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Abstract. This paper establishes surprisingly precise a priori bounds on the
LOO-norm °f certain singular solutions of a system of two nonlinear Sturm-
Liouville equations which model solitary water waves.

These solutions can be interpreted as homoclinic orbits for a system of four
first order ordinary differential equations. The uniqueness of these homoclinic
orbits is established for certain choices of a parameter c, the phase speed of the
waves. These observations do not result from perturbation of linear theory, but
are global.

I. Introduction

The present paper sets out to further analyse the set of solitary wave solutions of
the equations of Boussinesq type which Bona and Smith [1] introduced to model
long water waves in a channel. In earlier papers [3-5] it was shown that these
equations,

-^(ut + ηx)xx = 0 ,

have travelling solitary wave solutions (u(x — ci),η(x — ctj) for each value of the
wave speed c with c> 1 . These solutions satisfy the boundary- value problem

c(u—^u") = η—^γ\"+^u2 on IR,

c(η — ̂ 77") = u + uη on IR,

ι/<0, η'<0 on(0,oo),

lim u(x) = lim η(x) = 0, u,η even on

(*)

For fixed c they correspond to certain homoclinic orbits joining the rest point (0,0)
to itself.
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In [3] it was shown that these solutions (c, u, η) of this system of ordinary
differential equations contains a set which is connected in 1R x HS(R) x H5(1R),
which joins the point (1, 0, 0) to infinity and whose projection onto c e R covers the
interval (1, oo). (See [3, Theorem 3.5] for a precise statement of this existence
theory.) The purpose of the present investigation is to establish uniform a priori
bounds for solutions of the solitary wave problem and to make some statement
about uniqueness. It is shown in Sect. II that any solution (c, u, η) of (*) with c> 1
has

(1.1)

and

2(c-l)<|f7|L«(R) = ̂ (0)<c2-l. (1.2)

Moreover,

(1.3)

A linearized analysis in a neighbourhood of the rest point (0, 0) = (u, η) shows that
the left-hand inequality in (1.3) is sharp (see the remark after the proof of Lemma
2.3). It is shown in Sect. IV that the right-hand inequality is also sharp for large c
(see the remark after the proof of Lemma 4.1).

In fact for large values of c, a rather precise statement can be made namely that

as

This suggests a rescaling of the equations as follows :

whence

where λ — c ~ 2. In Sect. IV it is shown that the limiting equations, λ = 0, has a unique
solution satisfying suitable boundary conditions, which is given by U = 2φ, V= φ9

where φ is a solution of the rescaled solitary wave equation for K.dV.

ψ-±ψ" = 2</>2. (1.5)

An application of the Inverse Function Theorem in Sect. V yields the existence of a
smooth curve of solutions of the system (1.4) for λ>0 sufficiently small, i.e. for c
sufficiently large. Thus, for large values of c the solutions of (*), when appropriately
scaled, are unique, and look like solutions of (1.5), the travelling wave solutions of
Kd.V. [This follows once it is shown in Sect. IV that all solutions (£7, V) of (1.4)
converge to (2φ,φ) as Λ->0.]
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It might appear that uniqueness for (*) would follow by writing the pair of
second order equations as a system of four first order equations and analyzing the
rest point (0,0,0,0) e R4. It turns out that both stable and unstable manifold have
dimension two, so orbital uniqueness does not follow and the method fails to yield
sufficient information to infer the required uniqueness for (*).

However, whatever interest the system has as a model for water waves depends
upon assumptions about the smallness of the amplitude of the waves. In this case
also we were able to obtain a uniqueness result. The main conclusion of Sect. Ill is
that if for some c> 1 there exists a solution (u, η) of (*) with 3w(0)/2c^ 1, then that
solution is the unique solution of (*) for that choice of c. Clearly, this result implies
that near to the bifurcation point (1,0,0) the set of nontrivial solutions of (*)
comprises a curve of solutions parametrized by c> 1. Because of the a priori
bounds already mentioned, we can infer the following uniqueness statements:

(i) if (c, u, η) is a solution of (*) and w(0) ̂  1, then (u, η) is the unique solution of
(*) for this value of c;

(ii) if 1 <c^|or if c> 1 the solution of (*) is unique.
These statements are given here to emphasize that this uniqueness theorem in

Sect. Ill is not about infinitesimally small solutions, but is in a certain sense global.
We only regret that so far the method does not give uniqueness for all c> 1.

