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Abstract. The configuration space for the SU(2)-Yang-Mills-Higgs equations
on R 3 is shown to be homotopic to the space of smooth maps from S2 to S2.
This configuration space indexes a family of twisted Dirac operators. The
Dirac family is used to prove that the configuration space does not retract onto
any subspace on which the SU(2)-Yang-Mills-Higgs functional is bounded.

Al. Introduction

In [1], the author announced a theorem which stated that the SU(2) Yang-Mills
equations on 1R3 in the Prasad Sommerfield limit have an infinite number of non-
minimal (and gauge inequivalent) solutions in each path component of the
configuration space (monopole sector). It was also asserted that solutions exist in
each path component with arbitrarily large action. These assertions are proved in
a forthcoming article [2] with techniques from the calculus of variations.

The calculus of variations can be used to find solutions to a differential
equation if that equation is the Euler-Lagrange variational equation for a
functional / on a topological space M. If the pair (/, M) are "nice" in a suitable
sense, then certain topological properties of M imply the existence of solutions to
the differential equation. To make a concrete statement, one must study the
functional / and the topology of the space M.

The purpose of this article is to explore those topological properties of the
Yang-Mills-Higgs configuration space which are relevant for the proof of the
existence theorem in [1],

This exploration leads, among other places, to the topology of the family of
Dirac operators indexed by this configuration space; here the characteristic classes
of the family of Dirac operators are of specific interest. As outlined in Sect. 2, these
cohomology classes lead to a proof that there exist solutions in each path
component of the configuration space with arbitrarily large action.

The work here is based upon the preliminary topological investigations in
Sect. 3 of [3]. Most of the terminology and notation in the present article is the
same as in [3].

For the uninitiated, the SU(2) Yang-Mills-Higgs equations are partial
differential equations on R 3 for an unknown, c — (A, Φ). Here A is a connection on
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the principle SU(2) bundle P = R 3 x SU(2) over R 3 ; and Φ is a section of the
associated vector bundle AdP = R 3 x su(2), the bundle with fibre the Lie algebra of
SU(2), su(2).

The Yang-Mills-Higgs equations are

DAΦ] = 09 (Al.la)

DA*DAΦ = 0, (Al.lb)

with the boundary condition that lim \Φ\(x)= 1.

In Eq. (Al.l), FA is the curvature of A; DA is the exterior covariant derivative on
τlT*(χ)AdP; and [ , ] is the natural graded bracket on AT*<g>s>u(2). This is
defined for AdP-valued p and q forms ω, η to be [ω, η] = ω A η — ( - ί)pqη A ω. The *
in Eq. (1.1) is the Hodge star on AT* from the Euclidean metric on R3. Finally, the
norm | | on AT*® AdP is that induced from the Euclidean metric on Γ* and the
following Ad-invariant metric on su(2): \σ\2= — 2tracec2(σ2).

Equation (Al.l) is the variational equation of the action functional

91(4, Φ) = i J {\FA\
2 + \DAΦ\2}d3x. (A1.2)

R3

One is to consider 21 as a functional on the set

£ - {smooth c = (A, Φ): 21(4, Φ) < oo and (1 - \Φ\) e L6(R3)}. (A1.3)

The set (£ is the configuration space, and it is topologized as follows: Let θ
denote the flat product connection on R 3 x.SU(2). The topology on (£ is the

topology that is induced by the map of £ into x C°°(R3) x [0, oo), which sends

(A,Φ) to (A-Θ,Φ,M(A,Φ)).
Acting on £ is the topological group(δ = AutP^C°°(R3;SU(2)). This group

acts continuously on £ and it leaves 91 invariant.
The subgroup &0 = {ge(δ:g(x = 0)=^ 1} acts freely on (L The functional 21

descends to a continuous functional on 95 = (£/(50 if 93 is given the quotient
topology. [As a matter of notation, the orbit of (A, Φ) e (£ under @0 will be denoted
by (A, Φ) also.]

There is an action of SU(2) on 93 which leaves 21 invariant. This SU(2) action
can be partially eliminated by constructing a fibration of 2$ over S2 with a fiber 93.
The group SU(2) acts on S2 via rotations and the fibration n:93->S2, is
equivariant. Therefore, no generality is lost by restricting 21 to %5 = n~1 (north
pole).

This fibration is constructed in Sect. B5. Morally, h sends (A, Φ) e 93 to the unit
vector Φ/\Φ\ in the fibre of AdP at a suitably chosen point x(A, Φ) e R3. In practice,
the actual construction is more complicated.

As suggested in [3], 93 is intimately related to the space of smooth maps from
S2 to S2, Maps(S2;S2). Evaluation fibers Maps(S2;S2) over S2 with fiber
Ω(S2;S2), the space of base point preserving maps. The construction of 95 suggests
a relationship with Ω(S2;S2).

The first half of this article explores these relationships; there the following
theorem is proved:
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Theorem Al.l. There exists an inclusion of maps Maps(S2; S2) into 23 which induces
the following commutative diagram where the vertical arrows are homotopy
equivalences:

23 > 23^

S2

/
Ω(S2;S2) >Maps(S2;S2)

The path components of Ω(S2 S2) are the spaces {Ωn(S2 S2)}neZ, which are the
spaces of maps of fixed degree. Correspondingly, 23 = 0 ®« (The space 23n is the
n-monopole sector.) neZ

It is known that if c e 23M, then

9I(c)^4φ | . (A1.4)

There is equality for ce(ίn if and only if c = (Λ,Φ) satisfies the BogomoΓnyi
equation [4]

Solutions to the BogomoΓnyi equations exist in each 23W [5, Chap. IV; 6].
Configurations which satisfy Eq. (1.5) are the minima of 91 on 23. The newly

discovered critical points of 21, the solutions to Eq. (Al.l) that were announced in
[1], are all non-minimal and unstable.

They are found with a convergent min-max theory. The min-max strategy is as
follows [7]: Let M be a smooth manifold. A family g of compact subsets of M is
said to be homotopy invariant if it is true that for any continuous homotopy
φ: [0,1] x M-^M for which φ(0, ) is the identity, the condition that F e g implies
that # 1 , F ) e g .

For example, let E\M\Έ) denote the Ith cohomology group of M with
coefficients in the integers, TL. Let [z] eHι(M;Z\ and let

5 = $([>]) = {FQM: The restriction map, i* : Hι(M;Z)->Hι(F;Έ)

does not annihilate [z]} . (A1.6)

The family % above is homotopy invariant.
Let 91:23-•[(), oo) be as in Eq. (A1.2). To a homotopy invariant family g, assign

the number

2ί δ infsup9I(c). (A1.7)
Fe$ ceF

A main result in [1] is the theorem that any 9I5 defined by Eq. (A1.7) is a critical
value of 91. To establish this strong result, it is necessary to understand
compactness on CL

The topology of 23M influences 91 on a more subtle level where no compactness
conditions are required. It influences the a priori distribution in [0, oo) of the set

CritM = {9I5: g is a homotopy invariant family of compact subsets of 23J .

(A1.8)
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The second half of this article investigates CritnC[0, oo) to prove

Theorem A1.2. For each neZ, define Critw C [4π|n|, oo) for the functional 31 on %n

by Eq. (A1.8). Then the set Critn is unbounded.

Theorem A1.2 is proved by studying a family of Dirac operators, indexed by
the configurations in $„. It is an application of the Atiyah-Singer Index Theorem
for families [8]. A non-technical outline of the proof is given in the next section.

A2. Outline of the Proofs

The purpose of including this section in the article is to provide a non-technical
outline of the proofs of Theorems A 1.1 and A 1.2 along with an outline of the
contents of the article. The following flow chart should prove helpful.

Al. Introduction
I

A2. Outline of the Proofs

i
A3. Notation and Conventions

i
A4. Kato's Inequality

BL Homotopy Equivalence of
andM<ιps(S2;S2)

B2. Auxiliary Topologies on 33 and

-pB3. Continuous Maps from &

B4. The Retraction of £

1
>B5. The SU(2) Action on 95

ϊ
B6. Hίlbert Spaces

>BΊ. The Local Structure

Cl. The Distribution of
Critical Values

ϊ
C2. Operators Indexed by 53

I
C3. Topology of the Dirac Family

ϊ
C4. The Dirac Operator for

Multi-Monopoles

I
C5. The Index and Ω's

Group Structure

Theorem Al.l follows from Proposition Bl.l and B5.1 and its proof comprises
most of Sects. B1-B5. The plan is to construct an embedding /: Maps(S2 S2)->93
with the property that J(Maps(S2 S2)) is a deformation retract of 95. The map I is
defined in Sect. Bl and essentially it does the following: Identify the image S2 with
the unit sphere in su(2)^IRA Then a map e e Maps(S2; S2) defines an asymptotic
(large |x| on R3) model for Φ e Γ(AdP). There is a way to extend e smoothly into
R 3 to define a global Φ(e)eΓ(AdP); extend radially but bump to zero near the
origin. A convenient A(e) exists so that I(e) = (A(e), Φ(e)) e 33.

The actual retraction of 93 onto /(Maps) is complicated by the fact that a given
(A, Φ)e93 may not be sufficiently docile; i.e. Φ may not have a limit as |x|->αo
which defines a smooth map from the S2 "at infinity" in R 3 to the unit S2 in su(2).
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This problem can be circumvented by solving Eq. (A 1.1b) outside the unit ball
for a new Φ2{A, Φ). Because Φ2(A, Φ) satisfies an elliptic differential equation, a
priori estimates are available. These a priori estimates follow from Kato's
inequality and the usual Sobolev inequalities on R 3. Section A4 provides the
inequalities in a convenient form. All of the a priori estimates in this paper are
applications of the ideas in Sect. A4.

The assignment of (A, Φ) to (A, Φ2{A, Φ)) is shown in Sect. B3 to define a
continuous map from 23n to 23n. This is the crucial result, and with it, the
deformation retract can be readily constructed using the natural affϊne structure of
G. The construction is presented in Sect. B4.

The fibration S->93-JL>S2 is constructed in Sect. B5. The map n is not
precisely the evaluation of Φ/\Φ\; rather it is the evaluation of Φ2(A, Φ)/\Φ2(A, Φ)\
at a suitably chosen point x(i,Φ)e]R3. The retraction of 25 onto Ω(S2;S2) is
constructed in Sect. B5, where the proof of Theorem Al.l is completed.

When studying the functional U on 23, one must deal with families of linear
differential operators which are indexed by the configurations in 23. Examples were
studied in [9]. A convenient formalism is obtained by considering the assignment
of the operator to a configuration in 23 as defining a homomorphism between two
Hubert space vector bundles over 23.

Hubert space vector bundles over 95 which are modeled after Sobolev spaces of
sections over R 3 of R 3 x (finite dimensional vector space) are introduced in
Sect. B6.

A part of this vector bundle construction requires a local embedding theorem
(Proposition B6.1) which provides an injection of open neighborhoods of© into a
space of sections of (T*(χ)AdP)©AdP. This local embedding result is proved in
Sect. B7.

Linear differential operators which are indexed by the configurations in 93 arise
in the proof of Theorem A1.2 in the following way: To establish, via min-max
arguments, that the set of critical values of 91 on 23 „ is unbounded, requires a priori
knowledge of the relative homotopy or homology of the pair

for every /ce(0, oo). In particular, for every such τc,25n must not retract onto
(9ί ~ 1([4π|n|, 4π\n\ + K)). Here it is sufficient that there should exist for every K > 0,
a homotopy invariant family of subsets of 25Π, %(n, K) such that 2%(n,κ) > 4π|n| + K.

Such families g(n, K) are obtained via the natural stratification of %n which
comes from a family of twisted Dirac operators. The Dirac operator in question is
presented in Sect. Cl.

The assignment of c e 23n to the Dirac operator defines a map δ from 23Π into the
space of Fredholm operators. This map is proved continuous in Sect. C2.

The space of Fredholm operators is homotopic to Έ x BU, where BU is the
classifying space for the infinite unitary group, U = E/(oo). Asjiescribed in the work
of Koschorke [10] and also in [11], the map δ pulls back to 25n the universal Chern
classes on BU. These pulled back classes are represented by elements in i7*(23n Έ).

The strategy for proving Theorem A1.2 is to show that for any neΈ and K < oo,
there exists a class ωeH*(BU\Έ) such that for (5*ωeF*(SΠ;Z), the homotopy
invariant family S((5*co) of Eq. (A1.6) satisfies 9I^*ω)>4π|n| + κ:.
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This strategy is effected by adapting to the present situation the ideas of
Koschorke as applied by Atiyah and Jones [12] to a family of twisted Dirac
operators over S4.

Koschorke defines for p, g ̂  0, characteristic classes χp'q eH2pq(BU; Έ) with the
following property: δ*χp-q = χp>q(δ) is zero in H2pq(%n;Z) if for every ceS n , the
Dirac operator in question has kernel dimension less than p or cokernel dimension
less than q. (χp'q is a specific determinant of Chern classes.)

By mimicking Atiyah and Jones, it is demonstrated in Sects. C2, C3 that there
are arbitrarily large p, q with the property that χp'q(δ)φ0 in i/*(23z;Z), provided
that / is sufficiently large. This is accomplished by restricting the Dirac operator to
a finite dimensional subspace in 33j which is homeomorphic to the configuration
space of / unordered points in R3, Cx. This configuration space parametrizes /
fundamental monopoles far apart. The restriction of χp'q(δ) to H2pq(Cχ\Έ) is a
characteristic class of a natural C*-vector bundle over Ch one whose characteristic
class were computed by Atiyah and Jones in [12].

The spaces ©M, neZ are mutually homo topic; this corresponds to the well
known fact that the mapping spaces Ωn(S2 S2), n e Έ are mutually homotopic. In
Sect. C5 it is demonstrated that the map which induces the homotopy between
S n and © π + 1 has the property that the following diagram is homotopy
commutative:

BU.

This implies that for each neZ, there are nonzero χp'q(δ) in H2pq0Bn;Έ) for
arbitrarily large p and q.

To prove Theorem A1.2, it remains to prove that ^ί^*, «(«$)) increases as p, q
increase. The strategy here is to use Koschorke's assertion that a subset F of ©n is
in %{χp'q{δ)) only if there exists ceF such that the Dirac operator indexed by c has
kernel dimension p or greater. Now, the Weitzenbock formula for the Dirac
operator (see Sect. C2) suggests that the curvatures (FA, DAΦ) must be large if p is
large; the square of the Dirac operator is strictly positive save for an endomor-
phism which is linear in (FA,DAΦ). This suggestion is rigorously established
in Sect. C2. The full proof of Theorem A1.2 is exhibited in Sects. C1-C5.

A3. Notation and Conventions

Because the topology of an infinite dimensional function space is the subject of this
article, it is important at the outset to introduce the basic topologies on the spaces
of smooth functions on R3. The starting point is C°°(1R3); the Frechet space of
infinitely differentiable functions on IRA A neighborhood SR(/) of/in C°°(R3) is
indexed by a compact set K c R 3 and a sequence of positive numbers {εj>0}JLo,

9l(f) = {g e C»(R3

Here || \\Ck;K denotes the usual C^-norm on K.
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Denote by CJ)(IR3)cCC0(]R3) the subspace of compactly supported functions.
Sobolov spaces L£(R3) for p^O and fc^ 1 are defined in the usual way [13];

fe L£(R3) if /is measurable and its derivatives through order k are in ZΛ The space
U is a Banach space with norm ||/Hp = [Jd 3 x|/ | p ] 1 / p and the space L£, fc>0 is a
Banach space with norm

11/11**=

The inner sum, above, is over all multi-indices (/) = 0i> •••>*/)G x {1,2,3}.

