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Abstract. We consider one parameter analytic hamiltonian perturbations of
the geodesic flows on surfaces of constant negative curvature. We find two
different necessary and sufficient conditions for the canonical equivalence of
the perturbed flows and the non-perturbed ones. One condition says that the
"Hamilton-Jacobi equation" (introduced in this work) for the conjugation
problem should admit a solution as a formal power series (not necessarily
convergent) in the perturbation parameter. The alternative condition is based
on the identification of a complete set of invariants for the canonical
conjugation problem. The relation with the similar problems arising in the
KAM theory of the perturbations of quasi periodic hamiltonian motions is
briefly discussed. As a byproduct of our analysis we obtain some results on the
Livscic, Guillemin, Kazhdan equation and on the Fourier series for the
SL(2,R) group. We also prove that the analytic functions on the phase space
for the geodesic flow of unit speed have a mixing property (with respect to the
geodesic flow and to the invariant volume measure) which is exponential with a
universal exponent, independent on the particular function, equal to the
curvature of the surface divided by 2. This result is contrasted with the slow
mixing rates that the same functions show under the horocyclic flow: in this
case we find that the decay rate is the inverse of the time ("up to logarithms").

1. The Integrability Problem and its Invariants

Integrable hamiltonian systems are important in mechanics because they provide
classes of systems whose dynamical behaviour is well understood and which can be
used as a "reference behaviour" for systems close to integrable ones.
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** Supported by the Mathematics Dept. of Princeton University and by Stiftung Volkswagen-
werk through IHES, and IMA



62 P. Collet, H. Epstein, and G. Gallavotti

There are, however, other dynamical systems whose behaviour is also well
understood, although very different from that of integrable systems. One should
naturally think to use such systems, also, as a reference for the behaviour of other
classes of mechanical systems. Therefore we shall extend the notion of integr ability
as follows: Let Σ be an /-dimensional compact analytic manifold and let T*Σ be
the phase space for the hamiltonian flows on Σ. As usual we shall denote a point in
T*Σ by (p, φ, q being the coordinates of a point of Σ and p being a conjugate
momentum in "the same system of coordinates. Geometrically p is a cotangent
vector.

An analytic hamiltonian system on T*Σ will be a pair (W, H) with WcT*Σ
being the closure of an open set and with H being an analytic function on W 1 and
such that, for every (p,g)e W, the solution St(p^qQ) to the equations:

with initial datum (p0, g0) e W, exists for all t e R.
Then the following definition extends the well known notion of integrability:

Definition 1. Let (W,H)9 (W\Hf) be two analytic hamiltonian systems on two
compact analytic surfaces Σ and Σ'. We say that "(W\ H') is (W, //)-integrable," or
simply "//' is //-integrable" if there is a C°° canonical map <& mapping W onto W'
and an analytic function defined on H(W), denoted F and such that F'=(dF/dE)
φO, and

H'(V(£, φ) = F(//(p, q)) , (p, q) e W. (1.2)

If ^ is also analytic we say that H' is analytically //-integrable.
The possibility that <€ is C°° but not analytic leaves us more flexibility in the

formulation of the results that we are able to prove.
The above definition says, in other words, that W is //-integrable if the flow

generated by H on W is canonically conjugate, up to a time scale change given by
F'(#), to the flow generated by H' on W'.

In our terminology a map Ή, (p7, q') = ̂ (p, q), of W onto W\ is canonical if it is
at least C°° with C°° inverse and, if calling

G(<0 = {(p, g, p7, 3OI(P, «) e Wζ (p', 20 e W, (p', gO = V(P, φ} , (1-3)

there is a Ψ e C°°(G(«)) such that:

(1.4)

A more precise name for such #'s could be "action preserving global canonical
transformations" : if λ is a closed curve in W and λ' = <g(λ)9 the "actions" of λ and λf

are the same:

' dq'. (1.5)

1 As usual / will be said analytic (or C°°) on a closed set W if it is the restriction to W7 of a
function analytic (or C00) in its vicinity
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More generally, in the literature one calls "locally canonical" a transformation
# such that dp/\dq = dp' Λ dq'. This last relation implies a relation like (1.4) in small
neighborhoods of phase space, but Ψ need not be "uniform", i.e. exist globally as a
single valued function on G(̂ ). We will not use this more general notion.

The simplest integrable systems are those which are part of a one parameter
family of integrable systems.

Definition 2. Let HE = H0 + fε be an analytic function on W x [ — θ, 0], θ > 0, with
(p, q, ε) analytic in W x [ - θ, ff] and divisible by ε.

We shall say that the family of hamiltonians ff ε, ε e [ — 0, 0], is #0-integrable if:
i) There is a family ^ε, ε E [ — 0,0], of canonical maps of W into T*Σ such that

#ε(p, q) is C°° in (p, g, ε) e W x [ — 0, 0], analytic in ε and differs from the identity
map By a quantity which is divisible by ε.

p, q)) = Fe(HQ(p, q)) , (p, 2) 6 W x [ - θ, θ] (1.6)

with Fε(£) being analytic in (£,ε) on the set (?x[-0,0], ^ =
(p,g)e W}ΞΞ#0(PF), and such that Fε(£)-£ is divisible by ε.

Equation (1.6) can be regarded, given JH"ε, as an equation for %,, Fε, and we shall
call it the "Hamilton- Jacobi" equation for the integration of HB with respect to H0.
Similarly we call (1.2) the "Hamilton- Jacobi" equation for the integration of H'
with respect to H.

Families of integrable perturbations with respect to the system

HQ(A,φ) = ωQ.A9 (1.7)

where (A, φ] denotes a point on V x Tl, Tl being the /-dimensional torus, ω0

("harmonic oscillators"), have been studied recently and enjoy remarkable
properties [9].

The case when W is as in (1.7) and H0(A,φ) = h0(A) is ^-independent is the
problem studied by the well known KAM theory.

Definition 3. If in Definition 2 we replace the requirement on ̂ ε to be of class C°°
with that of being analytic we obtain the notion of "analytically H0 -integrable"
family of perturbations.

In this paper we analyse the case when H0 is the hamiltonian for the geodesic
flow on a Riemannian surface of constant negative curvature, equal to — 1 (say),
and:

W={(p,φ\H0(p,q)Ell/2,3/2]}. (1.8)

Our objective is to find necessary and sufficient conditions for recognizing the H0-
integrability of a family of perturbations.

As in the classical case, arising in the KAM theory, it will generally be
impossible to conjugate two hamiltonian flows. The obstacles may lie in the
existence of "invariants," i.e. of quantities associated with the ίfε-flow that must
assume values determined by H0, just because the ίfε-flow and the Jf 0-flow are
canonically conjugate.
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We describe some of them here. Suppose that, for simplicity, the H0 and Hε

flows, for all ε e [ — 0,0], have only a denumerable family of closed orbits on each
energy surface HQ or Hε = E, E e [1/2,3/4], and also that for all ε e [ — 0,0] such
orbits stay pairwise distinct, i.e. they can be labeled by (rc,E,ε), n=l929...,
Ee [1/2,3/4], εe[ — 0,0], in such a way that they depend continously (hence
analytically) on (E, ε) at fixed n and are pairwise distinct for all n, at fixed (E, ε).

This assumption holds if (W9 HQ) is the hamiltonian for the geodesic flow on a
surface of constant negative curvature: this is a simple consequence of Anosov's
structural stability theorem and of the isomorphism between geodesic flows of
different energies (but, of course, on the same surface).

Then let:

T(E, n, s) = {period of the orbit (E, n, ε)},

— λ _ (E, n, ε) = λ+(E, n, s) = {Lyapunov exponents of (E, n, ε), —λ-=λ+>Q}9

A(E, n,ε) = {action of (E,n,ε)}={ f p ^j. (1.9)
- -

If Hε is /ί0-integrable in the sense (1.6), clearly:

T(E,n,ε) v h ' ' = t (i iQ)
T(E,m,ε) T(F-l(E),m,(S) ""' U }

"ϊ /T? — _\ 1 /T?-1 /T?\ A\ ^mn 5 V ^ ^/

^(£,m,ε) X(FΓ1(£),m,0)
(1.12)

where in the right-hand side there is no (E, ε)-deρendence because for ε = 0 the flow
is geodesic and the intermediate ratios do not depend on E.

Clearly the identities (1.10) through (1.12) are necessary conditions for the
integrability of the family Hε. It is easy to see that (1.10), (1.11) are not a complete
set of invariants for the canonical integrability of a family of perturbations of the
geodesic flow: see Appendix E for an example.

However we shall prove:

Proposition 1. i) The numbers (1.12) are a complete set of invariants for the
canonical conjugation ("HQ-integrability") problem on Wx [ — 0,0] if H0 is the
above described geodesic flow and θ is small enough (given fj.

ii) Furthermore the integrability in i) is in fact analytic in the sense of Definition
3, whenever it exists.

We shall call the left-hand side of (1.12), the "action invariants;" Proposition 1
shows their completeness.

A related result that Proposition 1 extends is the following: Let g° be a smooth
Riemaniann metric of negative curvature on a compact surface. Then the
hamiltonian for the geodesic flow has the form:

H0(ε>Φ=τ Σ (g\gΓ\PiP} (1.13)
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Consider the following "geometric perturbations":

(1.14)
^ i , j= 1, 2

with 5 analytic in (q, ε)eΣ x [ — θ, 0]; they correspond to changes in the metric

Then one can ask when Hε = H0 + fε, which is still a geodesic flow, is
#0-integrable with W= T*Σ and Fε(E) = E and ^ε of the form:

V*(ε>φ = (Je(φ-lΐ&(qy), (1.15)

where ^ε is a diffeomorphism of Σ and Jε is its jacobian matrix.
A complete set of invariants for this type of conjugation, "geometric

conjugation" or "trivial conjugation," is in some cases known to be the set of the
eigenvalues of the Laplace-Beltrami operator [2],

Our methods have on one hand some resemblance with those of [2],
particularly in the use of the key result [3] : however we make strong use of the
group theoretic structures provided by the assumption of constant curvature and
obtain results which probably do not hold for the theory of perturbations of the
geodesic flows on surfaces of non-constant negative curvature (while [2] deals
mainly with such general manifolds). But the main difference is that we do not deal
with the geometrical conjugacy problem and consider, rather, the general action
preserving canonical conjugacy using techniques developed in the context of the
KAM theory. On the other hand Propositions 1 and 2 (see Sect. 2) are, technically,
an extension of a nice criterion of convergence for the Birkhoff series due to
Rϋssmann [12].

2. The Flows on Constant Negative Curvature Surfaces. Good Coordinates.
Integrability and Perturbation Theory

The surfaces of constant negative curvature are constructed as follows : If z = x + ry,
xeR, y>0, is regarded as a point in the upper half plane C+, the action of the
group PSL(2,R)onC + is

az + c

The most general compact analytic surface of constant negative curvature is:

Σ = C+/Γ, (2.2)

where Γ is a hyperbolic fuchsian group (i.e. a fuchsian group without parabolic or
elliptic elements [7]). It is endowed with the PSL(2,R) invariant metric
ds2 = (dx2 + dy2)/y2. The surface Σ can be identified with a fundamental domain Σ0

of Γ with "opposite sides" identified modulo Γ.
On Σ0 the geodesic flow is described, by definition, by the hamiltonian:

. (2.3)
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Any motion with non-zero velocity will reach dΣ0 in a finite time tQ at the point
(x0,y0) with speed (x0, j>0): if y is an element of Γ reflecting (x0,)>o) to another
element of dΣ0, the motion will continue after ί0 by reappearing at z'0 = z0γ, if

Q9 with velocity ZQ = XQ + iy'0 given by:

This is a somewhat complicated description of the geodesic flow.
There is, however a better representation: it is inspired by ref. [4]. Let:

(2.5)

It is easy to verify that the transformation jf of T*C+\{jF/0 = 0} onto PGL(2, R):

SJr:(px,Py,x,y)~( Pιq2}=g, (2.6)
\~P2 qj

defined by

px + ipy = i(ά*g)2j(i,g-^2l2 ,
• - 1 \r"'Jx + ιy = ιg ,

is such that (see Appendix D):

(2.8)

therefore it is canonical. Furthermore 3#"((px + ipv9 x + iy)y~1) = yg, so that JΓ
defines a map from T*Σ\{H0 = Q} onto Γ\PGL(2,R).

The map Jf transforms the hamiltonian (2.3) into (see Appendix D):

H0(g) = (detg)2β. (2.9)

Therefore if fε(g) is a function of (g, ε) analytic on W x [ — θ, 0], divisible by ε,
the hamiltonian equations for Hε = H0 + fε are in the new coordinates:

<H -(det</)</σz/4+ ^-(g)*x, (2.10)

where

O - r
and

'ij

- df f^ w _ ι o

The Liouville measure on T*Σ\{H0 = Q}, realized as Γ\PGL(2,R), is just
dpidp2dqίdq29 i.e. it is the Haar measure of PGL(2, R) considered as a measure on
the homogeneous space Γ\PGL(2, R).

We do not discuss in more detail why Eqs. (2.9), (2.10) induce a flow on
Γ\PGL(2,R): it is obvious that they do so on the whole PGL(2,R) and the fact
that it can be regarded as a flow on PGL(2, R) stems from the observation that if ί
-+g(t) is a solution to (2.10), then so is t-^>γg(t). This observation can be used to say
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that the entries of g e PGL(2,R) provide a global system of coordinates on the
phase space of the geodesic flow deprived of the points with zero velocity and
provided one identifies the 0ePGL(2,R) modulo Γ.