II. A Priori Estimates

2.1. Bounds for (w(0), η(ΰ))

It has been established (Toland [3]) that there exist solutions (u, η) of the following
problem for every c> 1 :

φ-VO^-i^+X, (2-1)

c(η-$η") = u + uη, (2.2)

u, η positive and even on R, (2.3)

w'<0, η'<Q on (0,oo), (2.4)

lim κ(x)= lim η(x) = 0. (2.5)
|x|-> oo |x|->oo

Since (2.1), (2.2) is the system of Euler-Lagrange equations for the functional

it follows by Noether's theorem (or by direct verification) that if (u, η) satisfies
(2.1H2.5), then the Hamiltonian

H(η,u)=i((l+η)u2 + η2)-cuη-$η'2+ϊu'η' = 0 on R. (2.6)

Now because u and η are even functions it follows that w'(0) = η'(Q) = 0, and so
by (2.6)

O)2 + η(Q)2) - 01(0)1, (0) = 0 (2.7)
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if (w, η) satisfies (2.1)-(2.5) for some ol. (Henceforth, we will suppose ol is
fixed.) The implicit relation (2.7) gives a locus ^ of possible points, where
(t<(0), η(0)) might lie. A uniqueness theorem for the system would then say that
there exists exactly one point (MO, ηG) on this locus such that the solution of the
initial value problem for (2.1), (2.2) with ιι(0) = uθ9 η(0) = η0, u'(0) = η'(Q) = 0 yields a
solution of (2.1H2.5).

In the first quadrant ^ is a simple closed curve which is smooth everywhere
except at the origin. If points on # are denoted by (uQ, η0)9 then

_{c±}/(c2-l-η0)}η0 (2.8)

A sketch of # is given in Fig. 1. The following a priori bounds are now obvious.

2c-2

2c-2

Fig. 1. The locus of possible locations of (w(0), η(Q))

Lemma 2.1. // (u,η) satisfies (2.1)-(2.5), then

and
(2.9)

(2.10)

for all x e R.

Proof. An examination of Fig. 1 yields the result, q.e.d.

In the next section we will see how global consideration of the solutions make it
possible to exclude a large portion of # from further consideration.

2.2. A Priori Bounds on (u, η)

In this section we relate the global behaviour of u and η on R.

Lemma 2.2. // (u,η) satisfies (2.1)-(2.5), then

cu(x)>η(x)>0, xeR, (2.11)

cu'(x)<η'(x)<0, xe(0,oo). (2.12)
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Proof. From (2.1) it follows that (cu — η) —^(cu — η}" > 0 on IR, whence by (2.5) and
the Maximum Principle (2.11) follows. By (2.1) and (2.2)

1

and now (2.5) implies that w'->Ό as x-> oo. After differentiating (2.1), an application
of the Maximum Principle on (0, oo) yields (2.12). q.e.d.

The next result is a strengthening of a result which was proved in [3] for certain
solutions of (2.1H2.5).

Lemma 2.3. // (u,η) satisfies (2.1)-(2.5), then

and

0 > cu'(x) ^ 2η'(x) , x 6 (0, oo) . (2.14)

Proof. For any α>0 it follows from (2.1) and (2.2) that
7

Oί U
((I + a)η - cu) -i((l + φ - cu)" =-(u + uη)- —

cw} (2.15)

Now observe that, by (2.9), («/2c) < 1 on R, and that

(2.16)

Now we put α= - - — , and note that the right-hand side of (2.16) becomes

Equation (2.16) and the Maximum Principle then yield (2.13).
Now putting α = l in (2.16) yields

Since u' < 0 on (0, oo) and 2η — cu > 0 by (2.13) it follows by the result of Gidas et al.
[2, Theorems 3, p. 222] that

(2η — cu)f < 0 on (0, oo) . q.e.d.
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Remark 1. An analysis of the system (2.1), (2.2) in a neighbourhood of the rest point
(0, 0) shows that no eigenvalue of the linearization is complex or zero. The Stable
Manifold Theorem then ensures that for solutions of (2.1)-(2.5)

u'(x) u(x) _!
Inn -77^ = lim -γ^=c l .
χ ^ π η ( x ) χ^°°η(x)

Hence the result of Lemma 2.2 is sharp. In Sect. IV we will see that as c->oo the
conclusion of Lemma 2.3 is also sharp. Hence these results are optimal uniformly
in x e R and c> 1 .

Remark 2. According to Lemma 2.2 the expression ( -u'—^η' I <0 on (0, oo), and

so -wy-^/2>0 on R. It follows from (2.6) that ^((1 +η)u2 + η2)-cuη<0 on R;

in other words, a trajectory lies entirely inside #.

2.3. Further Bounds on (u(Q), η(Q))

The following curious observation is the key to further development. The curve #
of possible values of (w(0), f/(0)) is given by

and so its slope is given locally by

--^ul

'

However, if for some solution of (2.1)-(2.5), (w(0), //(O)) = (w0, η0) e <&, then

cUn-rin-iuQ cu"(ϋ)-η"(Q) 1 w"(0)
— = ...,,AN = T - -̂ τ (2 18)

However, since by LΉόpitaΓs rule

«'(x) «"(0)
lim = r ,

it follows from Lemmas 2.2 and 2.3 that

^£$|̂  (2 19)
The following result is now immediate.

Lemma 2.4. // (w, 77) satisfies (2.1)-(2.5), then (w(0), f/(0)) e% at a point, where the

slope -r-̂  o/ ^ satisfies the inequalities
dη0

_l<^o <0 (220)c — f\v} — 'L αr/0 (w(0),N(0))
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Proof. This is immediate from (2.17)-(2.19). q.e.d.