If Ω c R 3 is a domain, the L£(Ώ) norm is denoted by || \\Ptk;Ω. For example,

The space L{. l0C(R3) is defined for p ̂  2 and fe ̂  0 to have as its underlying point
set

{Measurable functions /:/eL£(Ω) for any bounded domain Ώ c R 3 } .

L£.loc(R3) is topologized as a Frechet space so that an open neighborhood 9l(f) of
/eL£ ; l o c(R3) is indexed by a bounded domain ΩcR 3 and a number ε>0:

Finally, it is necessary to introduce the space C0' 1 / 2(R3). This is a Banach space
which is the completion of the set of C00 functions on R 3 with compact support in
the norm

\x-y\112 '

Functions in C°'1/2(R3) decay uniformly to zero as |x|-»oo.
Now let Fbe a finite dimensional Hubert space and let E = R 3 x Fbe a vector

bundle. The symbol Γ(E) denotes the space of smooth sections of F; it is
topologized via the projection E-+V which identifies Γ(E) with

C c 0 (R 3 ;F)-[C 0 0 (R 3 ) ] d i m F .

Define the spaces Γ0(E), Uk{E), and Lf;loc(E) similarly; the IP norms are defined
with the given fibre metric ( , ) on E (cf. [13]).

A useful example is T * ~ R 3 x R 3 , the cotangent bundle of R 3 with its
Euclidean metric.

Let M be a smooth manifold with an isometric embedding M Q RN for some
JV^ 1; for example, SU(2)-S 3cR 4. Denote by C°°(R3;M) the space of smooth
maps from R 3 to M. It is topologized by its inclusion in C°°(R3 R*) ~ x C°°(R3).
See [13] for example.
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Let I I be a metric on £, and let α(£) denote the space of smooth metric
compatible connections on £. The fixed projection £-• F defines a fiducial product
connection θ on £, and α(£) = 0 + Γ(End£® T*). The connection spaces α£;loc(£)
for p ̂  1 and k ̂  0 are defined similarly.

The summary of the basic topological spaces is now complete; the remainder of
this section introduces some specific notation. To begin, it is convenient to fix an
origin 0 e R 3 and Cartesian coordinates {xl}f= x that are centered at 0. With these
coordinates, |x| = ( V

The symbol d denotes the exterior derivative d:Γ(ΛT*)-+Γ(ΛT*). The

Laplacian, A, is always Σ ^ ^ ^ - ^
/ OX OX1

If £->R3 is a vector bundle with connection A, then VA\ Γ(£)->Γ(£®T*)
denotes the covariant derivative, while DA: Γ(£®ΛT*)->Γ(Έ(x)ΛT*) denotes the
covariant exterior derivative.

If c = (A9Φ)e<ε, then A(c) = A and Φ(c) = Φ. Also F(c) = F^ and

It is convenient to introduce a fixed C00 bump function β. This function satisfies
) = j8(|x|)and

β(t)=l if 0 ^ ί ^ l / 2 ,

i8(ί) = 0 if

^ ^ 8 for all ίe[0,oo).

If ΓG(0, OO), then βr(x) = β(x/r). This definition is extended to [0, oo] by setting

Finally, there is the convention for constants. In this article, the symbols ζ and z
are numbers in (0, oo) whose precise value may change from line to line. This
convention alleviates the necessity of indexing constants in long derivations.

A4. Kato's Inequality

The proofs in the future sections rely on function space norm inequalities which are
covariant versions of standard Sobolev inequalities on IRA To set up the
background, let £->R3 be a vector bundle, and let | | be a nondegenerate metric
on E.

The idea here is to obtain LP estimates for ψ eL2

ί;loc(E) knowing only that
^4eαf;loc(£) and VAψeL2(E). These estimates all follow from

Kato's Inequality. Let £ - > R 3 be a vector bundle with smooth fiber metric <•,•>. Let

Aeal;loc(E). Let ψeL\.loc(E). Then almost everywhere, \VAψ\^\d\ψ\\.

For a proof, cf. [5, Chap. IV].
The first observation stemming from Kato's inequality is

Lemma A4.1. Let A e αf.loc(£) and let δ e (— 1, oo). Suppose that ψ e Li ; loc(£) and
(1 + M)* 5 ^^ G L2(£(x) T*). Then there exists a constant c e [0, oo) such that for any
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re [0,oo),

1 d*x{\ + \x\)2δ\VAψ\2^z J d3x(l + \x\)2δ-2(c-\ψ\)2, (A4.1)

\x\>r \x\>r

and

(A4.2)

Further, the constant z, above, is positive and it is independent of Ae oc2

;loc(E), the
metric on E and E itself. The constant z is only a function of δ.

Before proving Lemma A4.1, it is useful to introduce the Banach spaces Kδ,
indexed by δ e(— 1, oo). The space Kδ is the completion of Cg^R3) in the norm
IMI = 11(1 + I^D^IL The space Kδ, δ e (— 1, oo) has the property that there exists
z{δ) > 0 such that for any v e Kδ and r e [0, oo),

\x\>r \x\>r

and

| |ϋ | |^z(5)| |(l + |x|)ai;| |6. (A4.3)

The first inequality above is proved by repeating the proof of Lemma 5.2 of [14]
for (5φO. The second inequality in Eq. (A4.3) follows from a classical Sobolev
inequality [15] which says that if ueK° then ||dw||2^z(0)||w||6. To apply this
Sobolev inequality when δ φ θ , one must use the first inequality in Eq. (A4.3) with
the following identity on L 2

; l o c functions: Almost everywhere,

d{\ + \x\Yf= (1 + \x\Ydf+ δ(l + \x\f- ιfά\x\.

Proof of Lemma A4.1. By using Kato's inequality, one sees that it is sufficient to
prove the lemma with ψ replaced by a function, feL2

1;l0C(ΊR.3) for which
(1 -h \x\)δdfe L2. Due to the remarks concerning Kδ, it is sufficient to prove that any
function/e L\.loc with (1 + \x\fdfe L2 has the property that/-constant e Kδ. Such
is the case, and the fact is proved by repeating Lemma 4.12 of [14] with δ Φ 0. The
details are left to the reader.

A second useful observation which stems ultimately from Kato's inequality is a
"covariant" version of the Sobolev embedding of Lf(R 3)->C°' 1 / 2(R 3) (cf. [15]).

Lemma A4.2. Let A e αf(£). Let ψ eL2

1;loc(E) and suppose that

VAψ E L\E® T*) c - \ψ\ s L 2 (R 3 )

for some ce[0 , oo); and VA(VAψ) L2(E®T*®T*). Then ψeL2

2.loc(E),
c - |φ| 6 C 0 ' 1 / 2 ( R 3 ) and the norm ofc-\ψ\eC°> 1 / 2 (R 3 ) depends onAe a2

u l o c (£), the
metric on E, and E only through the numbers \\VA(VA\p)\\2 and \\VAψ\\2

Proof of Lemma A4.2. Due to Lemma A4.1, one may conclude that VAψ e LP for
pe[2,6]. In particular, VχψeL4. By writing VAψ = dψ + ρ(A)9 where ρ(A) is the
matrix 1-form representing A, one can conclude with Holder's inequality that
dψ E Lfoc and therefore, that ψ e C°(£). (This is a Sobolev inequality, [15].) Then,
returning to the expression VA(VAψ) and writing VA = d + ρ(A), one concludes that
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ψ e L | ; l o c (£) . Now, by Kato's inequality, \dψ\ e L6, and, therefore, c — \ψ\ e L^
From this it follows that c-\ψ\eC°'1/2(R3) [15].

These Sobolev-type inequalities also have certain continuity aspects which are
illustrated by the following lemma.

Lemma A4.3. Let {At} e α 2

; l o c ( £ ) converge to A in αf ; l o c(£). Let {tpj eL 2

1 ; l o c (£).
Suppose that {ψi} converges strongly in L2

OC to some ψeL2

0C. Assume that
{^AiΨii e ^ Λ where it converges weakly to GeL2; and that {\\ VAiψi\\2} converges to
|| G\\2. Then ψ e L 2. l o c ? where it is the strong limit of {t/\ }. Also, VAψ e L2 and it is the
strong L2 limit of {VAiψi}. Further, there are constants {c jc[θ, oo) with limit
c G [0, oo) such that {ct — \ψi\} converges in K°toc — \ψ\, therefore to c — \ψ\ in L 6 as
well.

Lemma A4.4. Make the same assumptions as in Lemma A4.3 and assume addition-
ally that {ψi} G Ll iocj that {VA.{VA\p^} e L2, where it converges weakly to G'eL2, but
that {|| ^ . ( F ^ ^ I D converges to \\G/\\2'Let ψ and c be as in Lemma A4.3. Then {ψ^
converges strongly in L?>;loc to ψ; VA(VAψ)eL2 and it is the strong limit, there, of
{VΛ(VA.ψϊ)}. Further, {ct — \ψι\} converges strongly in Li(R 3 ) to {c — \ψ\}; hence in
C°' 1 / 2 (R 3 ) also.

The proof of Lemma A4.3 will be given shortly. The proof of Lemma A4.4 is
along the same lines as the proof of Lemma A4.3 and so it is left to the reader. For
the proof of Lemma A4.3 one requires the following facts:

Lemma A4.5. Let {/JCL2 be a sequence which converges weakly to feL2 and is
such that {||/ill2} converges to \\f\\. Then {f} converges strongly to f.

Lemma A4.6. Let {f} cL2bea sequence which converges strongly in L2

OC and has the
property that given ε > 0, there exists r < 00 such that for all i, J \f\2 < ε. Then {f}
converges strongly in L2. ' * l > r

Proof of Lemmas A4.4 and A4.5. For Lemma A4.4, let / denote the weak limit of
{/j}. The assertion then follows from the identity

For Lemma A4.5, the argument is a simple "ε/3" proof that is left to the reader.

Proof of Lemma A4.3. Lemma A4.5 insures that {V^ψ^ converges strongly to G.
Using a test section, ηeFc{E®T*), one finds that K77, ̂ 4^)2} converges to
(VAη,ψ}2 since {ipj converges strongly to ψ in L2

0C, and {^J converges to A in
L 2

; l o c . But this means that \peL\.λoc, VAψGL2, and G = VAψ. In fact, since

(η, d(ψ -ψi)y2 = (η, VAψ - VAίψi}2 - <j\, (ρ(A) - ρ(Aί))ψi}2 - (η, ρ(A) (ψ - φ i )> 2 ,

converges weakly in L 2 . l o c to ψ; hence strongly to ψ in Lfoc. Next, because

one obtains strong L 2

; l o c convergence of {ipj to ψ. Lemmas A4.1 and A4.6 imply
that there exist constants {c jep) , 00) such that {(1 + M)~ 1( ci- | |/ ;ΐl) converges
strongly in L2. As {φj converges strongly to ψ in L2

0C, the sequence {ct } converges
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to some c e [ 0 , oo) and (1 -h|̂ c|)~" 1(c — |φ|) is the limit in L2 of {ct- — Iv̂ il}- Then,
{d(Ci — \ψi\)} converges strongly in L2 to d(c — \ψ\) because of the L 2

; I o c convergence
of {ψi} to ψ and because of Lemmas A4.1 and A4.6.

Bl. The Homotopy Equivalence of (£ and Maps(S2;S2)

The exploration of 95 begins here. Since 93 is obtained as a quotient of (£, the first
consideration is to the topology of (£. The global section of P = R 3 x SU(2) which
sends x e R 3 to (x, l)elR3 xSU(2) identifies (£ with a subset of F(AdP(χ)T*)
x Γ(AdP). This identification will be implicity made throughout this article. In

particular, the space (£ is topologized via the map from (£ into Γ(Ad P®T*)
x Γ(AdP) x [0, oo) which sends c = (A, Φ) to (A, Φ, 2ί(c)).

The fixed section of P, above, identifies the gauge group © = AutP with
C ^ R 3 SU(2)), and this is how (5 is to be topologized. The group (5 acts on (£ by
sending (#, c = (A, Φ)) to gc = (gAg'1 + gdg'1, gΦg'1). This action is continuous
(see Sect. 3 of [3]).

The subgroup, ®0 = {ge(5:g(Q)= 1} acts freely on (L Let 33 = (£/©0 be the
quotient with the quotient topology. The projection, π: (£->93 defines a principal
(S0-bundle which is isomorphic to 95 x (50, since ©0 is contractible [3, Sect. 3].
Thus © and (£ are homotopically the same. In fact, 33 embeds in (£ as [3, Sect. 3]

and (£ retracts onto 93 by contracting ©0 to 1.
The relationship between 23 and Maps(S2; S2) is due to the fact that the unit

sphere in su(2)~R3 is S2. The explicit relationship is exhibited by considering
Maps(S2; S2) as a subset of Maps(S2; su(2)) by choosing an identification of δu(2)
with R3. Now introduce the map /: M a p s ^ 2 ; ^ 2 ) - ^ - ^ which sends
eeMaps(S2;S2) to

I(e) = (-(1 -β(\x\)) [e(x/\x\), de(x/\x\)l (1 -jff(|x|))β(x/|x|)). (Bl.l)

Here, Maps(S2 S2) is identified with Maps({x e R 3 : \x\ = 1} {σ e su(2): |σ| = 1}).
The function β(£)eC°°(IR) is a smooth, non-negative bump function which is
identically one if t ̂ \ and identically zero if t ^f.

Proposition Bl.l. The map I of Eq. (Bl.l) induces a homotopy equivalence between
93 and Maps(S2;S2). In fact, /(Maps) is a strong deformation retract o/

This proposition is a corollary to Proposition B2.1, still to come.
The path components of Maps(S2; S2) are the spaces Mapsn(S2; S2), labeled

by neZ. These are the maps of degree n. Correspondingly, (£ = (J (£„ and

23 = U »Λ, where *H = <£J(δ0.

Groissier [16] showed that if (A, Φ) e (£„, then
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Proposition Bl.l shows that both 95 and (E are globally nice. Because these
spaces are defined implicitly, it is worthwhile to remark that they are not locally
perverse either.

Proposition B1.2. Both 23 and (E are paracompact.

Proof of Proposition B1.2. The space Γ(T*) x su(2) x Γ(AdP) is paracompact as is
[0, oo). Due to Lemma A4.1, both 93 and (E are closed subsets of Γ(T*) x su(2)
x Γ(AdP) x [0, oo). This implies that they also must be paracompact. For

example, if {Ua} is an open cover of (E, then there exist, by definition, open sets { U^}
in Γ(T*)xsu(2)xΓ(AdP)x [0, oo), such that for each α, Ua=U'an<ί. Now
complete {U'a} to an open cover of Γ(T*) x su(2) x Γ(AdP) x [0, oo) by adding the
complement of (E. Take a locally finite subcover. The restriction of this finite
subcover to (E provides a locally finite refinement of the original cover, {Ua}.

A final remark for this section is that there exists yet a residual SU(2) subgroup
of (δ which acts on (E via the embedding of SU(2) in (5 as the constant maps from
R 3 to SU(2). The group SU(2) also acts on Maps(S 2; S2) by rotating the image S2.
These two SU(2) actions are equivariant with respect to the sequence

The action of SU(2) on 95 is not free, there are fixed points in the path
component 93O of© which contains the image under I of the degree zero maps from
S2 to S2. This SU(2) action is discussed further in Sect. B5.

B2. Auxiliary Topologies on <£ and S

It is convenient while proving the convergence of min-max sequences for 21 on (E to
introduce additional topologies for (E. Consider the topology on (E that is induced
by the functional 2Ϊ*5, δ e [0,^) given by

( , ) ί l( \ \ ) \ Λ \
K.3

The domain of SΓ5 is the set (ίδ = {ce(ί:^lδ(c)<oo}. As 2Γ5 is ©-invariant,
33 ̂  = (Eδ/©o i s w e H defined for each δ e [0, ̂ ). The set (E0 is given the induced topol-
ogy from the map of (E*5 into (E x [0, oo), which sends c to (c, 2Iό(c)). This also
topologizes 95δ.

