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Abstract. It is shown that in a quantum field theory satisfying Wightman's
axioms with locality replaced by weak locality and cyclicity by a weak
irreducibility, every unitary Poincare invariant and CPT-invariant operator is
a scattering operator (in the LSZ-sense). The proof is given by explicit
construction of a corresponding class of nontrivial weakly local massive
Wightman fields. This result implies Jost's conjecture that only locality leads to
nontrivial restrictions for the scattering operator and extends corresponding
results of Schneider.

1. Introduction

In an interesting paper Jost [1] gave some arguments for the conjectures that, in
the framework of a Wightman theory without locality, first the existence of a
scattering operator S φ l and the weak locality are compatible, i.e.
noncontradicting, conditions and, second, the CPT-invariance of the scattering
operator is the only condition for the scattering operator implied by weak locality.
As Jost himself says (in this paper), the arguments for these purposes are "formal
considerations" (formal construction of models which can be used to prove the
assertions just mentioned).

Schneider [2] undertook the attempt to make these arguments in Jost's paper
rigorous, i.e. he tried to get the corresponding models rigorous. In fact the results
of Schneider are rigorous but there are some deficiencies. The first essential defect
is that the test functions for his quantum fields are not the functions from ^(IR4), as
required by the Wightman axioms. Another defect is that his construction of the
weakly local quantum fields from the given scattering operator S works only under
additional assumptions on S (not only under unitarity, Poincare invariance and
CPT-invariance).

Some remarks of Todorov [3, pp. 666 and 686] suggest the impression that it
is easy to construct rigorously quantum fields along the lines sketched by Jost
implying the conjectures mentioned above. Perhaps this is true, but we were not
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able to find any relevant construction in the literature (of course there are several
papers where constructions with certain properties are presented, partly with a
completely different methodical background; as an example we mention the paper
of Yngvason [4] where a class of fields is constructed satisfying translational
invariance and spectrality).

The aim of this paper is to present rigorous constructions of quantum fields: for
every given unitary Poincare invariant and CPT-invariant operator So (a
candidate for the scattering operator) we construct a quantum field satisfying the
Wightman axioms with locality and cyclicity replaced by weak locality and weak
irreducibility, respectively, and equipped with a convergent LSZ-scattering theory
yielding a scattering operator S which coincides with the given operator So. These
constructions imply rigorous proofs of the conjectures of Jost [1] (see also Jost [5,
pp. 189 and 206]).

Our construction works for massive fields. For simplicity we restrict ourselves
to neutral scalar fields in this paper.

The basic method used here is the abstract inverse scattering method (see e.g.
[6]) combined with an abstract perturbation-theoretic approach applied to free
fields, which apparently has not been taken into consideration so far. The ansatz
for our weakly local quantum fields (or "perturbed" free fields) is simply given by
A(0): = F*v4°(0) V, where A°(0) is the free field at the point zero. It is the crucial
point to express all desired properties of the field A( ), like Poincare invariance,
LSZ-scattering theory and so on, in terms of V. For every given CPT-invariant and
Poincare invariant operator So we have to construct a suitable operator V such
that A{ -) has a LSZ-scattering theory with the prescribed scattering operator So.
This approach is useful because the well-developed technique of interpolating
asymptotic constants [6] can be applied to the construction of V. An important
step in this construction is to find Lorentz invariant asymptotic constants
interpolating between zero and the identity. This is done in [7], We remark that
our construction of the field A( ) is a pure operator-theoretical one starting with
the mentioned ansatz and using some results of Fredenhagen and Hertel [8] on
Wightman fields with a regularity condition. Our assumptions on the operator V
imply that the quantum field A( ) is necessarily nonlocal.

The Appendix contains another but related construction yielding fields where
Lorentz invariance is replaced by rotational invariance. These models allow a
Haag-Ruelle scattering theory leading to a scattering operator which coincides
with a prescribed unitary, Poincare invariant and PCT-invariant operator. The
results of the Appendix have been lectured at ISI Delhi (see Baumgartel [9]).

2. Results

2.1. Preliminaries

For convenience we recall the Wightman properties (axioms) for a massive neutral
scalar field.

The system of test functions is given by the Schwartz space ̂ ( R 4 ) over R4. The
quantum field is represented by a 5-tuple {J^, Ug9 ω; A(-), 3)}, where Jf is a
(separable) Hubert space and Ug is a strongly continuous unitary representation of
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the restricted Poincare group 0>\ whose elements are denoted by g = {Λ,a},
a G R4, AE^+, where £?\ denotes the restricted Lorentz group, ω is a normalized
vector (vacuum) from Jf and Q) s ω is a dense linear set in Jf with Ug 2 Q (2). The
operators A{f\ fe ^ ( R 4 ) , are defined on 2 and ima A(f) \3fQ3f. The field A{ )
and the representation Ug satisfy the following properties:

1. tempered distribution property,
2. Hermitian structure property (i.e. A(f*) \@ = A(f)* \ £&, where

/*(*) =/(*)),
3. spectrality inclusive mass gap (i.e. the mass spectrum is given by

specm[/g = {0}u{mo}uZl? zlg[mo + ε, oo), A Borel set, ε>0, mo>0).
4. The vacuum ω is unique.
5. Poincare invariance property [i.e. A( ) is translationally invariant and

Lorentz invariant].
6. The field A( ) is local.
Note that locality implies the existence of an idempotent and anti-unitary

operator Θ on jf such that

A(Sf) = ΘA(f) Θ, fe ^(R 4), (2.1)

is valid where (θ/)(x)=/( — x) respectively (θ/)(p)=/(p), i.e. for momentum
space test functions θ means simply complex conjugation. The operator Θ is called
the CPT-operator of the field A( ) and (2.1) is called the

6'. CPT-invariance property (weak locality).
7. The vacuum ω is cyclic.

Note that cyclicity of the vacuum implies the irreducibility of the field, i.e. if
C e <£{2tf) and (u, CA(f)v) = (A(f*)u, Cv) is valid for all u,ve3), fe ^ ( R 4 ) , then
C = γl follows where γ is a scalar. In particular, if this proposition is true for all
C G JSf(jf) with the restriction that C@o Q 3fQ, C*@o Q 90, where 3J0 C 2 is a dense
linear set from jf, given a priori, then we call this property the

7'. weak or ^0-irreducibility.
The asymptotic concepts and properties in connection with Wightman fields

are of special interest. For asymptotic purposes one needs a suitable free field for
asymptotic comparison. For convenience we collect the corresponding concepts
and notations.

