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Abstract. A new theorem relating mass and charges is deduced, which can be
applied to more general physical systems than those covered by the theorem of
Gibbons and Hull [1].

1. Introduction

In the Newtonian description of gravitational interactions the masses in consider-
ation are positive. Since the beginnings of general relativity the question of the
positivity of mass has been in the mind of physicists. One of the reasons why
positivity of the energy is of fundamental importance in general relativity, is the
fact that the energy carried by gravitational waves [2] is positive [3-5]. And so one
would like to know if the Bondi [6] mass is positive for any retarded time u.

Schoen and Yau [7] gave a proof of the positive energy theorem at spacelike
infinity involving extremal surfaces.

Earlier Deser and Teitelboim [8] gave a proof that the total energy in
supergravity theory is nonnegative. Grisaru [9] presented an argument, based on
Deser's and Teitelboim's result, in which it was stated that the energy functional in
classical Einstein theory is positive.

Finally Witten [10], perhaps inspired by these results, gave a proof that the
ADM mass [5] is positive, based on a technique using spinors. The result of the
positive energy theorem using spinors has been generalized by Gibbons and Hull
[1] to 4-dimensional space-times admitting electromagnetic charges. The inequal-
ities they obtain involve the gravitational mass and the charges mentioned
above. As in Witten's version they impose an elliptic differential equation on the
spinor field, which involves the electromagnetic fields, together with a local
inequality which is responsible for the resulting global inequality.

The purpose of this work is to show that the local inequality used by Gibbons
and Hull [1] is actually a member of a 1-parameter family of local inequalities for
which the same philosophy holds. In fact the parameter here called r must satisfy
0 ̂  |r| ̂  1 in order to produce the positivity condition, and the results of Witten and
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Gibbons and Hull are obtained for the extreme values |r| = 0 and |r| = l
respectively.

In Sect. 2 one can find a brief review of the relevant aspects of the positive
energy theorem, in which the form suggested by E. Witten is compared with the
one suggested by Nester.

In Sect. 3 a 2-form is introduced which depends linearly on the parameter r,
and it is found that the positivity argument goes through provided |r| ̂  1. Finally a
discussion of the physical significance of this inequality is presented.

2. Positive Energy Theorem

The original idea has been to apply Stokes' theorem to an hypersurface N which
stretches out to spacelike infinity. To N one attaches an asymptotic boundary dN.

From Witten's work, the form to be integrated on N is

Wab = \zab

cdDc(ΨydΨ), (2.1)

where a,b,c, ... are abstract indices [1 1] in the space-time M, D is the Riemannian
connection in M, and the spinor Ψ is assumed to satisfy

VsDgy = 0, (2.2)

where α=l,2, 3 runs through the spacelike indices of an orthonormal basis in
which the timelike vector is orthogonal to N. Originally Witten worked with a
spinor just defined on the hypersurface N, but here ψ is thought to be a spinor field
in the space-time M.

The idea now is to relate the integral of this form to the ADM mass. Under
condition (2,2) one has

ί W=8πPβ

ADM«P0yβy0, (2.3)
dN

where ΨQ is the asymptotic value of Ψ, assumed constant.
By applying Stoke's theorem,

f W= I dW9 (2.4)
dN N

and proving that the right-hand side is positive under the dominant energy
conditions, one completes the proof of the theorem.

Existence of the solution to the equation imposed on ψ has been established
[12]. Nester [13] has suggested instead integrating the form

(2.5)

where c.c. means complex conjugate.
One can find the following relation between these forms:

(2.6)

where H> = yaDa is the standard Dirac operator on M.
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One observes that if

$Ψ = 0 (2.7)

(which, by demanding eQaDaΨ = D0Ψ = 0, agrees with Witten's condition), then

Eab=-Wab. (2.8)

Working with an orthogonal tetrad in which the timelike vector is orthogonal to
AT, one studies the spacelike components of dE

d^^βOαJ^/W^ (2.9)

which one notices is independent of D0Ψ, so the integral in Eq. (2.10) is
independent of it. Similarly one can see that the integral in Eq. (2.3) is independent

of DO*'-
Nester has also pointed out that as long as Ψ behaves asymptotically as

Ψ0 + 0(l/r)9 where ^o is a constant spinor with respect to the cartesian
coordinates at spacelike infinity, then

dN
(2.10)

If the dominant energy condition holds, Eqs. (2.2), (2.9), and (2.10) immediately
give the positivity of energy. It is worthwhile to remark that if Eq. (2.2) is dropped,
then one cannot use Wab in Eq. (2.3) to give the ADM momentum. However, as
Nester has shown, Eq. (2.10) remains valid independently of the imposition of the
Witten equation (2.2). For example, in the case of the Reissner-Nordstrόm
solution one can check that the form Eab correctly gives the mass even when Ψ
satisfies a condition of the form $Ψ = SΨ, where S is an operator linear in Fab. This
fact has already been used by Gibbons and Hull [1], who chose S such that one
gets a desired inequality involving the charges of the electromagnetic fields. Their
theorem relates mass and electromagnetic charges. They assume the spacetime M
is asymptotically flat and satisfies the Einstein field equation, where the energy
momentum tensor is expressed as the sum of two parts, the matter tensor Tab and
the electromagnetic stress tensor. It is also assumed that the matter tensor satisfies

