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Abstract. The configuration space for the SU(2)-Yang-Mills-Higgs equations
on R3 is shown to be homotopic to the space of smooth maps from S to S2.
This configuration space indexes a family of twisted Dirac operators. The
Dirac family is used to prove that the configuration space does not retract onto
any subspace on which the SU(2)-Yang-Mills-Higgs functional is bounded.

Al. Introduction

In [1], the author announced a theorem which stated that the SU(2) Yang-Mills
equations on IR? in the Prasad Sommerfield limit have an infinite number of non-
minimal (and gauge inequivalent) solutions in each path component of the
configuration space (monopole sector). It was also asserted that solutions exist in
each path component with arbitrarily large action. These assertions are proved in
a forthcoming article [2] with techniques from the calculus of variations.

The calculus of variations can be used to find solutions to a differential
equation if that equation is the Euler-Lagrange variational equation for a
functional f on a topological space M. If the pair (f, M) are “nice” in a suitable
sense, then certain topological properties of M imply the existence of solutions to
the differential equation. To make a concrete statement, one must study the
functional f and the topology of the space M.

The purpose of this article is to explore those topological properties of the
Yang-Mills-Higgs configuration space which are relevant for the proof of the
existence theorem in [1].

This exploration leads, among other places, to the topology of the family of
Dirac operators indexed by this configuration space; here the characteristic classes
of the family of Dirac operators are of specific interest. As outlined in Sect. 2, these
cohomology classes lead to a proof that there exist solutions in each path
component of the configuration space with arbitrarily large action.

The work here is based upon the preliminary topological investigations in
Sect. 3 of [3]. Most of the terminology and notation in the present article is the
same as in [3].

For the uninitiated, the SU(2) Yang-Mills-Higgs equations are partial
differential equations on R 3 for an unknown, ¢ = (4, @). Here 4 is a connection on
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the principle SU(2) bundle P=R3 x SU(2) over IR3; and ® is a section of the
associated vector bundle AdP =IR? x su(2), the bundle with fibre the Lie algebra of
SU(2), su(2).

The Yang-Mills-Higgs equations are

D,*F,+[®,+D,0]=0, (Al.1a)
D, D, &=0, (Al.1b)
with the boundary condition that |llim |D|(x)=1.

In Eq. (A1.1), F ,is the curvature of 4; D , is the exterior covariant derivative on
AT*®AdP; and [-,-] is the natural graded bracket on AT*®su(2). This is
defined for AdP-valued p and g forms w, % to be [w,n]=w An—(— 1)y A w. The *
in Eq. (1.1) is the Hodge star on AT* from the Euclidean metric on IR 3. Finally, the
norm |- | on AT*®AGJP is that induced from the Euclidean metric on T* and the
following Ad-invariant metric on su(2): |6|> = — 2traceg(o?).

Equation (A1.1) is the variational equation of the action functional

W(A, @) =3[ {IF 4> +ID B} d’x . (A12)
R3

One is to consider A as a functional on the set
€= {smooth c=(4, ®): A(4, P)< oo and (1—|®|)e LS(R?}. (Al.3)

The set € is the configuration space, and it is topologized as follows: Let 6
denote the flat product connection on IR*®x SU(2). The topology on € is the

topology that is induced by the map of € into x C®(IR?) x [0, c0), which sends
12

(4, D) to (A—0, D, U(A, D)).

Acting on € is the topological group ® =Aut P~ C*(R3;SU(2)). This group
acts continuously on € and it leaves U invariant.

The subgroup G,={ge®:g(x=0)=1} acts freely on €. The functional A
descends to a continuous functional on B=C/®, if B is given the quotient
topology. [As a matter of notation, the orbit of (4, @) € € under &, will be denoted
by (4, @) also.]

There is an action of SU(2) on B which leaves U invariant. This SU(2) action
can be partially eliminated by constructing a fibration of B over S2 with a fiber B.
The group SU(2) acts on S? via rotations and the fibration n:®B—S?, is
equivariant. Theiefore, no generality is lost by restricting U to B=7"" (north
pole).

This fibration is constructed in Sect. BS. Morally, 71 sends (4, @) € B to the unit
vector @/|®|in the fibre of AdP at a suitably chosen point x(4, @) € IR3. In practice,
the actual construction is more complicated.

As suggested in [3], B is intimately related to the space of smooth maps from
S? to S%, Maps(S?;S?). Evaluation fibers Maps(S?;S5?%) over §? with fiber
Q(S?; $?), the space of base point preserving maps. The construction of B suggests
a relationship with Q(S?; $?).

The first half of this article explores these relationships; there the following
theorem is proved:
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Theorem A1.1. There exists an inclusion of maps Maps(S?; S?) into B which induces

the following commutative diagram where the vertical arrows are homotopy
equivalences:
B

T

Q(S%; 8% —— Maps(5?; §?)

SZ

The path components of Q(S?; S?) are the spaces {€,(S*; S?)},,.z Which are the
spaces of maps of fixed degree. Correspondingly, B= () B,. (The space B,, is the
n-monopole sector.) ez

It is known that if ce fi,,, then

A(c) = 4nln). (Al.4)

There is equality for ce €, if and only if c=(A4, @) satisfies the Bogomol’nyi
equation [4]

F ,=sign(n)* D ,P. (ALS)

Solutions to the Bogomol'nyi equations exist in each 8B, [5, Chap. IV; 6].

Configurations which satisfy Eq. (1.5) are the minima of 2 on B. The newly
discovered critical points of A, the solutions to Eq. (A1.1) that were announced in
[1], are all non-minimal and unstable.

They are found with a convergent min-max theory. The min-max strategy is as
follows [7]: Let M be a smooth manifold. A family §& of compact subsets of M is
said to be homotopy invariant if it is true that for any continuous homotopy
¢:[0, 1] x M— M for which ¢(0, ) is the identity, the condition that F € & implies
that ¢(1, F)e .

For example, let H(M;Z) denote the I™ cohomology group of M with
coefficients in the integers, Z. Let [z] € H' (M ; Z), and let

§=&([z])={F S M : The restriction map, i} : H(M;Z)—H'F;Z)
does not annihilate [z]}. (Al1.6)

The family & above is homotopy invariant.
Let A : B—[0, co) be asin Eq. (A1.2). To a homotopy invariant family &, assign
the number
Ay = inf sup A(c). (AL7)
Fe® ceF
A main result in [1] is the theorem that any 2 defined by Eq. (A1.7) is a critical
value of A. To establish this strong result, it is necessary to understand
compactness on €.
The topology of B, influences 2 on a more subtle level where no compactness
conditions are required. It influences the a priori distribution in [0, co) of the set

Crit, = {%: & is a homotopy invariant family of compact subsets of B,}.
(A1.8)
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The second half of this article investigates Crit,C[0, c0) to prove

Theorem A1.2. For each ne Z, define Crit, C[4n|n|, ) for the functional A on B,
by Eq.(A1.8). Then the set Crit, is unbounded.

Theorem A1.2 is proved by studying a family of Dirac operators, indexed by
the configurations in B,,. It is an application of the Atiyah-Singer Index Theorem
for families [8]. A non-technical outline of the proof is given in the next section.

A2. Outline of the Proofs

The purpose of including this section in the article is to provide a non-technical
outline of the proofs of Theorems Al.1 and A1.2 along with an outline of the
contents of the article. The following flow chart should prove helpful.

Al. Introduction
l
A2. Outline of the Proofs

A3. Notation and Conventions

l
A4. Kato’s Inequality

T

B1. Homotopy Equivalence of C1. The Distribution of
and I\faps(SZ;SZ) Critical Values
B2. Auxiliary Topologies on B and € C2. Operators Indexed by B
r=B3. Continuous Maps from € C3. Topology of the Dirac Family
!
B4. The Retraction of € C4. The Dirac Operator for
! Multi-Monopoles
BS5. The SU(2) Action on ‘B

{
CS5. The Index and Qs
B6. H zlbeit Spaces / Group Structure
L>B7 The Local Structure

Theorem A1.1 follows from Proposition B1.1 and B5.1 and its proof comprises
most of Sects. B1-B5. The plan is to construct an embedding I : Maps(S?; $?)—B
with the property that I(Maps(S?; $?)) is a deformation retract of 8. The map I is
defined in Sect. B1 and essentially it does the following: Identify the image S* with
the unit sphere in su(2)~IR3. Then a map e e Maps(S?; §?) defines an asymptotic
(large |x| on R®) model for @ € I'(Ad P). There is a way to extend e smoothly into
IR? to define a global &(e) e I'(Ad P); extend radially but bump to zero near the
origin. A convenient A(e) exists so that I(e) =(A(e), P(e)) € B.

The actual retraction of B onto I(Maps) is complicated by the fact that a given
(4, ) e B may not be sufficiently docile; i.e. ® may not have a limit as |x|— o0
which defines a smooth map from the $? “at infinity” in IR® to the unit $? in su(2).
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This problem can be circumvented by solving Eq. (A1.1b) outside the unit ball
for a new @,(A4, ). Because @,(A4, ®) satisfies an elliptic differential equation, a
priori estimates are available. These a priori estimates follow from Kato’s
inequality and the usual Sobolev inequalities on IR, Section A4 provides the
inequalities in a convenient form. All of the a priori estimates in this paper are
applications of the ideas in Sect. A4.

The assignment of (4, @) to (A4, §,(A, ®)) is shown in Sect. B3 to define a
continuous map from B, to B,. This is the crucial result, and with it, the
deformation retract can be readily constructed using the natural affine structure of
€. The construction is presented in Sect. B4.

The fibration B-B-">$? is constructed in Sect. BS. The map 7 is not
precisely the evaluation of @/|®|; rather it is the evaluation of @,(4, @)/|9,(4, (D)I
at a suitably chosen point x(4, @) e R3. The retraction of B onto Q(S?;5?) is
constructed in Sect. BS, where the proof of Theorem Al.1 is completed.

When studying the functional 2 on B, one must deal with families of linear
differential operators which are indexed by the configurations in B. Examples were
studied in [9]. A convenient formalism is obtained by considering the assignment
of the operator to a configuration in B as defining a homomorphism between two
Hilbert space vector bundles over B.

Hilbert space vector bundles over B which are modeled after Sobolev spaces of
sections over R3 of IR®x (finite dimensional vector space) are introduced in
Sect. B6.

A part of this vector bundle construction requires a local embedding theorem
(Proposition B6.1) which provides an injection of open neighborhoods of B into a
space of sections of (T*®AdP)@AdP. This local embedding result is proved in
Sect. B7.

Linear differential operators which are indexed by the configurations in B arise
in the proof of Theorem A1.2 in the following way: To establish, via min-max
arguments, that the set of critical values of 2 on B, is unbounded, requires a priori
knowledge of the relative homotopy or homology of the pair

(B, A~ ([4nlnl, 4n|n| + 1))

for every xe(0, 0). In particular, for every such x, B, must not retract onto
(U~ ([4=|n|, 4n|n| +x)). Here it is sufficient that there should exist for every x>0,
a homotopy invariant family of subsets of B, §(n, «) such that W, ) > 47| + K.

Such families §(n, k) are obtained via the natural stratification of B, which
comes from a family of twisted Dirac operators. The Dirac operator in question is
presented in Sect. Cl.

The assignment of ¢ € B, to the Dirac operator defines a map d from B, into the
space of Fredholm operators. This map is proved continuous in Sect. C2.

The space of Fredholm operators is homotopic to Z x BU, where BU is the
classifying space for the infinite unitary group, U = U(o0). As described in the work
of Koschorke [10] and also in [11], the map d pulls back to B, the universal Chern
classes on BU. These pulled back classes are represented by elements in H*(B,,; Z).

The strategy for proving Theorem A 1.2 is to show that forany ne Z and k < oo,
there exists a class @ € H*(BU ; Z) such that for 0*w e H*(B,; Z), the homotopy
invariant family (0*w) of Eq. (A1.6) satisfies W ;5x,,) > 47|n| +xc.
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This strategy is effected by adapting to the present situation the ideas of
Koschorke as applied by Atiyah and Jones [12] to a family of twisted Dirac
operators over S*.

Koschorke defines for p, g >0, characteristic classes y?*? € H*?4BU; Z) with the
following property: §*y? 4= y»49) is zero in H**(B,; Z) if for every ce B,, the
Dirac operator in question has kernel dimension less than p or cokernel dimension
less than gq. (y*? is a specific determinant of Chern classes.)

By mimicking Atiyah and Jones, it is demonstrated in Sects. C2, C3 that there
are arbitrarily large p, ¢ with the property that y#%(5)+0 in H*(B,; Z), provided
that [ is sufficiently large. This is accomplished by restricting the Dirac operator to
a finite dimensional subspace in B, which is homeomorphic to the configuration
space of [ unordered points in R3, C,. This configuration space parametrizes [
fundamental monopoles far apart. The restriction of y?%d) to H**(C;Z) is a
characteristic class of a natural C-vector bundle over C,, one whose characteristic
class were computed by Atiyah and Jones in [12].

The spaces B,, neZ are mutually homotopic; this corresponds to the well
known fact that the mapping spaces Q,(S%; S?), ne Z are mutually homotopic. In
Sect. C5 it is demonstrated that the map which induces the homotopy between
B, and B,,, has the property that the following diagram is homotopy
commutative:

This implies that for each neZ, there are nonzero y%0) in H?*"4(B,; Z) for
arbitrarily large p and g.

To prove Theorem A1.2, it remains to prove that QIWP a(#) INCTeases as D4
increase. The strategy here is to use Koschorke’s assertion that a subset F of B, is
in F(x? 49)) only if there exists ¢ € F such that the Dirac operator indexed by ¢ has
kernel dimension p or greater. Now, the Weitzenbock formula for the Dirac
operator (see Sect. C2) suggests that the curvatures (F 4, D ,@) must be large if p is
large; the square of the Dirac operator is strictly positive save for an endomor-
phism which is linear in (F,, D,®). This suggestion is rigorously established
in Sect. C2. The full proof of Theorem A1.2 is exhibited in Sects. C1-CS5.

A3. Notation and Conventions

Because the topology of an infinite dimensional function space is the subject of this
article, it is important at the outset to introduce the basic topologies on the spaces
of smooth functions on IR3. The starting point is C*(R?); the Fréchet space of
infinitely differentiable functions on R?. A neighborhood R(f) of fin C*(R?) is
indexed by a compact set K CIR* and a sequence of positive numbers {¢;> 0},

N(f)={ge C*R): (Il /= glcrx<&)iZo}-

Here || - ||cx, x denotes the usual C*-norm on K.
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Denote by C¥(IR?*)c C*(R?) the subspace of compactly supported functions.

Sobolov spaces LE(R?) for p=>0 and k=1 are defined in the usual way [13];
fe LE(R?)if f is measurable and its derivatives through order k are in L?. The space
L” is a Banach space with norm | f||,=[{ d*x|f|?]"/? and the space L, k>01is a
Banach space with norm

1fllpk= [éo % l V<i)f||p]

The inner sum, above, is over all multi-indices (j)=(i, ...,i) € x{1,2,3}.
J

If QCIR? is a domain, the L{(Q2) norm is denoted by | - |, 1.o. For example,

1115 0= D) dSXIf!”]””-

The space L, . (R?) is defined for p>2 and k> 0 to have as its underlying point
set

{Measurable functions f: f e LZ(Q) for any bounded domain QCIRR?}.