The first observation is that for every neZ, (Ef = (E5n(Eπ is non-empty. This is
because / factors through (E*5 for δ e [0, \).

The relationship between ϋδ and (E is provided by the next two propositions.
They say that (E*5 lies in (E in a nice way.

Proposition B2.1. There exist continuous maps c2: (E->(E, e: (E->Maps(S2; iS2) and
j : (E-^© 0 with the following properties:

(1) On M a p s ( S 2 ; 5 2 ) , c 2 o / = /, eol = identityandjol=\e($0

(2) The map which assigns (ί, c) e [0,1) x K* to

Γc-2ί[c-c2(c)], for ί e [0, i ]
U ; W ) ( 2 l ) [ ( ) ( ) / ( g ( ) ) ] , for ί 6 [ i , l ] ;

defines a continuous map from [0,1] x (£δ to (E5 for any δ e [0,
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Proposition B2.2. There exists a continuous map τ: [0,1] x [0,1] x (£-•(!£ with the
following properties: (1) τ maps [0,1] x [0,1] x (Γ5 continuously into (ίδ for each
δe[0,^). (2) For any εe(0,1] and ce£, τ(ε,0,c) = c and τ(ε, l,c)e(ίδ /or
5 G [0, i). /n /αcί, with (A, Φ) = τ(ε, 1, c),

(3) For every (ε,ί,c)G[0,1] x [0,1] x ί ,

and /or euerj; (ί, c) G [0,1] x (£, τ(0, f, c) = c.

The proofs of these two propositions are deferred to Sect. B4. There, the map τ
is exhibited in terms of c2, e, and j from Proposition B2.1.

Proof of Proposition Bl.l, given Proposition B2.1: Proposition B2.1 implies that
for δ E [0,1), each &δ deforms onto /(Maps). Indeed, if c e (£, then r(l, c) isj{c)I(e(c))9

with j(c) G ©0. Now, (50 retracts onto 1 G ©O, and let G: [0,1] x ©0 be such a
retraction. The deformation retract of (£δ onto /(Maps) is provided by

fr(2ί,c), for te[0, i ] ;

lG(ί,j(c))/(e(c)) for ί G f t l ] .

The reader should note that Proposition B2.2 provides a deformation retract
of (£ onto GΛ In fact, it asserts that for <5 e [0,^), Kό is dense in (£ and, as far as 51 is
concerned, QL*5 approximates Ct homotopically to any desired accuracy.

B3. Continuous Maps from (£

The primary purpose of this section is to provide a priori estimates and continuity
properties of certain maps from (£. The first observation is

Proposition B3.1. Let δ e [0,χ). The map from &δ to

L2ίAdP®ίΛ T2@T*\\ xL6(R3)

which assigns to c = (A, Φ), the triple ((1 + \x\)δFA, VAΦ, 1 — \Φ\) is continuous.

In later sections, it will be convenient to solve the "Φ" equation, to varying
degrees. By doing this, one obtains maps from (£ into £ whose properties are the
next subject.

For each c = (A,Φ)ed, Proposition4.8 of [3] establishes the existence and
uniqueness of co(c) = (A, Φ0(c)) e (£ with the property that

and Φ0(c) — Φe L6(AdP). The proof of the convergence of min-max uses the map

By mimicking the proof of Proposition 4.8 of [3], one obtains a unique
c1(c) = (A9 Φi(c)) with the properties

rϊΦiic)- [Φ, [Φ, Φi(c)]] =0, (B3.2)
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and Φ^c) — ΦeL 6 (AdP). This Φ^c) is obtained by minimizing the functional

over {η e Γ(AdP): || VAη\\2

2+ ||[Φ, η\\\2

2 < oo and \η\ eL 6 (R 3 )} . The results in Sect. 7
require c^c).

Similar arguments also establish the existence of a unique Φ$(c) e L2

1;l0C(AdP)
which satisfies Eq. (B3.1) on { x e R 3 : |x |> 1}; is smooth on this set; satisfies
ΦΌ(c)-ΦeL 6(adP) and which equals Φ on {xeR3: |x|<: 1}. This ΦΌ(c) is
obtained by minimizing | | ^ ( Φ + ( ))ll2 o v e r the set

{ηeΓ(AdP):\\VAη\\2

2<ao9 MeL 6(]R 3), and η(x) = 0 if | x | £ l }

Let β be the cut-off function of Sect. A3 and set

Φ2(c) (x) = (1 - β(x/2))Φ'0(c) (x) + β(x/2)Φ(x).

Let c2(c) = (y4, Φ2(c)); this is also in CL This c2( ) is used in Sect. B5.

Proposition B3.2. Let δe [0, | ) . Por eαc/i /Ie {0,1,2}, the assignment of ce& to
cλ(c) e (ίδ defines a continuous map.

Because Φλ(c) satisfies a differential equation, boot-strap arguments prove
estimates for the second derivatives of Φλ(c):

Proposition B3.3. Let <5e[0,i). For c = (A,Φ)e<ίδ, let λ = 0 or 2. The map which
sends c e &δ to (1 + \x\)δVΛVAΦλ(c) e Γ{AdP® T*®T*) factors continuously through
L2. In addition, the L2 norm of (1 + \x\)δVAVAΦ0(c) is bounded a priori knowing
only SΆδ(Λ, Φ0(c)).

PropositionB3.4. Let c = (A,Φ)e(ί and let Φ^c) be given by Eq. (B3.2). The map
which sends ce&to VAVAΦx{c) factors continuously through L2 with norm bounded a
priori by 9I(c).

Corollary B3.5: Let c = (A, Φ) e (L Let Φλ(c) satisfy Eq. (B3.1) with λ e {0,1,2}. The
assignment of c to I—\Φλ(c)\eL6(R.3) factors continuously through Li(R 3 ), and
therefore C° ' 1 / 2 (R 3 ).

The proofs of these results occupy the remainder of this section.

Proof of Proposition B3.1. Lemma A4.5 establishes that the assignment of
c = (A, Φ) G Kδ to ((1 + x2)δl2FA, VAΦ) G L2 is continuous. To obtain the continuity
of the assignment of (A, Φ) e £ to (1 - \Φ\) e L 6 (R 3 ), use Lemma A4.3.

Proof of Proposition B3.2. The question here is independent of δ e [0, %). The proof
begins by demonstrating that 9I(cA(c)) depends continuously on ce(£. The
continuity of Φλ( ) in Γ(AdP) will follow by bootstrap arguments.

It is necessary to consider sequences {Ci = (Ai9 Φt )}C(£. It is convenient to
introduce the notation Vt = VA{b) for b = ct and for λ e {0,1,2}, Φ\ = Φλ(ct). The first
step is to prove

Lemma B3.6. The map 9l(cλ( )) : (£-•[(), oo) is continuous.
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Proof of Lemma B3.6. For c = (A, Φ) e (£, let Ψ(c) = Φ0(c)9 Φ^c) or Φ'0(c) as λ = 0,1
or 2, respectively. Let φ(c) = Ψ(c) — Φ. By construction (see Proposition 4.8 of [3]),
φ(c) e L6(AdP) and VAφ(c) e L2. For λ = 2,φ vanishes on the unit ball. Let σ = 0 if
λ = 0 or 2 and let σ = ί if A = l.

Define s(c) = i || (^(Φ + ̂ (c))||\ + iσ | | [Φ, ̂ (c)] | | | . By construction (again, Prop-
osition 4.8 of [3]),

ηeΓ

where 7W0(AdP) if λ = 0 or 1 and f = {ηeΓ0(AdP):η(x) = Oiϊ\x\^l} if A = 2.
For r e [ l , o o ) , let βr(x) = β(x/r), where /?(%) is the usual bump function of

Sect. A3. Because φ(c)eL6, there exists for each ε>0, an r(ε)< oo such that

As βrφ(c) G Γ, there exists a neighborhood 9t(ε) C ε of c such that for all b e 9ί(ε

) , βrφ(c)-] || | < s(c) + ε.

Thus, s( ): (£-^[0, oo) is upper-semi-continuous.
Next, consider a sequence {cf} c £ which converges to c. Let Ψ* = Φ0(

c/)? ^ i ( c 0
or ΦQ(CO as i = 0,1 or 2. The sequence { V{ψ\ σ[Φ, ^ ] } is bounded in L2, so there is
no loss of generality to assume that it converges weakly in L 2 to some pair
(G1,G2)GL2((T*0lR)(x)AdP).

As the L2 norm is weakly lower semi-continuous,

2 and | | G 2 | | 2 ^ l i m σ| | [Φ, ^ ] | | 2 . (B3.3)

If it can be shown that Gx = VAΨ(c) and that G2 = σ[Φ, Ψ{c)\ then it follows
from Eq. (B3.3) that s: (£-•[(), oo) is continuous. But this implies (as the L2 norms
are weakly lower semi-continuous) that both of the maps l l ^ . ) ^ ) ! ^ and
σ|| [Φ( \Ψ{-)] || are continuous from (£ into [0, oo). This would give Lemma B3.6
when λε {0,1}. For A = 2, Lemma B3.6 would follow after using Lemma A4.1 to
conclude that Φ2( ) — Φ( ) factors continuously through L6(AdP).

To summarize the previous paragraph, Lemma B3.6 follows from

Lemma B3.7. //{cjCCt converges to CGK, then (ViΨ1,σ[Φί? ΨιJ) converges weakly
to (VAΨ,σlΦ,Ψ])ίnL2.

Proof of Lemma 3.7. L e t ^ ^ ^ - Φ ^ . As | | ^ i | | | ^ 2 3 I ( c i ) , the sequence {V^1} is
uniformly bounded on L2, and so {φ1} is uniformly bounded in L 6 (cf.
Lemma A4.1). Therefore, {φ^ has a subsequent which converges weakly in L 6 to
some η which is in L6nL2

ί;loc (as At converges to A in C0 0 on any compact domain
in R 3 ) . Hence, for each' ξeΓ0(T*® AdP), {<<*, F ^ f > ? } has a limit equal to
<ξ, P^^>2. Therefore, F̂ f/ is a weak L2-limit of {V$}. Similarly, one proves that
σ[Φ, η] is a weak LMimit of σ[Φt , ^ ] .

The convergence to 77 of {φ1} and the given fact that
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implies that

Since φ(c) is unique, this last equality implies that η = φ(c). This establishes
Lemma B3.7.

The next step is to consider, for λ e {0,1,2}, the continuity of Φλ( ) in Γ(AdP).

Lemma B3.8. For λ e {0,1,2}, the map Φλ(): £->Γ(AdP) is continuous.

Proof of Lemma B3.8. The continuity of 9ί(cΛ( )) : K-»[0, oo) and Lemmas A4.5
and B3.7 imply that (VAΦλ)( ):(£->L2 is continuous. So (VAφ)(-) is continuous in
L2. Due to Lemma A4.1, (l + lxl)" 1 !^-)! is uniformly bounded in L2. Now,
Lemmas A4.1 and A4.5 imply that (1 + |x|)~ V( ) is continuous in L 2; and so φ( ) is
continuous in L2

0C. By Lemma A4.3, φ( ) is continuous in L 2

; l o c . Continuity of ^( )
in Γ(AdP) follows by the bootstrap arguments of Chap. 6 of [17]. This lemma
completes of the proof of Proposition B3.2.

Proof of Proposition B3.3. The proofs for Φo( ) and Φ2( ) are worked similarly, so
only the Φo case will be presented.

According to Proposition 4.8 of [3], || Φ o I! QO = *> a n d so Theorem V8.1 of [5] is
applicable. It states that VAVAΦ0 eL 2(AdP(g)T*®T*) with a priori bound on the
norm which is determined by 21(04, Φo)) This bound is obtained by differentiating
once Eq. (B3.1) to obtain

riVΛ(VΛΦ0) = - * [ * F i l , VAΦ0-\ + *DAl*FA, Φ o] . (B3.4)

For r < oo, let βr be the cutoff function from Sect. A3. Let σ = (ί +βrx
2). Let

δ G [0,^). Suppose that c0 = {A, Φo) e &δ. Then from Eq. (B3.4) one obtains

V*σ%(VAΦ0)= -σδ*t*FA, VAΦQ ] + *DA\_σδ*FA, Φ o]

+ (5σ5" ^dσ, FJF^Φo-δσ Λ " x * ( ^ Λ l*FΛ, Φ o ]). (B3.5)

Now, contract both sides of Eq. (B3.5) with VAΦ0 and integrate over R 3 . The
resulting equation is

\\<rdl2VΛVAΦ0\\2

2= -<σ*FA,ίVAΦ0, VAΦ0-]}2+ I I ^ C F ^ Φ o l H i

+ δ<VAΦ0,σ»-1(dσ, ^ )F 4 Φ 0 > 2 -<5<σ a - 1 F^, [Φ o, P ^ o ] Λrfσ>2 .

(B.3.6)

All but the first term on the right-hand side above are uniformly bounded as r-* oo
indeed, \dσ\σδ~ι <z which is independent of r as long as

To control the first term, observe first that

by Holder's equality. Second,

\\σ^VAΦ0\\l'2Sz^\\

for some z~1{δ)< oo by Lemma 4.1. Third, since \dσδ/3\^z(δ) for some z{δ),
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Finally, as σδ/3 ^ σδl2, one obtains

o | | i ) . (B3.7)

The conclusion from Eqs. (B3.6) and (B3.7) is that σδ/2VAVAΦ0 is uniformly
bounded in L2(AdP(χ)T*(g)T*) independently of r and hence
(ί + xψ2VΛVΛΦ0eL2.

To prove that the assignment of c = (A,Φ)ed to (l + x2)δ/2VAVAΦ0(c)eL2 is
continuous, one makes use of Lemmas A4.5 and A4.6. With Lemma A4.6, it is a
straightforward argument (using Lemma A4.1) to show that the r = oo limit of the
right-hand side of Eq. (B3.6) is continuous. Then \\(l + x2)δ/2VAVAΦ0\\2 is conti-
nuous, and due to Lemma A4.5, (l + x2)δ/2VAVAΦ0 varies continuously in L2 as
(A9 Φ) varies in (ΣΛ

Proof of Proposition B3.4. The argument here is essentially the same as the
previous argument for the proof of Proposition B3.3. One additional fact is
required. This is that the assignment of c to ||[Φ, [Φ, Φi(c)]]||2 is continuous. To
obtain this fact, one starts with the continuity of || [Φ, Φt( )] || 2 : (£->[(), oo). (This
was established in the proof of Lemma B3.6.)

This start is used to prove that ||[Φ, Φi( )] | | 6 is also continuous. Here is the
argument: Let Ω£R 3 be a given domain. Then

1 ] | | ^ . (B3.8)

[In Eq. (B3.8), the fact that \\Φ1 ||„ = 1 has been used.] The Minkowski inequality
implies from Eq. (B3.8) the final inequality

ll[^Φi]| l6;O^6| |[Φ,Φ 1] | | ί^ + 4 | | ( l - |Φ|) | | 6 ; O . (B3.9)

Thus, by taking Ω to be, consecutively, balls in R 3 of radius (1,2,...), one obtains a
uniform bound for ||[Φ, ΦJHg by Sl(c). By taking Ω to be the exterior of a ball of
radius r<oo, one obtains with LemmaA4.6 that ||[Φ, Φi( )]|lβ: t£—>[0, oo) is
continuous.

Next, observe that over any Ω QIR3,

Therefore, the same argument as used for ||[Φ, ΦJHg works for ||[Φ, [Φ,
and gives a uniform bound and continuity for ||[Φ,[Φ,Φi( )]] | | 2 as a function
on(£.