Tabu
av" ^ [(.«2 + («2] 1/2 (2. 1 1)

for all pairs of future directed timelike unit vectors ua and va, where JE and JM are
the electric and magnetic vector current, respectively. The main reason for
imposing the last condition on the matter tensor is that it assures negativity of the
integral of the exterior derivative of the appropriate generalization of E; also one
can note that it is the local expression of the result expressed by inequality (2.12).
Then it is proved that associated to a proper non-singular hypersurface N the
ADM [14] or the Bond [6] mass m satisfies

m^(βE

2 + QM

2)1/2, (2 12)

where QE and QM are the electric and magnetic charges respectively associated with
that hypersurface. The proof is similar to the version of the positive energy theorem
given by Nester [13], with the addition of the introduction of a supercovariant
derivative [15] acting on spinors.
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One notes that the condition (2.11) offers some difficulties when one tries to
apply it to many physical systems. This comes from the fact that the elementary
charge (the electron charge) is huge1 when compared with the mass, let us say, of
any atom. So, for a substance made out of atoms with typical mass of 50 atomic
units, one needs only to have an excess of one electron charge every 1016 atoms to
produce a situation in which the condition (2.11) does not hold. In particular one
can see that by using a battery from a flashlight to hold two average coins at a
potential difference of 1.5 V, and placing them parallely at a distance of 1 mm, one
produces a situation in which condition (2.11) does not hold.

The result appearing in the next section will not suffer from this difficulty.

3. A 1-Parameter Family of Theorems

In the study of the positive energy theorem in a 5-dimensional spacetime [16] in
the context of Kaluza-Klein theory [17], one makes use of a 3-form which is the
natural extension of the 2-form used by Nester. This 3-form is Lie derived in the
direction of the extra dimension, and so defines a 2-form intrinsic to the
4-dimensional space-time M, which is given by

aab = Eab + rΨ*Faby5Ψ + rΨFabΨ, (3.1)

where r is a parameter and Fab the Faraday tensor. The integration of α gives

f α = - %πΨtipaγ0ya + QEry0γ5 - QMry0) Ψ0 .
dN

In spite of the fact that α is defined in the space-time M, it is more convenient for the
following calculation to use the notation borrowed from the treatment of
5-dimensional Kaluza-Klein theory [16, 17]. So @> below refers to the Riemannian
connection of a Lorentzian metric with signature (H ----- ) and having a
Killing vector χ4 satisfying g(χ4, χ4) = — 1 . In the integration of dα one will be
concerned with

(50 + 29 ,(Ψ}f^ yd^ d(Ψ)

r2)H0eΨyeΨ], (3.2)

where the Einstein field equation, Gab= -%πTab + 2Hab and Maxwell equations2

have been used, and where
£7 = F F c— ®ab F Fed Π λ"lnab — racrb A ed ' \^'^)

Here Tab is the matter tensor with no contribution from electromagnetic fields.
Note that one is using y4 = y5, so in particular y4= —y5.

One knows that
(3-4)

1 Here one is using units in which the velocity of light and the gravitational constant are one.
The relation between the electric charge of the electron and its mass is e/me = 2 x 1021

2 For generality one is considering a non-zero magnetic current
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so the idea is to require

Tabu«vb ̂  [(rJ«EιO
2 + (rJ«MιO2]1/2 (3.5)

for any pair of future directed timelike unit vectors u and v in M, and some
condition on the spinors such that the integral of dα is negative, r φ 0 is to be chosen
such that the inequality (3.5) has the widest possible physical applicability (see
comment at the end).

The following equation is assumed to hold

(3.6)

It is useful to rearrange terms by defining

where μ and v are constants to be determined by maximizing the allowable values
of r. Then one has

- 8πTQeΨyeΨ - 8πrJ*Ψy5Ψ

-r2z)HQeΨyeΨ], (3.7)

where z = 1 6(v2 + v + \ + 2μv + 3μ2).
Here v and μ are chosen such that z is minimum, which gives v= — f, μ = i;

zmin — 2. Note then that Eq. (3.6), to be satisfied by the spinor, can now be expressed
byγ*DeΨ = 0.