First Dmo 0 > + denotes the irreducible representation of 3P\ labeled by rao>0
and s = 0; 2tf\ is a corresponding representation Hubert space, the so-called one-
particle space. Jf \ can be realized by L2(R3, dp/(ml + |p| 2) 1 / 2), where p denotes the
space momentum coordinate, p e R 3 . By jf%: = 3(P\®... ® Jf \ (n times) we denote
the n-particle space, and by ^ o : = C 0 J f ? Θ S 2 ^ © . . . (Hubert sum) the
corresponding (symmetric) Fock space; S2, S3,... means symmetrization. Pn

denotes the orthoprojection from jf° onto 3/f% (considered as a subspace of Jf °)
and jffin C Jf ° the linear submanifold of all finite particle vectors (which is dense in
Jf °). ω o = {1,0,0,...} GJf° denotes the (normalized) vacuum. By Ug we denote
that unitary strongly continuous representation of 3P\ on Jf ° which is induced by
Dmo 0 +. The generators {Po, P l 5 P 2 , P3} = P of the corresponding translational
subrepresentation Ua, a e R 4, are normalized by the convention

(2.2)
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where a = (α0, — α) if a = (αθ5 α) (space reflection). Usually one puts P o = : Ho. The
absolutely continuous subspace of this representation with respect to the Lebesgue
measure on R 4 is given by ^ ° θ ( < C 0 J f ? ) . Furthermore, specmί/° = supρm£( )
= {0}u{mo}u[2mo, oo). The massive neutral scalar field is uniquely defined by its
2-point functional

W2(f®g) = (ω,A0(f)A°(g)ω) = J f(-p)g(p)μmo(dp), (2.3)

where Hmo denotes the mass hyperboloid Hmo = {p:pl — \γ>\2 = m2

), po>0}, and
μmo( ) the corresponding Lorentz invariant measure. As already indicated by (2.3),
the corresponding (free) field operators are denoted by A°(f),fe ^(IR 4). Note that
A°(J) ΓPπjf° is bounded for all n—1,2,.... Moreover, for uePnj4f° the vector
A°(f)u is always a finite particle vector, i.e. Jffin= :@° can be taken as the
common domain " ^ " which appears in the definition of Wightman fields. A°(f) is
essentially selfadjoint on ̂ ° if/ is real-valued. The CPT-operator belonging to the
free field is denoted by Θo. It is simply the complex conjugation of the elements of
Jf°. ^(^ffOin)C^ff

o

in means the set of those elements / = {/0, / l 9 /2,...} from ^ff°in

such that fj e ^(]R 3 j), 7 = 1,2,....

8A. For asymptotic comparison we use the free field {Jf0, [7°, ω 0 , A°{ ), ®0},
uniquely defined by m0 > 0, s = 0. If the field ̂ 4( ) satisfies the properties 1-7 and if
additionally first the one-particle space is irreducible labeled by m0 > 0, s = 0, and,
second, the vacuum is coupled to the one-particle space via A(f)ω, then one can
apply the famous result of Haag-Ruelle (see e.g. Reed and Simon [10, p. 317f.] or
Glimm and Jaffe [11, p. 247]), that is, the Haag-Ruelle wave operators,

5-lim eίtHK e ~itHo u=:W+u, (2.4)

exist where the vectors u form a suitable dense linear set. For the definition of K,
see for example [12,13,6], see also [10,11]. The wave operators W+ are isometric.
Asymptotic completeness of the field A{ ) can be defined by
clo ima W+ = clo ima W_ = ffl equivalent to the usual definition J»f i n = Jf o u t = Jf,
see [11, p. 239]), the scattering operator is defined by S=W?W_, where
S \ {λωQ}®ffl\ = 1. An asymptotic complete field is called nontrivial if S + 1 .

Note that asymptotic completeness of the field A( -) implies that {Jf, Ug9 ω} of
this field can be identified with {j-f °, 17°, ω0} of the corresponding free field A°( )
[we omit the simple calculations which transform A{ ) unitarily using the wave
operators as isometric operators from Jf° onto 2tiΓ\.

8B. The second approach for asymptotic comparison is the so-called LSZ-
approach. Here the basic idea is to obtain the field A( ) as an interpolating field
between two free fields, for t = — oo (in-field) and t = + oo (out-field). Therefore, in
this approach J f is a priori assumed to be a Hubert space J f ° of a free field A°( ).
Furthermore, A( ) and A°( ) are assumed to have the same representation 17° and
the same vacuum ω0. Moreover, A{ ) is assumed to be interpolating between
A°( ) and S*A°(-)S, where S is unitary on Jf, i.e. one assumes

(Su,A°(<x)Sv),
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where u,ve2#0C@}° {β0 is a fixed dense linear set in Jf) and where (g denotes the
Fourier transform of g)

. (2.6)

Note that it is not required that the operators A(ft) themselves exist, but the scalar
products in (2.5) have to exist. Thus we can consider (2.5) for more general
functions ft, e.g. where α e ^ ( R 4 ) is replaced by α(x) = δ(x0) a^x), d1 e C^(R 3) and
δ( ) is the (5-function, provided that the scalar products of Bt(f) exist. Our way is to
prove (2.5) for these functions oc(x) = (x1(x)δ(xo). The extension to functions
α(x) = a^x)β(x0), OLECQ (R 4 ) is obvious. S is unique up to a constant λ, \λ\ = l, but S
can be normalized by S \ {cωo}0«^? = 1. For Wightman fields considered in 8A
the LSZ-approach is implied by the Haag-Ruelle approach as Hepp has shown
[14] (it is to construct a suitable 20).

In the LSZ-approach in some sense asymptotic completeness is assumed a
priori, because the asymptotic in- and out-fields A°( ) and S*A°(-)S need the
whole Hubert space Jf°. In any case, asymptotic completeness in this approach
means unitarity of S. Therefore, our basic approach is the following: {Jf, Ug, ω}
will be fixed a priori, namely by setting j f = J^°, Ug = Ug, ω = ω0. Furthermore, the
next steps are governed by the inverse scattering problem: Let S be given, unitary
on J f and equipped with several properties to be explained later. It is to construct
A(f), fe <9*(R4), and 2f such that (most of) the Wightman properties are satisfied
and S is realized as the scattering operator of this field, either according to 8 A or (at
least) according to 8B.

2.2. Formulation of the Results

The results are different according to the cases: I) Poincare invariance
(translational invariance together with Lorentz invariance) and II) translational
invariance together with rotational invariance. The results with respect to II are
described in the Appendix. Here we deal with the results with respect to I.

First we formulate the conditions on our candidates S for scattering operators.
Let S e JS?(jf) and assume the following conditions to be satisfied:

I. S is unitary,
II. S ϊ {λω}@ #?γ = 1 (normalization property),

III. SUg = UgS, ge&l, (Poincare invariance),
IV. Θ0SΘ0 = S* (CPT-invariance).
Then we assert that the following theorem is true.

Theorem 1. Let the triple {2tf, Ug, ω} be chosen as above and let the bounded
operator S be equipped with the properties I-IV. Then: there exists a quantum field
{A(f), fe y ( R 4 ) ; 2} belonging to {Jf, Ug, ω} and a suitable dense linear set 2>0CS)
such that the properties 1-5,6', 7', and 8B (with respect to @0) are satisfied and such
that S is realized as the scattering operator of A(-) in the sense of 8B. That is, the
field A(') has Hermitian structure and it satisfies the tempered distribution
property. It is Poincarέ invariant, weakly local, weakly irreducible and satisfies the
LSZ-property with respect to $)0 (and toote 5^(R4), where ά(p) = όci(p)/?(p0) and ά
has compact support) such that S is realized as the scattering operator.
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Corollary 1. There are nontrivial weakly local Wίghtman fields, i.e. within the
framework of the other Wightman axioms (modified by Ίf instead of 1) the
conditions of weak locality and nontriviality are non-contradicting.