We shall use the above remarks quite extensively. Their main usefulness is in
providing a simple characterization of the C00 -canonical maps # defined on a set of
the form W= {g\HQ(g) e [1/2, 3/4]}. Suppose that # is close to the identity and that
it is defined on an open set W containing W, large enough so that if
(//, (f) = <g(g, q), (p,q)eW, then (/, g), (p, g') e W. Then # can be described by a
generating function Φ of class C00 on the set {(//, q)\(p', q) e W, 3(p, q") e Wf such
that Cp', gO - #(p,q)} Ξ VF via the relation:

-*-
(2.11)

which can be written in a better form in terms of matrices,

Then (2.11) becomes:

dΦ
gf = g-σ~(g)σ. (2.13)

The whole point of the above discussion is the globality of (2.13) on W\ it
follows from the easily checked property that if g'=<β(g\ y eΓ, then yg' = Ή(γg)9

because ygf and yg solve (2.13) if g, g' do. What is slightly less clear is that conversely
any canonical transformation <& close enough to the identity can be generated by a
relation of the form (2.13). This remarkable fact can be seen by observing that if ̂
has the property:

(2.14)

with Ψ a C°° -function on the graph of ,̂ then (2.14) can be rewritten as:

f), (2.15)

and Ψ + (p' - (f) = Ψ + det#x is a C°° function on the graph of # because Ψ is such by
assumption and detg' is single valued and C°° on Γ\PGL(2, R), and therefore it can
be thought as a function on the graph of #.

Furthermore the function on the graph of # defined by (#,#9-»(det</) is C°°
when <β is so close to the identity that the relation gf = <β(g) can be put in the form
0' = #(0), using the implicit function theorem, and (&(yg) = y(£(g) when g and yg
belong to the boundary of a fundamental domain in PGL(2, R) with respect to the
action of Γ. Therefore the function Φ = Ψ + (det#9 - (detg) is C°° on the graph of #
and, if # is close enough to the identity (in the C1 -sense at least), it can be regarded
as a function of g on {g\geW}. But then (2.15) becomes p dq + q'-dp'
= d(detg + Φ(g)\ which is (2.14).



68 P. Collet, H. Epstein, and G. Gallavotti

The situation is very similar to the one that arises in the change of coordinates
in systems described in action angle variables (A, θ)eVxTl:in that case a change
of coordinates (A,θf} = ̂ (A,ff) defined on a set of the form VxT\ VcR1,
Tl = {/-dimensional torus} is canonical (in our action-preserving sense) if and only
if it can be generated by a relation of the form:

dΦ_ — f/Γ m

where Φ is periodic in the θ's.
The outcome of the above discussion is the fact that it allows us to replace the

search for the solutions #e, Fε of (1.6) by the search for a function Φ, C°° on
Wx [-0,0], θ^θ, analytic in ε:

00

Φ(g,έ)= Σ εkΦ(k\g), (2.17)
k=ί

which generates ^ near W for sufficiently small ε.
Analogously we set

(2.18)
k=l

and rewrite (1.6) as

Expanding everything in powers of ε and denoting by { , } the Poisson bracket,
one easily finds:

{H0, Φ(1>} (p', q) = fw(p', q) - F«\H0(p', q)) ,

SfW
{Ho, Φ<2'} (£', q) = f(2\p', q) - F(2\H0(p', q)) + -j^- (p', q)

( , »8H0(, .dΦ«\ , \\ ~ (2.20)
o(P»ί))-^— (P.«)-j-r(P»9)-^ Σ- - ΰq - - op - - 2 ιj= i

where A(k) is a differential polynomial in its variables: very complicated, as the case
k = 2 already shows.

Let us study the first Equation (2.20): it means that Φ(1) is a function whose
derivative along the //0-flow is /(1) up to a constant F(1)(#0). Therefore integrating
both sides with respect to the Liouville measure:

μE(dpdq) = const δ(H0(p, q) — E)dpdq , (2.21)

const = (J <$(#o(£^9- W^'Γ * , (2.22)
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one finds the condition:

F<i)(£) = I fWfo q)μE(dpdq)=JW(E) , (2.23)

determining ^(1) uniquely. Then we shall say that the first order of perturbation
theory is "well defined" if the equation:

{#0,Φ
(1)H/(1)-7(1>(#0) (2.24)

admits a unique C°°(WO-solution up to an (arbitrary) function of H0. In this case
Φ(1) will be defined uniquely by imposing:

ίμE(dpdφΦ^(p9φ = 0. (2.25)

Inductively we can say that the kth order of perturbation theory is well defined if
the equation:

J(k) (2.26)

(with obvious notations) admits a unique solution Φ(fc) on W with

More generally one might like to say that a hamiltonian admits perturbation
theory to order k if (2.20) can be recursively solved up to order k by suitably
choosing at each step the arbitrary function of HQ which can be added to each Φ(k).
It is, however, not surprising that this notion is not really more general: a
hamiltonian admits perturbation theory to order k in the weaker sense just
proposed if and only if it admits perturbation theory to order k in the former
stronger sense.

The simplest way to understand this is to remark that (1.6) obviously admits
many solutions if it admits one. Let in fact (E,s)-+Rε(E) be defined and C°° on
W x [ - 0, 0], ε-analytic and divisible by ε, and consider the canonical transforma-
tion generated by (detg)-\-Rε(H0(g)):

But (det#) = p q, H0(p,q) = H0(p\ q') : so that if (1.6) admits a solution #e, FS9 then
also ^X0), FeΓwith ^0) given by (2.27) is a solution. This ambiguity of the
solutions to (1.6) can easily be related to the ambiguity in the choice of Φ(fe) and
used to prove that the fcth order of perturbation theory exists or does not exist
independently of the arbitrary choices which one has to make in order to build it.
Therefore the following definition is very natural:

Definition 4. Let H0 be the hamiltonian for the geodesic flow on a surface of con-
stant negative curvature and let fε be analytic in W x [ - 0, 0], W= {p, q\H0(p, q)
= Ee [1/2, 3/2]}.

We say that fε "admits a finite perturbation theory" around H0 if it admits kth

order perturbation theory for all k= 1, 2, ... .
Of course "having a finite perturbation theory" is a canonical invariant. This

means that if ̂ ε is defined and analytic on W x [ — 0, 0], canonically maps W into
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T*£, and differs from the identity map by an ε-divisible quantity, then defining fε

by
Ho(Vε(p, φ) + /β(tfe(2, «)) = H0(p, φ + fε(p, φ (2.28)

on Wx\_ — 0', 0^, θf small enough, fε admits a finite perturbation theory
around H0.

The perturbation theory can be easily extended to cover the case when

Ht=ht(H0)+ft, (2.29)
00

where hε(E) = E + Σ ε*Λ(k)(E) is analytic in H0(W) x [- 0, 0], and one can give a
k = l

similar definition of finiteness of the perturbation theory (canonically invariant in
the same sense as above). We do not discuss the (trivial) details. One could reduce
this case to the preceding by putting the ε-dependent part of hε into /ε or,
alternatively, repeat the arguments leading to (2.20).

It is then remarkable that:

Proposition 2. Let ff be analytic on W x [— 0, 0] and suppose that the perturbation
theory for Hε = H0 + fε is finite. Then:

i) the family Hε is H0-integrable for ε small enough,
ii) the theory of perturbations yields a convergent series for Φε and Fε for ε small

enough and Φε generates the integrating map <β&

iii) the family Hε is analytically integrable (with respect to H0) for ε small
enough.

It is important to remark that the condition of finiteness of perturbation theory
only involves the derivatives of fε at ε = 0. So does the constancy of the action
invariants: in fact the closed periodic orbits depend analytically on ε and therefore
their actions are also analytic in ε, and are determined by their derivatives at ε = 0.
These derivatives, in turn, can be computed, (without having to solve the perturbed
differential equations), in terms of the unperturbed motions, knowing only the
derivatives at ε = 0 of /ε.

It will turn out that we shall prove first Proposition 2 and then we shall show
that the integrability conditions of the /cth order of perturbation theory are
equivalent to the conditions that the Taylor coefficients of order 1, 2, . . ., fc, about
ε = 0, of the action invariants vanish identically in E, for all m, n [see (1.13)].

In Sect. 3 we prove only the statements i) of Propositions 1 and 2, and
statement ii) of Proposition 2. Statement iii) of Proposition 2 is proven in
Appendix G.

Other results are presented in Sects. 4, 6: in Sect. 6 we discuss the relevance of
our treatment of the Fourier analysis on L2(Γ\PSL(2,1R)) for the analysis of the
mixing properties of the geodesic and horocyclic flows on the surfaces of constant
negative curvature.

In this paper we shall often bound the πth derivative of a function, holomorphic
in some variable w as it varies in some complex domain in C, by n\ times the
maximum of the function (in the given domain) divided by the nth power of the
distance of the point to the boundary of the domain: we call such an estimate a
"dimensional estimate."



Perturbations of Geodesic Flows 71

Usually our domains will be parametrized by parameters called ρ, ξ or 0 and
they will have the property that the distance between the boundaries of the
domains parametrized by ρ', ξ\ 0', and ρ, ξ, 0 is bounded below by one of the three
numbers (ρ -ρO/2, (ξ - ξ')/2, (θ- 00/2. If Qf = ρe"σ, ξ' = ξe-δ,θ' = θe~τ as will often
be the case, the above numbers become ρσ/2, ξS/2, 0τ/2, where, to shorten
the notations, we set:

x = (l-e-χ) for x>0. (2.30)

3. Proof of Proposition 2

We shall regard /ε as a function on PGL(2,R), parametrized by ε, and such that
fε(g) = fε(γg)9 for all γ E Γ ("Γ-periodic function"). For convenience of notation we
write /0(0,ε) = /£(#) The analyticity of /0 will be imposed by requiring that /0

admits a holomorphic extension to a suitable complex neighborhood of
PFx[-00A] We shall look at W={g\geΓ\PGL(2,TR), #0(#)e[l/2, 3/2]} as
consisting of points:

(3.1)

with D>0, <^eΓ\PSL(2,]R)ΞΞT; thus we can write, see (2, 11):

W=@xT with ^ = {D|£eR+,D2/8e[l/2,3/4]}. (3.2)

We shall use the following sets:

0) = {D\D E <C, 3D' 6 Q) such that |D' - D\ < QO} , ρ0 < 1 ,

0) = g\g e PSL(2, C), 0 = ( a b] , |d - 1 1, \b\, \c\ < ξ 01 , ξ0 < I ,

0) - {g\9 e H(ξ0/(l - ξ2)1/2), <C +^ is outside the circle B(ξ0)} , ( * }

0) - {z\z e C, |z + i(ξ0 -f ξ o ')/2| < «o X - 5o)/2} , (see Fig.

For convenience we shall only consider small values for ξQ, namely ξ0 < 1/10. In
terms of the above sets we can introduce several notions:

1) We say that a function /0 on Wx [ — 00,0o] *s (Qo^o^0)-sinalyuc if the
function fo(]/Dφ, ε) can be extended to a holomorphic function of (D, φ, ε) in
@(ρ0) x T(ξ0) x C(00) or, equivalently, if the function (D, ft, ε)

->(C/(ft)/o)(|/β'^ε)=/(|/D^ft,ε) can be holomorphically extended to ®(ρ0)
x H(ξ0) x C(Θ0). If in the above definition we replace T(ξ0) by f (ξ0), we say that

/o is strongly (ρ0, ξθ9 00)-analytic.
2) Similarly we can define the "^-analytic" or the "strongly ^-analytic"

functions on T as those / such that the function f(ψ) admits a holomorphic
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extension to T(ξQ) [or to T(£0)] or, equivalently, such that the function of ft,
h->(U(h)f)(φ) = f(φh), can be holomorphically extended to H(ξ0) or to H(ξ0)
(respectively).

3) A function / on W, see (3.2), will be called (ρ0, £0)-analytic or strongly

(ρo> £o)-analytic if it is defined on W and if the function (D, φ)-*fQ/Dφ) can be

extended holomorphically to ®(ρ0) x T(ξ0) or ®(ρ0) x T(^0) respectively; equiva-

lently: if the function (D, ft)-»/(j/ΐ)^ft) admits a holomorphic extension to ®(ρ0)
x /f(£o) or to ®(ρ0) x #(£o) respectively.

4) If / is analytic on T in either of the above senses we shall set

'= sup \f(g)\, \ \ f \ \ 2 t ξ = sup (l\f(φh)\2dφ\l/2,
' 0eT(ξ) fceίTOVΓ J

ί= sup |/(#)|, ||/r||2,£= SUP (I \f(Φfy\2dφ\1/2 - (3-5)
g e f ( ξ ) ' ΛeH(ξ) \T /

It is convenient to regard (3.5) as defined for any function on T: whenever the
function is not ^-analytic in the sense necessary to make some of the right-hand
side of (3.5) meaningful we interpret it as being + oo. Our proof will rely on general
results about the linearized Hamilton Jacobi Equation (2.24).

Since the H0-ΐlow conserves the value of H0 and the Poisson bracket is nothing

but the derivative along the #0-flow (i.e. j/D φ-^^Dφ e~Dσ*tl4, t e R) Eq. (2.24) can
be written as

f = 0

=f(]/Dφ). (3.6)

The theory of (3.6) with / (ρ, £)-analytic (respectively strongly ξ-analytic) will
be reduced to the theory of the equation:

d
(^Φ)(φ)=—Φ(φe~σztl2) =f(φ) (3.7)

dt t=0

with / ^-analytic on T (respectively strongly ^-analytic).
The first theorem on the theory of Eq. (3.7) is the following [2,3]:

Proposition 3. Consider the equation

&Φ = f (3.8)

with feCl(T\ T=r\PSL(2,R). Suppose that for every periodic orbit p of the
H0-flow on T (corresponding to a closed geodesic on Σ) and for all φtp:

e~a*tl2}dt = 0, (3.9)
o

where τ(p) is the period of p. Then:
i) there exists a unique ΦεCl(T} satisfying (3.8) and such that \ Φ(φ)dφ = Q.

ii) // /e C°°(T) then Φ e C°°(T). τ
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We shall need the following strengthened version of Proposition 3 :

Proposition 4. Let f be analytic on T and suppose that the equation (3.8) is solvable,
i. e. (3.9) holds. There are three constants C, q, δ > 0, independent of f and such that
forallξe(0,ξ0):

i) | |Φ||4 β-ϊgCΓβll./ΊI«. (3.10)

ϋ) lίΦίlί.-^Ctfφ-'DΊIί, V<S>0, (3.11)

where δ = (l — e~δ) and the notation (3.5) is used.
iiϊ) Suppose that f depends also on n parameters (x i , . . . , xn) e S C C" and that f is

holomorphίc on T(ξ) x S. Then Φ also is holomorphic in T(ξe~δ) x S and satisfies
(3.10) for all xeS. _

iv) In the same situation^ in iii) suppose that f is holomorphic on T(ξ) x S, then
Φ is also holomorphic on T(ξ) x S and satisfies (3.11).