L2, ,(R?)is topologized as a Fréchet space so that an open neighborhood 9(f) of
fe Lk (R is indexed by a bounded domain QCIR* and a number ¢>0:

9’t(f)z{geLII:;IOC(IRS): ”f_g“k,p;!)<8} .

Finally, itis necessary to introduce the space C® '/2(IR3). This is a Banach space
which is the completion of the set of C* functions on IR* with compact support in
the norm

OO

l|f||o,1/z= sup 172

xF¥yeR |X -y
Functions in C% >(R3) decay uniformly to zero as |x|—00.
Now let V be a finite dimensional Hilbert space and let E=IR3 x ¥ be a vector
bundle. The symbol I'(E) denotes the space of smooth sections of V; it is
topologized via the projection E— V which identifies I'(E) with

Coo(IRs; V) ~ [Cao(IR3)]dimV .

Define the spaces I,(E), LY(E), and L%, .(E) similarly; the L? norms are defined
with the given fibre metric (-,-) on E (cf. [13]).

A useful example is T*~IR?®xIR? the cotangent bundle of R?* with its
Euclidean metric.

Let M be a smooth manifold with an isometric embedding M CRY for some
N =1; for example, SU(2)~ $* CIR*. Denote by C*(R3; M) the space of smooth
maps from R3 to M. It is topologized by its inclusion in C*(R*; R") ~ xC *(R3).
See [13] for example.
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Let |-| be a metric on E, and let a(E) denote the space of smooth metric
compatible connections on E. The fixed projection E— V defines a fiducial product
connection 6 on E, and a(E) =6+ I'(End EQ T*). The connection spaces «f. ,.(E)
for p=1 and k=0 are defined similarly.

The summary of the basic topological spaces is now complete; the remainder of
this section introduces some specific notation. To begin, it is convenient to fix an
origin 0 € R? and Cartesian coordinates {x'};_, that are centered at 0. With these
coordinates, |x| = inxi>1/2.

The symbol d denotes the exterior derivative d:I['(AT*)—>I'(AT*). The

. . 0 0
Laplacian, 4, is always ; ps

If E-IR? is a vector bundle with connection A4, then V,: '(E)-»T'(E® T*)
denotes the covariant derivative, while D, : ['(EQ AT*)—T'(E® AT*) denotes the
covariant exterior derivative.

If c=(A4,9)eC, then A(c)=A4 and &(c)=®. Also F(c)=F, and
(D,®)(c)=D,®.

Itis convenient to introduce a fixed C*® bump function . This function satisfies
B(x)=pB(x[) and

pH)=1 if 0Z:<1/2,
p@)=0 if r=3/4, (A3.1)
1=2p(H)=0, % <8 forall te[0, ).

If r€(0, 00), then f,(x)= f(x/r). This definition is extended to [0, co] by setting
Bo(x)=0 and f(x)=1.

Finally, there is the convention for constants. In this article, the symbols { and z
are numbers in (0, c0) whose precise value may change from line to line. This
convention alleviates the necessity of indexing constants in long derivations.

A4. Kato’s Inequality

The proofs in the future sections rely on function space norm inequalities which are
covariant versions of standard Sobolev inequalities on R To set up the
background, let E—IR? be a vector bundle, and let | - | be a nondegenerate metric
on E.

The idea here is to obtain L? estimates for y € L3, ,,.(E) knowing only that
A€ot (E) and V,yp € L*(E). These estimates all follow from

Kato’s Inequality. Let E—IR? be a vector bundle with smooth fiber metric < - ,- ). Let
A€ot o (E). Let we L%, ,.(E). Then almost everywhere, |Vp| = |d| .

For a proof, cf. [5, Chap. IV].
The first observation stemming from Kato’s inequality is

Lemma Ad4.1. Let Aeo?, (E) and let §e(—1, 00). Suppose that y € L3, ,(E) and
(1+)x)°V,p € L(E® T*). Then there exists a constant c € [0, o) such that for any
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re [0, co),

| d3X(1+|xD2"IVAwlzzzllf Ex(1+ x> *e—lwh?, (A4.1)

|x|>r
and
I+ D1Vl > 2l (L + 1) (e— D6 - (A4.2)

Further, the constant z, above, is positive and it is independent of A€ o3, ,,(E), the
metric on E and E itself. The constant z is only a function of 9.

Before proving Lemma A4.1, it is useful to introduce the Banach spaces K°,
indexed by d e(—1, 00). The space K° is the completion of CF(IR?) in the norm
lvll = |I(1 + |x])°dv]| ,. The space K°, 6 € (— 1, o) has the property that there exists
2(8) >0 such that for any ve K° and r € [0, o0),

I (1l + )Mo 220) [ d(1+bx) 2,
[xI>r x| >r

and
ol Z2(3) (1 + |xD)’vll - (A4.3)

The first inequality above is proved by repeating the proof of Lemma 5.2 of [14]
for 040. The second inequality in Eq. (A4.3) follows from a classical Sobolev
inequality [15] which says that if ue K° then |du|,=z(0)|uls. To apply this
Sobolev inequality when J 0, one must use the first inequality in Eq. (A4.3) with
the following identity on L7, functions: Almost everywhere,

A1+ [xD)°f =L+ Ix)°df + (1 +[x)°~ ' fdlx| .

Proof of Lemma A4.1. By using Kato’s inequality, one sees that it is sufficient to
prove the lemma with v replaced by a function, feL3, (IR? for which
(14 |x|)°df € L. Due to the remarks concerning K?, it is sufficient to prove that any
function f € L3, with (1 +|x|)’df € L has the property that f-constant € K°. Such
is the case, and the fact is proved by repeating Lemma 4.12 of [14] with § +0. The
details are left to the reader.

A second useful observation which stems ultimately from Kato’s inequality is a
“covariant” version of the Sobolev embedding of L§(IR3)— C® /4(R?) (cf. [15]).

Lemma A4.2. Let A€ oi(E). Let ype L3, (E) and suppose that
Ve L E®T*); c—lyle LX(R?
for some ce[0,00); and V,(V,p) LAE®T*®T*). Then el (E),

c—lple C®Y2(R3) and the norm of ¢ —|p| e C*'/*(R?) depends on A € a3, ,,.(E), the
metric on E, and E only through the numbers |V, (V,p)|, and |V, pll,.

Proof of Lemma A4.2. Due to Lemma A4.1, one may conclude that V,yp € L? for
pe[2,6]. In particular, Ve L*. By writing V,p =dy + 0(A), where g(A) is the
matrix 1-form representing 4, one can conclude with Hoélder’s inequality that
dy e L}, and therefore, that y e C°(E). (This is a Sobolev inequality, [15].) Then,
returning to the expression V,(V,y) and writing V, =d + g(A), one concludes that
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p e L3, .(E). Now, by Kato’s inequality, |dy| € L®, and, therefore, ¢ — |ip| € LS(R?®).
From this it follows that ¢ — || e C%(R3) [15].

These Sobolev-type inequalities also have certain continuity aspects which are
illustrated by the following lemma.

Lemma A4.3. Let {A;} €0i,,,.(E) converge to A in o3, ,(E). Let {p;} € L3, o (E).
Suppose that {;} converges strongly in L% to some welLZ. Assume that
{V,w;} € L*, where it converges weakly to G € L*; and that {||V,y;|,} converges to
|Gl ,. Then € L}, where it is the strong limit of {;}. Also, V,p € L* and it is the
strong L* limit of {V,p;}. Further, there are constants {c;} C[0, 00) with limit
ce[0, 00) such that {c;— p,|} converges in K° to c — ||, therefore to c— || in L® as
well.

Lemma A4.4. Make the same assumptions as in Lemma A4.3 and assume addition-
ally that {;} € L3, o, that {V, (V, p;)} € L?, where it converges weakly to G’e L?, but
that {||V, (Vs w)ll2} converges to |G| ,. Let y and c be as in Lemma A4.3. Then {y;}
converges strongly in L3, to p; V,(Vap) € L? and it is the strong limit, there, of
{V\(V,w))}. Further, {c;—|p,|} converges strongly in LS(R?) to {c—|yl|}; hence in
C%®12(R?3) also. -

The proof of Lemma A4.3 will be given shortly. The proof of Lemma A4.4 is
along the same lines as the proof of Lemma A4.3 and so it is left to the reader. For
the proof of Lemma A4.3 one requires the following facts:

Lemma A4.5. Let {f;} CL? be a sequence which converges weakly to fe L* and is
such that {|| f;||,} converges to || f|. Then {f;} converges strongly to f.

Lemma A4.6. Let { f;} C L? be a sequence which converges strongly in L}, and has the
property that given ¢ >0, there exists r < co such that for alli, | |fi|*><e. Then{f;}
converges strongly in L2. IxI>r

Proof of Lemmas A4.4 and A4.5. For Lemma A4.4, let f denote the weak limit of
{f:}. The assertion then follows from the identity

If=filla= =S+ 1 filla + 2 A f =122

For Lemma A4.5, the argument is a simple “¢/3” proof that is left to the reader.

Proof of Lemma A4.3. Lemma A4.5 insures that {V, y;} converges strongly to G.
Using a test section, ne [(EQ T*), one finds that {<n,V,y;>,} converges to
Vi, ), since {y;} converges strongly to v in L, and {4;} converges to 4 in
L3, ,,.- But this means that e L3, V,y e L?, and G=V,yp. In fact, since

A =)o =<0, Vap—Viwip, —<n, (0(A) — e(A))p:>2 —<n, 0(A) (0 =)D,
{w;} converges weakly in L3,,,. to y; hence strongly to v in L

loc*
ld(yp — )l <IVa = Vapil +e(A) — e(A)llwil + e (Dlly —wil ,

one obtains strong L3, convergence of {i;} to . Lemmas A4.1 and A4.6 imply
that there exist constants {c;} € [0, o) such that {(1+|x|)”(c;— [w;]) converges
strongly in L2. As {i;} converges strongly to v in L{, , the sequence {c;} converges

Next, because
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to some ce[0, 00) and (1+|x])”*(c—|y]) is the limit in L? of {c;—|w;|}. Then,
{d(c;—p:))} converges strongly in L? to d(c —|i[) because of the L3, . convergence
of {y;} to p and because of Lemmas A4.1 and A4.6.

B1. The Homotopy Equivalence of € and Maps(S?; S?)

The exploration of B begins here. Since B is obtained as a quotient of €, the first
consideration is to the topology of €. The global section of P=R3x SU(2) which
sends xeR3 to (x,1)eR3 x SU(2) identifies € with a subset of NAdP® T*)
x I'(Ad P). This identification will be implicity made throughout this article. In
particular, the space € is topologized via the map from € into I'(AdP® T*)
x I'(Ad P) x [0, o0) which sends ¢=(4, @) to (4, &, A(c)).

The fixed section of P, above, identifies the gauge group ® =AutP with
C*(R?;SU(2)), and this is how @ is to be topologized. The group & acts on € by
sending (g, c=(4, ®)) to gc=(gAg ' +gdg~*,gPg ). This action is continuous
(see Sect. 3 of [3]).

The subgroup, ®,={ge®:g(0)=1} acts freely on €. Let B=C/G, be the
quotient with the quotient topology. The projection, n: €—%B defines a principal
®,-bundle which is isomorphic to B x &, since G, is contractible [3, Sect. 3].
Thus B and € are homotopically the same. In fact, B embeds in € as [3, Sect. 3]

B= {(A,LD)G(\Z:A(O)zo and x' 0

e _1A=O},

and € retracts onto B by contracting ®, to 1.

The relationship between B and Maps(S?; S?) is due to the fact that the unit
sphere in su(2)~IR? is S2. The explicit relationship is exhibited by considering
Maps(S?; $?) as a subset of Maps(S?; su(2)) by choosing an identification of su(2)
with R® Now introduce the map I:Maps(S?;5%)—>B—-E which sends
eeMaps(S?;5?) to '

I(e) = (—(1=B(xD) [e(x/Ix]), de(x/IxD], (1 — B(IxD)eCx/Ix])) . (BL1)

Here, Maps(S?; $?) is identified with Maps({x e R?:|x|=1}; {o e su(2):|a|=1}).
The function f(t)e C*(IR) is a smooth, non-negative bump function which is
identically one if t <4 and identically zero if t > 3.

Proposition B1.1. The map I of Eq. (B1.1) induces a homotopy equivalence between
B and Maps(S?; S?). In fact, [Maps) is a strong deformation retract of Q.

This proposition is a corollary to Proposition B2.1, still to come.

The path components of Maps(S?; S?) are the spaces Maps, (S?; S?), labeled
by neZ. These are the maps of degree n. Correspondingly, €= ) €, and
B=) B,, where B,=C,/6,. et

neZ

Groissier [16] showed that if (4, #) e €,, then

1
1 CFu D@y =n. (B1.2)
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Proposition B1.1 shows that both B and € are globally nice. Because these
spaces are defined implicitly, it is worthwhile to remark that they are not locally
perverse either.

Proposition B1.2. Both B and € are paracompact.

Proof of Proposition B1.2. The space I'(T*) x su(2) x I'(Ad P) is paracompact as is
[0, o). Due to Lemma A4.1, both B and € are closed subsets of I'(T*) x su(2)
x I'(AdP) x [0, 00). This implies that they also must be paracompact. For
example, if {U,} is an open cover of €, then there exist, by definition, open sets {U}
in I'(T*)x su(2) x '(AdP) x [0, c0), such that for each o, U,=U,n€. Now
complete {U,} to an open cover of I'(T*) x su(2) x I'(Ad P) x [0, c0) by adding the
complement of €. Take a locally finite subcover. The restriction of this finite
subcover to € provides a locally finite refinement of the original cover, {U,}.
A final remark for this section is that there exists yet a residual SU(2) subgroup
of ® which acts on € via the embedding of SU(2) in ® as the constant maps from
IR? to SU(2). The group SU(2) also acts on Maps(S?; S?) by rotating the image S2.
These two SU(2) actions are equivariant with respect to the sequence

Maps(52; §%) — B -G.

The action of SU(2) on B is not free, there are fixed points in the path
component B, of B which contains the image under I of the degree zero maps from
52 to $2. This SU(2) action is discussed further in Sect. BS.

B2. Auxiliary Topologies on € and B

It is convenient while proving the convergence of min-max sequences for 2 on € to
introduce additional topologies for €. Consider the topology on € that is induced
by the functional 2°, § € [0, 1) given by

A(4, 45)=n£3 [+ XY 417 () + [V, PPP(0)T -

The domain of A’ is the set €°={ceC:A’(c)<w}. As A’ is G-invariant,
B2 =E%/®,, is well defined for each 6 € [0,3). The set €’ is given the induced topol-
ogy from the map of €° into € x [0, c0), which sends ¢ to (c, W%(c)). This also
topologizes B°.

The first observation is that for every ne Z, € =€°n¢, is non-empty. This is
because I factors through €° for § € [0, 3).

The relationship between €° and € is provided by the next two propositions.
They say that €° lies in € in a nice way.