Proof Obvious by Theorem 1. D

Remark 1. Theorem 1 remains true if one drops on the one hand property IV of the
operator S and, on the other hand, property 6' of the field to be constructed. The
given proof works essentially also in this case.

Corollary 2. In the framework of a Wightman theory with the properties 1-5, 6', 7',
and 8B at most the condition IV of the scattering operator S is an implication of
property 6'.

Proof As it can be seen from Remark 1, if, within the framework of the properties
1-5, 6\ 1\ and 8B, condition IV is an implication then it is an implication from
property 6' alone (in the sense that only enlarging the system (where property 6' is
dropped) by this property yields IV as an implication). Moreover, the existence of
an additional condition on S implied by weak locality contradicts Theorem 1
because this theorem says that to every operator S, equipped only with conditions
I-IV, there is a corresponding quantum field which is weakly local. D

Remark 2. The proof of Theorem 1 will be a constructive one. For the models to be
constructed we have not been able to prove the cyclicity of the vacuum ω so far. In
any case the models are weakly irreducible as asserted in Theorem 1.

Remark 3. The models to be constructed for the proof of Theorem 1 are necessarily
nonlocal. For this fact the normalization condition of the operator V on {λω} © Jf [
is mainly responsible. This can be seen easily by the (formal) calculation [see (3.11)]

(ω,Λ(f)A(g)ω)= f j f(x)g(y)(UxV*A°(p)VU-xω9 UyV*A°(0)VU _yω)dxdy
R4 R4

= ί ί f(x)g(y)(UxA
o{Q)ω,UyA

o(0)ω)dxdy = (ω,A°(f)Ao(g)ω).
R 4 R 4

Thus the 2-point functional of the fields A( ) and A°( ) coincide. Therefore,
according to a well-known Theorem of Jost and Schroer (see e.g. Streater and
Wightman [15, p. 214]) the field A( ) is necessarily nonlocal. Although one may
weaken the normalization condition such that there is no coincidence of the
2-point functionals of A°( ) and the perturbed field A( ), it seems to be not very
likely that one could construct local models by a related ansatz as the one used in
this paper.

3. Proof of Theorem 1

3.1. Perturbation Theory for the Free Field

We start with some remarks on (Wightman) fields with regularity condition. This
condition was introduced and discussed (among other things) in Fredenhagen and
Hertel [8].

Let J-f and Ug be given as before. H^0 denotes the Hamiltonian, Ut = e~ίtH.
Put ^ ^ ( l + ϋ ) " 1 . Furthermore, let s(w, v) be a Hermitian sesquilinear form
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defined on C°°(i/): = Π dom/P, where s is called Hermitian if s(u, v) = s(v, ύ) for

Regularity Condition. There exists a natural fc>0 such that s(Rku,Rkv),
u,ve C°°(Ή), is a bounded sesquilinear form.

In other words, there is a bounded selfadjoint operator B such that s(Rku, Rkv)
= (u, Bv) for all u, v e C°°(H). Since C°°CFf) is invariant with respect to Ua, a e R4,
one can define a sesquilinear form s(f) on C™(H), for all / e ^ R 4 ) , by the
formula:

s(f)(u,v) = J f(x)s(U-xu,U-xv)dx. (3.1)
R4

s(/) is also regular, for all / e ^ R 4 ) , because of

s(U _xR
ku,U _xR

kv) = s(RkU _xu, RkU _xv) = (U _xu, BU ^xv),

which leads to

w,^z;)= S f(x)s(U-xR
ku,U-xR

kv)dx= J f(x)(U_xu,BU_xv)dx
R4 R4

where J f(x)UxBU_xdx is a bounded operator. We need two propositions on
R4

regular sesquilinear forms.

Lemma 1. // s is regular then s(f), fe ^ ( R 4 ) , defines uniquely a tempered operator-
valued distribution A(f), with Hermitian structure, on C°°(iϊ) such that RkA(f)Rk is
bounded, where

RkA(f)Rk= j f(x)UxBU^xdx. (3.2)
R4

Remark 4. For the proof of Lemma 1 see [8]. Here we only note that the operator
A(f) is given by the fact that s(f) (u, R2kv) is bounded defining uniquely a bounded
operator C. Then A(f) is defined on C°°(#) by A(f)R2k\ =C. Note that

s(f) (u, v) - (u, A(f)v), M, t> e C°°(fl). (3.3)

Therefore in the following the form s(f) ( , ) is also denoted by A(f) [ , ] and
the starting form s by

Aφ)ίu9Ό-]:=s(μ9Ό). (3.4)

Correspondingly we put

u,U-xv]. (3.5)

The operator A(f) is closable and, for example, the tempered distribution property
is implied by the estimate

- J \f{x)\dx.
R4
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Note that Eq. (3.2) means that the field A( ) sandwiched by Rk is defined as a
pointwise localized bounded operator; therefore we may write formally

RkA(x)Rk:=UxBU-x, (3.6)

in particular

RkA(0)Rk:=B. (3.7)

This notation is in agreement with the notation given by (3.4) and (3.5). Conversely,
one has

Lemma 2. Let A(f), fe ^(IR4), be an operator-valued distribution with Hermίtian
structure, such that C°°(fί) is an invariant domain and such that RkA(f)Rk is
bounded for some fixed natural fe, satisfying the estimate

\\RkA(f)Rk\\Sc\\f\\y, / e ^ ( R 4 ) , c>0, (3.8)

where \\-\\#> denotes some Schwartz norm. Then there is a sesquίlinear form s(μ9 v)
defined on C^iH) satisfying the regularity condition (but possibly with another
k'^.k), and such that

s(f) (μ, v) = (M, A(f)v), u, v e C°°(tf), (3.9)

is valid.

Remark 5. For the proof see again [8]. The free field {JT, Ug9 ω, A°(-)9 3)°}
belonging to m0 > 0, 5 = 0 satisfies the property that C™{H) is an invariant domain
of A°(f% / G ^ ( 1 R 4 ) . In this case by a straightforward calculation one obtains a
bound

M°(/)Λ2n||^φ|| J \f(x)\dx,
IR4

hence A°( ) satisfies the estimate

\\R2A°(J)R2\\^c i \f(x)\dx. (3.10)
R4

Thus, according to Lemma 2, RkA°(0)Rk is bounded for some k ̂  2, but it turns out
that in this case fe = 2 is already possible.