Proof of Corollary B3.5. Propositions B3.3 and B3.4 state that for λ e {0,1}, the
assignment of c = (A, Φ)e(£ to VAVAΦλ(c)eL2 is continuous. Therefore, one can
use Proposition B3.2 and Lemma A4.4 to obtain the corollary.
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B4. The Retraction of (£

Propositions B2.1 and B2.2 are proved here by constructing the maps ej, and ρ
from Sect. B2. The map e must be constructed first. In order to define e, introduce
the map c2: (£-•£ of Proposition B3.2. According to that proposition, c2 maps (Γ5

continuously into the space

&δ = {ce(£δ:(l + \x\)δVA{VAΦ)eL2(AdP®T*®T*)}. (B4.1)

This is provided that 2δ is topologized by the map which assigns (A, Φ) e &δ to

(A, Φ,(\ + \x\Y\ VA{VAΦ)\) e e x L2(R3).

The space &δ has a number of important properties, and it is timely to digress
here to enumerate them. The first observation is

Lemma B4.1. The assignment of (A, Φ) e Άδ to (1 — \Φ\) factors continuously through
C°'1 / 2(]R3), where its norm is bounded a priori given \\VA(VAΦ)\\2 and | |P^Φ|| 2.

Proof of Lemma B4.L This is actually a corollary now to Lemma A4.4.
If {A, Φ) e 2δ, then Lemma B4.1 implies that 1 — \Φ\(x) tends uniformly to zero

as |x|-χx). Therefore, R(A, Φ)e[l, oo) exists with the property that |Φ(x)|>i if
\x\>R(A,Φ). If {A\Φ')e&δ is sufficiently close to 04,Φ), then also |Φ'(x)|>i if
\x\>R(A9Φ). One would like to have R( ) depend continuously on Qδ. The next
lemma allows this.

L e m m a B4.2. There exists a continuous Oΰ-equivariant function R ( ) : £ δ - > [ l , oo)
such that where \x\>R(A,Φ), then | Φ | ( x ) > ^ .

Proof of Lemma B4.2. Here one requires the following observation:

Lemma B4.3. Let Xbea topological space and suppose thatf: [0,1] x X->[0,1] is
a continuous map with the property that for fixed ysX,f( ,y) is not decreasing on
[0,1], and f(0,y) = 0. Then there is a continuous function ρ : [0,1] xI->[0,1]
which satisfies for each yeX, ρ(0, y) = 0, ρ( , y) is increasing and /(ρ(ε, y), y) < ε.

Proof of Lemma B4.2 given Lemma B4.3. Use the previous lemma with the function
/:[0, l]xe->[0,l] given by

/(ρ,04,Φ))=l-min( inf

The continuity of/follows from Lemma B4.1.

Proof of Lemma B4.2. Let β denote the bump function from Sect. A3. Now set

The function ρ has the requisite properties for the following reasons: First, as ε->0,
ρ(ε,);)->0 and the limit is locally uniform in y. Second, β(ε~1f(t,y)) has support
only on {t e [0,1] :/(ί, y) < ε} which is a connected open set containing {0}. Since

<;i, ρ(ε9y) is in this set. Finally, ρ( ,j;)φθ and ί-^
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For c = (A, Φ)e2δ, \Φ\(x) goes uniformly to 1 as |x|-»oo. Thus, each such Φ
defines a splitting of AdP over { x e R 3 : \x\ > R(c)} as L0IR, where 1R embeds in
AdPx as the span of Φ(x). It is useful to decompose the connection A according to
this splitting. For this purpose, write r = r(c) = 2R(c) and Φ(c) = Φ/\Φ\. Then write

A = aΦ + aτ - (1 - β) [Φ, dΦ] + βrA, (B4.2)
where

aτ(c) = (\ -βr)lΦ, [A, Φ]] + (1 -β)\Φ,dΦ] and a(c) = (l -βr)(~2tmce€2(ΦA)).

Due to Lemmas B4.1-2, the assignment of ce &δ to \ - )

(α(c), aτ{c)) e Γ(T*)® Γ(AdP® T*)

is continuous. The AdP valued 1-form aτ has the properties that are listed below.

Lemma B4.4. The assignment of (A, Φ) in 2δ to (aτ, (1 + \x\)δVAa
τ) as defined by

Eqs. (B4.2,3) factors continuously through

[Γ(AdP® T*)nL2(AdP® T*)] x L2(AdP®T*(x)T*).

Proof of Lemma B4.4. First, observe that for |x |>r,

\Φ\-\Φ,VAΦ^ = aτ. (B4.4)

Therefore, Lemmas A4.6 and B4.1,2 imply that the assignment of (A, Φ) e Lδ to α τ

factors continuously through L2(AdP®T*).
By differentiating Eq. (B4.4), one obtains

2[Φ,F4(P4Φ)] = P 4αΓ. (B4.5)

For a domain ΩgR 3 , Holder's inequality implies that

This last inequality, plus Lemmas A4.1, A4.4, and A4.6 imply that (1 + \x\)δVAa
τ

factors continuously through L2(AdP(x)T*(x)T*).
Without an additional choice of gauge, a(A, Φ) of Eq. (B4.3) cannot be

controlled. However, © 0 is contractible, so gauge fixing is possible. The process
results in

Lemma B4.5. There exists a continuous map g:&δ->0ΰo with the following
properties:

(1) On/(Maps), g=le(δ0.

(2) Let c = (A, Φ) G 2δ. Then where \x\ > 2R(c),

Φ(g(c) c) (x) = {g(c)Φ(c)g " x (c)) (x) - Φ(2R(c)x).

(3) The assignment of c e 2δ to the real I-form a(g(c) c) ofEq. (B4.3) defines via

a continuous map from 2δ into [Γ(T*)nL6(T*)~]x L2{T*®T*).
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Proof of Lemma B4.5. With the C00 topology on the participating function spaces,
the map below defines a principal fibration with fiber M a p s ^ S1):

Maps(S2; SU(2)) x Maps(S2; S2)

[T . (B4.3)

Maps(S2;S2)xMaps(S2;S2)

Here Tsends (h,σ) to (hσh~ι,σ). Maps^ 2 ;^ 1 ) embeds as the fiber over (σ,σ) by
assigning

to (expO), σ) in Maps(52; SU(2)) x Maps(S2; S2).
A continuous map (/, /') from 2δ into Eq. (B4.3) is obtained by assigning

c = (A, Φ) as follows

(l,Φ(2R(c)x))

τ . (B4.4)
(Φ(2R(c)x%Φ(2R(c)x))

Here Φ = Φ/\Φ\ and x = x/|x|. Observe that Tol' = l.
A homotopy of /, a map φ\[_\,oo)xfi^ to Maps(S2;Sr2)xMaρs(S2;S2) is

defined by sending (t,c = (A, Φ)) to

(Φ(tR(c)x\Φ(R(c)x)). (B4.5)

The existence of a lifting φ\ of φ, which commutes with T is guaranteed by the
homotopy lifting property of a fibration [18]. There is no obstruction to choosing
φ' to satisfy φ'(tj(e)) = (\,e(x)) for eeMaps(S2;S2) and ί e [ l , oo).

Let π1: Maps (S2 SU(2)) x Maps (S2 S2) be the projection onto the first factor.
Then g' = π1oφ/ maps [1, oo)x2δ into Maps(S2;SU(2)) continuously and it
satisfies g\\9c) = \e SU(2).

The homotopy lifting allows the extension of gf to define a map gγ: fi^->(50

which satisfies for Ixl > \

and which satisfies ^ ( c ) Ξ l e © 0 when ce/(Maps).
The map g of the lemma will be of the form g = h-gvTo obtain h requires the

following observation:

Lemma B4.6. The assignment of ce£δ to a{gx{c) c) e Γ(T*) has the property that

defines a continuous map from 2δ into L2 ( Λ T*\.
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Proof of Lemma B4.6. For \x\*z2R(c), Φig^c)-c)(x) = σ(x) is only a function of
x = x/|x|. Thus, \dσ\^const\x\~K Let α[ = αΓ(^(c) c). Let gx(c) c = (A,Φ). Then
when |x|^2Λ(c),

c) c) = (σ, F J + 4 tracec2 (dσ A ά[) -f (σ, dσ A dσ) — (σ, a\ A a\).

Here, (α,β)=-2tracec2(α,/0 for α,
The continuity of (1 4- \x\fda{gx{c) c) follows Lemmas A4.5 and B4.4.
To complete the construction of g for Lemma B4.5 one uses the previous

lemma in the following way: Note that the Hodge theorem for R 3 (cf.
Proposition 7.6 of [4] or [19]) allows that there exists a unique ALeΓ{T*)r\L6

with F,4LeL2(r*®T*) which satisfies d*AL=;0 and dAL = da(gί(c)-c). The
existence proof implicity asserts that AL varies continuously in Γ(T*)nLβ(T*) and
that VAL varies continuously in L2(T*®T*) as c varies in 2δ. Lemma B4.6 with
arguments as in the proof of Proposition B3.2 insure that the assignment of ce2δ

to (1 + \x\)\AL(c\ VA\c)) defines a continuous map from c into L6(T*)
nL2(T*®T*).

The Poincare lemma for R 3 provides a function A(c) e C°°(R3) which satisfies
dyl(c) = α(flf1(c) c)~i4L(c). By demanding that /t(c)(O) = O, the function A(c) is
uniquely determined by c e 2δ and the assignment of c e 2δ to A(c) e C°°(R3) is then
continuous.

Define now
h(c) = exp(iΛ(c) (1 - βR{c))Φ{Qi{c) c)). (B4.6)

Then, let g(c) = h(c) g^c). This g defines a continuous map from &δ into (50, and it
satisfies the requirements of Lemma B4.5. In fact, where |x|^2R(c), a(g(c)-c)
= AL(c). Thus, conditions (2) and (3) of Lemma B4.5 are satisfied. For condition
(1), remember that gί is identically 1 on /(Maps), while α( ) on /(Maps) is
identically zero. Thus Λ|J(Map8) = 0 and g\ψaps) = l as required.

Before proving Proposition B2.2, it is timely to define the maps e and;: define
e: K-^Maps^2 : S2) by requiring that

e(c) (x) = Φ(c2(c)) (2R(c2(c))x). (B4.7)

Define;: &-+®0 by requiring that

J(c) = flf"
1(c2(c)), (B4.8)

with f̂( ): £δ e ©0 given by Lemma B4.5.

Proof of Proposition B2.L For condition (1), observe that c2(I(e)) = I(e) by
construction since (VAΦ)(I{e)) vanishes on {xeR 3 : |x|^ 1}. For this reason,

e(I(e)) (x) = Φ(I(e)) (2R(I(e))x) = e(x)

for all x e S2. Also, j(I(e)) =^g~1(I(e)) = 1 e ©0 due to Lemma B4.5. For condition
(2), observe that

c-c2(c) = (0,Φ(c)-Φ2(c)), (B4.9)

and so Propositions B3.1 and B3.2 imply that r( ) as a map from [0, £] x &δ to (ίδ is
continuous. To obtain the continuity of r on [|, 1] x (Γ5, observe that for ί e β, 1],

r(ί,c) =j(c)Ig c2-(2t-l)(g.c2-I(ef\ ,
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where c2 = c2(c), e — e(c) and g = g(c2(c)). Keep in mind that c2(c2(c)) = c2(c), and
so e(c2(c)) = e(c). For |x|>2JR(c2),

g c2 -I(e) = (a(g c2)e + aτ(g c2), (|Φ(c2)| - l)e). (B4.10)

Thus, continuity of r as a map from [̂ , 1] x (ίδ to (£δ follows with Holder's
inequality and Lemmas B4.2, B4.4, and B4.5. The reader can supply the algebra.

Proof of Proposition B2.2. For (ρ, £, c) ε [0,1] x [0,1] x K, consider

cί* t cW ^ " ^ - ^ ^ - ^ for ί e [ 0 , i ] ;
V ρ " ; I c ( 2 i l ) ( l i 8 ) [ c j ( c ) / ( e ) ] + / ? [ c - c 2 ] for ί e [ ί , l ] .

(B4.ll)

Because (1 — jS1/ρ) has support only where |x| > 1/ρ, c(ρ, ί, c) converges to c in C00 of
any bounded domain in R 3 as ρ->0. This convergence is locally uniform in
(ί, c) e [0? 1] x CL Independent of ρ, c(ρ, 0, c) = c.

On { x e R 3 : |x|>2/ρ}, c(ρ, 1,c) =j(c)I(e(c)), and therefore,for ρ > 0 and (A, Φ)
= c(ρ, l,c),

Thus, c(ρ, l , c ) e ^ for any ρ e(0,1], and every c e(£ and δ e [0,\).
As / maps Maps(S2; S2) continuously into &δ, δ e [0,^), and e is continuous,

c(ρ, 1, ): &-^<&δ continuously for any ρ e (0,1] and δ ε [0,^).
With Eq. (B4.9) and Propositions B3.1 and B3.2, one concludes that for any

ρ G (0,1] and δ ε [0,|), c(ρ, ) : [0, \~\ x ( S ^ - ^ continuously. Lemma A4.1 and the
fact that \dβγjQ\ ε L3(R3) with norm independent of ρ implies that for any c ε (E*5,

lim sup \SΆ\c{ρ,Uc))-SΆ%c)\ = ΰ. (B4.12)
ρ-+0 ίe[0,l/2]

Lemma A4.3 with Proposition B3.2 implies that this limit is locally uniform on GΛ
Therefore, c( ) extends as a continuous function from [0,1] x [0,^] x (£δ to (ίδ for
every <5e[0,^).

Lemmas B4.2, B4.4, and B4.5 with Eq. (B4.10) imply that for any ρ e (0,1] and
δ e [0,i), c(ρ, ) [ i 1] x <£*-•<£? continuously.

Proposition B3.1 and Lemmas B4.4 and B4.5 imply that for any cedδ,

lim sup \<Hδ(c(ρJ,c))-(Άδ(c)\ = 0. (B4.13)
ρ->0 ί e [ l / 2 , l ]

This is proved by breaking the integrals into their contributions from the sets
{ x e R 3 : |x|<^ρ}, {xeR3 :^ρ< |x |< 1/ρ}, and {jceR3 : | χ |> 1/ρ}, and then using
Holder's inequality with the aforementioned lemmas. The details are straightfor-
ward and omitted. This proof also establishes that the limit in Eq. (B4.13) is locally
uniform with respect to c e (£δ.

One concludes from this discussion that c extends as a continuous function
from [0,1] x [0,1] x dδ to &δ for every δ ε [0,i).

Using Eqs. (B4.12) and (B4.13), Lemma B4.3 provides a continuous function
ρ( ): [0,1] x £-» [0,1] which (1) maps {0} x £ to {0} and for fixed c maps (0,1) into
(0,1); (2) for every ceK,

sup |SI(c(ρ(fi,c),ί,c))-8I(c)|<ε.
ί e [ 0 , l ]
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The map τ of Proposition B2.1 is given by the assignment of

(fi,ί,c)e[0,l]x[0,l]xC

to c(ρ(ε, c), ί, c).

B5. The SU(2) Action on »

As pointed out in Sect. Bl, SU(2) acts on 93 via the action of the constant matrices
in (5. It acts on Maps(S2 S2) by rotating the image S2 and / is an equivariant map.
This SU(2) action can be reduced to an S1 -action by fixing Φ at a point. The
reduction is constructed as follows: Let neS2 be the north pole. Let
Ω(S2;S2)c»Maρs(S2;S2) be the subspace of maps which take n to n. The S1

subgroup of SU(2) which fixes n acts on Ω(S2; S2) while the orbit of Ω(S2;S2) in
Maps(S2;S2) under SU(2) is all of Maps(S2;S2).