Proposition B2.1. There exist continuous maps ¢, : €—€, é: €—Maps(S?; S?) and
Jj:€>6, with the following properties:

(1) On Maps(S?;8?), c,ol=1, éoI=identity and joI=1€ G

(2) The map which assigns (t,c) € [0, 1) x € to

c—2t[c—c,(c)], for te[0,1]
(€)= Q2t—1)[c,(c)=j(OI(é(c))], for te[31];

defines a continuous map from [0,1]x €° to € for any 6€[0,3).

wt,0)= {
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Proposition B2.2. There exists a continuous map ©:[0,1] x [0, 1] x €—C with the
following properties: (1) © maps [0, 1] x [0, 1] x €° continuously into €° for each
6€[0,3). (2) For any ¢€(0,1] and ceC, 1(¢,0,c)=c and t(e,1,c) e €° for every
5€[0,3). In fact, with (A, ®)=1(¢, 1, ¢),
|F Al () + |V, @|(x) Sz, ¢) (1 +]x]) 2.
(3) For every (g,t,¢)€[0,1]1x[0,1]xC,
[A(z(e, t, ) —U(o) <,

and for every (t,c)€[0,1]x €, 7(0,t,c)=c.

The proofs of these two propositions are deferred to Sect. B4. There, the map t
is exhibited in terms of c,, é, and j from Proposition B2.1.

Proof of Proposition B1.1, given Proposition B2.1: Proposition B2.1 implies that
for 6 € [0,4), each €° deforms onto I(Maps). Indeed, if c € €, then t(1, ¢) is j(c)I(e(c)),
with j(c) € &,. Now, G, retracts onto 1€ ®,, and let G:[0,1]x ®, be such a
retraction. The deformation retract of €° onto I(Maps) is provided by

{r(2t, ), for te[0,4];
G(t,j(c)I(e(c)) for te[i1].

The reader should note that Proposition B2.2 provides a deformation retract
of € onto €. In fact, it asserts that for § € [0,3), €° is dense in € and, as far as W is
concerned, €° approximates € homotopically to any desired accuracy.

B3. Continuous Maps from €

The primary purpose of this section is to provide a priori estimates and continuity
properties of certain maps from €. The first observation is

Proposition B3.1. Let 5 €[0,2). The map from €° to
L? (AdP@ ( AT*® T*>) x LS(IR?®)
2

which assigns to c=(A, D), the triple (1 + |x|)°F 4, V, @, 1 —|®|) is continuous.

In later sections, it will be convenient to solve the “®” equation, to varying
degrees. By doing this, one obtains maps from € into € whose properties are the
next subject.

For each c=(4, ®) e €, Proposition 4.8 of [3] establishes the existence and
uniqueness of ¢y(c)=(4, Py(c)) € € with the property that

V2do(c) =0, (B3.1)

and ®(c)— @ € L®(Ad P). The proof of the convergence of min-max uses the map
col )

By mimicking the proof of Proposition 4.8 of [3], one obtains a unique
c(c)=(4, ?,(c)) with the properties

Vid,(c)—[2,[2,2,(c)]1=0, (B3.2)
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and @,(c)— ® e L% AdP). This &,(c) is obtained by minimizing the functional

7A@+ DIZ+ 102, ()13

over {ne I'(AdP): [[V,;n|%+ |[®,n]l|3 < co and |y € L°(R3)}. The results in Sect. 7
require ¢,(c).

Similar arguments also establish the existence of a unique @y(c) € L3,,,.(Ad P)
which satisfies Eq.(B3.1) on {xeR3:|x|>1}; is smooth on this set; satisfies
@y(c)—Pe L®adP) and which equals @ on {xeR3:|x|<1}. This ®\(c) is
obtained by minimizing ||V,(@+(-))||3 over the set

{neI(AdP):|V,nl3< oo, Il e L°(R®), and n(x)=0 if [x|<1}.
Let f be the cut-off function of Sect. A3 and set
P,(c) (x) = (1= p(x/2))Po(c) (x) + f(x/2) D(X) -
Let ¢,(c)=(4, @,(c)); this is also in €. This c,(-) is used in Sect. BS.

Proposition B3.2. Let §€[0,2). For each ). {0, 1,2}, the assignment of ce € to
c;(c) € €° defines a continuous map.

Because @,(c) satisfies a differential equation, boot-strap arguments prove
estimates for the second derivatives of @ ,(c):

Proposition B3.3. Let 6 €[0,3). For c=(A, ®) €, let .=0 or 2. The map which
sends ce € to (14 |x|)°V,V,@,(c) e (Ad P® T*® T*) factors continuously through
L2, In addition, the L* norm of (1+|x|)°V 4V 4®(c) is bounded a priori knowing
only W(A, ®y(c)).

Proposition B3.4. Let c=(A, )€ C and let @,(c) be given by Eq. (B3.2). The map
which sends c € € to V.V, ®,(c) factors continuously through L* with norm bounded a
priori by U(c).

Corollary B3.5: Let c =(A, @) € €. Let ®,(c) satisfy Eq. (B3.1) with A€ {0, 1,2}. The
assignment of ¢ to 1—|®,(c)|e L°(R®) factors continuously through L$(R?), and
therefore C%'/2(R3).

The proofs of these results occupy the remainder of this section.

Proof of Proposition B3.1. Lemma A4.5 establishes that the assignment of
c=(4, ) e to ((1+x>)*F ,,V,®)e L?* is continuous. To obtain the continuity
of the assignment of (4, )€€ to (1—|®P|) e L°(R3), use Lemma A4.3.

Proof of Proposition B3.2. The question here is independent of 6 € [0,3). The proof
begins by demonstrating that (c,(c)) depends continuously on ce@. The
continuity of @,(-) in I'(Ad P) will follow by bootstrap arguments.

It is necessary to consider sequences {c;=(A4;, ®;)}CC. It is convenient to
introduce the notation V=V, for b=c; and for 1€ {0, 1,2}, & =®,(c,). The first
step is to prove

Lemma B3.6. The map A(c,(-)): €—-[0, ) is continuous.
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Proof of Lemma B3.6. For c=(A4, ®)e €, let P(c)=Py(c), P,(c) or Py(c)as 1=0,1
or 2, respectively. Let ¢(c) = ¥(c) — @. By construction (see Proposition 4.8 of [3]),
#(c) € L°(Ad P) and V,¢(c) € L*. For A=2, ¢ vanishes on the unit ball. Let ¢ =0 if
A=0or2andleto=1if A=1.

Define s(c) =1 ||V ,(® + ¢(c))||3 +30 | [P, #(c)]||3. By construction (again, Prop-
osition 4.8 of [3]),

s() = inf GIVA@+n)3+30][P, 1113},

where I'=T,(AdP) if A=0or 1 and I'={ne [L(AdP): n(x)=01if |x| <1} if A=2.
For re[1, o), let B.(x)=p(x/r), where f(x) is the usual bump function of
Sect. A3. Because ¢(c) € LS, there exists for each £>0, an r(¢) < co such that

V(@ + B, (N3 + AL, B,p(e)]NI5 <s(c)+e.
As B.¢(c) e I, there exists a neighborhood 9t(£) C€ of ¢ such that for all b e N(e),

(D) S 11V46)(@(B) + Bp () 1+ AILL(D), Bp(c)]I5 <s(c) +e.

Thus, $(-): €—[0, c0) is upper-semi-continuous.

Next, consider a sequence {c;} C€ which converges to c. Let ¥ = @(c’), ®,(c))
or @;(c") as 1 =0, 1 or 2. The sequence {V;y’, s[®, ¥’} is bounded in L?, so there is
no loss of generality to assume that it converges weakly in L? to some pair
(G1,Gr) e L*(T*®R)® A P).

As the L? norm is weakly lower semi-continuous,

IGul,<lim [F¥], and |Gyl <limol[@, ¥l,.  (B33)

If it can be shown that G, =V,%(c) and that G, =[P, ¥(c)], then it follows
from Eq. (B3.3) that 5: €—[0, co0) is continuous. But this implies (as the L? norms
are weakly lower semi-continuous) that both of the maps |V,.,?(-)|, and
a|[®(-), ¥(-)]] are continuous from € into [0, co). This would give Lemma B3.6
when A€ {0,1}. For A=2, Lemma B3.6 would follow after using Lemma A4.1 to
conclude that @,(-)— () factors continuously through LS(AdP).

To summarize the previous paragraph, Lemma B3.6 follows from

Lemma B3.7. If {c;} CC€ converges to c € €, then (V,¥', 6[®,, P*]) converges weakly
to (V,¥,a[®,¥]) in L.

Proof of Lemma 3.7. Let ¢'=¥'—®,. As ||[Vi4'|3<2U(c;), the sequence {V¢'} is
uniformly bounded on L? and so {¢‘} is uniformly bounded in L° (cf.
Lemma A4.1). Therefore, {¢;} has a subsequent which converges weakly in L® to
some # which is in L°nL3, .. (as 4; converges to 4 in C* on any compact domain
in R?). Hence, for each ¢el(T*®AdP), {{& V,4">,} has a limit equal to
(& V), Therefore, V,n is a weak L2-limit of {V,¢'}. Similarly, one proves that
o[®,7n] is a weak L*-limit of ¢[®,, ¢'].

The convergence to n of {#'} and the given fact that
0=<KVL V¥, +0{[2:, ][, V'],
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implies that

0=Vl Va(@+1))2+0{[D, ], [P, 11>,

Since ¢(c) is unique, this last equality implies that n=¢(c). This establishes
Lemma B3.7.
The next step is to consider, for 4 € {0, 1, 2}, the continuity of @,(-)in I'(Ad P).

Lemma B3.8. For A€{0, 1,2}, the map @,(-):C€—-T'(AdP) is continuous.

Proof of Lemma B3.8. The continuity of A(c,(-)):€—[0, ) and Lemmas A4.5
and B3.7 imply that (V,®,)(-): €— L? is continuous. So (V,¢)(-) is continuous in
L* Due to Lemma A4.1, (1+|x])"*|¢(-)| is uniformly bounded in L?. Now,
Lemmas A4.1 and A4.5 imply that (14 |x|) ~*¢(-)is continuous in L?; and so ¢( - ) is
continuous in L .. By Lemma A4.3, ¢( - ) is continuous in L}, .. Continuity of ¢(-)
in I'(AdP) follows by the bootstrap arguments of Chap. 6 of [17]. This lemma

completes of the proof of Proposition B3.2.

Proof of Proposition B3.3. The proofs for @,(-) and &,( ) are worked similarly, so
only the @, case will be presented.

According to Proposition 4.8 of [3], || P, ., =1, and so Theorem V8.1 of [5] is
applicable. It states that V,V,®, e LYAdP® T*® T*) with a priori bound on the
norm which is determined by Q((4, @,)). This bound is obtained by differentiating
once Eq. (B3.1) to obtain

ViVAV Do) = —*[*F 4, V4 Pol+ *D 4[*F 4, Bo]. (B3.4)
For r< oo, let B, be the cutoff function from Sect. A3. Let o =(1+ f8,x?). Let
6 €[0,%). Suppose that c,=(4, D) € €°. Then from Eq. (B3.4) one obtains
ViEaVy(V,@o)= —a®*[*F 4, V, 801+ *D [a’+F 4, ;]
+ 60’6— 1(d0, VA)VAQO - 566_ 1*(d0' A [*FA’ ¢0]) . (B3.5)

Now, contract both sides of Eq. (B3.5) with V,®, and integrate over R The
resulting equation is

l6°2V\V, @05 = —<0°F 4, [V, D0, V4 P01, + lo”2LF 4 o113
+0<VPo, 0% H(do, VVy Do, — 3’ T F 4, [@o, VD] A do, .

(B.3.6)
All but the first term on the right-hand side above are uniformly bounded asr— o0
indeed, |do|o® ! <z which is independent of r as long as § <3.
To control the first term, observe first that

I<O°F 4[V4 @0, Vi@ 12l S 1677F 4]l | Va@oll3 2 10”3V, @ 132,
by Holder’s equality. Second,
0%V, @o 132 <27 H[V40°7 VB, |5
for some z~!(8) < co by Lemma 4.1. Third, since |do?3| <z(5) for some z(9),

[ VA06/3VA¢O I 2/2 =Z(| o3 VaV.d,ll 2/2 +1V4Poll 2/2) .
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9/2

Finally, as %3 <¢%?, one obtains

[<a°F 4, (VDo Vs Po1),1 S 31l0%? AR NE
+2(0) (1V4 ol 3+ 16°F 4|51V, P013).  (B3.7)

The conclusion from Egs. (B3.6) and (B3.7) is that ¢°?V,V,®, is uniformly
bounded in L*AdP®T*®T*) independently of r and hence
(14 X227, 7, @, € L?.

To prove that the assignment of ¢c=(4, @) €€ to (1+x?)"?V,V,®y(c)e L? is
continuous, one makes use of Lemmas A4.5 and A4.6. With Lemma A4.6, it is a
straightforward argument (using Lemma A4.1) to show that the r = co limit of the
right-hand side of Eq. (B3.6) is continuous. Then |(1+x%)%?V,V,®,||, is conti-
nuous, and due to Lemma A4.5, (1+ x?)%?V,V,®, varies continuously in L? as
(A4, ®) varies in €°,

Proof of Proposition B3.4. The argument here is essentially the same as the
previous argument for the proof of Proposition B3.3. One additional fact is
required. This is that the assignment of ¢ to ||[®, [, ®,(c)]1]]|, is continuous. To
obtain this fact, one starts with the continuity of |[®, @,(-)]]|,: €—[0, o). (This
was established in the proof of Lemma B3.6.)

This start is used to prove that [|[®, ®,(-)]ll¢ is also continuous. Here is the
argument: Let QCR? be a given domain. Then

102, @, 1l6;0 = 1PI*I[P, D111 11302
<2|[, 211205 +21(0 = 2D*[2, 2,]]5l5
S20[@, @113 + 210 =D IELITP, P, ]lls!%- (B3.8)

[In Eq. (B3.8), the fact that ||®,||, =1 has been used.] The Minkowski inequality
implies from Eq. (B3.8) the final inequality

[, @]ll6;0 =612, 2,12/5+41(1—[2Dl6;- (B3.9)

Thus, by taking Q to be, consecutively, balls in R3 of radius (1,2, ...), one obtains a
uniform bound for ||[[®, &1/ by U(c). By taking Q to be the exterior of a ball of
radius r< oo, one obtains with Lemma A4.6 that ||[[®,®,(-)]|s: E€—~[0, o) is
continuous.

Next, observe that over any QCR3,

12, [P, 11,0 = I[P, 1 1ll5;0+ (A = PDI[D, Pyl 2;0
S, P11l p;0+ 11 =1Dlll6;l[2, P1116/R1 [P, 111315

Therefore, the same argument as used for |[®, §,]| s works for ||[[D,[D, D,]1]1],,

and gives a uniform bound and continuity for ||[®, [®, ®,(-)]]]l, as a function
on ¢.

Proof of Corollary B3.5. Propositions B3.3 and B3.4 state that for A€ {0,1}, the
assignment of ¢c=(4, ®)eC to V,V,®,(c) e L* is continuous. Therefore, one can
use Proposition B3.2 and Lemma A4.4 to obtain the corollary.
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B4. The Retraction of €

Propositions B2.1 and B2.2 are proved here by constructing the maps e, j, and ¢
from Sect. B2. The map e must be constructed first. In order to define ¢, introduce
the map ¢, : €€ of Proposition B3.2. According to that proposition, ¢, maps €°
continuously into the space
P={ceC®:(14x))°V(V,P)e LHAdPRT*R T*)}. (B4.1)
This is provided that £° is topologized by the map which assigns (4, ®) € £° to
(4, @,(1+x)’V,(7,P))) € € x L(R?).

The space £° has a number of important properties, and it is timely to digress
here to enumerate them. The first observation is

Lemma B4.1. The assignment of (4, ®) € £ to (1 —|®|) factors continuously through
C%12(R3), where its norm is bounded a priori given ||V,(V,®)||, and |V, D|,.