Of course i), iii) follow from the much stronger (3.11).
The statements i), ii) of Proposition 2 depend only on the statements i), iii) of

Proposition 4 while the stronger result iii) of Proposition 2 follows from ii) and iv)
of Proposition 4.

In this section we show how i), iii) of Proposition 4 can be used to prove i), ii) of
Proposition 2. Actually we have written the proof in such a way that replacing
everywhere the words "^-analytic" by "strongly ^-analytic", '\ξ, ρ, 0)-analytic" by
"strongly (ξ9 ρ, #)-analytic" and the sets H(ξ), T(ξ) by H(ξ)9 T(ξ), one obtains the
proof of iii) of Proposition 2 from ii), iv) of Proposition 4).

The proof of Proposition 4, ii), iv), is much more intricate than that of
Proposition 4, i), so we provide independent proofs of i), iii) and of ii), iv). The
reader will easily see why the scheme of proof for i), iii) falls short of proving ii), iv):
actually it motivates the interesting conjecture that ii), iv) could hold in the form
obtained by deleting all the tildas. Furthermore it brings up some interesting
properties of the Fourier transforms of analytic functions on T.

In Sects. 4 and 5 we develop the proof of Proposition 4, i), iii) and in Appendix
G we develop the proof of ii), iv) which also proves (independently) i), iii) again.

For simplicity of notation let VF(ρ0,ξ0,00) = ®(ρ0)x T(ξ0) x C(Θ0) and
suppose:

o<£0«?o<i; 0o<i; £o<i/io. (3.12)

We shall consider hamiltonians of the form H0(g, e) :

H*(g,*) = hΌ(HQ(g)9ε) + f<>(g9B)9 (3.13)

where /0 is divisible by ε and

Σ £kh(k\E), E = D2β, (3.14)
k=ί

is holomorphic as a function of (Z), e) e ®(ρ0) x C(Θ0) Equation (3.13) is slightly
more general than H0 + /0, which is the hamiltonian we want to study.
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We now ask under which conditions there is a canonical map ̂ ε analytic in ε
and C°° on W x [ —00» #o]> with (^-identity) divisible by ε, and such that:

h0(H oC^fi(0))> ε) + /o( ε̂(0), ε) = Fε(H0(g)) (3.15)

for some Fε which is C°° on ® x [ — Θ0?^o] and analytic in ε with Fε(E) — E
divisible by ε.

As already mentioned in Sect. 2 there is a perturbation theory for this problem:
it is obtained from the one discussed at length in Sect. 2 by considering the family of
hamiltonians H0 + f0 with /0=/0 + (ft0(/ίθ5ε) —fί0).

We shall suppose that the perturbation theory for (3.15) is finite and then we
shall prove that #e and Fε do indeed exist for ε small and are analytic in ε: so
Proposition 2 will be a special case of this slightly more general case.

To proceed we introduce the following three sequences of positive numbers:

k k k

with (see Proposition 4 for the meaning of δ):

_ ίδ if we wish to prove only i), ii) of Proposition 2,
k ~ \( 1 + k2) ~1 to prove iii) of Proposition 2. ^ ' '

There will be no formal difference in the proof of i), ii) or of iii) in Proposition 2 if
one does not substitute the explicit expressions for δk: however many inequalities
will be true only for the first choice of δk when we only suppose valid i), iii) of
Proposition 4, while they will be true also with the second choice if we suppose ii),
iv) of Proposition 4.

We shall use a recursive algorithm whose steps will be indexed by an integer
n= 1,2,.... The purpose of the algorithm is the construction of a sequence of
canonical transformations parametrized by ε, ̂ (0), ̂ (1),... such that:

i) (^(w~1) is holomorphic on W(ρn, ξn, θn) and, as a map (φ,ε)->(φ\ε/) with εx

= ε, then

9ξn.l9θn.1)9 (3.18)

ii) H^-^-identityll Qn^θn^CΘ0e-n\ (3.19)

where || \\βtξtθ denotes the supremum norm W(ρ, ξ, θ).
Note that it immediately follows from (3.18), (3.19), (3.16) that the composition:

«e= limtf^...^11-1* (3.20)
n->oo

exists and is C°° on W(ρaQ9 ξ^, θ^) and analytic in (D, ε) and even in φ if ξ^ > 0, i.e. if
δk is given by the second formula of (3.17).

The map #(l l~~1) will be constructed inductively. ̂ (0) is obtained by requiring

9 ε) = h^(HQ(g\ ε) + /1(g9 ε) , (3.21)
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with h1 analytic on ^(Q1)xC(θ1) = W(ρlyθ1) and differing from h0 by a
polynomial of order 1. Then one builds successively ^(1), ̂ (2), ... by requiring that

(3-22)

with fn divisible by ε2" and that hn — hn^ί be a polynomial in ε of order ε2""1

divisible by ε2""1.
If we define Efc, εfc, λk such that:

dhksup

εk > sup
W(ρk,ξk,θk)

λk > sup

fif
Jkί~^ (3.23)

we shall also require that, for ε0 small enough, and for suitable constants B, b, for
all the considered choices of ρ0, ξθ9 Θ0 the following hold:

e0ίί *)(3/2)k; 4 < (Bβ0{0"*)(3/2)k - (3-24)

It is clear that if (3.16), (3.18), (3.19), (3.24) hold, the limit λJE, ε) - lim hn(E, ε)
exists and is holomorphic on ^(ρ^) x C(θ^) and: "^^

Hί(*.(flf)) = Aβ)(Hoto),6). (3.25)

It "remains" therefore to check that, with the definitions (3.16), (3.17), (3.23) it is
possible to define ^(0), ̂ (1), ...9hl9h2,...9fl9f2,...so that (3.18), (3.19), (3.24) hold
for ε0 small enough : in fact since /0 is divisible by ε one can always reduce the value
of ε0 by redefining Θ0 (which does not appear explicitly in (3.24)).

The remaining parts of the proof will be organized in several steps:

1) Definition of the Generating Function of ^(n)

Assume inductively we have constructed #(0), #(1), ..., (^(w~1), /0, fv /„, ft0,
hl9...9hn verifying (3.18), (3.19), (3.24) with the //s and the h s verifying the
properties mentioned after (3.22). Then ^(n) will be defined via a generating
function Φ. The function Φ will be the solution to the equation:

2 n + i-1 ]

' (3'26)

where [^p] denotes the truncation of a Taylor series in ε to order p. Eq. (3.26)
arises from the requirement that:

,

hn+1—hn = {polynomial in ε of order 2n+ 1 — 1 divisible by ε2"} .
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In fact the above requirement leads, via a simple calculation similar to the one
needed to define the first order of perturbation theory (discussed in Sect. 2), to the
requirement that:

e) + Gn(H0(g), ε) + 0(ε2"+ (3.28)

with Gn a polynomial of order ε2n+ 1 ~ x divisible by ε2". Equation (3.28) is equivalent
to Eq. (3.26).

The solvability of (3.26) has to be proved. It follows from the in variance of the
fϊniteness of perturbation theory under canonical transformations (discussed in
Sect. 2) that hn + /„ admits a finite perturbation theory. However the perturbation
theory for hn + /„ yields a series for the generating function of the integrating map
which starts from the order ε2", and it is easily seen by power counting that the sum
of the orders between ε2" and ε2n+ 1 ~ * is a function Φ verifying (3.28) so that (3.28)
and hence (3.26) do have a solution.

Applying Proposition 3, since (3.26) has the form (3.6) and can be regarded as
an equation of the form (3.8) parametrized by E (or D), we see that Φ can be
bounded by:

[ f — 7 ~Jn Jn

h',(H0,e)]
(3.29)

and using dimensional bounds:

fn-fn

89
(3.30)

βn,ξn

where R is an estimate of the length of the maximal distance of two points in
W(ρ0,ξ0). Hence:

C1β. if En<\/2, (3.31)

where Bί is a suitable constant and we recall the notation x = (1 — e *), for x > 0.

2) Definition of %(n}

Recalling (2.11), (2.12) we define Ή(n} by inverting (2.13) in the form:

g = g' + A (g') = ̂ ^(g'), g' = g + A \g) = ̂ (n\g), (3.32)

the first being obtained by solving the second of (2.11) with respect to q and
substituting in the first while the second of (3.32) is obtained by solving the first of
(2.11) with respect to p' and substituting in the second. We want to have A, A'
defined on a domain as large as possible, say W(ρne~*σn, ξne~^δn, θne~^τn). This
can be reasonably well achieved by using an analytic implicit function theorem,
(see for instance [10] where a similar theorem is proved when W(ρ\ξ',θ') is
replaced by a different multiply connected set).
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It is, in any case, easy to see that inversions in (3.32) can be made under the (very
strong, but dimensionally natural) conditions:

da "^n""' ~2 3-3« ^ A > (3.33)

where || || denotes the supremum over, say, W(ρn e 2<Tn, ξn e
 2<5n, θn e

 2τn) and B'2,
82 are suitably large positive numbers [note that in (3.33), the second condition
guarantees the local analytic invertibility, while the first provides the globality of
this local inversion of (2.11)]. Therefore, under the conditions (3.33) the functions
A, Af can be defined on W(ρne~3σn, ξne~3δn, θne~*τn).

The conditions (3.33) can be implemented using (3.31) and dimensional
estimates by the conditions:

53(f A)~βC \( £A4Γ2 < 1 , En < 1/2 , (3.34)

where £3 is a suitably larger number. Here the inequality ρn > ξn has been used to
replace ρ"1 by ξ'1.

Since A and A' are equal to some derivatives of Φ computed at suitable points
[see (2.11) or (2.13)], we infer from (3.31), (3.34) that, by dimensional estimates and
if || || denotes the sup on W(ρne~*σn, ξne~*δn, θne~^n\

IMUΛl^KAΓV^ (3.35)
β4

where B4 can be given any arbitrary value provided we readjust the constant B^ in
(334): for later use we fix the constants so that e~4δ° + §0/B4<e~3δΌ.

So under the conditions (3.34) A and A' are defined on W(ρne~*σn, ξne~*δn,
θne~3τn), and by the last inequality of (3.35) and by the choice of B4:

(3.36)

Here as well as above we keep changing the coefficients of ρn, ξw θn simultaneously
even when this is not really necessary (e.g. in all the above inequalities θne~pτn,
p>l, can be replaced simply by θne~τn)ι this is done to make the notations
uniform.

Furthermore on W(ρn e ~ 4σ», ξne~ 4<5", θn e ~ 4τ«) the maps Ή(n\ $(n} differ from the
identity map by less than:

B^n§nr^~^n§nanr\. (3.37)

Finally a remarkable property of A, A is related to the very definition of Φ as
solution of (3.26), (3.27), i.e. setting H0 = H0(g):

= /r^^^^^ (3.38)

.fo*)= ~ Pfa ''̂
L A»(Ho,fi) J

[just multiply both sides of (3.26) by h'n~].
Therefore, again by dimensional estimates,

(339)

(3.40)
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with B5 a suitably large number, and R arises when, as in (3.30), we bound /„ — Jn by
dfjdg (expressing the first as a path integral of the latter).

Equation (3.38) could be expressed as relations involving A, A' by expressing
dΦ/dg in terms of them; we do not need to do this explicitly.

3) Definition of hn + ̂  fn + 1

We shall naturally define:

hn + ί(E,s) = hn(E,s) + Un(E,s)T2n+ί]

/π + ι(ff^) = /Λ(0' + Λ(^ '

and we proceed to estimate en+1, En+1, λn+l on W(ρn+^ ξn+i, 0B+1).
The estimate, based again on dimensional considerations, is straight-forward

but quite technical and it is developed in detail in Appendix A, where the following
bounds are proved: if (3.34) holds one can take for En + 1, εn+1, λn + i:

n2
n+ί)(τJnξnΓ

b7, (3.42)

τπ2«+1)^^
A simple inductive argument shows that there are J3, ί?>0 such that (3.24) [as

well as (3.34) for all ή\ hold.
This completes the reduction of the proof of Proposition 2 to that of

Proposition 4.

4. Fourier Analysis on L2 = L2(r\PSL(2,R))

In this section we develop some tools for the proof of Proposition 4. We suppose
the reader is familiar with the chapter on SL(2,R) of [5], as well as with the first
chapter of [6], where the theory of the unitary representations of SL(2,R) and the
related Fourier analysis are developed.

Let / be ξ-analytic (respectively strongly ^-analytic) on T^r\PSL(2,IR). It is
easy to prove by using the Cauchy theorem that there is a constant Ci such that,
using the notations of Sect. 3 and (2.30),

H2.*< \\f\\ξ, 11/11 *-<< Cif-3 11/11 2,{, (4.1)

(respectively U\\2tξ< \\f\\ ξ, U\ξe-*<CJ-*ϊf\\2.i)

(this is basically the well known procedure of bounding a holomorphic function by
some integral norm).

Let us define the unitary representation U of PSL(2, R) on L2(T) = L2 induced
by the action of PSL(2,IR) on the homogeneous space Γ\PSL(2,1R):

(U(g)f)(φ)=f(φg). (4.2)

Here the scalar product considered in L2 is ( f 9 f / ) = ί f ( g ) f / ( g ) d g 9 with dg
denoting the normalized Haar measure on T. T
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Let

L2=@Y™ (4.3)
aeA

be a decomposition of L2 into ^/-invariant, pairwise orthogonal subspaces on
which U acts irreducibly: such a decomposition is always possible, [6].