One has the fibration

Ω(S2; S2)->Maps(S2; S 2 ) Λ S2,

with ή(e) = e(ή). The above mentioned S1 acts equivariantly on this fibration, and

There is a corresponding fibration for 23 ̂  if δ e [0, ̂ ). This is defined with the
map c2(-):1£δ-+<εδ of Sect. B3 and the map R:<ίδ->[l9ao) of LemmaB4.2. A
continuous map, n:SBδ->S2 is defined as follows: Let neS2 be the point
(l,0,0)eR3. Set ή(c) to be the point (Φ2(c)/\Φ2(c)\)(2R(c2(c))n)eS2. This map ή
induces a fibration,

where the fiber over neS2 is

:(Φ2(c)/\Φ2(c)\)(2R(c2(c))ή) = n}. (B5.2)

Proposition B3.2 and Lemma B4.2 insure that %5δ is closed in 95ό.
The orbit of $δ in ®δ under SU(2) is all of 33Ί But, the S1 subgroup of SU(2)

which fixes neS2 acts on 93Ί This S1 action is equivariant with respect to the
commutative diagram below:

(B5.3)
/

Ω(S2;S2) >Maps(S2;S2)

It is pertinent to remark here that because $lδ is ©-equivariant, it only "sees"
the topology of S5, at least as far as min-max is concerned.

Proposition B5.1. For each δ e [0,χ), the map I embeds Ω(S2;S2) into &δ and the
image under I of Ω(S2 S2) is a deformation retract of 23Ί
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The proof of this proposition will be given shortly. Observe that
Propositions Bl.l and B5.1 yield Theorem Al.l as a corollary.

Proposition B5.2. There exists a continuous map q: [0,1] x [0,1] x 33-»23 such
that:

(1) For each δ e [0,χ), q maps [0,1] x [0,1] x $δ into $δ continuously.
(2) For each ε e (0,1], q(ε, 0, ) is the identity map on 53.
(3) For any δ e [0, χ> and for any ε e (0,1), q(ε, 1, ) maps © continuously into %δ.
(4) For any t e [0,1], g(0, ί, ) is the identity on S.
(5) Finally, for any ε e [0,1] and for all c e S ,

sup |8ί(«(e,ί,c))-8ί(c)|<fi.
te[0,l]

Proof of Proposition B5.1. Let r( ): [0,1] x £-•(£ be the map of Proposition B2.1.
Let i7:(£->23 denote the projection. By restricting r to [0,1]x95 and then
composing with Π, one obtains a map Π ° r : [0,1] x 93->33. By associating each c
in © to the point ή{c) e S2, one obtains a continuous map (/, t) of © into the
fibration

(B5.4)

Here T sends (#, σ) to (gσg~\ σ) and /( ) = (n( ), ή( )) while f( ) = (1, n( )).
A homotopy of / is defined by φ: [0,1] x 93-^S2 xS2 which sends (ί,c) to

(π(77°r(ί, c)), w(c)). The homotopy lifting property provides a continuous map,
k: [0,1] x 93-^SU(2) with the property that fc(0, ) = 1 and for all (ί, c) e [0,1] x 93,

k(t9 c)ή(c)k~ι(U c) = ή(Π o χ(t, c)).

There is no loss of generality by assuming that k(t, ) | j ( M a p s ) = 1 for all t e [0,1].
Indeed, if this is not the case, replace k above by

with e: (£-*Maps(S2; S2) given by Proposition B2.1.
Define the retraction of $δ onto I(Ω(S2;S2) by sending (ί, c) 6 [0,1] x » 5 to

Proof of Proposition B5.2. The proof here is identical in most respects to the proof
of Proposition B5.1. One replaces r by the map τ of Proposition B2.2 and then (/, t)
maps [0,1] x 93 into the fibration of Eq. (B5.4) by sending (ε, c) to /(ε, c)
= (n(τ(ε,0,c)), n(τ(ε,0,c))) = (ή(c),n(c))9 while Γ(ε,c) = (l,n(c)). The homotopy φ
sends (ί, ε, c) e [0,1] x [0,1] x 93 to (w(77 ° τ(ε, ί, c)), w(c)). The remaining aspects of
the proof are the same.
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B6. Hubert Spaces

Hubert space vector bundles over 33 play a crucial role in this article, and one in
particular, provides a useful local embedding theorem for 93 (see
Proposition B6.1).

To begin, let Fbe a finite dimensional Hubert space on which SU(2) acts by an
orthogonal representation, ρ. Let ρ^ : su(2)->EndF denote the induced represen-
tation. Let E = PxρV.

Each pair c = (A, Φ) of Lf. l o c connection on P and L\. l o c section of Ad P defines a
metric on Γ0(E) by

Lemma A4.1 insures that < , >2 is nondegenerate.
A Hubert space, HC(E), is obtained by completing Γ0(E) in the norm

|| He =< , >c Notice that the assignment of c = (L2

l;loc connection on P, L\.loc

section of AdP) to Hc(E)cL2

ί;loc(E) is © equivariant; when # e ® , then Hg.c and
g - Hc are the same in Li;loc(JE).

Of particular importance is the case £ = <2 = AdP®(T*©]R). In this case,
define for each ce(£, Γc = Hc(Q)nΓ(Q), and topologize Γc by the inclusions in
HC(Q) and Γ(β).

PropositionB6.1. Let neTL and let c e 8 n . About each ί?G©M, there exists a
neighborhood ofb, 9l(b) and a continuous map h(b) ( ) : 5l(b)->©0 with the following
property: the map which sends bf e 5R(b) to mh(b') — h(b) (fc") -b' — c embeds 9l(b) in Γc.

Later in this section, Propositions 6.1 and 6.2, below, are used to define a C°
vector bundle structure over 33 for the set {Hb(E),fee23}.

Proposition B6.2. Let ced and let ψeHc(Q). Let E-+WL3 be an associated vector
bundle to P-»IRA The identity map on Γ0(E) induces an isomorphism between
Hc + ψ(E) and HC(E) with the following property: for any ηeHc+ψ,

with z<co a constant that is independent of ψ, η and dependent only on 9l(c).

Proposition B6.1 is proved in Sect. B7, and Proposition B6.2 will be proved
here shortly.

Let £-*IR3 be an associated vector bundle to P. A C° vector bundle structure
for the set

H(E)={J Hb(E)
be®

is constructed as follows: Let neTL, and choose ce JBn. For each be33Π5 there is a
neighborhood, 9t(fe), and a Hubert space isomorphism ρ(lb(b')):Hb'(E)-+Hc(E),
which is defined for all V e ϊl(fc) by the sequence

Here, h(b) ( ) : 9t(ft)-»©0 is given by Proposition B6.1, and the last two maps are
induced by the identity map of Li ; l o c (£).
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Let p: #(£)-» 23 be the obvious projection, and topologize H(E) by demanding
that for each b e 95, the bundle map from p~\9l(b)) to SR(fc) x HC(E) which sends
(b'e9t(b),ψeHb.(E))to

is a homeomorphism. Proposition B6.3, below, asserts that this defines consis-
tently a topology on H(E) such that for each neZ, p : # ( £ ) - • 95n is a C°-vector
bundle over 95n(cf. [20]).

It is also necessary to provide a C°-vector bundle structure for the set
L{E)= U L2(E) with its canonical projection p:L(£)->95. Topologize L(E) by

&e93

demanding that for each be95, the map from p~1($l(b)) to 5l(fe)xL2(£) which
sends φ',ψ) to Lb(b\ψ) of Eq. (B6.1) is a homeomorphism. Proposition B6.3,
below, asserts that this has defined a conssitent topology on L(E) such that for each
n e Z , p:L(E)-»33B is a C°-vector bundle over 95Π.

Proposition B6.3. For each neZ, choose c e B n . 77ze sets H(E) and L(E) with
projection p to 33n are consistently topologίzed as C°-vector bundles over 23n by
demanding that the open cover {ϊl(fc): b e 95J wzί/z ίfte bundle maps {Lb: p~ 1(5l(b))
-^>yi(b) x i ί c (£) ^nd ?l(fc)xL2(e), respectively} given in Eq. (B6Λ) form a basis for the
local trivializations. With this vector bundle structure, the inclusions of 23n x Γ0(E)
into H(E) and L(E) are continuous. Furthermore, the assignment of b e 95„ to the
fibre metric < , ) b defines a continuous section of Sym2(H(£)*). Finally, two
different choices of ce$5n define ίsomorphic H(£)'s and L(E)'s.

The remainder of this section contains the proofs of Proposition B6.2.
Proposition B6.3 is proved at the end of Sect. B7.

Proof of Proposition B6.2. This proposition is a direct and easy consequence of

Lemma B6.4. Let ce95 and let ψ e Hc(AdP) and η e HC(E). Then

Ilβ*(ψ)ίll2^«l+8ϊ(c))l|φllcll»ίllc, (B6.2)

where ζ< oo is independent of c, ψ9 and η.

Proof of Lemma B6.4. This is a generalization of Lemma 6.6 of [3]. Let c = {A, Φ)
and let Ω(c) = {xeTR3: |Φ | (x)< | } . Then Ω is open, and because of Kato's
inequality and Lemma A4.1, one has

volΩ)1/3. (B6.3)

Here, ζ<oo is independent of ce(L Thus, Ω has finite volume. Now let
βeC^lO, oo) be the bump function of Sect. A3 and let b(x)=β(\Φ\(x)). Thus,
suppftcΩ. Given ηeHc(E), decompose it as η = ηL+ητ + ηΩ, where ηΩ = bη,

Now, due to Lemma A4.1,

(B6.4)
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where ζ < oo is independent of c e (£ and η e HC(E). To obtain the lemma, use the
following two facts: First, if ηeHc(E) and ψ ei/c(AdP), then

<? ( ψ V = 0. (B6.5)

Second, if f e L 6 and w e L2nL6, then

Nll2^bll6ll«ll6 / 2 l l«ll2 / 2 . (B6.6)

Lemma B6.4 follows from Eqs. (B6.3HB6.6).

B7. The Local Structure of S

The purpose of this section is to establish Proposition B6.1, the local embedding
theorem for domains in 93 and Proposition B6.3. Before beginning the proof of
Proposition B6.1, it is convenient to study the space £ = £° of Eq. (B4.1) in greater
detail. Observe first that there exists a continuous map σ: £->Maps(S2 S2), given
by the assignment of fee £ and xeS2 to Φ(b)(2R(b)x), with Φ = Φ/\Φ\ and
R: £->[l, oo) given by Lemma B4.2. Let fin = fin6n,neZ. Then σ maps flM onto
Mapsn(S2;S2).

Second, observe that if σ^σoeMaps^S^ S2), then there exists an open
neighborhood Ό(σ^) and a continuous map /ί.Ό->Maps(S2;SU(2)) with the
property that for every σ2 e €>,

h(σ2)σ2h-\σ2) = σ0. (B7.1)

This is just the statement that Eq. (B4.3) is a fibration.
These two observations imply

Lemma B7.1. Let neZ and let b,ce £M. There exists a neighborhood &(b, c) ofb in
£„ and a continuous map g:Q->©0 with the property that for every fe'eQ,

Proof of Lemma B7J. Choose a contractible neighborhood O of σ{b) in
Mapsπ(S2 S2) for which Eq. (B7.1) is true with σ0 = σ{c). As £> is contractible, the
homotopy lifting property for fibrations implies that the map h of Eq. (B7.1) has an
extension, W: £)-+©0 satisfying h'(x) = h(x/\x\) for |x| ^\. Take φ") to be h'(σψ'))

Now, fix ω e Maρsn(S2 S2) and define £[ω] - {b e £ : σ(b) = ω}. Let g: £-^(50

be given by Lemma B4.5.

Lemma B7.2. The assignment of ί>e£[ω] to g(b)-b — I(ω)eΓ(Q) defines a
continuous map of £[ω] into ΓHω)(Q).

Proof of Lemma B7.2. Observe that on the set {x e R 3 : |x| ^ 2R(b)}

where g = g(b). Thus, Proposition B3.1 and Lemmas B4.4 and B4.5 imply that
g-b-I(ω)eΓb. Proposition B6.2 implies now that g b-I(ω)eΓI{ω). The con-
tinuity of this assignment bv->g(b) b — I(ω) e ΓI{ω) follows from Proposition B3.1
and Lemmas B4.4 and B4.5.
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Before proving Proposition B6.1, it is necessary to point out that the map
cί: (£->(£ of Sect. B3 maps (£ continuously into £ (Proposition B3.4) and for all
ceK,

c1(c)-ceΓC l ( c ),Γ c. (B7.2)

Proof of Proposition B6.1. Given b, c e 93M, let Q(cxφ), c^c)) be the neighborhood
of cxφ) that is provided by Lemma B7.1. Let 9t(fr) = c1~

1(G)c93/J. Define
h(b)(•):9l-*(δ0 by assigning Ve9i to

h(b) (60 = g ~ %(€)) g{q{cm) Cl(60) «(ci(60),

where <?: Q->©0 is given by Lemma B7.1 and g: £->©0 is given by Lemma B4.5.
The first claim is that mbφ') = hφ)φ')b/ — c defines a continuous map from
into Γc. Indeed,

g(cλ{c)) (hφ) (60 6 /-c) =

[ίc C!(c) - /(σ)] . (B7.3)

Here, gf = g{q(c^b')) - Cl(b% gc = g(cdc)l q = q(cι(b% and σ = σ(c1(c))
= σ(q c f̂tO). Due to Lemma B7.2 and Eq. (B7.2), each bracket in Eq. (B7.3) is in
Γ/(σ). Thus, Eq. (B7.2) implies that hφ)(b')-c is in Γ. The continuity of the map
follows readily also with Lemma B7.2 and Proposition B3.4.

The second claim is that the map mb( ): $R-»ΓC is a homeomorphism onto its
image. For this, one requires

Lemma B7.3. Let ced and define Γc as in Sect. B6. The assignment of ψeΓc to
c + ψ defines a continuous map from Γc into (L

Proof of Lemma B7.3. This is a straightforward calculation using Lemma B6.4 and
Holder's inequality. The reader is referred to Proposition 5.1 of [3].

To complete the proof of Proposition B6.1, it is enough now to observe that the
map mb( ) has a continuous inverse, namely, the map ί which sends \peΓc to
Π(c + ψ) e 93, where Π: (£->93 is the projection. Indeed, let b\ b" e ϊl(fc). Suppose
that (1 o mb) (&0 = (ϊ ° mb) (&")• τ h e n , V - h hbφ') ~x hbφ") b" for some he<δ0. But
since hb( ) maps into ©0, V must equal b".

Proof of Proposition B6.3. As the arguments for H(E) and L(E) are similar, only the
former case will be considered. To show that H(E) has a well defined topology, it is
sufficient to establish that for any pair b1 and b2 e 93Π with intersecting ^(fcx) and
9l(b2), the transition function which sends beΌ = Ϊl(b1)n?l(62) to [cf. Eq. (B6.1)],

l(b) = lbί(b)lb2ψΓιe(δ0 (B7.4)

defines via b->ρ(lφ)) a continuous map from D into the Banach space of bounded,
linear endomorphisms oϊHc(E) (cf. [20, Chap. I]). This will imply immediately [20,
Chap. Ill] that p: #(£)-• 33 is a C°-vector bundle with the asserted basis for its
local trivializations. If one accepts for the moment this last assertion as a fact, then
the remaining assertions follow in a straightforward manner from
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Propositions B6.1 and B6.2; the details are left to the reader. Thus,
Proposition B6.3 follows from the following:

Lemma B7.4 Let neZ and let c e 8 π . // D = 5R(fc1)n?l(b2) + 0 for bl9b2e&H9

define Z:Ό-»(50 by Eq. (B7.4). Then ρ(l(b)) is a bounded, linear automorphism of
HC(E) for each beΌ; and given beΌ and ε>0, there exists an open neighborhood
D'CΌofb such that for all Ve £>' and ψ e HC(E\

\\ρ(Kb))ψ-ρ(m)ψ\\c^8\\ψ\\c. (B7.5)

Proof of Lemma B7A. First, let m: Slt(bx)-+HC(Q) and let j : $Tt(b2)-*Jίc(β) be the
two embeddings from PropositionB6.1. If ψeΓ0(E) and beΌ, then

(B7.6)

Here Proposition B6.2 and the (5-equivariance of the || ||c norm have been used.
The constant z < oo is independent of ψ, and uniform on a neighborhood of b.
Thus, for each b e D , ρ(l(b)) extends to a bounded linear automorphism of HC(E)
with inverse ρψψy1).