Proof of Lemma B4.1. This is actually a corollary now to Lemma A4.4.

If (4, @) € £, then Lemma B4.1 implies that 1 —|®|(x) tends uniformly to zero
as |x|—oo. Therefore, R(A, ®)e[1, c0) exists with the property that |®(x)|>1 if
[x|>R(A4, D). If (4", @) € £° is sufficiently close to (4, @), then also |&'(x)|>73 if
|x| > R(A, ®). One would like to have R(-) depend continuously on £°. The next
lemma allows this.

Lemma B4.2. There exists a continuous ®-equivariant function R(-): 2—[1, o)
such that where |x|> R(A4, ®), then |®|(x)>3.

Proof of Lemma B4.2. Here one requires the following observation:

Lemma B4.3. Let X be a topological space and suppose that f:[0,1] x X —-[0, 1] is
a continuous map with the property that for fixed ye X, f (-, y) is not decreasing on
[0,1], and f(0,y)=0. Then there is a continuous function ¢:[0,1]x X —-[0,1]
which satisfies for each ye X, 9(0,y)=0, o(-,y) is increasing and f(o(e, y), y) <e.

Proof of Lemma B4.2 given Lemma B4.3. Use the previous lemma with the function
f:[0,1] x€—-[0,1] given by

f(0,(A, ®))=1—min (I ‘inf |D|(x), 1) )
x|>1/e

The continuity of f follows from Lemma B4.1.

Proof of Lemma B4.2. Let f§ denote the bump function from Sect. A3. Now set

) =] depe™ 16, ).

The function g has the requisite properties for the following reasons: First, as e—0,
o(&, »)—0 and the limit is locally uniform in y. Second, f(¢~1f(t, y)) has support
only on {t€[0, 1]: f(t, y) <&} which is a connected open set containing {0}. Since

B=1, g(e,p) is in this set. Finally, o(-,y)%0 and (%) (e,y)=0.
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For c=(4, ®) e £, |®|(x) goes uniformly to 1 as |x|—co. Thus, each such &
defines a splitting of AdP over {xeR?>:|x|>R(c)} as LR, where R embeds in
Ad P, as the span of &(x). It is useful to decompose the connection 4 according to
this splitting. For this purpose, write r=r(c) =2R(c) and &(c) = @/|®|. Then write

A=ad+a"—(1—p)[D,dd]+p,A, (B4.2)
where

al(e)=(1—B)[,[A4, 811+ (1 —P)[S,dd] and a(c)=(1 —B,)(—2tracec:(PA)).

Due to Lemmas B4.1-2, the assignment of ce £ to (B4.3)

(a(c),a’(c) e I(T*)RT(Ad PR T*)
is continuous. The Ad P valued 1-form aT has the properties that are listed below.

Lemma B4.4. The assignment of (A, ®) in £° to (a¥,(1+|x])°V,a") as defined by
Egs. (B4.2,3) factors continuously through

[[(AdPRT*)NL*(AdPRT*)] x LYAdPRT*® T*).
Proof of Lemma B4.4. First, observe that for |x|>r,
[@|2[®,V,D]=aT. (B4.4)
Therefore, Lemmas A4.6 and B4.1, 2 imply that the assignment of (4, ®) e L’ to a”
factors continuously through L*(AdP® T*).
By differentiating Eq. (B4.4), one obtains
—2|P|"*(—2tracec PV, D)) [, V, D] +|®| [V, D, V, D]
+0| 72D, Vy(V,0)] =V,a . (B4
For a domain QCR3, Holder’s inequality implies that
A+ XDV P13, S V4@l 2,0l (14 XDV @6,

This last inequality, plus Lemmas A4.1, A4.4, and A4.6 imply that (14 |x|)°V,a”
factors continuously through L2(AdP® T*® T*).

Without an additional choice of gauge, a(4,®) of Eq.(B4.3) cannot be
controlled. However, G, is contractible, so gauge fixing is possible. The process
results in

Lemma B4.5. There exists a continuous map g:8°—®, with the following
properties:

(1) On I(Maps), g=1€ 6,

(2) Let c=(A, ®)e £°. Then where |x|>2R(c),

B(g(c)- ) () =(g()B(c)g " (c)) (x) = B2R(c)%).
(3) The assignment of c € £° to the real 1-form a(g(c) - ¢) of Eq. (B4.3) defines via
e—>(1+1x)(alg(c) - ¢), Va(g(c) - )

a continuous map from L° into [[(T*)NLO(T*)] x LA(T*QT*).
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Proof of Lemma B4.5. With the C® topology on the participating function spaces,
the map below defines a principal fibration with fiber Maps(S?; S'):
Maps(S?; SU(2)) x Maps(S?; S?)
T . (B4.3)
Maps(S?; §%) x Maps(S?%; 5?)

Here T sends (h, o) to (hah™ !, 6). Maps(S?; S*) embeds as the fiber over (g, ) by
assigning

exp(]/—-lf)eMaps(Sz;S‘)

to (exp(fo), o) in Maps(S?; SU(2)) x Maps(S?; S?).
A continuous map (I,I) from £° into Eq.(B4.3) is obtained by assigning
c=(4, P) as follows

(1, $2R(0)%)

g lr A _ (B4.4)
@71, (BQR()%), BRR(O)%))

/

Here & =®/|®| and % =x/|x|. Observe that Tol'=1.
A homotopy of I, a map ¢:[1,00)x 2° to Maps(S?;S?) x Maps(S?; S?) is
defined by sending (t,c=(4, ®@)) to

(B(tR(c)%), B(R(c)%)) . (B4.5)

The existence of a lifting ¢’, of ¢, which commutes with T is guaranteed by the
homotopy lifting property of a fibration [18]. There is no obstruction to choosing
¢’ to satisfy ¢'(t, I(e)) = (1, e(%)) for e Maps(S?;5?) and te[1, o).

Let 7, : Maps(S%; SU(2)) x Maps(S?; S?) be the projection onto the first factor.
Then g'=n,; ¢’ maps [1,0)x L% into Maps(S?;SU(2)) continuously and it
satisfies g'(1,¢)=1eSU(_2).

The homotopy lifting allows the extension of ¢’ to define a map g, : £°— 6,
which satisfies for |x|=2R(c),

000=¢ (o) (),

and which satisfies g,(c)=1¢e 6, when c e I(Maps).
The map g of the lemma will be of the form g=h- g,. To obtain h requires the
following observation:

Lemma B4.6. The assignment of c € £° to a(g,(c) - ¢) € ['(T*) has the property that
(1 +[x[)’da(g,(c) - c)

defines a continuous map from 2° into L2 </\ T*).
2
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Proof of Lemma B4.6. For |x| =2R(c), ®(g,(c) - ¢) (x) = o(x) is only a function of
£=x/|x|. Thus, |do| < const|x| ™. Let al =a’(g,(c) - ¢). Let g,(c)- c=(4, ®). Then
when |x|=2R(c),

da(g,(c)-¢)=(o, F 5) +4 traceg:(do A ai)+(0,do Ado)—(o,at A al).

Here, (o, f)= —2tracega(a, f) for a, fesu(2).

The continuity of (14 |x|)°da(g,(c) - ¢) follows Lemmas A4.5 and B4.4.

To complete the construction of g for Lemma B4.5 one uses the previous
lemma in the following way: Note that the Hodge theorem for R3 (cf.
Proposition 7.6 of [4] or [19]) allows that there exists a unique AL e I'(T*)NLS
with VA*eLA(T*®T*) which satisfies d*4“=0 and dA*=da(g,(c)-c). The
existence proof implicity asserts that A" varies continuously in I'(T*)nL8(T*) and
that VA" varies continuously in L*(T*® T*) as ¢ varies in £%. Lemma B4.6 with
arguments as in the proof of Proposition B3.2 insure that the assignment of ¢ € £°
to (14|x))%(4*(c), VA*(c)) defines a continuous map from ¢ into LS(T*)
ALAT*Q T*).

The Poincaré lemma for R? provides a function 4(c) € C*(R3) which satisfies
dA(c)=a(g,(c) - ¢)— A™(c). By demanding that A(c)(0)=0, the function A(c) is
uniquely determined by ¢ € £° and the assignment of ¢ € 2° to A(c) € C*(IR3)is then
continuous.

Define now

h(c) =exp(GA(c) (1~ Bre)$(9:(0) - ©)).. (B4.6)

Then, let g(c) =h(c) - g,(c). This g defines a continuous map from £?into &, and it
satisfies the requirements of Lemma B4.5. In fact, where |x|=2R(c), a(g(c)-c)
= A™(c). Thus, conditions (2) and (3) of Lemma B4.5 are satisfied. For condition
(1), remember that g, is identically 1 on I(Maps), while a(-) on I(Maps) is
identically zero. Thus Alypps=0 and glyp.ps=1 as required.

Before proving Proposition B2.2, it is timely to define the maps e and j: define
é:€—Maps(S?:5?) by requiring that

é(c) (R) = B(c5(0)) RR(cx(c)%) . (B4.7)
Define j: €— &, by requiring that
J©)=9"(cx(c)), (B4.3)

with g(-): €’ 6, given by Lemma B4.5.

Proof of Proposition B2.1. For condition (1), observe that c,(I(e))=1I(e) by
construction since (V,®) (I(e)) vanishes on {xeIR?*:|x|>1}. For this reason,

éI(e)) (%) = B(I(e)) QR(UI(e))%) = (%)

for all e S2. Also, j(I(e))=g '(I(e)) =1 € G, due to Lemma B4.5. For condition
(2), observe that

c—c3()=(0, D(c)— P,(c)), (B4.9)

and so Propositions B3.1 and B3.2 imply that v(-) asa map from [0,4] x €?to €% is
continuous. To obtain the continuity of r on [$, 1] x €, observe that for te [3, 1],

wt,0)=j(e)[g-c;—Qt—1)(g- ¢, —1(8)],
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where ¢, =c,(c), é=¢é(c) and g =g(c,(c)). Keep in mind that ¢,(c,(c))=c,(c), and
30 é(c,(c))=é(c). For |x|>2R(c,),

g c;—1@)=(alg- c2)é+a"(g- ), (1P(c2)| — D). (B4.10)

Thus, continuity of r as a map from [3,1]x €% to €° follows with Holder’s
inequality and Lemmas B4.2, B4.4, and B4.5. The reader can supply the algebra.

Proof of Proposition B2.2. For (g,t,¢)€[0,1]x [0, 1] x €, consider

ot _{c—Zr(l—ﬁl/g)[c—CZ] for te[0,3];
ML= e, = 1) (1~ Bu) [~ IO+ fyfe—es] for te[h1].
(B4.11)

Because (1 — f8, ,) has support only where |x| > 1/g, (g, t, ¢) converges to cin C* of
any bounded domain in R? as ¢—0. This convergence is locally uniform in
(t,c)€[0, 1] x €. Independent of g, é(g,0,c)=c.
On {xeR3:|x|>2/0}, é(0, 1, c) =j(c)I(é(c)), and therefore, for ¢ >0 and (4, P)
= é(Qa 1, C)a
|F 4l(x) +V,@](x) S const(c, @) (1 +[x[) 2.

Thus, é(p, 1,¢) € €° for any ¢ €(0,1], and every ce € and J €[0,2).

As I maps Maps(S?; S?) continuously into €, § €[0,2), and é is continuous,
é(o,1,-): €—C° continuously for any ¢ €(0,1] and 6 €[0,3).

With Eq. (B4.9) and Propositions B3.1 and B3.2, one concludes that for any
0€(0,1] and 5 €[0,3), é(o, -) : [0,3] x €°—€? continuously. Lemma A4.1 and the
fact that |df, ,| € L*(R?) with norm independent of ¢ implies that for any c € €,

lim sup |A°(e,t,c)—N(c)|=0. (B4.12)
0—0 te[0,1/2]
Lemma A4.3 with Proposition B3.2 implies that this limit is locally uniform on €.
Therefore, é(-) extends as a continuous function from [0, 1] x [0,4] x €° to €° for
every de[0,3).

Lemmas B4.2, B4.4, and B4.5 with Eq. (B4.10) imply that for any ¢ €(0, 1] and
5€[0,2), é(o,-):[%, 1] x €°—-€? continuously.

Proposition B3.1 and Lemmas B4.4 and B4.5 imply that for any ce €°,

lim sup [W%(E(g,t,c))—A(c)|=0. (B4.13)
0—0 te[1/2,1]
This is proved by breaking the integrals into their contributions from the sets
{xeR3:|x| <30}, {xeR3:1o<|x|<1/g}, and {xeIR?:|x|>1/g}, and then using
Holder’s inequality with the aforementioned lemmas. The details are straightfor-
ward and omitted. This proof also establishes that the limit in Eq. (B4.13)is locally
uniform with respect to c e €°.

One concludes from this discussion that ¢ extends as a continuous function
from [0, 1] x [0,1] x € to €° for every 6 € [0,%).

Using Eqgs. (B4.12) and (B4.13), Lemma B4.3 provides a continuous function
0(+):[0,1] x €—[0, 1] which (1) maps {0} x € to {0} and for fixed ¢ maps (0, 1) into
(0,1); (2) for every ce@,

sup [U(E(a(e, ¢), t,¢)) —A(c)| <s.
te[0,1]
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The map t of Proposition B2.1 is given by the assignment of
(e,t,0)e[0,11x[0,1]x€C
to é(e(e, €), 1, ¢).

BS. The SU(2) Action on B

As pointed out in Sect. B1, SU(2) acts on B via the action of the constant matrices
in G. It acts on Maps(S?; $%) by rotating the image S* and I is an equivariant map.
This SU(2) action can be reduced to an S*-action by fixing & at a point. The
reduction is constructed as follows: Let neS*> be the north pole. Let
Q(5%; 5%), Maps(S?; S?) be the subspace of maps which take n to n. The S*
subgroup of SU(2) which fixes n acts on Q(5?; S?) while the orbit of Q(S?;S?) in
Maps(S?; S%) under SU(2) is all of Maps(S%; S?).
One has the fibration

Q(S%; 5%)—Maps(S2; §%)— S2,
with 7i(e) = e(n). The above mentioned S! acts equivariantly on this fibration, and
Q/S* ~Maps/SU(2).
There is a corresponding fibration for B if § € [0,4). This is defined with the
map ¢,(-):€°—E° of Sect. B3 and the map R:€°-[1,00) of Lemma B4.2. A
continuous map, A:B°—S? is defined as follows: Let neS? be the point

(1,0,0) e R>. Set 7i(c) to be the point (D,(c)/|P,(c)]) 2R(c,(c))n) € S*. This map 7
induces a fibration,

BB, 52 (B5.1)
where the fiber over ne S? is
B ={ceB:(,(c)/|D,(c)]) 2R(c,(c)n)=n} . (B5.2)

Proposition B3.2 and Lemma B4.2 insure that B is closed in B°.

The orbit of B? in B? under SU(2) is all of B?. But, the S* subgroup of SU(2)
which fixes ne S? acts on B°. This S! action is equivariant with respect to the
commutative diagram below:

SB& -‘Bé

C

Q(S?; 52)—— Maps(S?; 5?)

s? (B5.3)

It is pertinent to remark here that because A’ is G-equivariant, it only “sees”
the topology of B°, at least as far as min-max is concerned.

Proposition B5.1. For each 6 € [0,3), the map I embeds Q(S*;S?) into B° and the
image under I of Q(S?;5?) is a deformation retract of B°.
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The proof of this proposition will be given shortly. Observe that
Propositions B1.1 and BS.1 yield Theorem A1l.1 as a corollary.