We denote U(a} the restriction of U to Ύ(ά] and we briefly recall some known
facts about the above decomposition and a few of their developments that we shall
need in the proof.

One associates with a hyperbolic fuchsian group FcG0^PSL(2,IR) the
following four classes of entities:

1) The automorphic forms of order n = 1 , 3, 5, . . . , i. e. the functions which are
holomorphic in the upper half plane C+ and such that Vy e Γ,

φ(zy) = φ(z)j(z, y)n + i if y= , j(z, y) = (bz + d) . (4.4)

They form a n(g— l)-dimensional linear space, g being the genus of the
compact surface associated with the given fuchsian group.

We shall, once and for all, choose a basis in the above linear space and we shall
label its elements as φ(n'jt +\j= 1, ..., (n — 1)0; we shall also suppose that φ(njt +)

are orthonormal with respect to a convenient scalar product:

(4.5)
T

2) The antiautomorphic forms of order n = 1,3,5,...: they are just the complex
conjugates of the corresponding automorphic forms. We shall put:

φ(n,j,-)=.φ(n,j,+) (4φ

and (nj, +), (nj, —) will be often denoted by the symbol a.
3) The eigenfunctions of the Laplace-Beltrami operator relative to the

eigenvalue (1 — w2)/4e(0, +00). The normalization that we choose for the
operator A on L2(Σ) is such that, in the ordinary cartesian coordinates on the
upper half plane C + , it is

/ P2 p2 \

(4.7)

The variable u will then only take finitely many values in (0,1) and countably many
of the form is, s e (0, + oo) (this is a consequence of the general properties of the
spectrum of the Laplace operator on a compact Riemann surface).

The elements of a basis in the space of such eigenvectors will be labeled with an
index a = (uj), where the first number fixes the eigenvalue and the second
distinguishes the independent eigenvectors associated with the same eigenvalue
(l—u2)/4 whenever the latter is degenerate, otherwisej = 1.

We fix once and for all the basis and we also suppose that it has the property:
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It follows from the general theory of the PSL(2,R)-induced representations that
the multiplicity of the eigenvalue (1 — u2)/4 cannot exceed the value g\u\ g being
the genus of the surface. We shall also denote (u, j) by α.

4) The function identically 1 on (C+ will be denoted φ(0\ We shall denote by A
the set of values that, according to the above classification, the index a can take,
plus the index 0. Set ά = (n,j, -) if a = (n,j, + ). Then we can define the functions
on T

E(a\g) = φ(a\ίg- i),aeA9a = 0 or a = (uj) ,

E^(g) = E^(g) = φ^(ίg-1)j(ί,g-iΓn~ί, a = (n,j, +).

We shall define, for all α in A:

y<*> = {subspace of L2 spanned by V(g)E(a} as g varies in G0} . (4.10)

The "duality theorem" [6] on the induced representations says:

L2=07<«>, (4.11)
aeA

and Y(a) is orthogonal to Y(a '} if a φ a'; furthermore U acts irreducibly on Y(a\ Each
7(α) can be realized in a "standard way" as a space of functions 7(α) defined either
on the line R or on the upper half plane C+ as follows:

i) If a = (nJ9+) then 7(fl) can be realized as a subspace 7(Λ)cL2(c + ,

yn+1 — 2~~) consisting in the functions of (x,y) which are holomorphic in the

variable z = x + ίy.Iϊά = (nJ9 — ) = ά the space 7(δ) can be realized as a subspace of
L2((C+, yn~ ldxdy) containing the functions which are obtained from those in 7(fl)

by complex conjugation (i.e. the antiholomorphic functions on (C+), [6].
ii) If a = (u,j), u = is, s e R+ , then 7(Λ) can be realized as 7(α) - L2(R, dx) while if

α = (sj), 0<s< 1, the Y(a) can be realized as 7(α) = L2(IR; s), where we denote by
L2(lR;s) the completion of Cj(lR) with respect to the scalar product:

(f,9)= $f(x)g(y)\x-yΓi+sdxdy= l ( p ) g ( p ) C ( s ) \ p \ s d p , (4.12)

where f,g denote the ordinary Fourier transform, [6].
iii) Finally the identification of 7(α) and 7(α) and the realization of the

restriction of U to 7(α) as a unitary representation £/{fl) of G0 acting on 7(fl) are
implemented as follows. First one defines an irreducible representation ί?(α) of G0

on7(α), secondly one prescribes the representative φ(α} oϊφ(α} in 7(α), and finally one
uses the cyclicity of the vector φ(α} under the action of U(α} to associate with every
vector of 7(α) a (unique) vector in 7(α).

We set:

gΓn-1, fe Ϋ(α\ α = (n,j, +),

i)---1, /6Ϋ^>,α = (nJ,-), (4.13)

x)=f(xg) (j(x, g)2Γ(ί +u)/2 , /e ̂  α = (ι/,j) .
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Since the space 7(fl) never depends on the index y in a we shall sometimes denote it
as y(n'+) or y<π '~> or Ύ(u\ Then the following identification of φ(a) as vectors
^«oef<«> is possible, [6]:

and

-lMu, (4.15)

where the constants Ma are the normalization constants (Mn = (mτ2~2")1/2,

The above associations (4.14), (4.15) and the irreducibility of C/(α) uniquely
associate with /eL2 "its Fourier transform (/(fl))α6yl", where

/<«>eΫ<β> (4.16)

is the function corresponding to the component /(Λ) of / on 7(α) via the basic
relations (4.14), (4.15).

To discuss the remarkable properties of the Fourier transforms of functions on
T which are ^-analytic, let us recall the notation:

(4.17)

(4.18)

= sup \f(gh)\
gεG0,heH(ξ)

(already used in Sect. 3). We also introduce the following notation:

and, for h=

<" + ' )/2/(u Λ» ,

, and α = (n,j, +), (nj, -):

/(Imζ)

n+ί

(4.19)

where the inf is taken over the ζ e C+, h e H(ξ), ζh = z or for z e Rί/(ξ), α = (wj),

1+x2
(4.20)

where the inf is over all <5>0 and the pairs xeR, heH(ξe δ), xh = z, and the
powers (1 + u)/2 are defined by cutting the complex plane on the negative real axis
(as we shall see the number in brackets never takes a negative value) and, finally,
the constant C3 has a value which will be conveniently fixed later.

Finally define

if a = (n,j, +]
(4.21)
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and <2(α) will be called the "^-domain of the representation α". Its form is simple:

-i/ξ

Fig. 1. The domains Q(a\ζ) (unshaded)

i.e. Q(a\ξ) is either €\B(ξ) or <C\(-B(ξ)uB(ξ)), see Fig. 1, and (3.3).
In Appendix B we shall prove the following structural theorem on the Fourier

transform of ^-analytic functions.

Lemma 1. Let /e Ύ(a\ aeA, αφO.
i) The function f is ξ-analytic if and only if the functions F(f can be

holomorphically extended to the ξ-domain Q(a\ξ) of the representation a.
ii) /// is ξ-analytic:

\I*?\z)\<A<a\z,ξ)\\f\\ξ.

iii) // / is ξ-analytic and there is N > 0 such that

then

<5>0,

(4.22)

(4.23)

(4.24)

where \a\ = nίfa = (nj\ ± ), \a\ = \u\ if a = (uj) and M1,mi are independent on α, /, or
ξ,δ.

The proof of the above lemma also provides the proof of:

Lemma 2. If feL2 is ξ-analytic and depends on some complex parameters w e W
CC^, and it is holomorphic in (0,w)eTx W, then F °̂ are holomorphic in Q(a\ζ) x W
and (4.22) holds for each vy 6 W. Conversely if f is such that f e Ύ(a} for allweW and
F(f} is holomorphic on Q(a\ζ) x W, then f is ξ-holomorphic in T x W and verifies
(4.24) for each w for which F(f} verifies (4.23).

The ξ-analytic functions also turn out to have an "exponential decay" of their
Fourier transform, expressed by the following lemma:
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Lemma 3. If feL2 is ξ-analytic:

δ>Q, (4.25)

where M2, ra2, v2 do not depend on /, ξ, δ, a.

Finally we shall need, for the proof of Proposition 4, the following estimates for
the functions A(a\z, ξ): Let, for z

d(z,ξ) = sup{δ\δ>0 such that ze~RH(ξe-δ)}, (4.26)

then:

Lemma 4. There are constants M3, w3, ^3>0 such that

l-ξ2 I

ξ
(4.27)

andforallzGlSJJ(ξ):

M3- \d(z, ξ)ym*e-v*ξW<A(u>j\z, ξ)<M3(d(z, ξ)Ym*. (4.28)

Lemmas 1-4 are proved in Appendix B, C.
In Sect. 5 we shall show how Proposition 4), i), iii) can be deduced from the

theory of the Fourier transform developed in the above lemmas. The proof of ii), iv)
can be done along the same lines but one needs a refinement of the bounds (4.28),
see Appendix G.

5. Proof of Propositions 4 and 1

Consider Eqs. (3.8) or (3.7). Since

(5.1)

it is clear that (3.7) can be reduced by the reduction of the representation U - one
just considers its projections on the spaces Y(a).

If Φ(α), /(α) are the components of order a of the Fourier transforms of Φ, / and if
one uses (4.13) one finds that the Fourier transforms obey the following equations:

d -,, ,
— Φ(a\e~tz)e~(l +am =f(a\z), (5.2)
Λ t =o

where z varies in C+ or R according to the value of a and we have shortened the
notations by writing (1 + a) for (1 + n) or (1 + u) when a = (n,j, ±) or, respectively,
a = (uj). More explicitly:

!(β)(z)=-/<β)(z). (5.3)

The solution of (5.3) is, for a = (uj):

(«\x)= - J £ f^(y)dy/y + Kaχ-^ +M)/2 , (5.4)
o \x
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and for a = (nj, +):
z /r\(l+n)l2

Φ(β)(z) = - J M /(β)(Qdί/ί + ̂ "(1+Λ)/2 , (5.5)
o W

and a similar expression holds for α = (nj, — ). Ka are arbitrary integration
constants.

Recalling that F^ are holomorphic functions in β(α)(£), it is convenient to try
to write (5.4), (5.5) in terms of F^}. Since we assume that Φ exists it follows that Φ(fl)

must have some square integrability properties (i.e. Φ(α) e Ϋ(fl)) and the analyticity
of /(α) together with the bounds in Lemma 1 immediately imply that in order that
Φ(α) be square integrable it is necessary that

T M(1 +")/2/("' Λ(y)dy/y = 0 , K{U,Λ = 0 ,
(5.6)

and similar conditions must hold for a = (nj, — ).
In fact the ^-analyticity of / implies that F °̂ are bounded at oo and therefore

the /(α) have simple decay properties at oo which show that the integrals (5.6)
converge. Since they provide the coefficient of the leading term in the decay of Φ(Λ)

at oo and this leading term is not square integrable, they must vanish.
Assuming (5.6) and defining the powers of the complex numbers by cutting the

plane C so that argz e ( — π, π], say, (5.4), (5.5) can be written in a form which is
suited to see the analyticity properties of Φ(fl). If Λ, Af are contours in Q(a\ξ) linking
0 or oo with z and staying in the same quadrant as z itself (if z>0 it belongs to the
first quadrant, if z<0 it belongs to the second) then, if a = (uj}:

Fg>(z) = - ((1 + z2)/z)(1 +M)/
o

= ((1 + z2)/zf +M)/2 (ζ/(l + C2))(1 +»v2F$ >\ζ)dζ/ζ , (5.7)
z

and if a = (nj, +):

i + 02)(1 +Π)/

o

where the integrals are along the paths Λ or /Γ; a similar expression holds for

It is easy to see that Eqs. (5.7), (5.8) define functions on
u{real and imaginary axes})]) or on ((C\[jB(^)u{real and imaginary axes}]), by
analytically continuing their values on the real axis or on the first quadrant.
However as a consequence of (5.6) and of the boundedness at infinity of the
F-functions, it is easily seen that there are no discontinuities in the values that the
functions take at the two sides of the cuts. So (5.7), (5.8) actually define
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i / ξ e x p - δ

iξexp-δ

Fig. 2. The contours Λ^ and Λ0

holomorphic functions in Q(a\ζ), (i.e. their values on the real axis or on the first
quadrant can be continued in a single valued way).

Therefore Φ(α) are ^-analytic for all a. The same argument can be applied to
prove the strong ξ-analyticity of Φ(a} if / is supposed strong ξ-analytic. However
we need bounds on the size of Φ(a] to conclude something about the analyticity
of Φ.

Consider first a = (uj). Let zeQ(a\ξe~δ), and observe that since F($ is
holomorphic in Q(a\ξ), the value of F(£\z) will be bounded by the maximum of
F$\z) on the two circles forming the boundary of Q(a\ξe~δ), i.e. -dB(ξe~δ)
udB(ξ e~δ). Let z0 be a point in, say, the upper circle. We define a contour from
+ ioo to iξ e ~ δ going down the imaginary axis to iξ ~ ί eδ and then going around the
circle — B(ξe~δ) counterclockwise to ίξe~δ: we call it Λ^.

Define Λ0 as the contour from 0 to iξ~^ eδ going up along the imaginary axis
to ίξe~δ and then following counterclockwise the boundary of —B(ξe~δ) up to
iξ~leδ.

There are two cases: either z0 εΛ^ or z0 e/!0. In the first case we write [by
(5.7)]:

((1

In the second case

function as in (5.10)] dζ/ζ,

(5.10)

(5.11)

where the integrals are along the contours marked in parentheses before the
integral signs.