Lemmas 1 and 2, and Remark 5 allow a certain perturbation theory of the free
field. According to Lemma 1 one can construct fields with regularity condition by
defining RkA(0)Rk as a bounded operator. Let V be a bounded operator on Jf.
Then a perturbed field can be formally defined by

(3.11)

A rigorous definition is given by

RkA(0)Rk: = {(l+H)kV(l+Hyk}*RkA°(O)Rk{(l+HfV(l+Hyk} , fc^2,
(3.12)

where it is assumed that (1 + H)kV(l +H)~kis also bounded. In this case we call V
k-energetic bounded (see [7]).
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Proposition 1. Let F e i f p f ) and let V be k-energetίc bounded where k^2.
Furthermore, let VU^Λt0^= U^Λ0^V for all Ae £P\. Then (3.12) defines a tempered
operator-valued distribution A(f), / e ^ R 4 ) , with Hermίtian structure, satisfying
the regularity condition, and which is, additionally, Poincarέ invariant.

Proof We use the abbreviation

V: -(1 +H)kV(l +Hyk. (3.13)

Furthermore, by

Aφ) \u, ύ] : =A°(P) [Vu, Vv\ , u,ve C°(H), (3.14)

it is defined a Hermitian sesquilinear form on C°°(/f) with regularity condition,
namely one obtains

4(0) lRku, Rkv] = A°(0) lVRku, VRkv] = A°(0) \_RkVu, RkVv]

= (Vu,RkA°(0)RkVv),

using the notation (3.7) with respect to A°{ ). Hence the sandwiched field operator
RkA(0)Rk, corresponding to the sesquilinear form A(0) [ , ] defined by (3.14) is
obviously given by formula (3.12). Thus, according to Lemma ί, the corresponding
field operators A(f), fe 5^(R4), are well-defined on C™{H) as closable operators
such that RkA(f)Rk is bounded. They have Hermitian structure. Now we prove the
Poincare invariance of this field. First, using (3.7) we obtain

RkA(f(- -a))Rk= \f{x-a)VxBU_xdx= $f(x)Ux+aBU_x.adx

= Ujf(x)UxBU.xdxU.a = Ua

= RkUaA(f)U.aR
k,

i.e. translational invariance. Second one has

(u,A(f(Λ~1-))v)= J

^xu, VU-xv\dx
R4

= j f{y)A\ϋ)[yυΛu_yυ-Λ

ιu,vuAu_yυ-Λ

1v-]dy
R4R4

= j f(y)A\θ)iυΛvυ^υ^u,υΛvυ.yυ-Λ

1υ\dy,
R4

where for brevity UΛ: = U{Λ>0}. Now, since the free field is Lorentz invariant, one
has

for every Λe£C\.,i.e. these sesquilinear forms coincide. Hence one obtains

(u,A(f(A-1-))v)=



340 H. Baumgartel and M. Wollenberg

for all u,v€ C°°(7f) (note that C°°(H) is invariant under UA)9 that is, A(-)is Lorentz
invariant. D

Therefore, in what follows we have to impose on V two conditions, fc-energetic
boundedness and Lorentz invariance in order to obtain a Poincare invariant
Hermitian tempered operator-valued distribution via the perturbation ansatz
(3.11), respectively (3.12).

3.2. An Auxiliary Theorem

This section deals with the construction of a suitable operator V equipped with the
two properties from Proposition 1 together with further additional properties
connecting this operator with the prescribed operator S.

We assume that {Jf, Ug9 ω} is given as before and that S satisfies the properties
I-IV of Sect. 2.2. Now our aim is to construct an operator V with the following
properties:

I. Ve&(Jί?) (boundedness).
II. V: =(\+H)mV(\+H)~m is bounded for some m^2 (m-energetic

boundedness).
III. VUΛ = UΛV, Ae £?\ (Lorentz invariance).
IV. V \ {λω}(BJl?i = 1 (normalization condition).
V. Θ0V*Θ0 = SV* (CPT-invariance).

VI. The strong limits s-lim eitHVe~itH = :V+ exist and 7_ = 1, V+=S
t-*± oo

(interpolating property). Moreover, with respect to a certain dense linear set ^
from Jf, ^o CC°°(ίΓ), which is given a priori, V satisfies a so-called smoothness
estimate

\\(V-V±)e-UHu\\^c^t\-\n=l92939...9±t>l9uE^9 (3.15)

where c^u>0 denote constants which may depend on n and u (^-smoothness).
VII. Fis also an interpolating asymptotic constant with the same limits V+ as

V. V is also ^ o - s m o o t h ^n^ moreover, the smoothness estimate is uniform with
respect to the orbits [defined by (ί, 0)], i.e.

f ± ^ (3.16)

holds where a = (t,x), hence (a,a} = t2 — \x\2 and where c* t t>0 denote constants
which may depend on n and u.

The construction of V is performed by several steps. The first step reduces the
construction of V to the construction of a selfadjoint asymptotic constant A
interpolating between 0 and 1 with respect to JlfQ((C®J^1) = EΛCJ^9 which is
Lorentz invariant and satisfies some other properties given in the next proposition.
In the following we put S = eιη, where η is selfadjoint and bounded.

Proposition 2. Let {Jf, Ugy ω} be defined as before. Let @0 C C°°(H) be a dense linear
set in J>f and invariant with respect to Θo, Θo@o Q @0. Assume that the bounded self-
adjoint operator A satisfies the following properties:

1. AEΆC = EΆCA = A (normalization).
2. A is m-energetic bounded for some m^2.
3. A is Lorentz invariant.
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4. A is an asymptotic constant interpolating between 0 and E a c, i.e.
s-limeitHAe~itHEac=:A + exists where A_=0, A+=Eac. Furthermore, A is
t-> ± oo

Θ0-smooth.
5. A is also a @0-smooth asymptotic constant with the same limits A±.

Furthermore, the smoothness estimate is uniform with respect to the orbits defined by
(ί,0), i.e.

holds. Then the operator

V: =S1/2AS1/2 + S-1/2Θ0AΘ0S
ll2 + Ei (3.17)

satisfies the properties I-VII, where Sί/2 is defined bySί/2:= e(ι/2)η, and where Q)\ is
given by

@v

0:=S-ί/2@0. (3.18)

Proof. I is trivial. II is obvious because A is m-energetic bounded. Ill is obvious
because of 3 and Sι/2UΛ= UΛS

1/2. IV is obvious because of AE^ = E^CA = O and
S1/2Eac = EacS

1/2. V. One has

Note that SEac = Eac because of the normalization condition of S. VI. The first part
follows from 4. The second part follows also from 4: Namely, on the one hand, A is
^ 0 -smooth and, on the other hand, from (3.18) one obtains Sί/2@l = ̂ 0- Thus
from (3.17) the ^ o " s m o o t h n e s s of V follows. VII follows from 5 and from the fact
that (1 +H)m and (1 +H)~m commute with S1/2 and S~1/2. Furthermore, (3.18) is
used. D

Remark 6. If SS)0g90 then instead of (3.17) the ansatz V: =AS + Θ0AΘ0 is
possible for V yielding for V the same smoothness manifold 2)0 as for A.