To establish Eq. (B7.5), the following lemma is needed:

Lemma B7.5. Under the same assumptions as in Lemma B7.4, let beΌ. There is a
neighborhood £)' of b in Ό such that the assignment of fc'eO' to the number
d(b,b')= l|/(ί>) —ί(fr0llc°θR3) defines a continuous map of Ό' into [0,2].

Proof of Lemma B7.4 assuming Lemma B7.5. For c = (A, Φ) e (£ and ψ e Γ(£), let

Because of Proposition B6.2, it is sufficient to check that given ε > 0, there is a
neighborhood Ό'QΌ such that for all fc'eO' and ψeHc(E),

For notational convenience, let (Z, V) = (/(&), /(ί/)) and define similarly (m, m") and
(/j"7). Observe that for any ψ e HC(E), \\ψ\\c = || FJ'φ||2. Now one calculates using the
(5-invariance that

Ve'+mQ(l)ψ = Q(!)Vc'+jΨ, (B7.7)

while

(B7.8)

Equations (B7.6-8), Proposition B6.2 and Lemma B6.4 imply that

where z is independent of V in a sufficiently small neighborhood of b. This last
equation with Proposition B6.1 and Lemma B7.5 implies Lemma B7.4.
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Proof of Lemma B7.5. By construction, / maps O continuously into (δ0. Let
cγ :(£->(£ be as in Sect. B3 and write c1{c) = {A, Φ). Due to Lemma B4.2, there
exists R < oo such that for all V in a neighborhood £)' of b in ©, |Φ(c1(b/)) I (X) > 2 if
|x| > #, and also \Φ\(x) >\ if |x| > # . For fe' e C and for |x| > R, set

By construction, there exists r e [R, 00) such that for all bf in a possibly smaller
neighborhood O' of fo,

(h(b1)(b')Φ(b')h(bί)(br1)(x) = Φ(x) for |x |>r; (B7.9)

and also Eq. (B7.9) is satisfied by all V e £)' with h(b2) ( ) replacing hφj ( ). Thus,
for all V e O' (l(b')Φl(b')"x) (x) = Φ(x) for |x| > r. This last equation implies that if
ft'eO' and if |x|>r, then

/(60(x) = exp[ίλ(60^(x)]. (B7.10)

The proof of Lemma B4.5 [see Eq. (B4.6)] implies that λ maps a possibly smaller
neighborhood £)' of b in O continuously into C°°({x G R 3 : |x| > r}). Further, there
exists r'e[r, 00) such that for all fc'

= 0 for |x|>r7 (B7.ll)

and

|x|>r/}). (B7.12)

Together, Eqs. (B7.11) and (B7.12) imply that for each bf e £)', there exists μ{b') e IR
such that

\λ(b')(x)-μ(b')\<M(b)\x\-1 if \x\>r'9 (B7.13)

where M(b) < 00 depends only on b. Equation (B7.13) implies that the assignment
of V G £>' to μ(b') G IR defines a continuous map. This fact, Eqs. (B7.10) and (B7.13),
and the continuity of /: O->(50 imply Lemma B7.5.

Cl. The Distribution of Critical Values

As the functional 91 only sees the topology of SB, min-max for 91 is concerned with a
homotopy invariant family of compact subsets of S. Let n e Z and let g be such a
family in 35n. As discussed in Sects. Al and A2, one associates to 5 the number 2IS

of Eq. (A1.7). Then the set of such 9ϊδ's defines Crit n c[4φ|, 00) [see Eq. (A1.8)],
and Theorem A 1.2 asserts that Critw is unbounded.

Theorem A 1.2 is proved through a series of arguments, outlined in Sect. C2,
which involve the topology of a family of Dirac operators on S = (P x Su(2)^2)® S.
Here, §->IR3 is the spin bundle over R 3 ; that is, the frame bundle of R 3 is
canonically R 3 x SO (3). It is double covered by R 3 x SU(2) and S is

R 3 x SU(2) x su(2)

(C2 - R 3 x <C2.
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The Dirac operator on Γo(§) is the first order elliptic operator which sends
yeΓ 0 (S)to

d^kdχi-hψ> (CU)

where dx' is Clifford multiplication. (Since S is flat, there is no loss of generality in
identifying {dxι}f=1 on C 2 with the fixed set of matrices,

i 0 \ / 0 l W 0 -i

To each pair c = (A, Φ)e(£, assign the operator, δc, on Γ0(S) which sends

ψ 6 Γ0(S) tO
Σdx' V^ψ + Φψ. (C1.2)

ί = l

Observe that the assignment of (c, \p)e&x Γ0(S) to δcψ e Γ0(S) is (5 equiva-
riant, and thus one obtains a family of operators, {δc:ce93}, on Γ0(S).

The Atiyah-Singer Index theorem for families (cf. [21, 12 and 8, 10]) assigns
topological significance to continuous families of elliptic operators. The proof of
Theorem A1.2 is an application of these ideas. Specifically, the approach in [12] is
adapted here. In order to effect this adaptation, it is necessary to introduce certain
technical details. The next section contains these technicalities.

C2. Operators Indexed by 33

Let Fbe a finite dimensional vector space and let ρ be a representation of SU(2) on
V. Let V be a second finite dimensional vector space with a faithful representation,
{V}f=1cEndF', of the imaginary quaterions, (thus τV'= — δίj' — εijkτk). Let
E = V® V. For each c = (A, Φ) e (£, denote by <5C, the operator on ΓQ(E) which sends
ψ to

As in Sect. B6, let HC(E) denote the (Hubert space) completion of ΓQ(E) in the
norm

IMIc2 = <VΛΨ, VAΨ>2 + <Q*{Φ)Ψ,Q*(Φ)Ψ>2 (C2.2)

A summary of the results in Sects. 6 and 7 of [9] concerning such δc on Hc is
provided by the first lemma.

Lemma C2.1. Let ceK and let E and δceEnd(Γ0(£Γ)) be as defined above. Then δc

extends as a bounded Fredholm operator from HC(E) to L2(E).

Proof of Lemma C2.1. A specific example is treated in detail as Lemma 7.4 of [9].
The general δc is analyzed similarly. Use Lemma B6.4.

As defined in Sect. B6, H(E), L(E)-^S denote the C° vector bundles with fibre
HC{E), L2(E) respectively at c e 93. Because the assignment of c e (£ to δc as a linear
operator from HC(E) to L2(E) is (5 equivariant, this assignment defines a section
over 93 of Horn (#(£), L(£)).
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Lemma C2.2. The assignment of ce33 to δce¥ίom(Hc(E);L2(E)) defines a
continuous section ofJϊom(H(E),L(E)); in fact, a Fredholm morphism.

Proof of Lemma C2.2. With the local trivializations of H(E) and L(E) provided in
Sect. B6, it is enough to check that for fixed c e C, the assignment of ψ e HC(Q)
r^Γ(Q) to δc + ψ e Hom(Hc(E);L2(E)) is continuous. In fact, δc+ψ — δc is a compact
operator, linear in ψ. This is established in Lemma 7.4 of [9] for a specific
representation of SU(2) and the quaternions and the general case is handled
similarly.

Being a Fredholm operator, δc for c e 33 has a finite dimensional kernel. For
Theorem A 1.2, a crucial observation is that dim(ker^c) is bounded a priori
knowing only

Proposition C2.3. Given specific representations of SU(2) and the quaternions on
vector spaces V and V\ respectively, define E(V, F0->R3 as above. There is a
continuous function, z: [0, oo)—>[1, oo) with the following significance. Let neΈ.
Let c = (A, Φ) e (£„. Define δc: HC(E)-+L2(E) as above. Then

dim(kerδc)Sz(\\*FA-VAΦ\\2) \\*FA-VAΦ\\2.

This proposition follows as a corollary to a more general result concerning
bilinear forms on HC(E). The general result is Proposition C2.5, below.

The bilinear forms under consideration are of the following kind. Let £->IR3 be
as above, let c e C and let J be a bounded, symmetric, bilinear form on HC(E). For
Proposition C2.5, below, J will be restricted to be a form which sends ψ,ηe HC{E)
to

J(ψ, η) = <φ, η>c + <ψ, [6l |c(9l0) + τ%(%)-]η)2, (C2.3)

where {Mθ9%}f=1cΓ{AdP) are such that $R = 9ίo + τ % is in L2(AdP®EndV).
A form of this type satisfies Property* with respect to the metric < , >c on

HC(E); this as defined in Sect. 6 of [9]. This fact is proved for three examples in
Lemma 6.7 of [9], and the more general case is handled in a similar way; see
Lemma C2.10, here. As a result of satisfying Property *, such a form J is bounded
from below.

As in [9], an eigenvector of J with eigenvalue λ e R is by definition a nonzero
ψ e HC(E) such that for all η e H£E),

y c . (C2.4)

Concerning bilinear forms on HC(E), the results in Sect. 6 of [9] imply

Lemma C2.4. Let J be a symmetric bilinear form on HC(E) which satisfies Property*
with respect to < , >c. Let λ<\. There exists N(λ,J)<oo eigenvectors,
{ψί}?= l G HC(E) of J such that J is bounded from below by λ on the orthogonal
complement in HC(E) of

Proof of Lemma C2.4. Use Lemma 6.6 of [9] with the bilinear form J( , ) — λ( , • }c

on HC(E).

For those forms J as described in Eq. (C2.3), it is possible to obtain an upper
bound on the number N(λ, J) of the previous lemma.
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Proposition C2.5. Let £—>IR3 be a vector bundle as described in the opening
paragraph of this section. Let ced and let J e Sym2Hc(E)* be a form as described in
Eq. (C2.3). Let

f G L 2(AdP®End V)

be as defined in Eq. (C2.3). For λ<\, let N(λ, J) be the number of eigenvectors of J
with eigenvalues smaller than λ. Then N(λ,J) is bounded above by
z(λ, 2I(c), || 9t || 2) II9ΪII2? where z( ) e [1, 00) depends on c, J, and λ only as indicated;

and z( ) is continuous on (— 00,1) x [0, 00).

Proof of Proposition C2.3 given Proposition C2.5. The result follows from the
Weitzenbock formula for δc which shows that the bilinear form (δc ,δc-)2

 o n

HC(E) is of the kind under consideration in Proposition C2.5. In this Weitzenbock
formula, the endomorphism 9ί of Eqs. (C2.2) and (C2.3) sends ψ e Γ(E) to

iτ\Q^VAΦ-^FA^ψ. (C2.5)
ί = 1

Thus, | | 9 t | | 2 ^ C ' 11*^—^^112? where ζ<co is independent of c. Furthermore,
Groisser showed [16] (see also [4]) that when ce(£π, then
<Ά(c)=^\\FA — *VAΦH2 + 4ππ, and so one obtains from Proposition C2.5 the
required bound for dim(ker<5c).

Proof of Proposition C2.5. The proof is motivated by the proof of Theorem 3.2 in
[22]. The strategy in [22] is to consider v e HC(E) which is a linear combination of
orthonormal eigenvectors, {ψt}, of J, each with eigenvalue less than λ (<1).
Assume that | | ι ; | | c =l, so

v = Σ<*iΨi and Σ α ? = L (C2.6)
i i

Observe that

But, in addition, Eq. (C2.3) implies that

(C2.7)

The goal is to obtain a contradiction from Eq. (C2.7) by assuming that N(λ, J) is
too large.

To begin, let ψeHc(E) be an eigenvector of J with eigenvalue λ<l. Then
Eq. (C2.4) is an elliptic differential condition on ψ. As a consequence of some
standard regularity theorems (cf. [17, Chap. 6]), ψeΓ(E) and ψ satisfies the
equation

VAΨ + Q*(Φ)2Ψ + SR7 Ψ = 0, (C2.8)

where 9T = (1 -λ)~ ̂ ^(SR).
First observe that | |tp| |^ has an a priori bound.

Lemma C2.6. Let ce(£ and let xpeHc(E) satisfy Eq. (C2.8) with \\ψ\\c= 1. Assume
that9i/eL2(ΈndE)nΓ(ΈnάE). Then iJφH^^zίl + ||5RΊ|2), where z< 00 is indepen-
dent of c, 9l\ and ψ.
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Proof of Lemma C2.6. If ψ satisfies Eq. (C2.8), then almost everywhere on R 3,

(C2.9)

The Green's function for -A is the kernel {Aπ\x-y\Yι e(Γ0(R3) x Γ0(R3))*. Let
βx(y) = β(\χ - y\)9 where β(t) e C°°([0, oo)) is the usual bump function (cf. Sect. A3).
Multiply both sides of Eq. (C2.9) by βx(y) (4π\x-y\)~ι and integrate over R 3 . Two
integration by parts yield the inequality

^ ^ ί M.

Here z< oo is a fixed constant. Now with Holder's inequality and Lemma A4.1,
one obtains

Ψ

which is what the lemma claimed was true.
The second step in the proof of Proposition C2.5 is the procurement of a

uniform, a priori bound on the C°'1 / 2 norm of ψ, IMIo,i/2

Lemma C2.7. Under the same assumptions as in Lemma C2.6,

and

\\VM\cSz(l + \m2)(l + K(c)+\m\2), (C2.10)

where z< oo is α constant which is independent of c, ψ9 and 9Γ.

Proof of Lemma C2.7. Equation (C2.8) and the previous lemma imply that

By integrating by parts, one finds as in [5, Chap. 5] that

where z < oo is independent of c and ψ. Thus using Lemma C2.6 again, one
concludes that

Now, as in the proof of Lemma B6.4, let £2 = { x e R 3 : |Φ|(x)<|}. As in the
proof of Lemma B6.4, let b(x) = β(\Φ\(x)). On R3\Ω, set Φ = Φ/\Φ\, and observe
that when x e 9ί3\Ω,

β*(*)2V = β*(^)β*(Φ)V + (IΦI" l)β*(^)2V + (1*1 ~ l)2βφ(^)2V (C2.12)

Now, \ρ+{Φ)ψ\ ^ \ψ\ and also since xφΩ, \ρ^(Φ)ψ\ ^ 2\ρ^(Φ)ψ\. With these two facts,
Eq. (C2.12), Holder's inequality, Eq. (B6.3), and Lemma A4.1, one obtains the a
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priori bound

\\(ί-b)(l-\Φ\)2ψ\\2

The last equation and Eq. (C2.12) yield the a priori bound

2)- (C2.13)

The first assertion of Lemma C2.7 now follows from Lemma A4.12. The second
assertion of Lemma C2.7 follows from the additional observation that

The last inequality above uses Eq. (C2.13) and Lemma A4.1.
The application of Lemma C2.7 to the proof of Proposition C2.5 requires the

introduction of the set £/£R 3 , where the L2-norm of 9Ϊ is large.