Along the integration paths the argument θ(ζ) of £/(! + ζ2) relevant for the u
dependent powers in (5.10), (5.11) is a monotonically decreasing function of C so
that the w-dependent part verifies the inequality,

+O
( l+Rew)/2

•exp-

Therefore estimating the integrals,

72 r ( l+Reu)/2

l+^o
(1 +Reu)/2

ί d|ζ|/|ζ| along Λ0 or Λa,

(5.12)

(5.13)
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by M4(ξδΓ(1+R'u}/2, we find, using (4.28):
:ι+R..)/2||/{β)||4> (514)

ϊa\zΛe-*)\\Γ\\ξ, (5-15)

where the second inequality follows from the arbitrariness of δ provided
zelRΉ(ξe~δ)ι and the constants are w-independent because RewφO only for
finitely many values of u.

The inequality (5.15) implies, by Lemma 1, that

M\\n, (5.16)

where the constants M6, v6, m6 are suitable numerical constants.
Consider now a = (nj, + ). We shall prove a better inequality:

which, by Lemma 1, implies:

<*>ιι

δ>Q.

(5.17)

(5.18)

Then (5.18) and (5.16), together with Lemma 3 and the estimate on the
multiplicities of the automorphic forms of given order and of the degeneracy of the
eigenvalues of the Laplace-Beltrami operator, imply (3.10) with cΓ chosen so that

To derive (5.17), we note that since (n+ l)/2 is an integer, it is equivalent to

\\,A'(z9a9ξ)9 (5.19)
where

and

- ί (5.20)

along contours in β(α)(£).
Let c = (ξ ~1 H- ξ)/29 r = (ξ~1- ξ)/2. We distinguish four cases.

Case 1: Imz^ — c. We choose, in (5.20), to integrate along the path:

Fig. 3. Contour in case 1

(5.21)
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Fig. 4. Contour in case 2

Fig. 5. Contour in case 3

Setting x = |z + ic\ and using the bounds given by (4.22), (4.27), and (x2t2 -r2) 1

<(x2-r2)~1r2 and \ζ(t)/z\<t, for all ί>l:

\Φ(a\z)\ £ rc/4π \\f(a}\\ξ

ί r<"+1>'2*/ί

ξ2)/ξ)(n

)\\fto\\ξA'(z9a9ξ). (5.22)

Case 2: — c<Imz, |z + ϊ'c|^c. In this case we choose the path leading to the
imaginary axis above — ic along a circle with center — ic and ending at — iy0, then
continue to zero along the imaginary axis. Then (4.22), (4.27) imply:

|Φ<β>(z)| ̂  πA'(z, α, ξ) \\ f^L + || /«>\\ ξA'(z, α, ξ) ]°

\\ξ. (5.23)

Case 3: ~c<Imz, c<|z + ic|^c + 1. We move on a circle centered at — ic and
leading upwards from z to the imaginary axis at iyQ and then we go down to 0 along
the imaginary axis.
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Fig. 6. Contour in case 4

As before the part contributed by the first piece of the contour to Φ(a\z) will be
bounded by πA'(z, α, ξ) \\f(a)\\ξ. The second part contributes

(5.24)

and using the inequality y(a+1>l2A'(iy,a,ξ)<y<$+1)l2A'(iy0,a,ξ), valid if
0 < y < y0 < 1 , and |z| > y0 and A'(iy0, a,ξ) = A'(z, a, ξ), we see that for all p between
Oand(n+l)/2:

y° ί v Y"+ 1>/ 2 A'ttv a
+ I

π+ min
'y_\*dy

. (5.25)

Case -/: \z + ic\ > c + 1 , Imz > — c. In this case we draw a path as in Case 3 except
that from iy0 we proceed to +ico along the imaginary axis. We find, using
A'(iy0,a,ξ) = A'(z,a,ξ) and the inequality y(n+1)'2A'(iy,a,ξ)<y^^2A'(iy0,a,ξ)
if 1 < y0 < y, and using also the remark that in the same region of values of y,

'(iy0,a, ξ)<2(l+c)yΰ/y, (5.26)

we find:

n n

(5.28)

So that, collecting (5.28), (5.25), (5.23), (5.22), we obtain (5.18) and complete the
proof of Proposition 4.
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We now prove Proposition 1. The action invariants are the same for
and for hn+fn, of course. Recalling that /„ is divisible by ε2", we see that the
coefficients of the Taylor expansions in s of the individual actions are explicitly
computable up to order 0(ε2n+1) by a simple calculation: the condition of
constancy simply means that if (E, k, ε) denotes a closed periodic orbit of energy E
for the hamiltonian HE, then

[ /Ύ0β~~σz(detf iF)ΓΠJ v f J , , dt = {function of E, ε} + 0(ε2"+ ') (5.29)
hn(E, ε) J

for g G (£, fc, ε), i.e. the right-hand side of (2.19) does not depend on k up to terms of
order 2"+ 1 in ε. Therefore the right-hand side of (5.29) can be computed by letting k
tend to oo and by using some general results [11] of ergodic theory which tell us
that the limit must be the average of the function in square brackets of (5.29), up to
terms of order ε2n+1, i.e.

[ f ( a \ Ί[<2»+ 1]

m\

Therefore the constancy of the action invariants can be written, by (5.29), (5.30), as

)
Therefore the constancy of the action invariants just yields the conditions

necessary for the integrability of the equations defining the nih step in the
construction described in Sect. 3 to build the canonical transformation conjugat-
ing Hε with a function of H0, i. e. it permits, in the language of the proof of Sect. 3 to
define hn+i, fn+l in terms of hn, fn and, therefore, Proposition 1 appears as a
corollary of the proof of Proposition 2.

6. Mixing Rates for the Geodesic and the Horocyclic Flows. Concluding Remarks

Consider the geodesic and the horocyclic flows on the unit cotangent bundle of our
surface of constant negative curvature. In the preceding sections we have seen that
the geodesic flow can be described as a flow on the space T=Γ\PSL(2, R) using the
matrices gι(i) = exp — σzί/2; the flow is:

f 0-*ggι(t), g z T . (6.1)
Similarly the horocyclic flow can be described on T in terms of the matrices

g0(t) = Qxptσ+, where σ+ = I 1: the flow is

f 0^90o(t)9 9£T. (6.2)

Let / be a ^-analytic function on T with zero average with respect to the
natural invariant measure dg. We want to study the quantity:

M(f, t j ) = j JWfteθjW) (dg), j = 0,1, (6.3)
T
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when £->oo. By general results of ergodic theory it is known to tend to zero. We
prove:

Proposition 5. There exist ίwo functions C(ζ\ b(ξ) such that for all ξ-analytic
functions f:

(fb(Ώ pvtΛ _ /-/9 / — 1

|M(/,ί,/)| ' l l' l l 2'v ί :" J P 7 ' 7

for all t>2. The above bounds are optimal to leading order in the t-dependence.

Observation. Note that even in the geodesic flow case this decay is not exp-
(exponential in ί) as it is in the case in the toral automorphisms of the Anosov type.
In other words the mixing is "pretty weak."

Proof. Let / = Σ /(α) Clearly we have to study the functions M(/(α), ί) - M (ί) for

each fixed a φ 0. We use the Fourier transform and the bounds (4.22), (4.28) to
obtain when a = (uj), u = is:

M(t) =

:-m'3f ~t/2 II f(a)\\ (£ c\
> ιe \\J \\ξl2 W -V

A similar calculation yields the same results in the case of the discrete and of the
supplementary series.

Lemma 3, Sect. 4, is then used to perform the sum over the indices α, taking of
course into account the multiplicity estimates given by the duality theorem, and
one finds the first (6.4).

The horocyclic flow can be studied in the same fashion and we leave the details
to the reader.

The optimality statement relies on the consideration of special examples.
Consider the function E(a] introduced in (4.9); then using (4.14) we can express the
function M(E(a\ f) in terms of elementary integrals which can be studied explicitly.
The slowest decay is given by the elements with a = (isj), i.e. by the functions
associated with the principal series, and their M functions decay as exp —1/2 times
an oscillating function of t.

For instance:

+ 00

M(E(ίs>j\t)= j ((l+x2)~(1~ ί s )(l/(l+x2e~2ί))~(1 + ίs)e~(1 + ίs)ί)1/2^. (6.6)

A first concluding remark is that Proposition 4 can be regarded as a regularity
theorem for the solutions of (3.8), which is the equation studied by Livscic,
Guillemin and Kazhdan (whose results become, in our case, Proposition 3).

A second remark is that the question that we have studied about the canonical
conjugability is the same question that, when asked for the perturbations of the
integrable systems in the classical sense, leads to the KAM theory.
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We see that the perturbations of the geodesic flows on surfaces of constant
negative curvature are in some sense better than the ones of integrable systems.
There are cases ("Birkhoff series") when the latter have a well defined perturbation
series which, however, is known to be divergent. This phenomenon cannot happen
in the cases studied in this paper.

Appendix A: Estimates (3.42)

The estimate for En+ ί obviously follows from the first Eq. (3.41). To estimate εn + ί

we write (with A = Δ(gf}}\

fn+1(g', έ) = hπ(H0(g'+Δ), ε) - hn(H0(gr), ε) + fn(g'+ Δ, ε) - \_Jn(E0(g'), e)]' < 2"+ '' .

By (3.38), this is equal to:

hn(H0(g' + Δ),e)- hn(H0(g^, ε) - h'n(H0(gf), ε) [H0, Φ} (g)

= {hn(H0(g' + Δ),ε)- hn(H0(g'), ε) - h'n(H0(g'), ε) {H0,

where [ ]* denotes the truncation with respect to the powers of ε disregarding the
ε-dependence of A itself; the last four terms in curly brackets will be respectively
denoted f, /»', /™ f\ so that /B+1(0',β)=/+/ra+/IV +/v.

The function / has to be discussed in more detail.
We introduce the following temporary notations: g' = (p\(f), g = (p,φ,

A=(Aι,A2)9so that ^(n) becomes :

Δ2). (A.3)

Then, using Al(pf,q') = dΦ(p\q)/dq, A2(p',q')= -dΦ(p',q)/dp':

dp' dq' dq' dp'j

dH0 δH0 \ ΓdH0 ίdΦ dΦ

where the functions whose arguments are not explicitly written are to be thought of
as computed at (p7, q') and the functions Ki9 K2, introduced at the last step, to
shorten the notation, are identified with the two main brackets in the intermediate
term of (A.4). So

,} - M(HQ(p'9 q'\ s)K2} = {f1} + {f1} . (A.5)

We now proceed successively to estimate f1 to /v in W(ρne~4σn., ξne~4δn,
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By Eq. (3.40),

llΓ
By a dimensional estimate,

(A.6)

(A.7)

Again by a dimensional estimate, using also (3.35):

||/UI|| <A^nτ-1(§-ίσ-ί) \\A\\ <A^2

n(anτn§nQ~a\ (A.8)

where A3, a3 are suitable constants and the exponents have been made uniform to
simplify the notations.

Another dimensional estimate, plus (3.35), (3.31), shows that:

||/π|| <A'4EnB1(ξnSnΓ
qτ-1εn(ξn§nτnΓ

2 Ni l <A4ε
2

n(τnσJnξnΓ
a* (A.8)

Lastly, applying the Taylor formula to second order to exhibit the \\Δ ||2 factor

\\fl\\<A'5En(ξn$nσnΓ
2\\Δ\\2, (A.9)

hence

\\fl\\<A5(ξnSnWnΓa5εϊ. (A.9)

To estimate the derivatives we observe that the above estimates imply on

(A.10)

We have on W(ρne-5σ«, ξne~5δ", θne~5τ«):

Sg

with α7 = a6 + 1. Also

ιv

so that, using (3.35) and the fact that its right-hand side is bounded by 1,

δfιv
(A.14)

Clearly (A. 14) and (A. 11) prove the second Eq. (3.42) while the third follows
from (A.7).

Appendix B: Proof of Lemmas 1, 2, 4

Consider first the case a = (uj). By assumption the functions h->(φ9U(h)f)
defined for heReH(ξ) and a given φeL2, can be holomorphically extended to
H(ξ) and, by Schwartz' inequality, verify:

\(ψ,U(h)f)\<\ I I 2 \\J \\ξ (B.I)
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We choose φ to be an element φxoe Y(a} such that for all xeR:

T / \ — (x — XQ) f \ 'C ' /"D O\

where χ(x) = Q if x<0 and χ(x) = 1 otherwise, or such that:

I /Λ I Λ ? i Y VP ft ΛJ — P ^ %θ) r\tl -y " V " | 1| 11 — C I R Λ Ij Ύx \y/\ y\ y — /cv o/ — ? \ /
— oo

i.e.

/j5 Γv^ = f Λ ~ ί(y ~~ ^o)p !*_! f_ ΓB 4)
°̂w 2π J (l-ip)(2cosπs/2)(s-l)!' V ' ;

A simple calculation yields the values of the L2 norms in Y(a} of the above functions

if u = ίs (4(cosns/2}2(s— l)!)"1^2 if u = s (B 5)

If Λ e ReJtf(ξ), ft = , ) , α = (1 + bc)/d, it is easy to check the identity:
c a

(B.6)

see appendix F. This proves that the right-hand side, i.e. the function
(U(h)f(a)} (x0) is a holomorphic function of ft for x0 e IR. Equation (B.6) says more:
in fact multiplying both sides by (1 + (x0ft)

2)(1+")/2, we see that

O = (# W(β)(*o» (1 + (*o/02)(1 +M)/2(/(*o, ft)2)(1 +M)/2

+*>2 . (B.7)

But since α~l, ί ί~l,c~0, b^O, (recall that we assumed £< 1/10), it is easy to
check that the quantity in the last bracket can be bounded, as h varies in H(ξ), by :

arg((x0 + c)2 + (bx0 + d)2) < m"ξ , (B.8)

for all real x0; for simplicity we may and shall assume ξ0 < 1 /2m'. This means that
F(f(x0h) is holomorphic in /z, i. e. in fc, c, d, as Λ varies in H(ξ), for all x0 in R. If x > 0
is large enough the point xh covers a neighborhood of oo as h varies in H(ξ) : hence
F^ can be holomorphically extended from the positive real axis to a vicinity of oo.
Under the same circumstances, xh covers a real neighborhood of oo as h varies in
Refί(ξ); therefore F(f\ — y\ where y is large and positive, coincides with the
analytic continuation of F^} from the positive real axis through oo.