Proposition B5.2. There exists a continuous map q:[0,1]x[0,1]x B—>B such
that:
(1) For each §€[0,%), g maps [0,1]x [0, 1] x B? into B? continuously.
(2) For each €€ (0,17, q(e,0, - ) is the identity map on B.
(3) Foranyde[0,%)and foranyee(0,1),4q(e, 1, - ) maps B continuously into B°.
(4) For any te[0,1], q(0,t,-) is the identity on B.
(5) Finally, for any £€[0, 1] and for all ceB,

Sup_ [A(g(e, t,c))—Alc)l <e.

Proof of Proposition B5.1. Let x(-):[0,1] x €—C€ be the map of Proposition B2.1.
Let I1:€—B denote the projection. By restricting r to [0,1]xB and then
composing with IT, one obtains a map IT-r: [0, 1] x B—>B. By associating each ¢
in B to the point 7(c) e S?, one obtains a continuous map (I, ) of B into the
fibration

Sl

l

SU(2) x 52

.

B §2xS2

(B5.4)

Here T sends (g, 0) to (gog ™', 0) and I(-)=(A(-), A(-)) while I(-)=(1,4(-)).

A homotopy of [ is defined by ¢:[0,1] x B—5? x S* which sends (t,c) to
(A(II -1(¢, ¢)), i(c)). The homotopy lifting property provides a continuous map,
k:[0,1] x B—-SU(2) with the property that k(0,-)=1and for all (¢,c) € [0, 1] x B,

k(t, c)a(c)k ~1(t, ¢) =A(IT - x(t, c)).

There is no loss of generality by assuming that k(t, - )|;aaps) =1 for all £e [0, 1].
Indeed, if this is not the case, replace k above by

k'(t,c)=k(t,c)- k™ 1(t,1(é(c))),

with é: €—Maps(S?; §?) given by Proposition B2.1. A
Define the retraction of B onto I(2(S?;S?) by sending (¢, ¢) € [0, 1] x B? to

k™Yt,c)-(ox)(t,c).

Proof of Proposition B5.2. The proof here is identical in most respects to the proof
of Proposition B5.1. One replaces r by the map 7 of Proposition B2.2 and then (I, /)
maps [0,1]x B into the fibration of Eq.(B5.4) by sending (e,c) to I(g,¢c)
=(7i(1(¢, 0, ), A(t(e, 0, ¢))) = (fi(c), fi(c)), while I(e,¢)=(1,7(c)). The homotopy ¢
sends (t, &,¢) € [0, 1] x [0, 1] x B to (A(II - t(¢, t, ¢)), Ai(c)). The remaining aspects of
the proof are the same.
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B6. Hilbert Spaces

Hilbert space vector bundles over B play a crucial role in this article, and one in
particular, provides a wuseful local embedding theorem for B (see
Proposition B6.1).

To begin, let V' be a finite dimensional Hilbert space on which SU(2) acts by an
orthogonal representation, g. Let g,, : su(2)—»End V denote the induced represen-
tation. Let E=P x V.

Each pair ¢ = (4, @) of L%, . connection on P and L3, section of Ad P defines a
metric on [(E) by

P, 0=V, Vn 5 + <0 (D), 0, (DI .

Lemma A4.1 insures that {-,-), is nondegenerate.

A Hilbert space, H/(E), is obtained by completing I,(E) in the norm
|- 12=¢:,->.. Notice that the assignment of ¢=(L?,,, connection on P, L},
section of AdP) to H,(E)CL%,,,(E) is ® equivariant; when g € ®, then H,.. and
g- H, are the same in L}, (E).

Of particular importance is the case E=Q=AdPR(T*®R). In this case,
define for each ce @, I'*=H (Q)nI'(Q), and topologize I by the inclusions in
H Q) and I'(Q).

Proposition B6.1. Let neZ and let ceB,. About each beB,, there exists a
neighborhood of b, R(b) and a continuous map h(b) (- ) : B(b) > &, with the following
property: the map which sends b’ e W(b) to m(b") =h(b) (b') - b’ — c embeds N(b) in I"°.

Later in this section, Propositions 6.1 and 6.2, below, are used to define a C°
vector bundle structure over B for the set {H,(E),be B}.

Proposition B6.2. Let ce € and let ye H/(Q). Let E-IR® be an associated vector
bundle to P—IR>. The identity map on Iy (E) induces an isomorphism between
H,.. (E) and H/(E) with the following property: for any neH,,,

Haller = lnlld =z il
with z< oo a constant that is independent of p,n and dependent only on A(c).

Proposition B6.1 is proved in Sect. B7, and Proposition B6.2 will be proved
here shortly.

Let E—IR3 be an associated vector bundle to P. A C° vector bundle structure
for the set

H(E)= bLEJ% H(E)

is constructed as follows: Let n € Z, and choose ¢ € B,. For each be B,, there is a
neighborhood, 9(b), and a Hilbert space isomorphism ¢(l,(b")): H,(E)—H/(E),
which is defined for all b’ 9t(b) by the sequence

Hy (E)—o(h(b) (b)) - Hb'(E)_’Hh(b)(b')-b'(E)"’Hc(E) .

Here, h(b) (- ): N(b)— 6, is given by Proposition B6.1, and the last two maps are
induced by the identity map of L3, ,,.(E).
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Let p: H(E)— B be the obvious projection, and topologize H(E) by demanding
that for each b € B, the bundle map from p~(N(b)) to N(b) x H (E) which sends
(b"eN(b), p € Hy(E)) to

Ly(b', p)= (b, (b)) - ). (B6.1)

is a homeomorphism. Proposition B6.3, below, asserts that this defines consis-
tently a topology on H(E) such that for each neZ, p: H(E)— B, is a C’-vector
bundle over B,(cf. [20]).

It is also necessary to provide a C%vector bundle structure for the set
L(E)= U L*(E) with its canonical projection p: L(E)—»%3B. Topologize L(E) by

demandlng that for each be B, the map from p~ }(N(b)) to N(b) x L*(E) which
sends (b,p) to L,(b’,yp) of Eq.(B6.1) is a homeomorphism. Proposition B6.3,
below, asserts that this has defined a conssitent topology on L(E) such that for each
neZ, p: L(E)—B, is a C°-vector bundle over B,.

Proposition B6.3. For each neZ, choose ceB,. The sets H(E) and L(E) with
projection p to B, are consistently topologized as C°-vector bundles over B, by
demanding that the open cover {N(b): b e B,} with the bundle maps {L,: p~ *(N(b))
—N(b) x H(E) and N(b)xL?*(e), respectively} given in Eq. (B6.1) form a basis for the
local trivializations. With this vector bundle structure, the inclusions of B, x I'(E)
into H(E) and L(E) are continuous. Furthermore, the assignment of be B, to the
fibre metric {-,-), defines a continuous section of Sym,(H(E)*). Finally, two
different choices of c € B, define isomorphic H(E)’s and L(E)’s.

The remainder of this section contains the proofs of Proposition B6.2.
Proposition B6.3 is proved at the end of Sect. B7.

Proof of Proposition B6.2. This proposition is a direct and easy consequence of
Lemma B6.4. Let ceB and let we H(AAP) and ne H(E). Then

e winll, =LA +A) vl lnl., (B6.2)
where { < oo is independent of c, p, and 1.

Proof of Lemma B6.4. This is a generalization of Lemma 6.6 of [3]. Let c=(4, @)
and let Q(c)={xelR>:|®|(x)<2}. Then Q is open, and because of Kato’s
inequality and Lemma A4.1, one has

W(e) 23] d(1— (@D Z 3 - (1 —@DIE =1L - (vol )12 (B6.3)

Here, {<oo is independent of ce@. Thus, Q has finite volume. Now let
peC>[0, ) be the bump function of Sect. A3 and let b(x)=p(|®|(x)). Thus,
suppbCQ. Given ne H/(E), decompose it as n=n-+n"+n% where n?=by,
n'=—(1-b)|®| 20, (P)e,(P)y, and n*=(1—byy—n".
Now, due to Lemma A4.1,
7202+ 1126 <L 11+ (vol )P I,
In e < Mnll.,
72+ 0"l S @+ Il (B6.4)
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where { < oo is independent of ce € and e H(E). To obtain the lemma, use the
following two facts: First, if y € H(E) and y € H(Ad P), then

24wt =0. (B6.5)
Second, if ve L® and ue LN LS, then
loull, < llvllgllel &> {lull3 . (B6.6)

Lemma B6.4 follows from Egs. (B6.3){B6.6).

B7. The Local Structure of B

The purpose of this section is to establish Proposition Bé.1, the local embedding
theorem for domains in B and Proposition B6.3. Before beginning the proof of
Proposition B6.1, it is convenient to study the space £ = £° of Eq. (B4.1) in greater
detail. Observe first that there exists a continuous map ¢ : —Maps(S?; S?), given
by the assignment of be & and xeS? to &(b)(2R(b)%), with &=d/|d| and
R:2-[1, o) given by Lemma B4.2. Let £, =2nC€,, neZ. Then ¢ maps £, onto
Maps, (S%; S?).

Second, observe that if o,,0,€Maps,(5?;S?), then there exists an open
neighborhood O(s;) and a continuous map h:O—Maps(5?;SU(2)) with the
property that for every g, €,

h(c,)a,h™ Ya,)=0,. (B7.1)

This is just the statement that Eq. (B4.3) is a fibration.
These two observations imply

Lemma B7.1. Let ne Z and let b, c € ,. There exists a neighborhood Q(b, c) of b in
L, and a continuous map q:Q—->®, with the property that for every b'eRQ,

q(b)o(b)q ' (b)=0(c).

Proof of Lemma B7.1. Choose a contractible neighborhood O of a(b) in
Maps, (S?; S?) for which Eq. (B7.1) is true with ¢, =a(c). As O is contractible, the
homotopy lifting property for fibrations implies that the map h of Eq. (B7.1) has an
extension, h': O — G, satisfying h'(x) = h(x/|x|) for |x| = 3. Take q(b) to be h'(a(b)).

Now, fix w € Maps, (S%; S?) and define L[w]={be L:o(b)=w}. Let g: L— G,
be given by Lemma B4.5.

Lemma B7.2. The assignment of bef[w] to g(b)-b—I(w)el'(Q) defines a
continuous map of L[w] into I'®X(Q).

Proof of Lemma B7.2. Observe that on the set {xeIR?:|x|=2R(b)}
g-b—I(w)=(a(g-b)w+a"(g-b), (12(b)| - w),

where g=g(b). Thus, Proposition B3.1 and Lemmas B4.4 and B4.5 imply that
g-b—I(w)eI'". Proposition B6.2 implies now that g-b—I(w)e '), The con-
tinuity of this assignment b—g(b) - b—I(w) € ' follows from Proposition B3.1
and Lemmas B4.4 and B4.5.
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Before proving Proposition B6.1, it is necessary to point out that the map
¢y :€—C€ of Sect. B3 maps € continuously into £ (Proposition B3.4) and for all
ce@,

() —ce ™o, Ie. (B7.2)

Proof of Proposition B6.1. Given b, c € B,, let Q(c,(b), ¢,(c)) be the neighborhood
of c¢,(b) that is provided by Lemma B7.1. Let R(b)=c; (Q)CB,. Define
h(b)(-): N—>G, by assigning b’ e N to

h(b) (0) =g~ "(c1(c)) - 9(q(c, (b)) - ¢4 () - q(c4 (P))

where q: Q—®, is given by Lemma B7.1 and g: —®, is given by Lemma B4.5.
The first claim is that m,(b") = h(b) (b')b’—c defines a continuous map from N(b)
into I'°. Indeed,

g(c1(0)) (h(b) (b) - b'—c) = g(q(c1(b) - (b)) q(c (b)) - b'—g(ca(c)) - ¢
=09 q- &' =c;(BNI+[g" q- ()= 1(0)]
—[g.-(c—ci(N]—[gc-ci(e)=1(0)].  (B7.3)

Here, ¢'=g(q(c,(b))-c1(b)), g.=g(ci(0)), q=q(c,(b)), and a=0a(c,(c))
=0(q-c;(b")). Due to Lemma B7.2 and Eq. (B7.2), each bracket in Eq. (B7.3) is in
'@, Thus, Eq. (B7.2) implies that h(b) (b")—c is in I'. The continuity of the map
follows readily also with Lemma B7.2 and Proposition B3.4.

The second claim is that the map m,(-):9t—TI° is a homeomorphism onto its
image. For this, one requires

Lemma B7.3. Let ce € and define I'° as in Sect. B6. The assignment of yeI'* to
¢+ defines a continuous map from I'® into €.

Proof of Lemma B7.3. This is a straightforward calculation using Lemma B6.4 and
Hoélder’s inequality. The reader is referred to Proposition 5.1 of [3].

To complete the proof of Proposition B6.1, it is enough now to observe that the
map my(-) has a continuous inverse, namely, the map 1 which sends peI* to
II{c+vy) e B, where IT: €—B is the projection. Indeed, let b’, b” € R(b). Suppose
that (1o my) () =(1°my) (b”). Then, b’ =h - hy(b") "1 - hy(b”) - b” for some h € G,. But
since h,(-) maps into ®,, b’ must equal b”.

Proof of Proposition B6.3. As the arguments for H(E) and L(E) are similar, only the
former case will be considered. To show that H(E) has a well defined topology, it is
sufficient to establish that for any pair b, and b, € B, with intersecting Jt(b,) and
N(b,), the transition function which sends b € O =N(b,)nN(b,) to [cf. Eq. (B6.1)],

1(b) =1, (b)l,,(b) "' € G, (B7.4)

defines via b— g(I(b)) a continuous map from D into the Banach space of bounded,
linear endomorphisms of H (E) (cf. [20, Chap. I]). This will imply immediately [20,
Chap. III] that p: H(E)— B is a C°-vector bundle with the asserted basis for its
local trivializations. If one accepts for the moment this last assertion as a fact, then
the remaining assertions follow in a straightforward manner from
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Propositions B6.1 and B6.2; the details are left to the reader. Thus,
Proposition B6.3 follows from the following:

Lemma B7.4. Let neZ and let ceB,. If O=N(b,)nN(b,)=*0 for b;,b,€B,,
define 1: O—-®, by Eq. (B7.4). Then o(I(b)) is a bounded, linear automorphism of
H (E) for each be D, and given b e D and ¢>0, there exists an open neighborhood
0’cO of b such that for all b’ €D’ and y € H(E),

le®)y —e(®Nwl.Zelwl.- (B7.5)
Proof of Lemma B7 4. First, let m: (b))~ H (Q) and let j: N(b,)—>H(Q) be the
two embeddings from Proposition B6.1. If y e I[(E) and be DO, then
le®)wll. =21 (D) eU®NY |+ mapy
<z,(b) “w“c+j(b) s
=zlvyl.. (B7.6)
Here Proposition B6.2 and the ®-equivariance of the | - ||, norm have been used.
The constant z < oo is independent of i, and uniform on a neighborhood of b.
Thus, for each b e D, g(I(b)) extends to a bounded linear automorphism of H(E)

with inverse o(I(h) ™).
To establish Eq. (B7.5), the following lemma is needed:

Lemma B7.5. Under the same assumptions as in Lemma B7.4, let be O. There is a
neighborhood O of b in O such that the assignment of b’e D’ to the number
d(b, b')= | I(b) —I(b") |l cows) defines a continuous map of O’ into [0,2].