3.3. Construction of A

The operator A will be constructed separately with respect to the n-particle spaces
3tfw n = 2,3,.... Simultaneously, the smoothness manifolds 3lw n = 2,3,..., with
respect to An: = A \ Jfπ are introduced. We should remark that the essential steps
for the construction of the operators An and the smoothness manifolds Q)n are
already described and developed in [7]. Recall that

3 x . . . χ ] R 3 , 0dPρ/(^o + \Vρ\
2y/2 ) (3.19)

n times

and, using the abbreviation μ(p): = (m^ -

ίi,ίn \ -n \ \

[θ~ιpu...,θ~1^^, (3.20)
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where θ corresponds to A via θ = ι~ίΛι (see [7]). We form

M2=l Σμ(VQ) ~
2

ΣP.
β = l

2

(3.21)

The function M = M(p 1 ? ...,pM) is invariant with respect to θ:M(θpu..., #pn)
= M(p 1 ? ...,pπ). Equation (3.21) is equivalent

Σ (β(Vβ)μ(Vσ) ~(Pρ, P,)) = (1/2) (M 2 - nm2) £(1/2)n(n- \)m\. (3.22)
ρφσ

Note that each term μ(pρ)μ(pσ) — (pρ, pσ) ^ m2,. If M is fixed one obtains a manifold
C y c R 3 " . It can be seen easily that &nmo = {(Pi,..., pn): p x = p 2 = . . . =pM}, which is
diffeomorphic to IRA If M>nm0 then ΘM is locally diffeomorphic to R 3 " " 1 . Now
we consider diffeomorphisms between TR.3n\Θnmo and (nm0, oo) x ΘMl9 where
Mί>nm0 is fixed. We are interested in diffeomorphisms with special properties.

Lemma 3. There is a diffeomorphism from ΊR.3n\Θnmo onto (nm0, oo) x ΘMί with the
following properties: Let (M, K) E (nm0, oo) x &Mι.

I. θ{Vί(M,κ\ ...9φn(M9κ) = {Vl(M9θκ)9p2(M9θκ)9...9pn(M9θκ)9

where 0{pl9p2,...,pn}: ={θφί9θφ2,...,θpn}

II. Σ Vj(M9 k) = Mt(κ)9 l(κ) e R 3 independent of M.
7 = 1

III. (g) Jp7./(m^ + | p / ) 1 / 2 = Q(dM)®dκ,

rf/c is an invariant measure on 0Ml (with respect to θ) and where ρ(-) is an
absolutely continuous measure on (nm0, oo) with suppρ = (nm0? oo).

We do not prove this lemma. See for example [7] where the proof is performed
for the case n = 2. See also Ruijsenaars [16, p. 427] where such diffeomorphisms are
explicitly written down by the formulas {p1? p 2 , . . . , pn}^{t> °h> -> <ln-1) where, as

before, ϊ (p 1 ? . . . , P l l) = M~1 Σ VPM
2 = (

J = I V
2 2

Σ Vj
I

. Furthermore, put

k = (k091), feo = (l + | t | 2 ) 1 / 2 , and q}=:B(kyιPj,j= 1,2,..., n9 where B(k) denotes the
pure Lorentz boost which sends (1,0) into k. Then one obtains

n n

This means, for example, that M does not depend on ϊ. Conversely, I does not
depend on M, hence I can be taken as a "part" of the coordinate K. TO prove III one
has to calculate the Jacobian.

According to Lemma 3 the Hubert space L21 R 3 M , (X) dpjμipj)) is
\ J ~ i /

isometrically isomorphic, with respect to a diffeomorphism characterized in
Lemma 3, to

L\[nm0, oo), ρ(dM))®L2((PMl, Ac). (3.23)

Therefore, the Hubert space (3.19) is isometrically isomorphic to L2([ran0, oo),
Q(dM))®SnI}(ΘMι, dK), where Sn9 as before, means symmetrization [note that the
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points κeΘMί are given by κ = {Pi,p2> - >Pn} E®M^ if π is a permutation of
(1,2,...,n) then π(κ) = {pπ(1), p π ( 2 ) , . . . , p π ( B ) }e0 M l ] . For convenience in the
following we drop the symmetrization, but we take it into account in
Proposition 4.

The unitary representation U{Λiύ} given by (3.20) can be shifted to the space
(3.23). It is then denoted by U{Λ>a} and acts by the formula

(U{Λ,a}f) (M, K) = <ΓiM<* *<*»/(M, θ~ xκ), (3.24)

in particular one has

(UΛf)(M,κ) = f(M,θ-1κ), (3.25)

(UJ) (M, K) = e-ίtM«κ)f(M, K) , (3.26)

where oί(κ) = ko(κ)^ 1. One obtains, for example,

{VΛUtU-Λ V ) (M, /c) = ( ^ ( ί , 0 ) / ) (M, K) = *"*"«<'- lfC>/(M, K) . (3.27)

The next proposition deals with the construction of An shifted to the space (3.23).
This proposition is the analog of Lemma 7 in [7].

Proposition 3. Let the Hilbert space be given by (3.23) and the representation by
(3.24). Furthermore, put S)Q : =spa {f®g: fe C$ ((nmθ9 oo)), geC$ (0 M l ) . Then
there exists a bounded operator B with the following properties:

I. B is self adjoint.
II. B is m-energetic bounded, m ^ 2 .

III. BUΛ=tJΛB,Λe^l.
IV. B is a 3)^-smooth asymptotic constant, interpolating between 0 and 1, i.e.

s-lim eitH B e ~itH = : B + exists where B _ - 0, B + = 1 and
t-> + oo

\\(B-B±)e-itHv\\^c±v\tΓn,n=l,2,...,±t>l, ve9Q.

V. B is also an interpolating asymptotic constant with the same limits and it is
@0-smooth where the smoothness estimate is uniform with respect to the orbits
defined by (t,0), i.e.

\\φ-B±)Uaυ\\ύclv(a,ayn,n=\,2,...,(a,ay>\,±t>\, ve®0.

Proof. We use the ansatz

B:=X®1K, (3.28)

where X is bounded acting on L2([nm0, oo), ρ(dM)) = L2([nm0, oo), ρ\M)dM),
which is isometrically isomorphic to L2([nm0, oo), dM), and where ίκ denotes the
identity on L2(ΘMι,dκ). The space L2([/?m0, oo), dM) can be enlarged to
Jf : =L 2 (R, dM). The corresponding projection χ[nm0iO0)(M) is denoted by P. On
the space JΓ the representation ϋt acts as multiplication by e-

ίtMΰt(κ\ where K: G fi?Ml

appears as a parameter running through ΘMί. This representation (where K is fixed)
we denote by U*. Now we use the operator X: = PFQF*P \ PJf of Proposition 2
of [7]. Recall that F denotes Fourier transformation and that Q acts as
multiplication by q(x) e C°°(]R), where 0 ̂  q(x) ^ 1, q(x) = 0 for x < 0 and <?(*) = 1
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for x> 1. Furthermore, recall that H acts as —id/dx in
Hence one easily calculates

δ : = ( i + fl)Mβ(i + fl)"m = Q+ Σ
Q =

which is bounded. Moreover one obtains s-\ιmeιtHCρe~itH = 0 for

ρ = 1,2,.... Thus X:=(i + H)mX{i + Hym is given by X = PFQF*P \ PJf,which
is bounded. Because the projection P appears in this formula for X one can choose
also (1+H) instead of {i + H) in this formula (see Remark 1 in the paper [7]). This
proves II. I is trivial. According to Proposition 2 of [7] X and X are smooth
asymptotic constants with the same limits X_=0, X+ = l, where the
corresponding smoothness manifold in L2([nm0, oo), dM) can be taken as
C£((nm0, oo)). This proves IV and the first part of V.