Definition C2.8. Let βx(')eC™(lk3) denote β φ c - ( )l), where β is the bump
function of Sect. A3. Let c = (A, Φ) e K, and define for each κ>0,

1 R3

and

U(κ)= U {yeTR.3:\x-y\<\}. (C2.14)
xeϋ(κ)

The following lemma summarizes the first relevant properties of U(κ):

Lemma C2.9. Let 9ϊ e L 2 and define for κ>0 the set U(κ) as in Definition C2.8.
Then

1) U(κ) is a bounded domain.
2) The number of path components ofU(κ) is less than K:~ 21|9Ϊ|)§.

3) Ifx,ye TR3 are in the same path component of U(κ), then \x — y\ < AK ~ 21| 911| 2

4)

Proof of Lemma C2.9. Statement (1) is immediate since 9ΐ e ί A Statement (2)
follows since for each path component q Q U(κ),

Statement (3) is true because if x, y are in a path component q of U(κ), then there
are at least \\x — y\ disjoint balls of radius 1 inside q, and the integral of |9ί|2 over
each one is larger than κ2. On the other hand, the integral of |5R|2 over q is less than
||9t||. Statement (4) follows from Statement (3).
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To complete the proof of Proposition C2.5, let υeHc(E) be as specified in
Eq. (C2.6). Given κ>0, Eq. (C2.7) implies that

ί-λ^ J |(t;,ρ(9t)t?)| + C. J |9ΐ|M2, (C2.15)
R3\Z7(κ) U(κ)

with ζ<co depending only on the SU(2) representation ρ.

Lemma C2.10. There exists a continuous function v: [0, oo)->(0, oo) such that for
any ce£, KE(0, oo) and for all ψEHC(E),

J l(t

The proof of this lemma is postponed until the end of this section.

Proof of Proposition C2.5, assuming Lemma C2.10. Suppose that for a given κ;>0,
there exists ε>0 such that \v\(x)<ε when xeU(κ). Then Lemma C2.10 and
Eq. (C2.15) imply that

With Lemma C2.9, one could conclude that

l-λ^ζl(ί+SΆ(c))κll3\m22l3 + \mt^~3l- (C2.16)

Let N = N(J9λ) and let d = dimF dimF. Given N/d points in R3, there is a
linear combination of eigenvectors, v = Σ °Wi> as in Eq. (C2.6), such that v vanishes

i

at the given points. Due to Eq.(C2.10),

blio,i/2^C (l-A)- 2(l + ||9i||2)(l + 9ϊ(c)+||9ϊ||2). (C2.17)

Thus, if v vanishes at x, then |f(};)|<ε for J GIR3 with

Therefore, one can find iV=[Vol C/(/c)] -3/4π-d | |^||o,i/2'ε"6 points in U(κ)
such that if v vanished at each, then \v( )| would be less than ε on U(κ).

Now choose κ 1 / 3 ^i ( l -λ)ζ-\l +2ί(c))'1(l + TO^T1- And choose
2 ^ 1 3 ^ ! - ^ ) . Then, because Eq. (C2.16) is true, one concludes that

] | π . | | i ; | | ^ 1 / 2 ε - 6 . (C2.18)

Proposition C2.5 follows directly from Eqs. (C2.17) and (C2.18) and Lemma C2.9.

Proof of Lemma C2.10. It is sufficient to prove the lemma with c replaced by cx{c)
as defined in Sect. B3. To see this, use Eq. (B7.2) and Proposition B6.2. Use also
that 11 c ± (c) — c 11 ̂  ̂  42I(c) [to derive, contract Eq. (B3.2) with Φ^-Φic) and then
integrate over 1R3 and integrate by parts]. Write cx{c) = {A, Φ). The proof works by
adapting a trick due to Morrey (see [17, Lemma 5.2.1]). Decompose ψ e HCί(E) as
ψ = ψL-\-ψτ + ψΩ, this as in the proof of Lemma B6.4.

Observe that iϊη,ψe HC1(E), and if σ e Γ(AdP), then

(ηL,ρ*(σ)ψL) = 0. (C2.19)
This is because
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Therefore,

\(xp,ρ^K)ψ)\Sζ\K\\ψ\\ψ'\, (C2.20)

where h/IHv^l + h Λ Here, C<oo is a fixed constant. Observe that Eqs. (B6.3)
and (B6.4) imply that

\\ψ\\6Sζ\\ψ\\Cί and \\ψτ\\2 + \\ψΩ\\2^ζ(l+^(c))\\ψ\\Cl. (C2.21)

Now, to apply Morrey's trick, cover the IR3 by a uniform countable set of unit
balls, {Ba}. Let {ω2} be a subordinate partition of unity, for which \dωa\ is bounded,
independently of α. Be aware that

Holder's inequality with

Now evaluate

ί ISίl2''3!!/;'
R3\[/(κ)

Eq.

VII

ί
:ndR3\U(κ))

(C2.20)

|9ΐ | 2<κ:.

yields

Σ ί ω£|9
α βαn(lR3\t/(κ:))

• f
!_R3W(κ)

^ | 2 / 3 | φ '

2Ί1/2 _

(C2.22)

(C2.23)

. (C2.24)

The second inequality above is Holder's inequality with Eq. (C2.22). The third
inequality is a Sobolev inequality (cf. Lemma A4.1) and the fourth inequality uses
Lemma A4.1, Proposition B3.4, and Eq. (C2.21). The constant, ζ, changes from
line to line, but it is always independent of c and ψ. Here, v'( ) e C°([0, oo), (0, oo)).
The lemma follows directly now from Eqs. (C2.23) and (C2.24).

C3. Topology of the Dirac Family

Both H(S) and L(S) as defined in Sects. Cl and B6 are vector bundles over the
paracompact space 23. According to Lemma C2.2, the family of Dirac operators of
Eq. (C1.2) indexed by 33 defines a Fredholm morphism, δ:H(S)^>L(S). As
discussed in [8] and [10], δ defines in a natural way, characteristic classes,

χp>*(δ)eH2p*(&;I) for p , 9 e ( 0 , l , . . . ) .

Here Hι( Έ) is the Γh (compactly supported) cohomology group with coefficients
in Z. The class χp'q(δ) is a determinant of Chern classes of the "virtual" vector
bundle Index(S = [ker(5] — [cokerό] in the K theory of 23.

Proposition C3.1. There exists an unbounded set ΛQ x [0,1,...) such that for every
neΈ and p,qεΛ, 0*χp>q(δ)eH2pqφn;Z). 2

With Propositions C3.1 and C2.3 one obtains immediately a proof of Theorem
A l l .
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Proof of Theorem A2.L For fixed n e Z , let (p,q)eΛ be such that χp'β(<5)φ0.
Consider the family, g, of compact subsets Fg55π such that the restriction map
from H2pq0Bn;Z) to H2pq(F;Z) does not annihilate χp q{δ). As discussed in
Sect. Al, this family is homotopy invariant. Define 8 1 ^ = 21^ by Eq. (A1.7).
According to Proposition 5.3 of Koschorke [10], χp>q(δ) = 0in H2pq{F\Έ) if for all
ceF, dim(ker^c)<p and dim(cokerί)c)<g. Therefore, each F e g must contain a
configuration c for which dim(kerδc)^p. In fact, since the index of δc is —n ([9]
and also [23] but use Lemma C2.2), each F e g must also contain a configuration
c for which dim(ker(5c)^g — ft. Proposition C2.3 now provides a lower bound for
9Ip>r As Λ. is unbounded, one concludes from Proposition C2.3 that the set
{^!U : (^' #) 6 ^} ^ Critn ^ [ '̂ °°) *s a ^ s o unbounded. This proves Theorem A2.1.

The proof of Proposition C3.1 follows closely the discussion in [12] by Atiyah
and Jones and especially their proof of Theorem 4.6 of [12].

The proof begins with a digression. For t e [0, oo) and 0 < n e Z, let Cn>t denote
the space of unordered π-tuples of points in R 3 which are mutually separated by a
distance larger than t. Thus CnJ is the quotient by the symmetric group, Σw of

The spaces C n ί for t > 0 are strong deformation retracts of Cπ, which is the space of
unordered sets of n distinct points in R 3 .

A construction in [5, Chap. 4] provides a set of approximate solutions in ©„,
ft>0, of the BogomoΓnyi equation, Eq. (A1.5). This set, VnC%$n is described next
(see Definition C4.2). It parametrizes the configurations of n widely spaced,
Prasad-Sommerfield solutions to Eq. (A1.5). (These are exhibited in Eq. (C4.8),
and discovered in [24].)

Lemma C3.2. There exists a family of configurations, Vn = {c(n,t; {*«}"= i)}c33π

which is parametrized by t e [1, oo) and {xα}α=i e Cnt with the properties below:
(1) There exists for each n,ίMe(l,oo) such that for each te[tn, oo), the

assignment of c(n, ί, {xα}) e S π to {xα} e CnJ defines an embedding J: CMjί-*33n.
(2) For fixed te[tn, oo) and for y = {xa}eCnt, there exists # α e(δ swc/z ί/zαί

^αc(n,ί;3;)(λ;) = c1(λ;-xα) ί/xelR3 satisfies | x-x j<lnί . Here, c1 =(i41,Φ1)e(£1

is ί/ie unique (up to (5 j Prasad Sommerfield solution to Eq. (A1.5) wiί/z Φx(x = 0) = 0.
(3) There exists ζ which is independent ofneΊL.te \tm oo) and yeCnt with the

following property: Let c(n, t;y) = (A, Φ). Then

K lx-xJΓ 1 and \*FA+vAΦ\
a

(4) IfxeΊR3 satisfies inf|x-xα |<lnί, then *FA-VAΦ = ΰ. If inf | x-x α | ^

The proof of this lemma and also the proof of Lemma C3.4 is provided in
Sect. C4.

The first step in proving Proposition C3.1 is to examine the kernel and cokernel
of δc as c varies in Vn; the purpose is to calculate the restriction of χp'q(δ) to
H*(VH;I).
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Lemma C3.3. For each 0<neΈ, there exists t(ή) e [ίπ, oo) such that for each t > t(n)
and ceJ(Cntt), kQrδc = 0 and dim(coker<5c) = ft.

Proof of Lemma C3.3. This follows from Proposition C2.3 and property (4) of the
set Vn.

Now it is a straightforward argument using Lemma C2.2 and property (1) of Vn

to establish that for t > t(ή), the assignment to c(n, t;y)e J(Cnt) of the vector space
coker<Sc ~(C" defines a C° vector bundle over J(Cnt). This bundle is denoted by Nn.

Consider the bundle Nn->J(Cn t):

Lemma C3.4. Given 0<neΈ and t > tin), let Nn->J(CnJ) be as defined above. There
exists t'(ή) < oo such that for t > t'(ή), the pull-back ofNn to Cna is isomorphic to the
vector bundle associated to the standard representation σn of 7tι(Cntt)~Σn.

The proof of Lemma C3.4 is deferred to Sect. C4. Suffice it to say that the
construction in Sect. C4 assigns to each c(n, ί, {xα}) n approximate "zero modes" of
δ*, one concentrated near each xa. Then Proposition C2.3 provides a tool to
project isomorphically the (EnQHc(E) of this approximate cokernel onto the
cokernel of δc.

For 0<neZ, let t'(ή) be as in Lemma C3.4. Assume that t>t\n). The Chern
classes of J~ί(Nn)->Cn t are computed by Atiyah and Jones in Proposition 4.5 of
[12].

Because J 1 (Nn) -> Cn t is the pull-back of the virtual bundle, Index δ e K0Bn\
the computation in [12] asserts that certain specific Chern classes of Indexδ are
therefore nonvanishing in #*(3$Π:Z). In particular, one obtains from [12]:

Lemma C3.5. Given any k^0, pick a prime p>k+l. Then in H*(Sp(p_ i _k) Z), the
class

The second step of the proof of Proposition C2.5 is to establish a relationship
between χp q{δ) in #*(&„;Z) and χp>q(δ) in H*(%\Έ) for ίφn. Atiyah and Jones
faced an analogous problem in [12] and the solution here is adapted from their
solution.

Let Ωn = Ωn(S2;S2). Observe that / induces an isomorphism by pull-back of
H*(& Έ) with H*(&„ Έ) (see Lemma B5.1). To avoid confusion, denote by χ£ q the
class I*χp-q(δ) in H2pq(Ωn;Z).

The characteristic classes {χζ'q} can be viewed as follows. First, a straightfor-
ward argument which is similar to the proof of Proposition B6.3 shows that the
inclusions of H(S) in 23 xL2

;l0C(S) and of L(S) in © x L2(S) induce vector bundle
isomorphisms

I*H(S)~Ω(S2;S2)xL2(S),

and

*L(S)~Ω(S2;S2)xL2(S)

(cf. Sects. 6 and 7 of [9] and also [23]). Therefore, I*δ defines a continuous map,

I*δ: Ω(S2; S2) > Fred(L?(S); L2(S))

ZxBU.
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The cohomology ring of B U is a polynomial ring on the universal Chern
classes, and each χ%'q(δ) is the pull-back of a specific such polynomial by I*δ.

As is well known, the Ωn's are mutually homotopic. The homotopy of Ωk with
Ωk +1 is induced by the commutative addition operation on π2(<S'2 ή). The effect of
addition on χζ'q is summarized next.

Lemma C3.6. There exists a map, t:Ωn-+Ωn + 1 which induces a homotopy equival-
ence and is such that for every pair (p, q) of non-negative integers, t*χ^ί and χζ'q are
cohomologous in H2pq(Ωn;Z).

The proof of Lemma C3.6 is provided in Sect. C5.

Proof of Proposition C3.1 given Lemmas C3.2, C3.3, and C3.6. Lemma C3.5
establishes that there exists arbitrarily large, non-negative integers (p, q) and an
integer n > 0 such that χp'q(δ) + O in H2pqφn;Z). But then χ£' β φ0 in H*(Ωn;Z)
and Lemma C3.6 establishes that χp'qφ0 in U2pqφx\Έ) for every leZ.

As a parenthetical remark, the Dirac operator defines, via its total symbol, a
second map from Ω(S2 S2) into ΈxBU. Indeed, the assignment to e e Ω(S2 S2) of
the total symbol σ(δI{e)) defines upon restriction to the unit ball S5 in T* (the set
{(x,ξ)eJR3xΊR3:\x\2 + \ξ\2=l}), the following continuous map from S5 into
£/(C2(χ)<C2Ht/(4) [25];

Here ξ. is Clifford multiplication by ξ.
As e varies in Ω(S2 S2), one obtains a continuous map, σ: Ω(S2 S2)->Ώ5(U(4)).

Now, U(4) includes in U(n) for n> 4 as

/U(4) 0

and so σ defines by direct limit, a continuous map σ:Ω(S2;S2)-+Ω5(U), where
U is the group of unitary automorphisms of a separable complex Hubert space
[L2(S), for example].

Following Atiyah-Jones [12] one uses the Bott periodicity theorem to identify
up to homotopy Ω5(U)~ZxBU. Thus, σ maps Ω(S2;S2) continuously into
ΈxBU.

The Atiyah-Singer index theorem for families asserts that the two maps, I*δ
and σ are homotopic as maps from Ω(S2; S2) into Z x BU.

C4 The Dirac Operator for Multi-Monopoles

This section contains the proof of Lemmas C3.2 and C3.4. These lemmas with
Lemma C3.6 are the superstructure which holds up the somewhat formal
relationship between the Dirac operator and the cohomology of 33.

Proof of Lemma C3.2. The configurations of Vn are constructed in [5, Chap. 4.7],
though the language there is oriented more to physicists than it is here. For this
reason, the construction will be reviewed briefly. Let y = (n, ί, {xα}) The configu-
ration c(y)eVn is specified by the following cohomological data: a finite open cover
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of R 3 , {Uj(y)}; transition functions {&/}>)•' Utnl/J.->SU(2)}; and fields
{Cj{y) = (Aj9Φj)(y)} on Uj(y) satisfying on U^Uj the cocycle relation c^y)
= gij(y)'Cj(y). The fields {cj} and the transition functions {gi}) are C0 0.