On the other hand (B.7), (B.8) also show that F^α)(x) can be holomorphically
extended to a strip around the whole real axis.

From the above considerations it follows that F °̂ admits a holomorphic
extension to the whole RH(ξ), single valued in this multiply connected region.

We now use that the distance of H(ξe~δ) to the boundary of H(ξ) can be
estimated to be no less than Bξ§, where B is a suitably small number, and
δ = (l—e~δ). So (B.6) implies, by a dimensional estimate, the following bound:

\f(a\xh) (j(x9 h)2) ~(1+ M)/2)| = IF^ίλA) ((αx + c)2 + (bx + d)2) ~(1+ M)/2|
l

9 (B.9)



94 P. Collet, H. Epstein, and G. Gallavotti

if B is a suitably large constant; (B.9) holds for h E H(ξ e δ) and x e R.

Let z be

(B.9) gives:

Let z be real and choose/ί = ( j =(\-ξ2) 1/2ί ~ j , χ = zft Ssothat

(B.io)
because ((ox + c)2 + (bx + d)2) ' 1 = ((1 + (x/ι)2)j(x, fc)2) -1 = ((1 + z 2 χ/(z,/Γ 1 Γ 2 1

1 provided the arbitrary sign in Λ is appropriately
chosen. The constant Cl is independent on (u,j) since the norms in (B.5) are
uniformly bounded.

Consider now instead o f / the function U(h)f, heH(ξe~δ). Then U(h)fis
ξ(5C2-analytic, if C2 is a suitable small constant, for all δ>0 and therefore (B.IO)
implies:

(B.ll)

for a suitably large C3. Hence:

(B.12)
soifzeRH(£):

where the inf is taken over all the δ>0 such that zeΊSJί(ξe~δ) and over all the
pairs xeR, heH(ξe~δ) such that xh = z.

By (B.8) we see that [with the notations of (4.20)]

4β)(z)>C3Γ
2~Re"e~m/ξ(I^^ (B.14)

To get an upper bound on A f } we observe that if z e (d!SJί(ξe~δ)n(C+\ then there
exists x 0eR such that x0h0 = z, with:

and for this pair χ0, /ι0 the number in the modulus sign of (B.I 3) is identically 1.
Therefore we have also checked (4.28), as a consequence of (B.14), (B.15), (recall
here that u can take only finitely many real values so that, in the bound (4.28), ra3

can be chosen w-independent).
We now study the case α = (n,j, + ). In this case it follows from the holomorphy

properties of the Fourier transforms (in the upper half plane) that for

1'Λ = (Φ[α\ U(h)f),

where

1 V / 2

4π(Imζr " (R17)
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Therefore repeating an argument similar to the one given above to discuss the
analyticity in the case of the representations with a = (uj), we find from (3.10) that
U(a\h)f(z) can be holomorphically extended to H(ξ) as a function of h at
fixed and

= U(a\h)f(a\ζ) ((i + ζh)j(ζ, h))1+n

~ (I7<β>(fe)/(β)) (0 ((αζ + c) + i(bζ + d)Y +" , (B.18)

and this means that F(p can be holomorphically extended to <C+£Γ(Q [as well as
f(a} itself since, in these cases, (n+ l)/2 is an integer].

By arguments similar to the ones used in the cases a = (uj) we find that (B.17)
and (B.I 8) imply:

|F^(z)|̂ (n/^^ (B.19)

for all ζ e C + , h e H(ξ) such that z = ζh; this proves the first part of I) and ii) [since
the discussion of the cases a = (nj, — ) can obviously be reduced to that of the cases

We now prove the second part of I) in Lemma 1, i.e. that if F °̂ can be
holomorphically extended to Q(a\ξ) then / is ξ-analytic.

If Ff is holomorphic in Q(a\ζ\ then F(f\z) is uniformly bounded in Q(a\ξ e~δ).
Calling Mδ a bound for this function it follows that in the cases a = (uj) [see (B.8)] :

(B.20)

if h = I , 1 , for a suitable Ml
\c dj

Expression (B.20) shows, thanks to its uniformity in heH(ξe δ), that
U(a\h)f(a) e 7(α) and for all φ ε 7(fl) the function h-+(φ, U(a\h)f(a>) is holomorphic
in H(ξe~δ). Therefore / itself is holomorphic on TH(ξe'δ)9 V(5>0.2

An identical argument can be given in the cases a = (nj, ± ). So i) of Lemma 1 is
completely proved and it remains to prove iii).

We discuss now the proof of iii) in the case a = (uj), the others being very
similar. Observe that (4.23), (4.28) imply that U(a\h)f(a\x) is holomorphic in
h e H(ξ) and, for all hεH(ξe-

δ):

so that

ξ(5)-2-Re" for all heH(ξe-δ}, (B.22)

which by (4.1) implies (4.24) (in this case J/|αf can be replaced by 1).
The cases a = (nj, ± ) are discussed in an identical way and the role of (4.28) is

now played by (4.27) which can be checked as follows : Note that the /z-image of (C +
is the complement of a circle with center c and radius R, and if z = ζh,

(B.23)

which can be seen by direct calculation or by suitable geometric arguments.

2 Here we use a general property explicitly stated in Lemma 5 below
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Furthermore the matrix

Λ^O-ίT1'2^^ (B.24)

is on the boundary of H(ξ) and maps <C+ onto the complement of the circle B(ξ)
with:

c = (ξ-l + ξ)l2 = c0, R = (Γ1-ξ)/2 = Ko (B.25)

Finally a circle G with center c and radius R which contains a circle with center
cr and radius R' is such that for all z outside G:

(|z - cf - R'2)/2R'^ (\z -c\2- R2)/2R , (B.26)

as it is easily seen (e.g. remark that one can always suppose that G is the unit circle
centered at the origin and that Gx is a smaller circle centered at the point (0, c') and
with radius R such that c' + R'^ 1, e'>0; then the above relation can be checked
by simple considerations).

The same inequality holds if G and G' are two circles with disjoint interiors and
z is inside G: this can be shown as in the preceding case or, alternatively, by noting
that the inequality (B.26) is invariant with respect to the operation of inversion
with respect to the circle G.

The above inequalities are exactly saying that the infimum over H(ξ) is
obtained by considering h = hξ and this yields (4.27).

So Lemma 1 and Lemma 4 are completely proved.
The direct part of Lemma 2 follows from the explicit formulae (B.6), (B.16) and

from the uniform boundedness of F("} in every compact subset of Q(a\ζ) x W. The
converse statement, appearing in Lemma 2, follows from the argument after (B.20),
guaranteeing that h-^U(ti)f regarded as a L2-valued function defined on Re//(ξ)
can be extended holomorphically to H(ξ), combined with the:

Lemma 5. Let /eL2 and suppose h-^U(h)f, regarded as an L2-valued function
defined for h e Reif(£), can be holomorphically extended to an L2-valued function
on H(ξ) then f is ξ-analytic.

Iff depends parametrically on w e WC<Cq and the L2-valued function (h, w)
->t/(/ι)/, defined on (Refί(ξ)) x W, can be holomorphically extended to H(ξ) x W
then the function (h, w)-»/(#/ι) can also be holomorphically extended to H(ξ) x W
for all g.

In other words ξ-analyticity of / and holomorphy on H(ξ) of the L2-valued
function U(h)f are equivalent properties [note that the ξ-analyticity obviously
implies that h-*U(h)f is holomorphic as a vector valued function]. This is a well
known fact.

Appendix C: Proof of Lemma 3

With the matrix notations of Sects. 3, 4 let <?(ί) = exp^σ + t2σx + ί3σz). Let ® be
the Casimir operator on L2(T), for [/(•)> given by [6]:

(C.I)
t = o
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Observe that \^<ξS/4q implies S(^)...£(tw)eH(ξδ/2), and that
H(ξe-*) H(ξS/2)CH(ξ), so that the function U(h)f(g<S(t(q))...<S(t(l))), is holo-
morphic in the ί variables for \ή \ < ξ§/4q. Therefore by a dimensional estimate
and by the Schwartz inequality:

\(φ, ̂ U(h)f)\<4-^2"((4q/ξδ )2 )" \\φ\\2 \\f\\ξ, (C.2)

i.e. ϊoτal\heH(ξe-δ):

\\@qV(h)f\\2<((>qlξ§)2q\\f\\ξ. (C.3)

But by orthogonality and by the fact that 2 has on Y(α) the constant value
V(a) = (1 - M2)/4, if a = (u,f), or (1 - «2)/4 if a = (n,j, ± ) :

V(aγ\\U(h)f^\\2=\\^U(h)f^\\2<\\^U(h)f\\2<(6q/ξδ}^\\f\\ξ, (C.4)

so that for all /ι e^ίΓ-5),

\\U(h)fM\\2<(6q/(ξ§}/V(a))?q \\f\\ξ, (C.4)

which implies Lemma 3 by optimizing this inequality on q and, finally, using (4.1).

Appendix D: A Canonical Map

We rewrite (2.7), recalling that g= Pl

.

and since pxdx-\-pydy = ̂ Qpdq, we find:

pxdx + pydy = p1dq1 +p2dq2-±d(detg) , (D.2)

and

- i(det^f)2 . (D.3)

Note that the function detg is single valued on Γ\PGL(2,R), hence on the
graph of the map (D.I).

Appendix E:
An Example of Non-Global Canonical Map and the Non-Sufficiency
of the Period and of the Lyapunov Invariants

Let ε̂(p, z) = (/?', /) be defined as follows: put p = px + ipy, z = x + iy, p'=p'x + ipf

r

and let φ be an automorphic form of order 1, verifying (4.4), then

> (El)
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Then Repdz = RGp'dz'-\-εReφ(z)dz, since φ is holomorphic the last differential
form is closed (i.e. <β is locally canonical), and since φ(z) is covariant, (4.4), while z is
contravariant (άzf =j(z, y}~2dz for all y e Γ) the form φ(z)dz is defined on the whole
Σ and (E.I) is well defined as a map of T*Σ into itself, i.e. ^ε is globally defined
though not globally canonical.

The non-globality of the canonical character follows from the fact that φ(z)dz is
not an integrable form on Σ (because there are no non-singular automorphic
functions on Σ) [7]: hence for some closed curve on Σ we have | φ(z)dz φ 0, and we
may suppose that we change φ by a suitable phase factor (constant on Σ) so that the
value of the integral is actually positive. With such a choice (E.I) does not preserve
the actions of closed orbits in T*Σ.

Consider the hamiltonian:

Ho(V-*(p,φ) = He(p9φ. (E.2)

Clearly Hε cannot be conjugated with H0 by a global canonical map: however
it is conjugated to it by (/?, #) = #ε(p', gO This suffices for the conservation of the
period and of the Lyapunov invariants.

Appendix F: Hint to (B.6)

(B.6) is obtained as a consequence of the following formal identities:

(ΦXQ, U(K)f)= J

(F.I)
= I e^h'l-^f(y)\j(y9h-^+^-2dy.

xoh

Then one uses the following relations, valid if α = (

-l) = Q for all y9

2) (bd/dd + otd/dc + iyexp-ψh-^^O for all y,
(F.2)

3) (bd/dd + ad/dc)(x()h)=j(x,hΓ2=j(y,h'i)2 for y = xh,

4)

Appendix G: Proof of i), iv) in Proposition 4

We shall deal throughout this section with the strongly ^-analytic functions
although some of the results hold also for the ^-analytic functions (as we shall
mention).

The basic properties of their Fourier transforms are discussed exactly as in
Sect. 4 with the few obvious changes that we list below.

Modify Lemma 1 by replacing \\f\\ξ by \\f\\ξ and the words "^-analytic" by
"strongly ^-analytic" and the domains Q(a\ξ) by Q(a\ξ)

* = (»>./> ±>
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and finally replace A(a\z, ξ) by the expressions A(a\z, ξ) obtained by (4.19), (4.20)
with infima over the ζ e (C + , h e H(ξ), ζh = z or over δ > 0, x e R, /ι e H(ξ e ~ *) (i.e.
replace everywhere H(ξ) by #(£)). In this way we obtain a lemma we shall call
Lemma V which is also true.

Changing Lemmas 2, 3 according to the same prescriptions as above leads to
lemmas which we refer as Lemma 2', Lemma 3'.

The proofs of Lemmas Γ, 2', 3' are obtained from those of Lemmas 1, 2, 3 by just
replacing everywhere the words ξ-analytic by strongly ^-analytic and the domain
H(ξ) by ff(ξ).

The proof of ii), iv) of Proposition 4 uses the following necessary and sufficient
condition of strong ξ-analyticity.

Lemma 6. Let /e Y(a\ a e A, αφ 0. There exist three constants D, D', q independent
of f and a such that if f is strongly ξ-analytic then

i) the functions (U(h)f) (z) defined by (4. 1 3), for h real and z in the appropriate
domain can be extended holomorphically in h, at fixed z, to H(ξ).

ii) if a = (uj) and if 0<δ<ξ, hεft(ξ — δ\ then

(G.2)

(G.3)

iii) if a = (n j, ± ) then for all δ e (0, ξ), hGH(ξ-δ}:

(G.4)

(G.5)

Conversely i f/eL 2 , /e Y(a} and (U(h)f)(z) can be extended holomorphically to
h e H(ξ), and if (G.2)-(G.5) hold with \\f\\ξ replaced by some N, then f is strongly
ξ-analytic and r ^ ^ , c . _ Λ , τ /^—

Identical results hold if strongly ^-analytic functions are replaced by ^-analytic
functions and if \\f\\ξ are replaced by \\f\\ξ and H(ξ) by H(ξ).