Proof of Lemma B7.4 assuming Lemma B7.5. For ¢c=(A, ®)e € and p e I'(E), let

VJ‘P = (VAwa [¢’ UJ]) € F(E®Q) ‘

Because of Proposition B6.2, it is sufficient to check that given ¢>0, there is a
neighborhood D’C O such that for all b'e O and v e H,(E),

le(®)yp —oUBNW e my S &l et mesy -

For notational convenience, let (I, I')=(I(b), /(")) and define similarly (m, m’) and
(7,j). Observe that for any p € H,(E), ||[y|.= IV.y| ,- Now one calculates using the
®-invariance that

Vimo(Dy=0(D) Vc’+jw s (B7.7)

while
VmeM)p =V o +e(m—m)e()y
=e(WVs jw+em—m)e(l)y
=0+ o +e()e( =)y +o(m—m)e(l)yp . (B7.8)
Equations (B7.6-8), Proposition B6.2 and Lemma B6.4 imply that

le(i®)yy — e Dyl = z{d(b, b) + |j —j'l. + Im—m'} |l

where z is independent of b’ in a sufficiently small neighborhood of b. This last
equation with Proposition B6.1 and Lemma B7.5 implies Lemma B7.4.
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Proof of Lemma B7.5. By construction, | maps O continuously into ®,. Let
¢;:€—C be as in Sect. B3 and write ¢,(c)=(4, ). Due to Lemma B4.2, there
exists R < oo such that for all b’ in a neighborhood O’ of b in O, |®(c, (b)) |(x) >1 if
|x| >R, and also |®|(x) >4 if |x|>R. For '€ 0’ and for |x|> R, set

B(b) = (e, (b))/|19(c, (D))
By construction, there exists r € [R, o0) such that for all b’ in a possibly smaller
neighborhood D’ of b,
(h(by) (0)B(BYh(b) (b)) (x)=B(x) for |x|>r; (B7.9)

and also Eq. (B7.9) is satisfied by all b’ € D" with h(b,) (- ) replacing h(b,) (- ). Thus,
forall b’ e O (I(")PUD") ™ 1) (x) = D(x) for |x| >r. This last equation implies that if
b’ e 0" and if |x|>r, then

I(b) (x) = exp[3A(0)B(x)] . (B7.10)

The proof of Lemma B4.5 [see Eq. (B4.6)] implies that A maps a possibly smaller
neighborhood O’ of b in O continuously into C*({x € R?: |x|>r}). Further, there
exists ¥ € [r, 00) such that for all b’ O’

AAD) (x)=0 for |x|># (B7.11)
and

P () e LSUx e R3: |x|>r}). (B7.12)

Together, Egs. (B7.11) and (B7.12) imply that for each b’ € O’, there exists u(b") e R
such that

IAB) () — uB) < MB)x] "t i x>, (B7.13)

where M(b) < oo depends only on b. Equation (B7.13) implies that the assignment
of b’ € O’ to u(b’) € R defines a continuous map. This fact, Egs. (B7.10) and (B7.13),
and the continuity of [: O— 6, imply Lemma B7.5.

C1. The Distribution of Critical Values

As the functional 2 only sees the topology of B, min-max for 2 is concerned with a
homotopy invariant family of compact subsets of B. Let ne Z and let § be such a
family in B, As discussed in Sects. A1 and A2, one associates to § the number 2y
of Eq. (A1.7). Then the set of such Ag’s defines Crit, C[4x|n|, o) [see Eq. (A1.8)],
and Theorem A1.2 asserts that Crit, is unbounded.

Theorem A1.2 is proved through a series of arguments, outlined in Sect. C2,
which involve the topology of a family of Dirac operators on S=(P X gy2,C*)®S.
Here, S—IR? is the spin bundle over R?; that is, the frame bundle of R? is
canonically IR® x SO(3). It is double covered by R3* x SU(2) and S is

R3 x SU(2) x gy C* >IR3 x C2.
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The Dirac operator on I(S) is the first order elliptic operator which sends
pely(S) to

3

.0
op=3 dx' -2y, (CL.1)

i=1

where dx' is Clifford multiplication. (Since S is flat, there is no loss of generality in
identifying {dx'}>_, on €? with the fixed set of matrices,

i 0 0 1 0 —i
0 —i)’\—-1 0)°\—i 0/}
To each pair c=(4, ?)eC, assign the operator, J,, on I(S) which sends

e I(S) to
dx'-Vyip+dy. (C1.2)

M

1

I

Observe that the assignment of (c, ) € € x I(S) to 5.y € I(S) is ® equiva-
riant, and thus one obtains a family of operators, {J,:ce B}, on I(S).

The Atiyah-Singer Index theorem for families (cf. [21, 12 and 8, 107]) assigns
topological significance to continuous families of elliptic operators. The proof of
Theorem A1.2 is an application of these ideas. Specifically, the approach in [12] is
adapted here. In order to effect this adaptation, it is necessary to introduce certain
technical details. The next section contains these technicalities.

C2. Operators Indexed by B

Let V'be a finite dimensional vector space and let ¢ be a representation of SU(2) on
V. Let V' be a second finite dimensional vector space with a faithful representation,
{t}2_CEndV’, of the imaginary quaterions, (thus t't/= —¢"—¢g*t¥). Let
E=V®V’ Foreach c=(4, ®) € €, denote by J,, the operator on I,(E) which sends
p to

S =TV +0.(P)y. (C2.1)

As in Sect. B6, let H,(E) denote the (Hilbert space) completion of I(E) in the
norm

1wliZ =<V, V 41072+ 0@, 0, (P - (C22)

A summary of the results in Sects. 6 and 7 of [9] concerning such §, on H, is
provided by the first lemma.

Lemma C2.1. Let ce € and let E and . € End(I(E)) be as defined above. Then 6,
extends as a bounded Fredholm operator from H (E) to L*(E).

Proof of Lemma C2.1. A specific example is treated in detail as Lemma 7.4 of [9].
The general §, is analyzed similarly. Use Lemma B6.4.

As defined in Sect. B6, H(E), L(E)—B denote the C° vector bundles with fibre
H(E), L*(E) respectively at c € B. Because the assignment of c € € to §, as a linear
operator from H(E) to L*(E) is ® equivariant, this assignment defines a section
over B of Hom(H(E), L(E)).
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Lemma C2.2. The assignment of ce®B to 6, Hom(H/E); L*(E)) defines a
continuous section of Hom(H(E), L(E)); in fact, a Fredholm morphism.

Proof of Lemma C2.2. With the local trivializations of H(E) and L(E) provided in
Sect. B6, it is enough to check that for fixed c e €, the assignment of yp e H.(Q)
nI'(Q)to é,.,€Hom(H,(E); L*(E)) is continuous. In fact, 6, ,—d, is a compact
operator, linear in y. This is established in Lemma 7.4 of [9] for a specific
representation of SU(2) and the quaternions and the general case is handled
similarly.

Being a Fredholm operator, J, for c € B has a finite dimensional kernel. For
Theorem A1.2, a crucial observation is that dim(kerd,) is bounded a priori
knowing only (c).

Proposition C2.3. Given specific representations of SU(2) and the quaternions on
vector spaces V and V', respectively, define E(V,V')—R?> as above. There is a
continuous function, z:[0, c0)—[1, 00) with the following significance. Let ne Z.
Let c=(A, ®)eC,. Define J,: H.(E)—L*(E) as above. Then

dim(kero) < z(|*F ,— V4 @l5) - [|¥F 4 — V4@ .

This proposition follows as a corollary to a more general result concerning
bilinear forms on H (E). The general result is Proposition C2.5, below.

The bilinear forms under consideration are of the following kind. Let E—IR3 be
as above, let c € € and let J be a bounded, symmetric, bilinear form on H (E). For
Proposition C2.5, below, J will be restricted to be a form which sends v,y € H (E)
to

T, m) =<, m>e+ <, [24(Ro) + T2 (RIIND 2, (C23)

where {R,, R;}2_, CI'(AdP) are such that R=R,+ 'R, is in LAdPREndV").

A form of this type satisfies Property * with respect to the metric <-,->, on
H/E); this as defined in Sect. 6 of [9]. This fact is proved for three examples in
Lemma 6.7 of [9], and the more general case is handled in a similar way; see
Lemma C2.10, here. As a result of satisfying Property *, such a form J is bounded
from below.

As in [9], an eigenvector of J with eigenvalue A€ R is by definition a nonzero
w e H,(E) such that for all e H/(E),

J(p,n) =y, ny,. (C24)
Concerning bilinear forms on H(E), the results in Sect. 6 of [9] imply

Lemma C2.4. Let J be a symmetric bilinear form on H (E) which satisfies Property =
with respect to {-,->. Let A<1. There exists N(i,J)< oo eigenvectors,
{w}~,€eH(E) of J such that J is bounded from below by A on the orthogonal
complement in H,(E) of {yp;}-,.

Proof of Lemma C2.4. Use Lemma 6.6 of [9] with the bilinear form J(-,-)—A<{-, >,
on H(E).

For those forms J as described in Eq. (C2.3), it is possible to obtain an upper
bound on the number N(4,J) of the previous lemma.
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Proposition C2.5. Let E—~R? be a vector bundle as described in the opening
paragraph of this section. Let c € € and let J € Sym, H (E)* be a form as described in
Eq. (C2.3). Let

R=R,+ R e LAIPR®End V)

be as defined in Eq. (C2.3). For A< 1, let N(4, J) be the number of eigenvectors of J
with eigenvalues smaller than A. Then N(4,J) is bounded above by
z(A, A(c), |R2) - IR| 5, where z(-) e [1, o0) depends on ¢, J, and 4 only as indicated;

and z(-) is continuous on (— oo, 1) X [0, o).

Proof of Proposition C2.3 given Proposition C2.5. The result follows from the
Weitzenbock formula for 6, which shows that the bilinear form <{¢,-,d.->, on
H (E) is of the kind under consideration in Proposition C2.5. In this Weitzenbock
formula, the endomorphism R of Egs. (C2.2) and (C2.3) sends p e I'(E) to

M

Ti(Q*(VA‘p —*F ))p. (C25)

i=1

Thus, |R|,Z(|¥*F4—V 4P| ,, where { <o is independent of ¢. Furthermore,
Groisser showed [16] (see also [4]) that when ceC€, then
A(c)=%|F ,—*V,®P||3+4nn, and so one obtains from Proposition C2.5 the
required bound for dim(kerd,).

Proof of Proposition C2.5. The proof is motivated by the proof of Theorem 3.2 in
[22]. The strategy in [22] is to consider v € H (E) which is a linear combination of
orthonormal eigenvectors, {y;}, of J, each with eigenvalue less than 4 (<1).
Assume that ||v|,=1, so
v=Yo; and Ya?=1. (C2.6)
Observe that

J,0)=3 Aol <A.

But, in addition, Eq. (C2.3) implies that
1150, 04 (R))l. (C2.7)

The goal is to obtain a contradiction from Eq. (C2.7) by assuming that N(4, J) is
too large.

To begin, let e H(E) be an eigenvector of J with eigenvalue 1<1. Then
Eq. (C2.4) is an elliptic differential condition on . As a consequence of some
standard regularity theorems (cf. [17, Chap. 6]), weI'(E) and y satisfies the
equation

Vip+ 0, p+R - p=0, (C2.8)
where R'=(1—21)""0,(R).
First observe that ||, has an a priori bound.
Lemma C2.6. Let c€ € and let yw e H(E) satisfy Eq. (C2.8) with |y|.=1. Assume

that R’ e LA (End E)nI'(End E). Then |y, <z(1 + |R’||,), where z < o0 is indepen-
dent of ¢, W, and .
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Proof of Lemma C2.6. If yp satisfies Eq. (C2.8), then almost everywhere on R3,
—Alp| = 1Ryl (C2.9)

The Green’s function for — 4 is the kernel (4njx —y|) ! € (I,(IR3) x I,(R3))*. Let

B*(y) = B(|x — yl), where p(t) € C*([0, o0)) is the usual bump function (cf. Sect. A3).

Multiply both sides of Eq. (C2.9) by *(y) (4n|x —y|) ! and integrate over R3. Two

integration by parts yield the inequality

1
f p*

WIS, Ripl+z [ lol.

( )I Jx—()l<1

Here z< oo is a fixed constant. Now with Holder’s inequality and Lemma A4.1,
one obtains

le(X)§Z<II‘R’ 2 T ||w1|6> =z(1+[%R),

which is what the lemma claimed was true.
The second step in the proof of Proposition C2.5 is the procurement of a
uniform, a priori bound on the C%'/? norm of v, [y, 12-

Lemma C2.7. Under the same assumptions as in Lemma C2.6,
Il 12=2(1+ 1R 2) 1+ A) + |R']]2),
and

IVawlle=z(1+ R 2) (L +Ae) + [|R]2), (C2.10)

where z < o0 is a constant which is independent of c, p, and R’

Proof of Lemma C2.7. Equation (C2.8) and the previous lemma imply that
V2wl = lox(@)*wll, +2(L+ 1R[) Rl

By integrating by parts, one finds as in [5, Chap. 5] that

1V 4Vap) 2 S zLIVEW 2+ (lwllo + 1Vaw ) IF 4111,

where z< oo is independent of ¢ and . Thus using Lemma C2.6 again, one
concludes that

1,702 < 2Ll x (@)Wl + (1 + [R]) (W) 2 + [R],)].  (C2.11)
Now, as in the proof of Lemma B6.4, let Q={xeR>:|®|(x)<3}. As in the

proof of Lemma B6.4, let b(x) = f(|®|(x)). On R*\Q, set =P/|®|, and observe
that when x e R3\Q,

0D =0,(D)0, (P)y + (1D — D)o, (D)*p + (1P| — 1)%0, (D) *y. (C212)

Now, lg*(fﬁ)1p| <|w|and also since x ¢ Q, IQ*(tﬁ)wi <2|¢(P)y|. With these two facts,
Eq. (C2.12), Holder’s inequality, Eq. (B6.3), and Lemma A4.1, one obtains the a
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priori bound
(@) wll Z1byl2 + e (@)l + (1 —b) (1 — @) (B)w],
+(1=b)(1~[2)?w],
<z[(VolQ)'P + 1+ 11 —|2|(2]
<z[AU@)+1].
The last equation and Eq. (C2.12) yield the a priori bound
IV 4Vap)ll 2 = z(1+ [ R)]5) (14 A(e) + [ R 5) - (C2.13)

The first assertion of Lemma C2.7 now follows from Lemma A4.12. The second
assertion of Lemma C2.7 follows from the additional observation that

lex( @Vl S BV, + [|(1 = b)e(BWapll, + (1 —b) (1 — [P (D)W, »
<zLIVwll+ 171321V wll 21— |91
Sz(1+ R ) (1+A(e) + [R])).

The last inequality above uses Eq. (C2.13) and Lemma A4.1.
The application of Lemma C2.7 to the proof of Proposition C2.5 requires the
introduction of the set UCIR3, where the L*-norm of R is large.

