A,(x)=4,(x). We have

Ayy-1(x)=Udy - 1(x)+ Ay(x)
=Ay-1(Va X X 40) + Ay(x)
ZAV—I(V_ le X xAc)+AU(x)
= VAVf 1(X)+AU(X) .
But as 0=4y,-1(x)=VAp-1(x)+4y(x), one gets Ayy-1(x)= —Ap(x)+ Ay(x).
Hence, it remains to prove that 4y, -1(x)=0.
As Q 4 is a finite group, there exists a positive number n such that K" equals the
identity with K=UV '€ Q,. Also Kx=K ~'x=x. Therefore
0=Agn(x) =KAgn-1(x)+ Ax(x) = Agn-1(x) + A(x) .
By recurrence 0 =ndg(x) or Ay, -1(x)=0. Finally take any WCQ, then

i (W H ((3) — H,() = Hm (LW ~13)— H,(3) = i (4 (09— 44(0)
=1im UAp(x)=lim Ay (U " *x 4 X X 4¢)= lim Ay (y 4 X X 40) = Ay (Y) .

Now we define the equilibrium states by means of the DLR-conditions avoiding a
formulation in terms of conditional probabilities [9].

Definition 11.8. A state w of C, satisfies the DLR-conditions at inverse tempera-
ture f=1 for a relative Hamiltonian 4 if for all feC,, and UeQ: (U™ 'f)
= o(f exp(—4y). '

Denote by Q, the subset of Q containing only the “one-point” transformations,
i.e. those acting only on one lattice site. Next we prove a proposition covering the
resultof Dobrushin [ 10]whichsaysthatastateisaDLR-stateifand onlyifallits one-
point conditional probabilities are given by Gibbs factors.
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Proposition I1.9. A state w of C, satisfies the DLR-conditions at f=1 for arelative
Hamiltonian A if for all fe C, and U e Q, holds
(U™ f)=w(fexp(—A4y)).

Proof. Remark that any configuration of a finite volume can be transformed in any
other by a finite product of elements of Q. Because of the presence in C,, of the
projections on any fixed local configuration it is sufficient to have the
DLR-equations for all U’s which are finite products of one-point transformations.

Finally if one has the DLR-equations for all one-point transformations, one
has it for all products of one-point transformations. Indeed, suppose U, U, € Q,,
then

o(U,U,(f) CXP(_Aulvz))=w(ﬁ1(0zf) exp(—U,4y,—4y))
=o(U,(U,(f) exp—Ay,)exp—A4y,)
=a(U,(f) exp(—4y,))
=a(f)
and by recurrence for all finite products of U’s. [

After this presentation of the DLR-equations we come back to the study of our
quasi-product states.

Theorem IL.10. Let w, € &, be faithful and U € Q with support A. Denote by A the
interval

[min(i—n—{— 1), max(i+n— 1)].

ied ied
Then w, satisfies the DLR-conditions (11.8) with relative Hamiltonian
/*‘ﬁ(xZ) z
T ) xe K%. (8)
15U ™ 1xy)
Proof. As w, s faithful, it is clear that Ay as defined by (8) belongs to C and satisfies
the relations of (I1.6). Now take fe C,, where A’is any interval containing A, then

15U 'x)
15(x)

Ay(x)=log

ofe )= 3 (M)

As support of U equals A, use formula (7) to get
w,(fe )= %A,f(X)ﬂ'Af(U_IX) =0 07Y). O

By Theorem I1.10 we showed that any faithful state of the type described in
Theorem II.1 does satisfy the DLR-equations and that the relative Hamiltonian
can be computed in terms of the defining function of the state.

Normally a physical system is given in terms of an interaction potential or in
terms of local Hamiltonians. Next we solve the question whether one can find such
a potential in terms of a given family of functions (¢});cz-

Define
#(X)=0 (9a)
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Fig. 1

if X is not an interval [i,i+n—1] for some i€ Z, and

expd([i,i+n—1])(x)= & (X, i4n—- 1) )

-1 2 n— iz -
o} (x[i,i+n-—2])1/ Q;l+11(x[i+1,i+n—1]) /

Compute now
Ay (X)= liin (U H 4—H ) (%)

= z=i1 @k—n+Lk+I1-1) (U 'x)—d([k—n+1Lk+1—1]) (x)).