Now we emphasize the fact that, since the representations Ut and ϋa have a
special structure, the smoothness estimates do not depend on K and, moreover,
they are uniform with respect to the orbit belonging to (ί, 0). More precisely, let
a = A(t, 0), A e if \_, and let /, g be defined as in the assumptions of Proposition 3.
Then one has

Now B-B+ = (X-X+)®lκ, hence

(B-B+)Ua(f®g) 2= J
(9

follows. But

and this estimate is obviously independent of K and also independent of θ
(respectively A). Hence

\\{B-B±)Ua{f®g)\\ S ( ί \g(κ)\2dκγi2c±f<a,a>-">2 (3.29)

follows because <α, α> = t2 on the orbit defined by (ί, 0). This proves the last part of
V. Note that III follows immediately from (3.28). D

Remark 7. Proposition 3 can be proved also by other arguments using first the
result for n = 2 proved in Lemma 7 of [7]. Then one uses Lemma 6 of [7] and the
arguments given in the proof of this lemma which are founded on Proposition 6 of
[7] (inner tensor product representation). Also the uniformity of the smoothness
estimates with respect to the orbits can be proved in this way.

Note that it is possible to enlarge the smoothness manifold of Proposition 3.
More precisely, we have the following result.

Corollary 3. Assume the assumptions of Proposition 3 to be valid. Then the
smoothness manifold 3)0 in IV and V of Proposition 3 can be replaced by the larger
manifold % : = Co((nmo, oo)xΘMί).
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Proof. Let fe C$((nm0, oo)), geC$(ΘUl). Obviously,

sup f\\(X-X+)e-itHf\\ = :[/] (3.30)

defines a seminorm on C£((nm0, oo)). This seminorm [ ] turns out to be
continuous with respect to the CQ -topology (the corresponding calculation is
omitted). Furthermore, according to (3.29) one has an estimate of the form

supf\\(B-B+)e-i<H(f®g)\\ί[n-\\g\\, (3-31)

N

where \\g\\ = ( J \g(κ)\2dκ\ίl2. Now for finite sums υ: = Σ fj®9j o n e defines a
\& ) j l

ώf Σίfj] \\9j\\
v=Σfj®gj j=ί

so-called cross norm by

It turns out that the norm | | is also continuous with respect to the C$ -topology
of Cg((nm0, oo) x ΘMι). Moreover, an arbitrary function h e Co((nmo, oo) x ΘMl)
can be approximated by finite sums Σ fj®9j with respect to this topology.
Furthermore, the estimate

sxxVt
n\\(B-B+)e-itHv\\^\υ\, t>= Σ fj®gj, (3-32)

ί ^ l 7 = 1

is valid. Therefore, also each h e Co((nmo, oo) x ΘMί) satisfies (3.32). Similarly one
proceeds for ί-> — oo and for the proof of the uniformness of the estimates. D

Finally one has to rewrite Proposition 3, i.e. one has to pull back the
diffeomorphism. Moreover, one has to take into account the symmetrization.

Proposition 4. Let 34?n, n^2,be as in (3.19) and U{Λίa] as in (3.20). Furthermore, put
<30: =SnC£(lR.3n\&nmo). Then there exists an operator An with properties which are
completely analogous to the properties I-V for the operator B of Proposition 3.

Proof. As already noted before, a diffeomorphism φ satisfying Lemma 3,

implements an isometric isomorphism

Φ: SnL
2(^3\ <g dpj/H + |p/)1 / 2)->L2([win0, oo), Q{dM))®SnL\ΘM^ die).

The symmetrization Sβ)^ of the smoothness manifold 3>'o from Corollary 3 is
mapped onto SπCo>(R3w\0 l imo) under φ'1. Now one has Ug = Φ~1JJgΦi and one
can pull back the operator B of Proposition 3 by defining Λn: =Φ~XBΦ. An

satisfies all the asserted properties. D

The next step is to put together all operators An,n = 2,3,..., constructed before,
into the direct sum A: = 0 © 0 φ ^ 2 φ ^ 3 © . . . and to prove that A satisfies all the
required properties.
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Proposition 5. The operator A: = 0 ® O 0 ^ 2 φ ^ 3 0 . . . satisfies all properties of the
assumption of Proposition 2, where Θo: = {/e J^ i n; f0 eC, fγ e CQ(ΊR.3),

fn e C^(lR3n\^nmo for rc + 0,1} (£&0 consists of finite particle vectors only).

Proof Only the boundedness and the m-energetic boundedness of A has to be
proved. That is, we have to prove sup \\An\\ < oo and sup \\An\\ < oo. One has

n n

\\Λn\\ = \\Xn®lκ\\ = \\Xn\\ = \\PFQnF*P \Ptf\\ ^ | | β j | ,

but \\Qn\\ ύ sup \q{x)\ = 1. Correspondingly one obtains
xeK.

m /m

3.4. Final Step of the Proof of Theorem 1

Now we choose the operator A from Sect. 3.3 which is defined in Proposition 5.
Then, according to Proposition 2, by (3.17) the operator Fis defined. With the help
of this operator V we form the perturbed field A(-), formally defined by (3.11).
Next we have to check all the properties of Theorem 1:3 and 4 are obvious because
of the choice of {Jf, Ug9 ω}. 1, 2, and 5 follow immediately from Proposition 1, 6r:
To prove CPT-invariance, first we have to define an appropriate CPT-operator
Θ. It is defined by

<9:=S*<90. (3.33)

Note that the smoothness manifold ^ f°Γ ^from Proposition 2 is invariant under
Θ: Let UESFQ, then u = S~1/2v, where r e ® 0 . Now

Since Θoυe3fQ the assertion ΘusΘ^ follows.
Now we are able to prove the CPT-invariance of the field. It is sufficient to do

the calculation for the sandwiched field operators RmA{x)Rm. Then one obtains

= U_xΘV*ΘoR
mA°(0)RmΘoVΘUx.