Definition C2.8. Let p*(-)e C*(R3) denote B(|x—(-)|), where B is the bump
function of Sect. A3. Let c=(A, ®) €€, and define for each k>0,
ﬁ(K)={x eR?: | ﬁ"l‘ﬁlzéxz},

and
U(k)= U {yeR?:|x—y|<1}. (C2.14)

xeU(x)
The following lemma summarizes the first relevant properties of U(k):

Lemma C2.9. Let Re L? and define for k>0 the set U(x) as in Definition C2.8.
Then
1) U(k) is a bounded domain.
2) The number of path components of U(k) is less than k= *||R| 3.
3) If x, y e R? are in the same path component of U(x), then |x — y| <4k ~*||R| 3.
4) Vol U(x) < 4*n/3x~ | RS,

Proof of Lemma C2.9. Statement (1) is immediate since Re L2, Statement (2)
follows since for each path component q< U(x),

K2SJIRP<(RI3.
q

Statement (3) is true because if x, y are in a path component g of U(x), then there
are at least |x — y| disjoint balls of radius 1 inside g, and the integral of |R|? over
each one is larger than x2. On the other hand, the integral of |R|? over ¢ is less than
|R]|. Statement (4) follows from Statement (3).
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To complete the proof of Proposition C2.5, let ve H(E) be as specified in
Eq. (C2.6). Given x>0, Eq. (C2.7) implies that

1= | J@e@®0)+C- | IRIWP, (C2.15)
RA\U(0) Ut)

with { < oo depending only on the SU(2) representation g.

Lemma C2.10. There exists a continuous function v: [0, 00)—(0, o) such that for
any ceQ, xke(0, o0) and for all we H(E),

] )I(w,@(m)w)léV(QI(C))KmIIfRH%/Slelf-

R3\U(x
The proof of this lemma is postponed until the end of this section.

Proof of Proposition C2.5, assuming Lemma C2.10. Suppose that for a given x>0,
there exists ¢>0 such that |v|(x)<e when xe U(x). Then Lemma C2.10 and
Eq. (C2.15) imply that
1= AL+ AP PR+ R, (Vol U(x) 2] .
With Lemma C2.9, one could conclude that
=A<+ A PIRIZ5 + 1R 367 3] (C2.16)
Let N=N(J, A) and let d=dim V-dim V". Given N/d points in R3, there is a
linear combination of eigenvectors, v =3 a;y;, as in Eq. (C2.6), such that v vanishes
at the given points. Due to Eq.(C2.10),
lollo, 122 (A=D72 A+ 1R ) (1 +Ae) + [ R]2). (C2.17)
Thus, if v vanishes at x, then |v(y)|<e for ye R® with
Ix—yl< ”0”6,21/282 .

Therefore, one can find N'=[Vol- U(x)]-3/4n-d - ||v|§ 1, ¢ ° points in U(x)
such that if v vanished at each, then |v(-)| would be less than ¢ on U(k).

Now choose k'P<I(1-D( A +A) *(1+[IR)3) . And choose
&2 =X "1 R, *(1—1). Then, because Eq. (C2.16) is true, one concludes that

N<d-[VolU(k)]- 37 |vl|§, 1,267 °. (C2.18)
Proposition C2.5 follows directly from Egs. (C2.17) and (C2.18) and Lemma C2.9.

Proof of Lemma C2.10. 1t is sufficient to prove the lemma with ¢ replaced by ¢;(c)
as defined in Sect. B3. To see this, use Eq. (B7.2) and Proposition B6.2. Use also
that ||c;(c) —c||2 £4%(c) [to derive, contract Eq. (B3.2) with @,(c) — &(c) and then
integrate over R® and integrate by parts]. Write ¢,(c) = (4, ®). The proof works by
adapting a trick due to Morrey (see [17, Lemma 5.2.1]). Decompose y € H, (E) as
p=yp-+ypT+y? this as in the proof of Lemma B6.4.

Observe that if 4, e H, (E), and if o0 € I'(Ad P), then

(", 04(0)yp")=0. (C2.19)
This is because

0,0 = — 0, ([B[D, e ]’ = — 0,(D) %0, ()"
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Therefore,

(v, 0, (R) = R [wlly], (C2.20)

where |p'|=|pT|+ [p?. Here, { < o is a fixed constant. Observe that Egs. (B6.3)
and (B6.4) imply that

lwlls<Cllwll, and [Tl +y?l =0 +AC)Ipl,,.  (C2.21)

Now, to apply Morrey’s trick, cover the R® by a uniform countable set of unit
balls, {B,}. Let {w?} be a subordinate partition of unity, for which |dw,|is bounded,
independently of o. Be aware that

IRI><k. (C2.22)

Bon(R3\U()
Holder’s inequality with Eq. (C2.20) yields
[ (w, R lwls- IR137 [ ! Iiﬁlz’aiw’lz}”z- (C2.23)
R3\U( R3\U(x)
Now evaluate
I RPPY Py [ ol RPPP,
R3\U(x) a Bun(R3\U(k))

={- ng leoalylls
<(x?? ;I [ooZldlw|[* +1de,|* "]
<&y A©) vl - (C2.24)

The second inequality above is Holder’s inequality with Eq. (C2.22). The third
inequality is a Sobolev inequality (cf. Lemma A4.1) and the fourth inequality uses
Lemma A4.1, Proposition B3.4, and Eq. (C2.21). The constant, {, changes from
line to line, but it is always independent of ¢ and y. Here, v/(- ) € C°([0, 0), (0, 00)).
The lemma follows directly now from Egs. (C2.23) and (C2.24).

C3. Topology of the Dirac Family

Both H(S) and L(S) as defined in Sects. C1 and B6 are vector bundles over the
paracompact space B. According to Lemma C2.2, the family of Dirac operators of
Eq.(C1.2) indexed by B defines a Fredholm morphism, &:H(S)—L(S). As
discussed in [8] and [10], ¢ defines in a natural way, characteristic classes,

¥ 98)e H**(B;Z) for p,qe(0,1,...).

Here H'( - ; Z)is the ['* (compactly supported) cohomology group with coefficients
in Z. The class x™4(9) is a determinant of Chern classes of the “virtual” vector
bundle Indexd =[kerd] —[cokerd] in the K theory of B.

Proposition C3.1. There exists an unbounded set AC X [0,1,...) such that for every
nel and p,qe A, 0= %) e H**Y(B,; 7).

With Propositions C3.1 and C2.3 one obtains immediately a proof of Theorem
A2.1.
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Proof of Theorem A2.1. For fixed neZ, let (p,q)e A be such that y?%d)=+0.
Consider the family, §, of compact subsets FCB, such that the restriction map
from H?**(B,;7Z) to H**(F;Z) does not annihilate y*95). As discussed in
Sect. Al, this family is homotopy invariant. Define 2, ,=; by Eq.(AL7).
According to Proposition 5.3 of Koschorke [10], ¥ %) =0 in H?*P4(F ; Z) if for all
ceF, dim(kerd,)<p and dim(cokerd,) <gq. Therefore, each F € § must contain a
configuration ¢ for which dim(kerd,)= p. In fact, since the index of 6, is —n ([9]
and also [23]; but use Lemma C2.2), each F € & must also contain a configuration
¢ for which dim(kerd,) = g —n. Proposition C2.3 now provides a lower bound for
A7 .. As A is unbounded, one concludes from Proposition C2.3 that the set
{U5 ,:(p, q) € A} CCrit, C[0, ) is also unbounded. This proves Theorem A2.1.

The proof of Proposition C3.1 follows closely the discussion in [12] by Atiyah
and Jones and especially their proof of Theorem 4.6 of [12].

The proof begins with a digression. For t € [0, co) and 0<ne Z, let C, , denote
the space of unordered n-tuples of points in IR® which are mutually separated by a
distance larger than ¢. Thus C, , is the quotient by the symmetric group, 2, of

Cpo={(x1s ...y x,) € (RO igg Ix,— Xl >1} .

The spaces C, , for £ >0 are strong deformation retracts of C,, which is the space of
unordered sets of n distinct points in R3,

A construction in [5, Chap. 4] provides a set of approximate solutions in B,
n>0, of the Bogomol’nyi equation, Eq. (A1.5). This set, ¥,CB, is described next
(see Definition C4.2). It parametrizes the configurations of n widely spaced,
Prasad-Sommerfield solutions to Eq. (A1.5). (These are exhibited in Eq. (C4.8),
and discovered in [24].)

Lemma C3.2. There exists a family of configurations, V,={c(n,t;{x,}"-,)}CB,
which is parametrized by te[1, ) and {x,};-, € C, , with the properties below:

(1) There exists for each n,t,e(1,00) such that for each te[t,, o), the
assignment of c(n,t,{x,})eB, to {x }eC,., defines an embedding J : C,, —B,.

(2) For fixed te(t,, o) and for y= {x }eC,,,, there exists g,€® such that
g.c(n,t; ) (x)=c'(x—x,) if xeR? satisfies |x —x,| <Int. Here, c' =(A', #*) e €,
is the unique (up to ® ) Prasad Sommerfield solution to Eq. (A1.5) with ®*(x=0)=0.

(3) There exists { which is independent of ne Z, t e [t,, ) and y € C, , with the
Jfollowing property: Let c(n,t;y)=(A4, ®). Then

H¢I—II§C§(1+IX—an" and |*Fy+V,@|=02(1+ e —x,) 2.
(4) If xeR? satisfies inf|x —x,| <Int, then *F ,—V,®=0. If ileflx—xa} >Int,
then |* F ,—V,®| <t~ 12 % Ix—x,| "2
The proof of this lemma and also the proof of Lemma C3.4 is provided in
SCC&&%I“ step in proving Proposition C3.1 is to examine the kernel and cokernel

of , as ¢ varies in V,; the purpose is to calculate the restriction of y”9(d) to
H*(V,; Z).
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Lemma C3.3. For each 0 <n € Z, there exists t(n) € [t,, 00) such that for each t > t(n)
and ce J(C, ), kerd, =0 and dim(cokerd,)=n.

Proof of Lemma C3.3. This follows from Proposition C2.3 and property (4) of the
set V.

Now itis a straightforward argument using Lemma C2.2 and property (1) of V,
to establish that for ¢ > t(n), the assignment to c(n, t; y) € J(C, ,) of the vector space
cokerd, ~C" defines a C° vector bundle over J(C, ,). This bundle is denoted by N,,.

Consider the bundle N,—~J(C, ,):

Lemma C3.4. Given0<neZ andt>t(n), let N,—J(C, ,) be as defined above. There
exists t'(n) < oo such that for t > t'(n), the pull-back of N, to C, , is isomorphic to the
vector bundle associated to the standard representation o, of n,(C, )~Z,.

The proof of Lemma C3.4 is deferred to Sect. C4. Suffice it to say that the
construction in Sect. C4 assigns to each c(n, t, {X,}) n approximate “zero modes” of
0¥, one concentrated near each x,. Then Proposition C2.3 provides a tool to
project isomorphically the €"CH,(E) of this approximate cokernel onto the
cokernel of d..

For O<neZ,let t'(n) be as in Lemma C3.4. Assume that ¢ > t'(n). The Chern
classes of J~'(N,)—C, , are computed by Atiyah and Jones in Proposition 4.5 of
[12].

Because J ~!(N,)—C, , is the pull-back of the virtual bundle, Indexd € K(B,),
the computation in [12] asserts that certain specific Chern classes of Indexd are
therefore nonvanishing in H*(B, : Z). In particular, one obtains from [12]:

Lemma C3.5. Given any k=0, pick a prime p>k+1. Thenin H *(@p(p_ 1-1ys Z), the

class
y?~ 1k 1(8)£0modp.

The second step of the proof of Proposition C2.5 is to establish a relationship
between x”4(5) in H*(B,;Z) and »»(5) in H*(B,; Z) for I+n. Atiyah and Jones
faced an analogous problem in [12] and the solution here is adapted from their
solution.

Let Q,=Q,(S%;S?). Observe that I induces an isomorphism by pull-back of
H*(B; Z) with H*(Q,; Z) (see Lemma B5.1). To avoid confusion, denote by y2*? the
class I*y?%(9) in H**(Q,;Z).

The characteristic classes {y2*4} can be viewed as follows. First, a straightfor-
ward argument which is similar to the proof of Proposition B6.3 shows that the
inclusions of H(S) in B xL2.,.(S) and of L(S) in B x L*(S) induce vector bundle
isomorphisms

I*H(S)~Q(S?; S*) x LA(S),

and
*L(S) ~Q(S%; 8%) x L*(S)

(cf. Sects. 6 and 7 of [9] and also [23]). Therefore, 7*5 defines a continuous map,
I*6: Q(S%; S%)—— Fred (L%(S); L*(S))
14
Z x BU .
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The cohomology ring of BU is a polynomial ring on the universal Chern
classes, and each y2%(0) is the pull-back of a specific such polynomial by I*§.

As is well known, the Q,’s are mutually homotopic. The homotopy of Q, with
Q, + isinduced by the commutative addition operation on 7,(S?; n). The effect of
addition on y£'? is summarized next.

Lemma C3.6. There exists a map, t: Q,—Q,, ; which induces a homotopy equival-
ence and is such that for every pair (p, q) of non-negative integers, t*y2d, and y29 are
cohomologous in H**(Q,; Z).

The proof of Lemma C3.6 is provided in Sect. CS.

Proof of Proposition C3.1 given Lemmas C3.2, C3.3, and C3.6. Lemma C3.5
establishes that there exists arbitrarily large, non-negative integers (p, q) and an
integer n>0 such that y»%8)=0 in H??%(B,;Z). But then y>?=0 in H*(Q,; Z)
and Lemma C3.6 establishes that y??40 in H*?%(B,;Z) for every I Z.

As a parenthetical remark, the Dirac operator defines, via its total symbol, a
second map from Q(S2; S?) into Z x BU. Indeed, the assignment to e € Q(S?; §?) of
the total symbol o(5,,,) defines upon restriction to the unit ball $° in T* (the set
{(x,&) e R*x R3: |x|> +|£]*=1}), the following continuous map from S into
U(C*®@C*=U(4) [25];

6(e) (x,0) =il ®1+[x|[I1Qe.

Here &, is Clifford multiplication by £&.
As e variesin Q(S?%; S?), one obtains a continuous map, 6 : Q(S?; %)~ Q3(U(4)).
Now, U(4) includes in U(n) for n>4 as

<U(4) 0 )
0 1n—4 ’

and so ¢ defines by direct limit, a continuous map 6 : Q(S%; $*)—Q>(U), where
U is the group of unitary automorphisms of a separable complex Hilbert space
[L*(S), for example].

Following Atiyah-Jones [12] one uses the Bott periodicity theorem to identify
up to homotopy Q3(U)~Z x BU. Thus, ¢ maps Q(S*;S?) continuously into
Z x BU.

The Atiyah-Singer index theorem for families asserts that the two maps, I*$
and ¢ are homotopic as maps from Q(S?;S?) into Z x BU. '

C4. The Dirac Operator for Multi-Monopoles

This section contains the proof of Lemmas C3.2 and C3.4. These lemmas with
Lemma C3.6 are the superstructure which holds up the somewhat formal
relationship between the Dirac operator and the cohomology of ‘B.

Proof of Lemma C3.2. The configurations of V, are constructed in [5, Chap. 4.7],
though the language there is oriented more to physicists than it is here. For this
reason, the construction will be reviewed briefly. Let y=(n, t, {x,}). The configu-
ration c(y)e V, is specified by the following cohomological data: a finite open cover
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of R® {Ujy)}; transition functions {g,;(»):U;nU;—»SU(_2)}; and fields
{cj(»)=(4;, ) (y)} on Uyy) satisfying on U;nU; the cocycle relation cy(y)
=g;§(y) - ¢»). The fields {c;} and the transition functions {g;;} are C*.