Then one verifies:

#y(Uy ')
exp—Ay, (x)=—"——"—=
P=4ul) ="
for any A large enough (A>[k—n+1,k+n—1] and where ; is defined as in (5)

and (6).
This proves

Theorem IL11. Any faithful state w,€ &, is a DLR-state for a Hamiltonian
constructed from a n-body potential defined by (9). The potential is uniquely defined.

III. Models on a Tree

Here we consider a lattice tree B, this is a connected graph such that each site has d
neighbours; two points i, j€ B are neighbours if they are endpoints of a bond,
denoted by i, j»; the graph does not have closed paths (or cycles), hence two
different sites are connected by one and only one path (see figure).

Again the configuration space is K? and the algebra of observables is taken to
be C(K®). Further the notation of Sect. I extends in a natural manner to this kind
of lattices in a way that an interval becomes now a connected subgraph.

For any subset X of the lattice denote by I'(X) the smallest connected
subgraph containing all the points x, ..., x,. We use the notation n! for the degree
of a point i in I, i.e. the number of incident bonds (i, j» with jeTI.
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Suppose that for any bond (i, j) one is given a non-negative function g; ;,
satisfying the following conditions:

(i) KZ{; j}Q(i,j) (x)=1

(i) for any pair of bonds <i,j>, {i,k)

x%j)@a,p()’xx): %MQG,@(}’XX)EQ{Q()’) for yeK®.
For any such family {g; ;;} of functions we define a family of density

distributions {u%}xcs.
Let I" be a connected subgraph, then

<i,j>l~—ineI“ eapXap)
'u'%(x) = IL[!Q ] (x . )n{~ 1 5 lf all Q{l} >0 )
T {3\
=0 if some gg;(x;)=0.
For any arbitrary subset X, define
H5(x)= o x HE(X X ¥) .
ye

Then we have

Theorem IIL.1. The family of functions (u%)xcs, defined by (10) are a family of
density distributions and hence define a state w® of C(K®). O

Remark that in the case when the number of neighbours d of the lattice B
equals two, then the states described by Theorem II.1 coincide with the class ., of
Theorem IL.1. It is not evident how to define on a tree (d>2) the class of states
corresponding to the set &, with n>2.

As in Theorem I1.10 we can also prove that any faithful state of the type
described by Theorem III.1 satisfies the DLR-conditions for a certain relative
Hamiltonian. Also asin Theorem I1.11 one can find a nearest-neighbour two-body
potential associated to this relative Hamiltonian. This class of models contains the
usual Ising model, Potts model, etc.

Next one wishes to consider the variational problem to characterize the
equilibrium state. To this end one introduces a notion of translation invariance.
Let 7 be any bijection of the graph into itself, then the state w? is called translation
invariant if its defining bond function g ; ;, satisfies @.;jy(X.¢ijy) = 0¢ij5(X (i) for all
bonds {ij).

To compute the free energy density functional, one follows the usual procedure
of taking the thermodynamic limit of the local free energies computed for a
sequence of volumes which is increasing and absorbing. Remark that for a tree, the
boundary (set of lattice sites connected to the finite graph by only one bond) is of
the same order of magnitude as the total volume.

As for the one-dimensional chain one computes the entropy density

s(w?) = — 1;:» 0j(x) 10805 (x) + %” 0i(%) logog(x) . (11)

For a nearest neighbour interaction this leads to a free energy density functional
which is exactly the same as in Sect.I for states in .
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For arbitrary higher dimensional lattices the so-called Bethe approximation
consists in associating weight factors y, and vy, to the contributions of the sites,
respectively of the bonds in formula (11). These factors are chosen as a function of
the coordination number (n;) and eventually of other parameters of the lattive. It is
unclear except for the one-dimensional lattice, that this yields an upper bound for
the free energy of the original system.
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