The proof of Lemma 6 is implicit in the proof of Appendix B. In fact i) follows
from (B.6) for a = (u9j) (see comment following (B.6)) and from (B.J.6^ for
a = (nJ9 ±). Of course the substitutions of ||/||ξ by \\f\\ξ and H(ξ) by H(ξ) or
A(a\z, ξ) by A(a\z, ξ), etc., have to be made where met in the text preceding such
formulas.

The bound (G.2) follows from (B.6) (with the appropriate insertions of ~, as
above) by a dimensional estimate of the left-hand side and by (4.1) and (B.5).

The bound (G.4) follows from (B.16) and (B.17).
The bound (G.3) follows from (G.2) by noting that U(h)f is, for all h<=H(ξ- δ\

still strongly --analytic so that for hΈH\ -) real

|i/(ftO(t/(fc)/)MN
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i.e.

where the infimum is over all the x'elR, h'εR.eH(δ/2), x'h' = x. Use now

7'(x'5 /O =j(x, h' l) and pick h' = I 1 to obtain an upper bound to the above

infimum, proportional to (l + ̂ lxl)"1. Then redefine D to have it equal in (F.2),
(F.3). The bound (G.5) is similarly deduced from (G.4). Proceeding as above one
finds

1 1
A -D||/Linf
4π ς

where the infimum is over the ft'e/ίf-J, z'eC + , z'h'=z and the infimum is

estimated by the choice

-l/2

noting that Imz'><5/2, so that

s -(1+/0/2

}=V 4π' ,- (G.7)

Then (G.5) follows by raising (G.4) to the power (n- l)/(w+ 1) and (G.7) to the
power 2/(n+ 1) and multiplying them together.

Again one has to redefine D in order to have it identical in (G.2)-(G.5). The
statement iii) is a simple consequence of the calculation of the Y(a) norms of the
right-hand side of (G.3), (G.5) with || / 1| ξ replaced by JV, and of the remark that such
norms can be bounded essentially independently of a.

We now proceed to the proof of the following Lemma 7 which will immediately
imply ii), iv) of Proposition 4. In fact from the estimates (G.I 4), (G.I 5) below and
using Lemma 6, iii), we obtain estimates on ||Φ(α) | |ξe-<5. Such estimates can be
combined with Lemmas 3X, 2' and lead to Proposition 4, ii), iv) (in the same way as
(5.16), (5.18) combined with Lemmas 3, 2 yielded Proposition 4, i), iii).

Lemma 7. Let 0 < 5δ < ξ < ξ0.
i) Let /e Y(a\ a = (uj), be strongly ξ-analytίc and \ \ f \ \ ξ = l . Suppose that the

equation J£Φ = f admits a solution Φe Y(a\ then for all heH(ξ — 4δ)

|(C7(/OΦ)Cx)|^C(Γ7/2, V x e R, (G.8)

andforallhGH(ξ-5δ\

\(U(h)Φ)(x)\^Cδ-Ί/2(l + δ\x\Γ*~**tt, V x e R . (G.9)

ii) Let /e Y(a\ a = (nj, ±), and suppose that &Φ = f has a solution ΦG Y(a\
then for all heH(ξ — 4δ\ assuming
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andforallheH(ξ-5δ)

\\^δ2\z\2γl (G.ll)
4ττ

for allzε(C + .

Remark. As in the proof of Lemma 6, Eqs. (G.9), (G.ll) are consequence of (G.8),
(G.10), up to a redefinition of the constants. So it suffices to prove (G.8), (G.10).

In the proof we shall set H(ξ) = Hξ for simplicity of notation, and we shall
examine separately the cases a = (uj), u = is or a = (uj), u = s or a = (nj, ± ). Each
of these cases will be further subdivided in several subcases. After the analysis of the
first few cases the philosophy of the proof should become clear.

Lemma 7 will be an easy consequence of the following lemmas.

Lemma 8.
i) Let f be a strongly ξ analytic function such that fe Y(u'j\ ueΊ&orueϊSί and

satisfies condition (5.6). Then the equation J§?Φ = f has a unique solution Φ such that
if Q<4δ<ξ<QΛ, then for all xeR, and all /ιe#ξ_4(5, U(h)Φ(x) is well defined,
holomorphic in h, and satisfies \U(h)Φ(x)\<c/δ~7/2 \\?\\ξ.

ii) Let f be a strongly ξ analytic function such that /e y^ J'^ and satisfies
condition (5.6). Then the equation <&Φ = f has a unique solution Φ such that if
Q<4δ<ξ<Q.l, then for all ze(C + , and all heffξ^^δ9 U(h)Φ(z) is well defined,
holomorphic in h, and satisfies

Lemma 9. i) Assume f is strongly ξ analytic, and fε Y(uj\ Assume also that

|t/(ft)/(x)|gl, V f e 6 / r 5 , V x e R .

Then

δ and V x e R .

ii) Assume f is strongly ξ analytic, and /e Y(n>j' ±}. Assume also that

Then

(Imλ)("-1)/2[(l + 5Imλ)2 + δ2(Reλ)2] '

"._,, V A e < C + .

Note that the proof of Lemma 9, which we give below for completeness, is
essentially, a repetition of the proof of Lemma 6 above.
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Λ κ\
Proof. Proof of i). Let gκ= ( 1, and hεHξ_δ. It is easy to verify that if

, then gκhεβξ. Therefore for K real2

We choose κ = — (signx)<5(l — £)(! + ̂ 2)~S and we obtain

1-f 4
We now observe that -—-y > - and the result follows. Proof of ii). Let

9 1 = |/Γ^2/4U/2 1 )'

it is easy to verify that if heίlξ_g, then gheίίξ. We have U(h)f(λ) =
U(gh}!(λ}=j(λ,g-^-^^U(gh)f(λg-ί). Therefore

since g~l maps C+ into <C + +ίδ/2. lϊ λ = x + iy, we obtain

[52- ̂ (1 + δy/2)2 + δ2x2/4~]Yk/2 .

2
Multiplying the bound of the hypothesis raised to the power 1 — - , and the above
bound raised to the power 2/fc, we obtain the result. Q.E.D.

It is obvious that Lemma 7 follows from Lemmas 8 and 9.
It is easy to derive from formulas (5.4), (5.5), and (5.6) that if /e Ύ(a\ U(h) Φ(z) is

given by

(G.12)
)=-p(Zo,h0r

k/2 f

= P(z0,h0Γ
k/2 ί

zoh0

where hQ is real,

P(z0,Λ0) = (flo^o + Co)(^o + ̂ o) if ^o= ° 7\c0 α0

z0eIR, k = u+l if a = (uj), and z0e(C + , fc = n + l if α = (n,j, ±). This formula
together with the analyticity of/ allows U(h) Φ to be analytically continued in h in
a small complex neighborhood of the identity. In the case of the principal and
supplementary series, the non-uniformity of the function ω-»ωfc/2 requires some
precautions. Along the paths to be used, ( will always be of the form ζ = zh, where
z e <C + (in the case of the principal and supplementary series z e R), and h e Hξ, so
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that the integrand becomes P(z, h)k/2 U(h)f(z)ζ~1. The rule is that, at the start of
the path, P(z,/ι) = P(z0,A0) and the determination of P(z,h)kj2 to be chosen is
P(z0,/z0)

fc/2. Along the path it is then determined by analytic continuation. We
adopt the following terminology: let Θ = (C+ in the case of the discrete series,
Θ = R in the case of the principal or supplementary series. We call "path of type P0

(respectively POO)" a continuous path in the complex plane, starting from some
£0 — ZO/IQ, z0e<9, h0eHξ-δ, ending at 0 (respectively oo), and such that

a) Each ζ on the path is of the form zh, ze<9, h= ( 7 )e/?*_*, varying
\c dj

continuously along the path, with P(z,/ι) = P(z0,ft0) at the start of the path.
b) αz + c never vanishes along the path except, if the path is of type P0, at the

end ζ = 0. (bz + d) never vanishes along the path except, if the path is of type P^ at
the end ζ = co.

c) There is a continuous arc {ζu} joining ζQ to some ζί = zίhl, zv e <9, hΐ real in
Hξ-δ and a corresponding continuous family of paths starting at ζu (and ending
always at 0 or always at oo) satisfying the conditions a) and b) and ending with a
real path. (This condition will be non-trivial only in the case of the principal and
supplementary series.)

Along any such paths, there is an analytic continuation of /. If the
corresponding integrals along all paths of the family [of condition c)] are
absolutely convergent, they define an analytic continuation of Φ along the arc {ζu}
and, consequently, an analytic continuation of U(h)Φ(z) to the point (hQ, z0). We
denote

μ0 \ /α0 0

σ0 1 + σ0μ0/ \ 0 a^x

with μ0 = α0b0, σ0 = c0αo 1- In proving the bound for l/(fr0)Φ(z0), it is enough to
prove the bound for σ0 = iη0, η0 elR. Indeed, let h1 be given by

0\
/ι0, t real, then |[7(/ι1)Φ(z)| = |ί/(/ι0)Φ(zH-ί)|5V

and we have obviously Im(z + ί) = Im(z). In order to prove 8, i) for the principal
series, we shall first prove the following result.

Lemma 10. Let fe Y(ίsJ) be strongly ξ analytic and satisfy (5.6). Then, for all
x0eR, t/(/ι0)Φ(x0) is holomorphic inh0 inHξ_3δand if |μ0| = |α0b0|^^/4, satisfies

Let us first derive 8i), for the principal series, from Lemma 10. Assume A0

belongs to Hξ-4δ, \b0\<ξ — 4δ, \c0\<ξ — 4δ. If |μ0|^<5/4, the assertion of Lemma
8i), is explicitly in Lemma 10. If |μ0| <<5/4, let

α0 0

If \v\^δ/2 then hvGHξ_^δ. By Lemma 10, (7(/ιv)Φ(x0) is holomorphic in v in a
neighborhood of the disk |v| ̂  δ/2 and by the maximum principle, it satisfies
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\U(hv)Φ(x0)\<c(ξ)\\f\\ξδ-ΊI2, since the edge of the disk satisfies

Proof of Lemma 10. Note that it follows from our assumptions that U(h)f(x) is
simultaneously analytic in h and x. Given £0 = x0h0, any path of the type P0 or P^
originating at ζ0 such that the corresponding integrals are absolutely convergent,
defines an analytic continuation of U(h)Φ(x) to the point (Λ0,x0). To settle the
possibility of non-uniformity of such continuations, we shall proceed as follows.
The domain of analyticity asserted by Lemma 10 will be divided into several open
sets. In each of these we first prove the analyticity, then find integration paths that
yield the required bounds. The integrals in (G.I 2) can be rewritten

( O o r o o ) Γ D(v L\ Ίfc/2 ΛT

I/(ΛO)Φ(XO)= ί hπd tWWy-' (GΛ3)

Co Lrvxo?/7o,U s

where ζ = xh along the chosen path and k = 1 -f is. The quantity
[P(x, /0/P(x0, /ι0)]k/2 will be defined by analytic continuation along the path
starting with the value 1. We denote x + σ = reiφ, XQ + σ0 = r0e

ίφo, μ = ρeίθ,
μ0 = Qof°, ΘQ + Φ0 = α, θ + φ = β, 1 + μ(x + σ) = me1*, 1 + μ0(*o + σ0) = m0*

<v° The
condition h0eHξ^3δ implies

\aQ-l\<ξ-3δ9\aQ\\σ0\<ξ-3δ9\aQΓlρ0<ξ-3δ,

ρQ<(ξ-3δ)(l+ξ)(<2ξ).

An easy consequence of Lemma 9 is that for heHξ_δ, and xeIR, we have

(we have assumed ||/||^= 1).

I) Case \a0\r0<ξ — δ

a) Analytίcίty. We use a path given by ζ = xh, x = txQ9 μ = μ0,σ = tσ0 with 0 rg ί ̂  1 .
This gives

This equation holds for real h0 and extends analytically in {h0eHξ_δ,
\a0\ \xQ + σ0| < ξ — δ}. If α = 0 or π, P(x, h)/P(xθ9 Λ0) is positive and

2]/2

b) Bound. Assume αφO, π. A first path is given by Q = QO, r = r0, x = r0cosφ,
σ = ir0 sin^, β = θ + φ increases to π if α 6 (0, π), or decreases to - π if α e (- π, 0)
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while φ varies so that the argument of P(x, h) remains constant. This path produces

a contribution bounded by ——^ 2 . At the end of it we are in the case α = π,

we can apply the previous estimate since the final value of |[P(r0cos^,/ι)]fc/2| is
inferior to its initial value. We finally obtain

II. Case |α0|r0>^ — 3δ
This implies |r0cos^0|>0. We treat the case r0cos^0>0, the case r0cos^0<0
being similar. If 1 + ̂ 0(^0 + σo) =t= 0 we define a path of type Pro parametrized by t

e[l,oo] by σ = iη0, x = ]/ί2ro — η% (hence r = ίr0), ρ=— , θ = u — φ. Defining φ,

— , — this implies that φ varies monotonically from φ0 to 0, ζ = tei(φ ~ Φ^ζ0

and P(x,K) = tP(x0,h0)ei(φ-φo\ We obtain

00 γ s]tp~iΦQ

U(h0)Φ(x0)= I [t^-^+W—J^===
i tet(φ-φ°>}/r2

0-η2

0/t2

Using (G.I 5), we obtain

0 cosφ0t)

For fixed x0, α0, and σ0, the left-hand side of (G. 16) defines a function 7(/z0, x0) of μ0

holomorphic in the whole disk |α0| |μ0| < ξ — 3δ including the points, if any, where
l + μ0(x0 + σ0) = Q, and C°° in all variables. When σ0 and μ0 vary at fixed x0, α0,
avoiding points where l + μ0(x04-σ0) = 0, / defines a holomorphic function.
Hence, by standard properties of analytic functions of several complex variables, I
is holomorphic in h0 in the required domain, coincides with U(hQ) Φ(x0) at real hQ

and is also analytic in x0. If φ0 < 0, φ — φ0 increases along the path and we deduce

\I(ho, XQ)\ ^ 5π/(2δ3/2 cos^0|/r0cos^o)

We can assume |x0| > - , since |x0| < - implies |α0| |x0 + iσ0| < ξ — δ, which falls in

case /.