Because of (3.33) and <90F*<90 = SF*, Θ0ΫΘ0 = ΫS* one obtains

But this implies CPT-invariance, i.e. from RmA{f)Rm = \ f(x)RmA{x)Rmdx one
gets, using (#/) ( x ) = / ( - x),

RmA(Sf)Rm= \f\^x)RmA{x)Rmdx= \J{x)RmA{-x)Rmdx

= f f(x) ΘRmA(x)RmΘdx = <9 {f f(x)RmA(x)Rmdx} Θ

= RmΘA(f)ΘRm.

8B. We choose u,ve@ζ and a(x) = δ(xo)(x1(xX <X1SCQ(1R3% i.e. at has compact
support. Then we have to prove the asymptotic relations (2.5). We put S+ =S,
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S_ = 1. Recall that we formally have {ft(x) = δ(x0)ft(x))

Bt(f) = eitHA(ft)e-itH = eitH J ft(x)UxV*A°(O)VU_xdxe-itH, (3.34)
R3

and this formula becomes rigorous if we multiply by Rm from the right and from
the left, i.e. RmBt(f)Rm is well-defined and we consider

(u'9 Bt{f)υ') = (Rmu, Bt(f)Rmv) = (μ, RmBt(f)Rmv),

where u' = Rmu, v' = Rmv, u\ V' eQ)\ and u,ve£%% (note that Q)\ is invariant with
respect to H). Then we obtain

RmBt(f)Rm = eίtH J ^(ϊJϋ.K*!?1 1 1^0^)!?"1^CZ-.dϊβ-^.
R3

On the other hand, it is easy to show that

RmS*A°(oc)SRm = eitH J ft(x)UxS*RmA°(O)RmSU_xdxe~itH (3.35)
R3

is valid as an identity with respect to t. Therefore, in the case ί-> + oo we have to
estimate the expression

(u, RmBt{f)Rmv) - (u, RmS*A°(ά)SRmv)

= (u,eitH j ft(x)U9{V*RmA\O)RmY-S*RmA%O)RmS}U^^e-UHO\. (3.36)

Using that

V*RmAo(0)RmV-S*RmAo(0)RmS=V*RmAo(0)Rm(V~S)

+ (V*-S*)RmA°(O)RmS,
the right-hand side of (3.36) equals

(u,eUH I ft(x)Uπ{Ϋ*Rms

R3 ' * * ) '

The first term in this sum can be written in the form

71= ί ftmuΛU-aΫ*RmA°(())RmUaU.a(Ϋ-S)Ua)Ό)dx
R3

= j ft(x)(U-aR
mA°(O)RmVUau,U_a(V-S)Uav)dx,

R3

where a = (ί, — x), hence one obtains the estimate

1 7 ^ f \ft(x)\-\\RmAo(0)Rm\\ • \\V\\ • \\u\\ • \\U_a(V-S)Uav\\dx
R3

|| <fa. (3.38),\ \fo)\
R3

The second term in the sum can be written similarly as

T2= ί ft(x)(u,(U_a(V*-S*)RmA°(O)RmSUa)υ)dx
R3

= J ft(x)(U_a(V-S)Uau,U_aR
mA°(O)RmSUav)dx.

R3
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| ^ J \ft(x)\ \\U_a(V-S)Uau\\'\\RmA°(O)Rm\\ \\v\\dx
R3

Therefore, in this case we obtain the estimate

(x)\ \\U_a(V-S)Uau\\'

= C 2 j \ft(x)\'KV-S)Uau\\dx. (3.39)
R3

That is, the crucial point is to estimate integrals of the form

ί \M-\\(V-S)Uav\\dx, a = (t,-x)e-R\ vs%. (3.40)
R3

To do this we recall the following two facts:
1. The asymptotic constant V is ̂ -smooth where the smoothness estimate is

uniform on the orbits <α,a} = const>1, t> 1, i.e. we have

<v<a,ay\ n= 1,2,..., <α,α>> l , ί> 1, υe®%,

where (a,a) = t2-\x\2.
2. suppάi is compact. This implies the existence of an estimate for the

corresponding solution ft(x) of the Klein-Gordon equation of the form

l + t + \x\y\ |* |£yί,O<y<l, (3.41)

for all N= 1,2,3,..., where γ is a constant and where the constant cN>0 may
depend on N (see Reed and Simon [10, p. 43]).

According to these facts we split the integral (3.40) into two terms

ί ...dx= J ...dx+ j ...dx, 0 < y < l . (3.42)
R 3 |3e |^yί |3E|^yf

(i) In the case of the second term we use a rough estimate

| |(7-S)

by a constant, and we obtain

(ii) In the case of the first term we use the uniform estimate

(see Reed and Simon [10, p. 43]). Furthermore, for |ac|^7ί one obtains
<α, a} = t2 — |3e|2^ί2(l— y2). Hence, using the smoothness estimate, we get

Thus the relation (2.5) is proved for ί-> + oo. The case t-> —oo can be treated
similarly.

Now it remains to show that Ύ is true. But this follows easily from 8B: Let
C e jSf (jf), and assume that u e @% implies Cu e @% and C*u e S)\. Now assume
(w, CΛ(f)v) = (A(f*)u, Cv) to be valid for all U,VE3)\ and for all test functions /.
This means

(C*u, A(f)v) = (iι, A(f) Cv% u,υe@v

0J
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Now we choose test functions appearing in the LSZ-limit process discussed in 8B.
Then, for ί-> — oo, one obtains immediately

(C*u9 A°(φ) = (u, A0 (a) Cv), (3.43)

where A0(a) is the free time-zero field for the test function &ί e Cg^IR3), which can
be chosen arbitrarily. That is, one has (u, CA°(aϊ)v) = (A°(£)u9 Cv) for u9υε9%.
Then this is also true for all u, v e 2 D Q)\ (where 2 denotes the domain for the free
field operators) and for all aί e ^ ( R 3 ) . Note that it is easy to generalize this
formula to

(u, CA°(f)v) = (A°(f)u, Cv), u,ve®, (3.44)

for all fe^QR4'). Namely, first one has to choose test functions of the form
Uι(x)β(xo) instead of ocι(x)δ(x0) in formula (2.6) or in (3.34), where β has compact
support. W i t h / 0 ) = άi(p)/?(po)> i.e. ft(p) = e~itμip)ά1(p)β(po), one obtains formally

Bt(J) = eUH J ft(x)β(xo)UxV*A°(0)VU_xdxe-itH

R4

= J β(xo)dxo J ft(x)U-aV*A°(O)VUadx,
JR. R3

where now a = (t — x0, —x) and the estimates can be performed similarly as before.
Second, one has to extend the set of test functions by linearity and continuity. But
since the free field is cyclic, hence irreducible, from (3.44) the equation C = y\
follows where γ is a scalar. D

4. Appendix

In this appendix we describe briefly a corresponding result in the case where the
Lorentz invariance of the field is replaced by rotational invariance, i.e. Property
2.1.5 is replaced by

5'. The field A( ) is translationally invariant (with respect to ΊR4) and
rotationally invariant.