The data {U (), g;;(»)} for fixed y defines a principal SU(2) bundle, P(y)—»R>.
The data {c,(y)} defines a smooth pair, c'(y), of a smooth connection on P(y) and
section of Ad P(y).

An isomorphism # : P— P(y) defines by pull-back n*c¢'(y) € €,. As any two such
isomorphisms differ by an element in ® = Aut P, the assignment to y=(n, t, {x,}) of
the data (P(y), ¢'(v)) defines a unique element, [¢'(y)] € €,/6 =B,/SU2)=B,/5".

For the reader’s convenience, the cohomological data {U(y), g:;(y), ¢;(y)} for
(P(»), ¢'(y)) is presented explicitly in Definition C4.2 at the end of this section. The
reader should refer there during the discussion that follows.

Statements (2-4) of Lemma C3.2 follow by direct calculation with (P(y), ¢'(y)).
The reader is referred to [5, Chap. 4] for the details.

Give the quotient topology to B,/S*. For fixed t e[t,, c0), the continuity of
[¢’(-)]€B,/S! as a map of C, , is straightforward to check. This can be done by
taking a subordinate cover, {Uj} to {Ujy)} such that for y’eC,, in a
neighborhood of y, {U’} also defines a subordinate cover to {U (y")}. This allows
one to directly compare the data for y and y’ that Definition C4.2 provides. The
details are left to the reader.

Observe that [¢'(-)] is an embedding for fixed t e [t,, 00) of C, , into B,/S*.
This is because the assignment to [c=(4, ®)]B,/S* of

Z([c)={xeR?®: &(x)=0}

defines, upon restriction to Im[c’(-)], a continuous inverse to [¢’(-)].

Finally, it remains to show that for fixed te[t,, ), [¢'(:)] lifts to an
embedding, J:C, ,—B,. Let y=(n,t,{x,}) with te[t, o). Identify P(y) over
UyCR? with Uy, xSUQ2). Here, (1)=(1,1, ~)x{=L1} as defined in
Definition C4.2. Let x(y)= <4Z {x,), 0, 0) eUy. A point in P(y)l, Iis
p(y)=xX), 1). *

Let g(y) € P(y)|, be the parallel transport of p(y) to 0 € R3, by the connection in
c'(y), along the line segment between x(y) and 0.

As for [c¢(-)], the assignment for fixed te[t,, ) of y=(n,t, {x,}) to
(P(»),c'(y), q(y)) defines a continuous embedding of C, , into (€, x P,)/® which
will be denoted [¢'(-),q(-)].

Let (¢, g) € €, x P,. The parallel transport of ¢ by the connection A(c) along the
rays from 0 € R? defines a continuous section of (€, x Po) x I'(P) over (€, x P,)/®.
Denote this section by s. N

The assignment of (¢, q) € €, x P, to s*(c, q) - c € B, defines a continuous map
from (€, x Py)/® onto B,. Let j: C, ,—B, denote the image of [¢'(-),q(-)] in B,.
As j(-) covers [¢'(-)] with respect to the projection B,—B,/SU(2), one concludes
that j(-) is an embedding. For z={x,}eC,,, let j(z)=(A(z), ?(z)), and let
x(2)= (42 %41, 0, 0). By construction &(z) (x(2)) =|®(2)|(x(2)) - o°.

With Definition C4.2, one can check that j(z) € £° as defined by Eq. (B4.1). Let

R(-) be the map of Lemma B4.2. Notice that |®(z)| is nonvanishing on the line
segment between x(z) and (2R(j(2)), 0, 0). Therefore, the homotopy lifting property
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of the fibration §*—S*—S? provides a continuous map, g(-): C, ,—SU(2) such
that for all ye C, ,,

91(2) (2()/|91(2)) (R(i(2)n)g; () =0>.

Finally, j(-) and c,(j(-)) are homotopic as maps from C, , into £°. Thus, the
homotopy lifting property provides a continuous g(-): C, ,—SU(2) such that for
all yeC, ,,

9(2) (2,(i(2))/12,(i(2))) (R(c,({(2))m)g ™ (z) = 0>
Therefore, J(-)=g(-)j(-) maps C, , continuously into B, and since J(-) covers
[¢'(+)], J(-) is an embedding.

Proof of Lemma C3.4. The Prasad-Sommerfield solution, ¢, of Eq. (C4.8) has the
property that dim(kerd, )=1. Let y € I'(S) be an L*(S) normalized generator for
cokerd, . The explicit form of y from [16] shows that for all xe R?

lp(x)| e ™. (C4.1)
For fixed te[t,, ©) and z={x,} € C, ,, define for each a e {1, ...,n},
Wo(2) (X) = Bin ) ()9, ' ()P (x — x,)g,(x) - (C4.2)

Here, g,(-)€® is as specified in statement (2) of Lemma C3.2. Also, f(x)(x)
= B(Ix — x4//0)-

Using Eq. (C4.1) and statement (2) of Lemma C3.2, one finds that there exists
{e[0, ), which is independent of te[t,,0) and zeC,, such that for each

o, fel{l,...,n},
Kwu(2), Yp(2)), = Fppl S L2712 (C4.3)

Thus for t>t(n)> (2, Span{y(2), ..., w,(2)} in L*(S) is n-dimensional.
With Definition C4.2, it is straightforward to check that for ¢>t(n), the
assignment of

Span{y(2), ..., wa(2)} CL*(S)

to ze C, , defines a continuous map of C, , into the Grassmanian of n-dimensional
subspaces of L*(S). The graph of this map isa C"-vector bundle, N;,—C, . Since
interchanging points x,, x; in (x4, ..., x,) € C, , induces the interchange of v, with

W, the bundle N, is C, , x C".

The vector bundle N ,,—:C,,,, of Lemma C3.4 is also defined by a map from C, ,
into the Grassmanian of n-dimensional subspaces of L*(S); in this case z is sent to
cokerdy,. A continuous section over C,, of Hom(N,, N,) is defined by the
L*(S)-orthogonal projection of Span{y,(z)},-, onto cokerd,, Denote this
section by I1. Then Lemma C3.4 follows from

Lemma C4.1. There exists t'(n) € [t,, o) such that for t>t'(n), L*(S) orthogonal
projection IT1: N,— N, is a bundle isomorphism.

Proof of Lemma C4.1. For t € [t(n), o) and z € C,, , let 8%, : L*(S)— H,,(S) denote
the adjoint of ,,,. Lemma C2.2 implies that 6%, defines a continuous Fredholm
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section of Hom(L?(S); J*H(S)) over C, ,. With Eq.(C4.3) and Statement (2) of
Lemma C3.2 and Lemma A4.1, one finds that

<57(z)1pa(z)a 57(z)lpa(z)>2 é C -t 12 s (C44)

for each € {1,...,n}. Again, { €[0, o0) is independent of t,ze C, , and «.

Consider now y € Span {y,(z)} with IT1(z)yp =0. Then the Fredholm alternative
implies that = 0,u for some ue H,(S).

Equation (C2.21) and statements (3) and (4) of Lemma C3.2 imply that H,,(S)
embeds in L*(S) and this embedding constant v is independent of ¢ € [#(n), o) and
zeC,,.

Therefore, since

57(z)51(z)u = 53‘(:4)1!’ )
Eq. (C4.4) implies that
105l 3 S ull 6~ 4w, - (C4.5)

But the Weitzenbock formula for d,,, [Egs. (C2.3) and (C2.5)] with Lemma A4.1
and Statement (4) of Lemma C3.4 imply that there exists t"(n) € [#(n), c0) such that
for t=t"(n) and zeC, ,,

1
sl 25l 2 5 Il (C46)

Now Egs. (C4.5) and (C4.6) imply that [y|2<20v™ 't *||yp||5. Hence, when
t>t'(n)=max(16{*v™*,¢"(n)), then kerI1(z)=0 for any ze C,, ,.

This section ends with the definition of the space V,. To present the definition,
introduce for each ae{l,...,n}, polar coordinates (r,0,,x,) on R3, where
r,=|x—x,]; the polar angle 0, is such that 6,=0 is the ray in R® with base x, and
direction parallel ton=(1, 0, 0) e R?; the angle y, is such that (6, = /2, y,=0)is the
ray on R? with base point x, and direction parallel to (0,1,0)e R*

For g>0and e {1,...,n}, let B,(x) denote the open ball in R? with center x,
and radius o. Let (o) (x) = B(|x —x,|/0), and let

o) () =TT (1=Fo() (x)) -

Let {a'}}_, be a fixed basis for su(2) satisfying [¢', 0/]= —2¢&'*g*,

Definition C4.2. The cohomological data for the configuration c(n,t, {x,}): Let
t,=8n.

(A) The cover {U;}:

For ae{l,...,n}, set U,=B, ().

For ae{l,...,n} and ee {—1,1}, set

Us,s = (B3 1nd@)\Biad @) N {x € R : (0,(x) —7/2) <m/4} .
For each of the 2" points (¢)=(gy, ...,&,) € x {—1,1},

Ugy={xeR3:for each ae{l,...,n},e,(0,(x)—/2) <n/4}\U By (0). (C4.7)
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(B) The transition functions {g;;}:
On U,NnU, 4, set

e, 170 = 0830, + sin30,( —siny,o' + cosy,0?).
On U,nU,, _,, set
Y, — 12 =S8In30,07 + cos30(cos y, +siny,c°).
OnU,,nU, _,,set
I@, - 1)@, 1) = expy,0°.
On U, .nUy,, set

J@,e) e = eXP(%(ﬁa —&)),07).
On U,ynU,,, set

Jerw= 11 exp (Hex—e20°)- (C4.8)
(C) The configuration {c;}:
For ae{l,...,n}, set ¢,=(A4,, @,) on U, to be
@,=4(cothr,—1/r,) (cos0,6> +sinf(cosy,a' +siny,a?)),
A, =31 —r,/sinhr,) (sin*6,dy,0° + (cos y,0* —siny,a')d0,
—(cos y,o! +siny,0?)sinf, cos0,dy,) . (C4.9)
Forae{l,...,n} and ee {—1,1}, set ¢, ,=(4,,,, P, ,) on U, to be
¢a,e = (1 - l/ra + ﬂ21nt(a) (COthra_ 1) 503 >
Aa, e = %{(8 —Cos Ba)ana:,’ + 182 lnt(a) eXp (%(1 - 8)%0:0-3)
-[(siny,0' —cos x,62)d0, +(cos x,0" +sin y,02)sinf,dy,] exp(—i(1 —e)y,0°)} .

For (e)e x {—1,1}, set ¢,y =(4,), P) on U, to be
" 1\1
D,y= <1 - a§1 W41m(°‘)r—a>§03 5

n 1
A(e)= ;1 Waind(@) (6, —co0s0,)dy, 3 a3, (C4.10)

CS. The Index and €2’s Group Structure

The map I*§ from Q(S?;S?) into Fred(LZ(S); L*(S)) sends Q, into
F_,CFred(LA(S), L*(S)), the space of Fredholm operators from LZ(S) to L*(S)
with index —n.

Denote the homotopy addition operation on Q(S?; $%) by # [see Eq.(C5.3)
below]. The homotopy equivalence of 2,(S%; $%) with Q, . ;(S%; S?) is induced by
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themapt:Q,—Q,,, whichsendsee Q,to t(e)=e, #eeQ,, ,, Where e, € Q, is the
identity map of S2. With ¢ one obtains the continuous map

*1%6:Q,~F_,_,. (C5.1)

Each F, is homotopic to every other [10]. The composition with a fixed
operator of index —1, le Fred(L3(S); L3(S)) [see Eq. (C5) below] induces the
homotopy equivalence between F _, and F _, _,. Thus one obtains the continuous
map

I%6(-)-1:Q,~F_,_,. (C5.2)

Lemma C3.6 is proved by showing that for each n, the two maps t*I*6 and
I*$ - lare homotopic as maps from Q,into F _,,_ ;. Thus, Lemma C3.6 follows from
Lemma C5.1, below, which makes this assertion.

To be more explicit, let {z'}2_ , be an orthonormal basis for su(2) e EndC? with
(t9)?= —%. Let (6, y) be coordinates on S? C su(2) with 6 € [0, 7] the azimuthal angle
and y €[0,2n] the equatorial angle. Require that =0 is the point 3.

Choose C* maps, g, €€, which have the following properties: % (6, 3)
=(0%,y), where d0*/d6=0; 0*(0)=20 when 0e[0,n/4] and 6" =n when
0 e[3n/8,n]. The map o_ has ¢*(0,y)=(0", 1) =(r—0"(n—0), ).

Let e=Q, be arbitrary and set (6,, x.)=e*(6, ). Also set (0, ,x, )=e*(07, ).
Let e, € Q2, be the identity map.

Now, define t(e) by setting

He)= {cos@“k‘c3 +sin@*(cos yt* +sin yz?) for 0e[0,n/2], (C53)

—cosf, 12 +sinb, (cosy, t* —siny, t?) for Oe[n/2,n].

The reader can check that t(e)e Q,,, if ee Q,.
To define the homotopy equivalence from F _, to F _, _,, introduce the pseudo-
differential operator I: I;(s)—I'(s) by setting

by =@~ 6y [(—= 4+ y]. (C5.4)

Here ¢ is defined by Eq. (C1.1).

The operator [ is an elliptic, Fredholm operator from L*(S) to L*(S) for the
following reasons: First, (—4+%)~! is, up to a constant, an isomorphism from
L2(S) to L$(S). Then, dy,,, is Fredholm of degree —1 from L3(S) to L}(S) (cf. the
arguments in Sects. 6, 7 of [9] or [23] plus [25]). Similarly, the operator @ — 73 is an
isomorphism from LZ(S) to LX(S) since

@—1)*(F—1%)=—A+1. (C5.5)

Lemma C5.1. For each ne Z, the map t*I*6: Q,—F _,_, as defined by Egs. (C1.2)
and (C5.3) and the map 1*6-1:Q,—F _,_, as defined by Egs. (C1.2) and (C5.4) are
homotopic.

Proof of Lemma C5.1. If ee Q(S?; §?), then for all ke (0,1,2,...),
10" A(I(e)| S z(e, k) (1 +|x) ¥ 1.
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This implies that multiplication by A(I(e)) defines an operator from L7, ,(S) to
L3(S) which is compact. As a consequence, t*I* is homotopic to the map which
sends e e Q(S%; 5?) to the Fredholm operator

fle)=d+1—p)t(e). (C5.6)
Also, I*5-1is homotopic to the map which sends ¢ € Q(S; S?) to
)=@+(1—pe) @—) @+ —Pe) (—4+H". (C5.7)

The identity map of $? is homotopic to the maps o, : S*—S? and it is also
homotopic to the reflection v:S*—S? which sends (6,y) to (n—0, —y). By
composing with these homotopies, i(-) is homotoped to [, : Q,—~F_,_,, which
sends e to l,(e) (—A4+%) !, where

Le)=(@+(1—Pp-e- 0 )(@—73)(@+(1—Pley-0.). (C5.8)
To examine ,(e), let (r, 0, y) be spherical coordinates on IR®. For 6 [0, 57/8],
Le=[~p>(@—)+(—=4+P]@+(1—-p) te)). (C5.9)

For 6e[3n/8,x],
LE=@+A =P ue)(=>@—)(B)+(=4+%). (Cs5.10)
One can readily check that Egs. (C5.9) and (C5.10) imply that
L(e)=(+(1—P)t(e) (— A4 +3) +Re), (C5.11)
where R(e) : L2(S)— L*(S) is compact. This implies that [, (- ) is homotopic to #( - ).
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