Subcase ILL x0η0^0. From (G.17) we derive, (σ0 = ϊ>/0)

5πrn 5π(xo + ξ} 5]/2πζ
-" <-- V

3/2 < δ3ιu(Λo)φ(*o))i<ΓT^Γ^< z:,:: <^3
Subcase IL2. r0ρ0^ 1. We use a path of type P^ parametrized by t e [0,1] with
X = XQ, σ = σ0, m = ίm0, ψ = ψ0. Along the path, μ follows a straight segment
contained in |μ|<ρ0

 so that h remains in Hξ_δ. The integral to be computed is
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This is holomorphic in h0 in the indicated domain, coincides with (7(/ι0)Φ(x0) for

real h0 and is bounded by 2j/2<5~ 1. It is also analytic in x0. To connect the point
(/20?x0) by a continuous arc{(/zM, xj} satisfying the same conditions (hueHξ_3δ,
ruQu= 1? |βJr«>£~3(:)) to a real point, we vary the angles φ0 and Θ0 so that |sin^0|
decreases to 0 and |00| decreases to 0, while xu varies so that Re σ remains constant.

Subcase 1 1. 3. r0ρ0 ̂  1 , m0 < δ (hence r0ρ0 > 1 — (5). In this case,
r0cos^0 = x0 + Reσ0 has the same sign as x0, which we take to be positive, the
other case being similar. The path of type P^ is defined by Q = QQ, Φ = Φv >
σ = ir sin^o, x = r cos^0, reiβ varies so that ψ remains fixed and m decreases from m0

to 0. Along the path, r has at most one minimum (r2 is a convex function of m) and

we have r ̂  — . Moreover, |α0| \η\ < ° < ξ — δ, so that h remains in Hξ-δ. The
ρ0 1 — 0

integral to be computed is bounded by

" " δ r

dm

o VoWo/ δ m

6]/2

To end the proof of this subcase we construct an arc joining any point satisfying the
preceding condition to a real point while keeping the condition fulfilled. For fixed
x0>0 the set DXθtao = {μθ9σo:r0ρ0^\9 m0<δ, \a0σ0\<ξ-/ίδ, \aQlμ0\<ξ-?>δ,
|α0 |r0>ξ — 3(3} does not depend on the argument of α0. Therefore we start by
moving α0 along \a0\ = const until it reaches |α0|. We now move σ and μ keeping
|μ| = |μ0| and r = |x0 + σ\ = r0. The center of (σ| |x0 + σ\ < r0} is outside of the disk
|σ|^|σ0|, since x0>2ξ. Hence there is an arc of this circle passing through σ0,
contained in the disk |σ| ̂  |σ0| and intersecting the real axis at σ x. We let σ follow
this arc from σ0 to σ1? while the argument of μ is varied so that μ(x0 + σ) remains
constant. Along this arc (μ, σ) e DXo^ao. Then we let Imμ->0, Reμ and σ = σ x being
kept fixed.

Subcase Π.4. sin^0cos^0>0, O^αrgπ, ρ0r0< 1, m0> -, \a0\r0>ξ — 3(5. We can

assume 0 ̂  φ0 ̂  — , since the other case is similar. We start by a path such that

a = iηQ9 \μ\ = ρ0,>θ + ψ = oc, are fixed. We have ψ e [0, π/2]. The argument of P(x, h) is
φ + ψ, and

and r—(φ + ψ) is an increasing function of x if 1 — QQr2^.0. We distinguish two
ίtX

subcases.

Subcase II.4A. — (φ + ip)^0 at x = r0 cos^0. We choose a path where x increases
cίX

from

to Xι
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so that r increases from r0 to — . Along this path, φ + ψ increases. The contribution
£o

of this path is bounded by

_

dr l/2

We now assume that ρ0 ί> - . The first integral is bounded by

4π ]/2<S ~ 2[(1 + ξ)/(ξ - 35)] 1/2

? since m0 > 5/2. If cos α > - 1/2, the second integral is

bounded by 8]/5<Γ3/2[(l + £)/(£ -3<S)]1/2. If cosα^ -1/2, the second integral is
bounded by 32<T5/2[(1 + £)/(£ -3<5)]. At the end of this path we have x = x l 9

/i — hί £Hξ_3δ and

-
Qo

while ArgP(x l5ft1)^ArgP(x0?/ϊ0). Therefore, finishing the integration as in

Subcase II.2, we obtain, using ρ0^ -, the bound 33<5~5/2(l + ξ)/(ξ — 3δ). We now

show how to let a group element,

I μ' Woo 0

follow a continuous arc from ft0 to a real value while continuing to satisfy all the
conditions of this subcase, notably, with x0 fixed,

η' ρ'sinα'r'cos^'

7 + (1 -hρ/2r/2-f-2ρV cosαO=

The circle {σx : |x0 + σ'\ = r0}, passing through σ0 and σ^ intersects the real axis at
^i=r0-x0 inside the disk {σx: |σ1^|σ0|}, since k0|-|(x0 + ̂ 0)-x0|^|r0-Xo|.
Since, by assumption 0 < r0 cos φQ = x0 -h Re σ0 ̂  r0, σ t ̂  Re σ0. We let σx follow this
arc of circle from σ0 to σ1 . Denoting x0 + σ' = r0^', ̂ ' decreases from < 0̂ to 0, hence

η'
smφ'= — decreases from sin^0 to 0 while r0 cos^x increases. At the same time we

keep ρ'=ρQ and a'=a by varying the argument of μx. Then we let α7 vary so that
cosαx increases from cosα to 1 while since' remains ^0.

Subcase II.4B. — - (φ + ψ) ̂  0 at x = rQ cos φ0. We let x decrease from r0 cos φ0 to 0.
CLJC

Along this path φ + ψ increases as x decreases. Again the integral has two
contributions bounded by:

1/2

\ d r ,
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which is bounded by 4π]/2(5~3/2, and

| l /2

If cosα^O, the contribution of (G.18) is bounded by 2]/2δ~1. If cosα<0, let

r1 = (1 — (5/2)/ρ0|cosα|. If r0 < r l 9 the contribution of (G.18) is bounded by 4]/2δ~2.
Suppose now cosα<0, and r0>r1. We divide the integration range in (G.18) into

D?o>rι]u[rι?ro] The contribution of the first part is again bounded by 4|/2^~2.

That of [r1? r0] is bounded by 2]/2ίΓ1 (1 -ί/2)'1. At the end of the path, ζ = Qhl,
and

2
-/Ξl^Ow

We finish the integration as in Case I and we obtain, for Subcase II.4B, a

contribution bounded by 5 j/2 δ ~ 2. We now have to describe how to let hf follow a
continuous arc from h0 to a real value while continuing to satisfy all the conditions

of this subcase ί in particular — (φ + ψ) ̂  0 1 . We first fix σ' = σ0, hence r' = r0 and
\ ax J

φ' = φo If cosαrgO, we first vary ρVα' inside the disk |ρVα'|^ρ0 so that ρ'sinα'
remains constant and ρ'cosα' increases from ρ0 cosα to 0. If cosα ̂ 0, we omit the
preceding step and proceed to the next: ρ' is kept fixed, α' decreases so that sinα'
decreases to 0 and cosα' increases to 1. All conditions remain satisfied in this
process. Finally we let σ' move from σ0 to σ1 as in Subcase II.4A, while varying the
argument θ' of μ' so that a' = φ' + θf remains equal to 0.

Subcase II. 5. sin^0cos^0>0, — π<α<0, ρ0r0<l, |α0 |r0>ξ — 3<5, m0><5/2. This
case will be reduced to the case α = 0 or π. The path is defined by X = XQ, σ = σ0,

m = m0,θ = Θ0, ψ increases from its initial value φ0 e - - , 0 to 0. This path gives

a contribution bounded by - -— . The remainder of the integral to be computed is
2 o

treated as in Subcase II.4B. To find an arc from a point Λ0 satisfying the above
conditions to the reals, it suffices to let /z0 follow the path described above to the
end, then to let σ0 go to σx = r0 - x0 as in Subcase II.4A while α = θ + φ is kept fixed.

With Cases I and II it has been shown that, for fixed x0? ^(ho)^(xo) has a
uniform analytic continuation in each of the three open sets,

Άu(xo) = {ho€Hξ_3δ:\aQ\rQ>ξ-3δ, ±r0cos^0<0},

with ΔU (x0)nJI7(x0) = 0. To prove that these analytic continuations match, we
show that if, e.g. Λ 0 e JnXxo^n/J^Xo) it can be connected to the reals by a
continuous arc not leaving this intersection: first we vary α0 at constant |α0| until it
reaches |α0|. Then we vary continuously the argument θ of μ = ρ0e

lθ, keeping |μ|
constant, until Θ = Q. Finally we move σ from σ0 to σ x = x0 — r0 (as explained at the
end of Subcase II.4A) keeping \x0~^σ\:=ro constant.
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Thus [7(ft0)Φ(x0) extends to a holomorphic function of hQ in Hξ^^δ and, if

ρ0^ -, it is easy to see that this bound for Subcase II.4A majorizes the bounds

80
found for all other subcases. It is itself majorized by -r^ . This concludes the proof

of Lemma 10.
We now continue the proof of Lemma 8 by looking at the supplementary series.

An easy consequence of Lemma 9 is that if ||/||5= 1, and fe Y(sj\ there is a
positive constant B which does not depend on / such that

for all x e R, and heΉξ-δ. We shall now define and estimate U(h) Φ(x). We shall
use the notations introduced in the proof of Lemma 9. There are two cases.

Case I. |α0| r0 < ξ — δ. We use a path x = Dc0, σ = ίσ0, μ = μQ,te [0, 1]. As in the case
of the principal series,

U(h )φΛc W f
E7(*o)Φ(x0)- J _ ι+μo(Xo + σo)-

Therefore |t7(ft0)Φ(x0)l^2B(l-ξ2)-1(l+2ξ2), since \l + tμΌ(x0 + σ0)\>l-ξ2

9

and using (G.I9).

Case II. \a0\r0>ξ — 3δ. As in the case of the principal series, we note that this
implies |r0cos^0|>0 and we consider the case cos^0>0 (the other case being
similar). We use the same contour as in the case of the principal series. We have

U(h0)Φ(x0)= J
1

hence using (G.I9),

r0 t<a-Wdt

As explained in the case of the principal series, (see Case II), it suffices to consider

the case |x0|> -, and using r0^x0 + ξ, we obtain

This ends the proof of part i) in Lemma 8.
We now show part ii). From Lemma 9 it follows that if /e Y{a j ±}, and if

(G.20)
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and

I U(h)f(λ)\ ^ 8 [_δ(lmλ)k/2 ~ l [(1 + δ Imλ)2 + (δ Re /I)2]] ~ 1 (G.21)

for any ΛeC+, and hεΉξ_δ.
We adopt the following notations.

h=(l μ°
0 V"7o 1+W/o/ \° ^o 1

(it is sufficient to consider the case η0 e R),

*-'• : + W V O α0-V

The integration variable will always be of the form λh, λ e C+, and /z of the form

I μ Woo 0

and we denote

There are two cases.

/. Case η0 ̂  0. Our first path is defined by η = η0,r = r0, ρ = ρ0, φ varies in such a
way that sin^ increases from sin^0 to 1, and θ is varied so that θ + φ = oc remains
constant. Along this path, the imaginary part of λ increases. This path gives a

71 71
contribution bounded by — (Imλ0)~k/2. At the end of the path we have φ——, and

let h^ and λί = ί(rQ — ηQ) be the values assumed by h and λ. Notice that
= \P(λQ, h0)\. We now have to treat the case φQ = π/2, λ0 = z(r0 — η0) — iyQ. We define
a path by r = r0, ρ = ρ0, φ = φ0 = π/2, and θ varies in such a way that sinθ increases
from sinθ0 to 1. Along this path, |1 +iρ0r0e

ίθ\2 decreases, and the contribution is

bounded by ρ0r02lθj;o fc/2|l +iQorQetθ°\~1, where Aθ =

l and

or
> π

Ό + 3- . Since
2'

the contribution of this path is bounded by Iβny^12. Along this path, \P(λ, h)\ has
decreased, while Imλ remained constant. Therefore it is now enough to treat the
special case λQ = iy0 = ί(v0 — η0), v0 > 0, μ0 = zρ0, ρ0 > 0. We use a path where h = h0

is fixed and λ = iy varies. Let υ — y + η0, v^Q, we have to estimate

0 or l/ρ0

U(h0)Φ(iy0)= J [Pίl-ρow)]*'2"1^!
Vθ

Using (G.21) this is bounded in modulus by

0 or 1/ρo

Let γ be defined by
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There are three cases.

a) // 0^ι>o^y, we integrate from 0 to ι;0. The function ^(l-^V^-^o) ίs

positive and increasing, and using y^ - — , we have l-ρ0ι;0^ 1/2; we obtain a
zρ0

contribution bounded by I6δ~2yό k/2

b) γ ̂  v0 ̂  on 1 . In this case we integrate from vQ to — .v(l— ρ0v) (υ — η0] is positive
Qo

and decreasing. The contribution is therefore bounded by

8<r
I/So

ί
dv

which is less than 32δ~2yΰkl2, since y> — η0.

c) // t?0>ρo *, we integrate from QQ 1 to t;0. Using the bound \U(h)f(ί(v —
^(v — η0)~kl2, the contribution of this path is bounded by 2y$ k/2.

II. Case η0 > 0. In this case we have

where

μ0\(a0

0 l 0

Therefore applying Case 1, we obtain

This completes the proof of Lemma 8.
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