The data {UJy), &/J/)} for fixed j ; defines a principal SU(2) bundle, P(y)-^R3.
The data {c/y)} defines a smooth pair, c\y), of a smooth connection on P(y) and
section of AdP(y).

An isomorphism η: P->P(y) defines by pull-back η*c'(y) e (£„. As any two such
isomorphisms differ by an element in (5 = Aut P, the assignment to y = (n, ί, {xα}) of
the data (P(y), c'(y)) defines a unique element, [c'(y)] e £„/© = 93W/SU(2) = &JS1.

For the reader's convenience, the cohomological data {Uj{y),gify\ cfy)} for
(P(y), c'(j)) is presented explicitly in Definition C4.2 at the end of this section. The
reader should refer there during the discussion that follows.

Statements (2-4) of Lemma C3.2 follow by direct calculation with (P(y), c\y)).
The reader is referred to [5, Chap. 4] for the details.

Give the quotient topology to &JS1. For fixed te[tn9 oo), the continuity of
[c'( )] G &JS1 as a map of C n ί is straightforward to check. This can be done by
taking a subordinate cover, {U'j} to {Uj(y)} such that for / e C B > f J in a
neighborhood of y, {[/}} also defines a subordinate cover to {£///)}• This allows
one to directly compare the data for y and / that Definition C4.2 provides. The
details are left to the reader.

Observe that [c'( )] is an embedding for fixed t e [tn, oo) of C π ί into
This is because the assignment to [c = (A, Φ)] e ©n/S1 of

defines, upon restriction to I m ^ ^ )], a continuous inverse to [c'( )].

Finally, it remains to show that for fixed te[tn, oo), [c'( )] lifts to an

embedding, J:Cn j ί->23n. Let y = (n, ί, {xΛ}) with te[tn9 oo). Identify P(y) over

I7(1)C]R3 with C/(1)xSU(2). Here, (1) = (1,1, ...)x {-1,1} as defined in

Definition C4.2. Let x(y)= (4Σ\xΛ\,0,0^61/(1). A point in P(y)L ω is

Let ^(y) e P(y)lo be the parallel transport of p(j ) to 0 e R 3 , by the connection in
c'(y), along the line segment between x(y) and 0.

As for [<:'(•)]> the assignment for fixed ίe[ίM, oo) of y = (n9t9{xgι}) to
(P(y), c^y), q(y)) defines a continuous embedding of CnΛ into (Cπ x Po)/@ which
will be denoted [c'( ), g( )].

Let (c, <j) G (£„ x P o . The parallel transport of q by the connection A(c) along the
rays from 0 e R 3 defines a continuous section of ((£„ x Po) x Γ(P) over (£„ x Po)/@.
Denote this section by s.

The assignment of (c, g) G (£„ x P o to s*(c, f̂) c e 33n defines a continuous map
from ((£„ x Po)/© onto ®n. Let j : Cπ, f->©n denote the image of [cr( •),«(•)] in ©„.
As;( ) covers [c\ )] with respect to the projection ©Π-^SΠ/SU(2), one concludes
that j(-) is an embedding. For z = {xa}eCnft, let j(z) = (A(z)9 Φ(z)), and let
x(z)= ( 4 Σ W , 0 , 0 V By construction Φ(z)(x(z)) = \Φ(z)\(x(z)) σ\

With Definition C4.2, one can check that 7(2) G £° as defined by Eq. (B4.1). Let
R(>) be the map of Lemma B4.2. Notice that \Φ(z)\ is nonvanishing on the line
segment between x(z) and (2R(j(z)), 05 0). Therefore, the homotopy lifting property
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of the fibration S1-+S3^>S2 provides a continuous map, g( ) : CM-»SU(2) such
that for all yeCΠfί,

βl(z) (Φ(z)/\Φ\(z)) (R(j(z))n)g^(z) = σ
3

Finally, j( ) and c2θ'( )) are homotopic as maps from Cnt into fi°. Thus, the
homotopy lifting property provides a continuous g( ) : Cn f-*SU(2) such that for

g(z) (Φ2(j(z))/\Φ2(j(z))\) (R(c2(j(z)))n)g-\z) = σ3 .

Therefore, J(') = g(-)j( ) maps Cnt continuously into $5n and since J( ) covers

ίc(' )]> ^( *) is a n embedding.

Proof of Lemma C3.4. The Prasad-Sommerfield solution, c1 ? of Eq. (C4.8) has the
property that dim(kerδCl) = 1. Let ψ e Γ(S) be an L2(S) normalized generator for
coker<5Cl. The explicit form of ψ from [16] shows that for all 3

For fixed te[ίπ, oo) and z = {xa}eCnv define for each αe{l,.. .,n},

φβ(z) (x) = / U α ) (x)ffβ- ^ x M x ~ x«)ffβ(x) (C4.2)

Here, #α( ) e (5 is as specified in statement (2) of Lemma C3.2. Also, βρ(a) (x)

= β(\x-xa\/Q).
Using Eq. (C4.1) and statement (2) of Lemma C3.2, one finds that there exists

Ce[0, oo), which is independent of te[tm oo) and zeCnJ such that for each

ί/2. (C4.3)

Thus for t>t(ri)$>ζ2, Spanlt/ ^z), ...,i/;n(z)} in L2(S) is π-dimensional.
With Definition C4.2, it is straightforward to check that for t>t(ή), the

assignment of

Span{φ i(z),...,φn(z)}CL2(S)

to z 6 C n ί defines a continuous map of CΛ>ί into the Grassmanian of n-dimensional
subspaces of L2(S). The graph of this map is a (C"-vector bundle, N'n-+CntV Since
interchanging points xγ9 xβ in (xί,...,xn)e C M ί induces the interchange of ψγ with

ψβ9 the bundle JV; is Cn>ί x (C".

The vector bundle Nn-^Cnft of Lemma C3.4 is also defined by a map from CnJ

into the Grassmanian of rc-dimensional subspaces of L2(S); in this case z is sent to
cokQΐδJ{z). A continuous section over CB f t of Hom(iV^iVM) is defined by the
L2(S)-orthogonal projection of Span{φα(z)}"= 1 onto coker<SJ(z). Denote this
section by Π. Then Lemma C3.4 follows from

Lemma C4.1. There exists ί'(n)e [ίπ, oo) such that for t>t/(n\ L2(S) orthogonal
projection Π:N'n^>Nn is a bundle isomorphism.

Proof of Lemma C4.L For t e [ί(n), oo) and z e CM>ί, let <5J(Z): L
2(S)^HJ(z)(S) denote

the adjoint of (5J(2). Lemma C2.2 implies that δf{z) defines a continuous Fredholm
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section of Horn (L2(S);J*H(S)) over Cn>(. With Eq. (C4.3) and Statement (2) of
Lemma C3.2 and Lemma A4.1, one finds that

(δ%)Ψa(z), δ%z)Ψx{z)}2 ίζ-Γ1'2, (C4.4)

for each αe{l, . . . 5 n}. Again, ζ e [0, oo) is independent of £, z e Cnt and α.
Consider now ψ e Span {φα(z)} with Π(z)ψ = 0. Then the Fredholm alternative

implies that ψ = δJ{z)u for some ueHJ{z)(S).
Equation (C2.21) and statements (3) and (4) of Lemma C3.2 imply that HJ{z)(S)

embeds in L2(S) and this embedding constant v is independent of t e \t(ή), oo) and
zeCΆtV

Therefore, since

Eq. (C4.4) implies that

\\δwu\\2

2^ζ'\\u\\2r^\\ψ\\2. (C4.5)

But the Weitzenbock formula for δ m [Eqs. (C2.3) and (C2.5)] with Lemma A4.1
and Statement (4) of Lemma C3.4 imply that there exists f{ή) e [ί(rc), oo) such that
for t^f{ή) and zeCn>t,

I I W i l 2 ^ " I U z ) ^ I M I 2 - (C4.6)

Now Eqs.(C4.5) and (C4.6) imply that \\\p\\2

2^2ζv-h~ 1 / 4 | M l i Hence, when
t>t\n) = msLx(16C4v~4,f(n)), then ker!7(z) = 0 for any zeCnΛ.

This section ends with the definition of the space Vn. To present the definition,
introduce for each αe{ l , ...,n}, polar coordinates (rα, θα,χα) on R 3 , where
ra = \x — xa\ the polar angle 0α is such that θa = 0 is the ray in R 3 with base xa and
direction parallel to n = (1,0,0) e 1R3 the angle χα is such that (θa = π/2, χα = 0) is the
ray on IR3 with base point xα and direction parallel to (0, l,0)eIR 3

For ρ > 0 and α e {1,..., n}, let Bρ(x) denote the open ball in R 3 with center xa

and radius ρ. Let βρ(oc)(x) = β(\x — xα|/ρ), and let

Let {af}f=1 be a fixed basis for su(2) satisfying [σf, σ J ]= —2εijkσk.

Definition C4.2. The cohomological data for the configuration c(n, ί, {xα}): Let

(A) The cover {I/,.}:

For αe{ l , ...,w}, set l/α = β 2 inί(4
For αe{l,...,«} and εe{ — 1,1}, set

: ε(θα(x)-π/2)<π/4}.

For each of the 2" points (ε) = (ε l 9..., εM) e x { — 1,1},

£7ω = {x e R 3 : for each «e{ l B}, εα(0α(x) - π/2) < π/4}\U 5 3 .„,(«) • (C4.7)
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(B) The transition functions
On UanUaΛ9 set

On UanUΛt-l9 set

ff(«, - 1 )

On t / α l n C / α _ 1 ? set

On t/ ( β t β Onl/ ( e ), set

On UieΊnUiε), set

1 + cosχασ2).

+ sinχασ3).

(«, e') (ε)

)= Π
α = 1

(C) The configuration {Cj}:
For α e {1,..., n}, set cα = (>4α, Φα) on C/α to be

(C4.8)

*=i(l ~ ί*α/sinhrα) (sin2 M z α ^ 3 + (cosχασ2 - sinχ^1)^^,,

- (cos χaσ
x + sin χασ2) sin θa cos θαdχα). (C4.9)

For αe{l,.. .,n} and ε e { - l , l } , set cα>ε = ( ^ α j ε ? Φ α ε ) on (7α>ε to be

Φ«,e = (l ~ l/rα + jS2 1 n ί(α)(cothrα- l))iσ 3 ,

^ α , β = i ί ( e - cos θa)dχy + iS2 int(α) exp&l - ε)χασ3)

χασ1 +sinχασ2)sinθαί/χα] exp(-^(l -ε)χασ 3)}.

For (e) e x {-1,1}, set c(β) = (>4(e), Φ(θ)) on [7(e) to be

Φ ( ε ) = ( l - Σ

Λ(s)= Σ w4
(C4.10)

C5. The Index and Ω's Group Structure

The map I*δ from Ω(S2;S2) into Fτed(L?(S);L2(S)) sends ΩM into
F_nCFred(L ι

2(S),L2(S))? the space of Fredholm operators from If(S) to L2(S)
with index — n.

Denote the homotopy addition operation on Ω(S2;S2) by # [see Eq. (C5.3)
below]. The homotopy equivalence of Ωn(S2;S2) with Ωn+ι(S2;S2) is induced by
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the map t: Ωn->Ωn+ ί which sends e e Ωn to t{e) = eίΦeeΩn+u where e1 e Ω, is the
identity map of S2. With t one obtains the continuous map

Each Fπ is homotopic to every other [10]. The composition with a fixed
operator of index —1, ZeFred(L2(S); L2(S)) [see Eq. (C5) below] induces the
homotopy equivalence between F_π and F_π_ v Thus one obtains the continuous
map

Pδ^-l-.Ω^F^.,. (C5.2)

Lemma C3.6 is proved by showing that for each n, the two maps t*I*δ and
I*δ -1 are homotopic as maps from Ωn into i?_n_ v Thus, Lemma C3.6 follows from
Lemma C5.1, below, which makes this assertion.

To be more explicit, let {τ1'}^ λ be an orthonormal basis for su(2) 6 EndC2 with
(τ*)2 = — i Let (θ, χ) be coordinates on S2 C su(2) with θ e [0, π] the azimuthal angle
and χe [0,2π] the equatorial angle. Require that θ = 0 is the point | τ 3 .

Choose C00 maps, σ±£ί2 0, which have the following properties: σ%(θ,χ)
= {θ+,χ), where dθ+/dθ^O; Θ+(Θ) = 2Θ when θe[0,π/4] and θ+=π when
0e[3π/8,π]. The map σ_ has σ*(0,χ) = (θ",χ) = (π-θ+(π-0),χ).

Let e = Ωn be arbitrary and set (0e,χβ) = e*(0,χ). Also set (0e"5χe~) = β*(0",χ).
Let eί Gί2x be the identity map.

Now, define t(e) by setting

t(e)= ί c o s θ ^ + s ine ίcosχτ^s inχτ) for 0e[O,π/2],
l-cos0β~τ3 + sin0~(cosχe"τ1-sinχ~τ2) for 0e[π/2,π],

The reader can check that ί(e) eΩn + 1 if e e Ωn.
To define the homotopy equivalence from F_n to F_w_ l 5 introduce the pseudo-

differential operator Z:Γ0(s)->Γ(s) by setting

~V]. (C5.4)

Here $ is defined by Eq. (Cl.l).
The operator / is an elliptic, Fredholm operator from L2(S) to L2(S) for the

following reasons: First, ( — A + I ) " 1 is, up to a constant, an isomorphism from
If(S) to L£(S). Then, δI{eι) is Fredholm of degree - 1 from L£(S) to L£(S) (cf. the
arguments in Sects. 6,7 of [9] or [23] plus [25]). Similarly, the operator $ — τ3 is an
isomorphism from L£(S) to L?(S) since

0-τ3)*($-τ3)=-A+i. (C5.5)

Lemma C5.1. For each neΊL, the map t*I*δ: Ώ M - > F _ Π _ x as defined by Eqs. (C1.2)
and (C5.3) and the map I*δ l: ί2 n -»F_ π _ x as defined by Eqs. (C1.2) and (C5.4) are
homotopic.

Proof of Lemma C5.1. If e e Ω(S2 S2), then for all k e (0,1,2,...),

\-fc-l
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This implies that multiplication by A(I(e)) defines an operator fromLfc+1(iS) to
Lfc(S) which is compact. As a consequence, t*I*δ is homotopic to the map which
sends e e Ω(S2 S2) to the Fredholm operator

> (C5.6)

Also, 7*(5 I is homotopic to the map which sends ε e Ω(S2;S2) to

ΐ(e) = 0+(l-β)e)(#-τ3)(H(l-β)eί)(-A+±Γ1. (C5.7)

The identity map of S2 is homotopic to the maps σ+:S2-+S2 and it is also
homotopic to the reflection v\S2-+S2 which sends (θ,χ) to (π — 0, — χ). By
composing with these homotopies, ί( ) is homotoped to /x :i2n->F_n_1? which
sends e to I2(e)( — Δ+^)~1, where

β)e1 σ+). (C5.8)

To examine Z2(e), let (r, θ, χ) be spherical coordinates on IRA For 0 e [0,5π/8],

/2(e) = [- i8τ3(ίf-τ3) + ( - ^ + i)](^ + (l-i8)ί(e)). (C5.9)

For 0e[3π/8,π],

l2(e) = (H(l-β)t(e))(-τ30-τ3)(β ) + (-Δ+i)). (C5.1O)

One can readily check that Eqs. (C5.9) and (C5.10) imply that

l2(e) = ($Hl-β)Ke))(-Δ+ϊ) + 9l(e), (C5.ll)

where 9ΐ(e): I|(,S)->L2(S) is compact. This implies that ίx( ) is homotopic to t( ).
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