The triple {Jf7, Ug9 ω} is chosen as above. We assume that the prescribed
operator S satisfies the conditions I-IV of Sect. 2.2. For convenience we add a
further property of S. As before, let Pl9P2, ••• denote the projections onto the
rc-particle spaces. Define Qj by

Qj-= . Σ Pnj, ; = i ,2, . . . ,
finite sum

and such that the system Qu Q2,... is disjoint and complete, i.e. Σ Qj = 1. Now the

additional property can be formulated as follows. j

V. SQj = QjS9 7 = 1 , 2 , . . . .
Then we can prove the following result.

Theorem 2. Let the triple {J f, Ug, ω} be given as above and let the bounded operator S
be equipped with the properties I-V. Then: there exists a quantum field
{A(J), fe yχiR4), 9} belonging to {Jίζ Ug, ω} and a suitable dense linear set 9O
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such that the properties 1-4, 5', 6', 7, and 8A (with respect to 20) are satisfied and
such that S is realized as the scattering operator of A( ) in the Haag-Ruelle sense 8A.
That is, the field A( ) has Hermitian structure and it satisfies the tempered
distribution property. It is translationally and rotationally invariant, weakly local,
cyclic and the Haag-Ruelle wave operators exist on 3)Q realizing S as the
corresponding Haag-Ruelle scattering operator.

Proof Also in this case one solves first an auxiliary problem, namely to construct
an operator V with the following properties:

I. V is unitary.
II. V\{λω}@J«?

1 = L
III. VUg=UgV, ge$+ (the Euclidean group consisting of the space

translations and space rotations).
IV. Θ0V*Θ0 = SV*.

V. VQJ = QJV, j = l , 2

VI. The limits s-lim eitH Ve ~ίtH = : V± exist where F_ = 1, V+ = S,
ί->±oo

correspondingly for F*.
An ansatz for the solution of this auxiliary problem is given by the following

formula (put S = eιη, where η is selfadjoint and bounded):

V: =exp{(i/2)BηB-(i/2)Θ0BηBΘ0}exp{(i/2)η},

where B is a selfadjoint and bounded asymptotic constant with limits B+, where

g

construction of such a B is discussed and performed in [7]).
With the help of V the field can be constructed as a time-sharp field. First we

define the time-zero field. Let y1 G5^(]R 3), y(x):=yi0ήδ(xo), xeR 3 , where x is the
space coordinate.

This ansatz is in some sense a counterpart to that of Glimm and Jaffe. In the
Glimm-Jaffe approach the time-zero field remains unchanged (that is free) but the
Hamiltonian will be changed. In our approach the Hamiltonian remains
unchanged but the time-zero field is transformed unitarily. Note that A(γ) \ Qj^f,
7 = 1,2,... is bounded. The full field can be defined by time smearing:

A(μ®yi)= ] α(xo)UXoV*A°(y)VU-Xodxo. (4.2)
— oo

The corresponding domain is simply given by 2ι = <#fin (the set of all finite particle
vectors). The CPT-operator Θ is defined as before: Θ: =S*Θ0.

Now one has to verify all properties of A{ ), expressed in Theorem 2. We drop
most of these verifications. The most interesting property is 8A. To verify this
property, first we choose a so-called Haag-Ruelle /ι-function h(p) with the usual
well-known properties. Furthermore, let the function y o ey(lR 3 ) be
multiplicative-generating. Then one obtains, y(x) = yo(x)δ(xQ),

A(β*γ)= J β(x)UxV*A°(y)VU_xdx,
4
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where β(p) = h(p)όί(γ>), and where in this case β means the 4-dimensional Fourier
transformation. Now the identification operator Kn:=K\Jfn (see [12, 13, 6])
where the symmetrization is dropped is given by

(8Wo}}= Π j ί βj(x)UxV*A°(y)VU_xdx]ω,

and the pre-wave operator by

= Π ί ί βXx)Uxe
HHV*e-UHA0(y)eUHVe-UHU-jίx\ω.

But the strong limits of this expression for ί-» ± oo exist, being equal to

Π if β{x)UxVΪA0{γ)V±U-Jx]ω = VΪ Π f J /J

= vί π {A°^

where F+ =S, F_ = 1. That is, the Haag-Ruelle wave operators coincide with Kf,
F*,i.e. ί̂ + = F*, PF_ = F* and MK*PF_ = V+VΪ = S. Note that the cyclicity is an
easy implication of 8A. D

References

1. Jost, R.: TCP-Invarianz der Streumatrix und interpolierende Felder. Helv. Phys. Acta 36,
77-82 (1963)

2. Schneider, W.: S-Matrix und interpolierende Felder. Helv. Phys. Acta 39, 81-106 (1966)
3. Todorov, I.T.: Der axiomatische Zugang zur Quantenfeldtheorie. Fortschr. Phys. 13,649-700

(1965)
4. Yngvason, J.: Translationally invariant states and the spectrum ideal in the algebra of test

functions for quantum fields. Commun. Math. Phys. 81, 401-418 (1981)
5. Jost, R.: The general theory of quantized fields. Providence, R.I.: Am. Math. Soc. 1965 (quoted

according to the Russian translation: Moscow: Izd. Mir 1967)
6. Baumgartel, H., Wollenberg, M.: Mathematical scattering theory. Berlin: Akademie-Verlag

1983 and Boston: Birkhauser 1983
7. Baumgartel, H., Wollenberg, M.: Interpolating asymptotic constants for the Poincare group,

in particular on Fock space. Math. Nachr. 119 (1984) (to appear)
8. Fredenhagen, K., Hertel, J.: Local algebras of observables and pointlike localized fields.

Commun. Math. Phys. 80, 555-561 (1981)
9. Baumgartel, H.: The inverse problem of scattering theory and quantum field theory. Technical

Report ISI Delhi (to appear)
10. Reed, M., Simon, B.: Methods of modern mathematical physics III. Scattering theory. New

York: Academic Press 1979
11. Glimm, J., Jaffe, A.: Quantum physics. A functional integral point of view. Berlin, Heidelberg,

New York: Springer 1981



352 H. Baumgartel and M. Wollenberg

12. Baumgartel, H., Neidhardt, H., Rehberg, J.: On identification operators between free and
interacting quantum fields. Math. Nachr. 116, 75-88 (1984)

13. Baumgartel, H.: On the structure of relative identification operators for quantum fields and
their connection with the Haag-Ruelle scattering theory. Ann. Inst. Henri Poincare. Phys.
Theor. 40, 235-243 (1984)

14. Hepp, K.: On the connection between the LSZ and Wightman quantum field theory.
Commun. Math. Phys. 1, 95-111 (1965)

15. Streater, R., Wightman, A.: PCT, spin and statistics, and all that. New York: Benjamin 1964
(quoted according to the German translation: Mannheim: Bibliographisches Institut 1969)

16. Ruijsenaars, S.M.M.: A positive energy dynamics and scattering theory for directly interacting
relativistic particles. Ann. Phys. 126, 393^49 (1980)

Communicated by K. Osterwalder

Received December 5, 1983; in revised form March 26, 1984