From Eq. (3.7) it follows that after putting z = zmin = 2, the integral J da will be
N

negative if r2^ 1. And so the following result is deduced:

Theorem. Let M be a space-time asymptotically flat at spatial infinity in which the
Einstein field equations are satisfied. Let N be a non-singular spacelike hyper surface
extending to spatial infinity. Assume that on N the following condition is satisfied

Tabu
avb^(rJa

EuJ2 + (rJa

Mua)
2T12 , (3.8)

for |r| ̂  1, and where u and v are two future directed timelike unit vectors in M; then
the ADM mass and the electromagnetic charges satisfy

m^ί(QEr)2 + (Qur)2ϊ12. (3-9)

Equation (3.6) with |r| = 1 is essentially the same3 as Eq. (22) of Gibbons et al.
[18]4, so one can apply their argument to the case of black holes. In particular if
one has a black hole and no matter outside, then condition (3.8) is satisfied for all
|r| ̂  1, and so one proves inequality (3.9) for |r| = 1 , which also agrees with the result
of M. Ludvigsen and Vickers [19]. A discussuion of the existence of solutions of
Eq. (3.6) can be found in [18].

3 The terms are the same modulo constants
4 Here one is using the opposite signature with respect to the one used in [18]
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So from this one observes that to get a black hole with the charge of the electron

"e" one needs a mass greater than mc = e=\MxW~6 g = ]fumκ = mκ/l 1.7, where
this α is the fine-structure constant and mκ is the Planck mass.

In particular, it is improper to consider a collapsed object with the mass and
charge of the electron in the framework only of general relativity; that is, for
example, as the source for the Reissner-Nordstrδm solution, since in that case one
will have a naked singularity [20].

All the above mentioned results are also valid for the Bondi mass. This follows
from the statement of Israel and Nester [21] that the form E of Eq. (2.5) gives the
Bondi mass as long as the spinor Ψ behaves asymptotically as Ψconst + 0(1 /r) on an
asymptotically null nontimelike hypersurface N [22].

The idea of considering space-time as a Riemannian manifold, not necessarily
flat, is known to be successful for the study of physical systems of astronomical
sizes; so for a comoving coordinate the mass density ρ = T00 and charge densities
QE and QM are measured in macroscopic volumes.

Experimentally one finds that ρE/ρ<e/me= l/r1? where "e" and "me" are the
charge and mass of the electron. On the other hand from the present understand-
ing of magnetic monopoles [23] one also has that ρM/ρ < l/r^ Note that r^ =4.90
x 10 ~2 2. To study the consequences of this in the inequality of the form (3.8), it is

only necessary to consider the extreme case in which the velocity associated to the
movement of the gravitational matter is parallel to that of electrically charged
matter. This will represent a system of charged particles of the same sign.

First note that in Eq. (3.2) there is only need to require inequality (3.8) for which
u = e0; e0 being part of a tetrad associated to the spacelike hypersurface N, that is
e1? e2, and β3 are tangent to N. In terms of this tetrad the following notation will be
used:

(Tβ V0) = (V) = (ρc coshβ, Qcϋc cos

(JE) = (QE coshβc, ρEvv coshβc) ,

where bar denotes a 3-vector and

coshj8cΞΞ 2-.1/2, with υΐ=-ϋc ϋc<l.

ρc refers to the mass density of the charges and vc to their velocity with respect to
this tetrad. Also an arbitrary timelike future directed unit vector v will be denoted
by t; = (coshjβ, i coshjβ), where

1
COSllβΞΞ —

[i-
Then one has

cosh/? ΞΞ——% and v2=—ϋ>ϋ<\.
[1—1> ] '

b = ρc COSh βc COSh(l —V'VC)

^ ρc cosh βc cosh β(l — V'VC)

= ρc(cosh βc cosh β — sinh βc sinh β)

= ρccosh(βc-β),
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where

So it is observed that Tabe0

avb^ρc.
Now note that rJE-e0

kηc^ = rρEcoshβc.> where α, b = Q, 1, 2, 3, and recall that

(3.10)

Assume now that βc has a maximum β* (which is associated to the maximum
velocity measured by an observer moving orthogonally to the hypersurface JV);
then it is easy to see that Eq. (3.10) implies

^r0JEV^ (3.H)

with

Γ°Ξ (3'12)

The same argument applies if electric charges are replaced by magnetic
charges, and also if both kind of charges are allowed to appear. The consideration
of a more general situation, in which there is in addition neutral matter moving in
an arbitrary direction, will introduce an extra positive term on the left-hand side of
inequality (3.11). From all this, then, it is deduced that the inequality

Tabe0

avb £ αCΈV^)2 + (Λ.V'te)2]1'2 (3.13)

is always satisfied.
So one concludes from one's knowledge of the properties of matter that the

following result is true:
Let M be a space-time asymptotically flat at spatial (null) infinity in which the

Einstein field equations are satisfied, and which may contain bounded matter and
black holes in the interior. Then, associated to a spacelike (asymptotically null)
hypersurface N, (for which β* exists), the ADM (Bondi) mass satisfies
™^o[(βE)

2 + (βM)2]1/2, where r0 is defined by Eq. (3.12), and βE and βM are the
electric and magnetic charges respectively.

Of course, the difference here with former results is that the condition on the
matter fields is automatically satisfied.
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