Remark. The significance of this observation is that only a small portion of the
locus # can contain (w(0), f/(0)) for solutions of (2.1)-(2.5). For emphasis we express
(2.20) in words: only the portion Γ of ̂ , where w0 is decreasing with respect to η0 at
a rate not greater than l/c are possible locations for (w(0), η(0)). In particular,
(w(0), 77(0)) cannot be very close to the point S of vertical tangency of <β. Now we
will see that it cannot be too close to R, the point of horizontal tangency of # (see
Fig. 2).

Fig. 2. denotes the line u0 = 2cη0/(c2 +1). So (w(0), η(Q)) must lie to the right of Q on Γ. If T
denotes the point, where the slope of # is — c"1, then (w(0), f/(0)) lies on Γ to the left of Γ (see
Lemmas 2.4 and 2.5)

Lemma 2.5. // (u,η) satisfies (2.1)-(2.5), then

In particular,

3c4-2c2-l 3c4-2c2-l
w 2c(c2 + l)

Proof. According to Lemma 2.3,

which, on account of (2.10), yields the estimate

Hence (w(0), y(O)) lies on <& to the right of the point, where the line u0 = 2cη0/(c2 + 1)
intersects <&. A calculation now yields this point to be

2c c2 + Γ2cΓ M~'"
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We will return to these estimates of the location of (w(0), η(Q)) in Sect. IV. At
present we turn our attention to the question of uniqueness.

III. Uniqueness near Bifurcation

The proof is by reductio ad absurdum. Suppose that there are two solutions (uί9 η^
and (u2,η2) of the problem (2.1)-(2.5) for some fixed c> 1, and without loss of
generality suppose that 77ι(0)>?72(0). [Iϊηl(Q) = η2(Q), then w1(0) = w2(0) because of
(2.7) and the observation that (^(0), ̂ (O)) and (w2(0), η2(ΰ)) must lie on Γ.] From
Lemma 2.4 and the remark following it we know that

0<u2(0)-ιι1(0)<-(ι/1(0)-ιf2(0)). (3.1)
c

Let

Z = sup{z E [0, oo): w2(x)^ w^x), x e [0, z]}. (3.2)

Clearly, Z>0.

Lemma 3.1. // 3w1(0)/2c^ 1, ί/zerc Z= oo.

Proof. Let W be defined on [0, Z] by

FΓ(x) = cw^x) + 2ηί(x) - cu2(x) - 2η2(x). (3.3)

Then W satisfies the identities

3
3 c

f3 ι 1 3
= (M! -M2) <- +i("i + M2) > + -(ulη1-u2η2). (3.4)

Now

and so (3.4) becomes

Since by definition M2(x) ̂  w^x), x e [0, Z], and since for all x e R, 2τ/2(x) ̂  cw2(x),
it follows that η2 — cuJ2^ΰ on [0,Z], and so

on

Now observe that W(ϋ) >η1(0)- η2(0) > 0, by (3.1). Therefore, W"(0) > 0, since by
assumption 3u1(0)/2c^l.

Since 3u1(x)/2c^ 1, xe [0,Z], and FΓ(0) = 0, it follows that

W(x)>09 W'(x)>0, FF//(x)>0, xe[0,Z]. (3.5)
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Now the ratio ui/u2 satisfies

ϊgSl, ,e[0,Z], (3.6)

fϊi)'(0) = 0. (3.7)
\U2J

and

U2J \U2

c [c 2 c 2

<0 for all xe[0,Z]. (3.8)

However, since (3.7) holds, the inequality (3.8) yields that

and it follows that

fcϊ(x)<0, xe(0,ε), (3.9)
\W2/

for some ε>0. However, (3.8) now yields that

on
2 U2

since u2<0 on (0, oo) and (3.9) holds. It follows at once that

( —) <0 and ( —) <0 on [0,Z]. (3.10)
\U2J \U2J

If Z < oo, then u2(Z) = uί(Z)9 by definition. However, w1(0)/w2(0) < 1 and (3.10)
implies that uί(Z}/u2(Z)< 1. This contradiction implies that Z = oo. q.e.d.

The main result of this section is then the following.

Theorem 3.2. // 3uί(Q}/2c^\, then (u^ηj is the unique solution of (2.1)-(2.5).

Proof. Suppose, as before, that there are two solutions (uί9 η^ and (u2, η2). Since
Z — oo, we find from (3.10) that

on (0?oo).
U2 U2

Clearly, no function can satisfy such inequalities, and this contradiction proves the
result, q.e.d.

Remark. The conclusion implies that if there is a solution (M, η) of (2.1)-(2.5) for
some c > 1 which satisfies the condition 3w(0)/2c ̂  1, then it is the unique solution
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for that value of c. Since the solutions (u, η) bifurcate from (0, 0) e L^IR) x L00(R) at
c= 1, this result indicates that in a substantial neighbourhood of the bifurcation
point the solution set comprises a continuous curve of solutions, since already we
know it contains a connected set of solutions (see [3]).

From the estimate in Lemma 2.5 we know that for any solution

3tt(0) 3/3c4-2c2-l

Hence if c < 1 .504, there is a unique solution. Using the fact that for every solution

ιι(0)<2(c-l), we obtain

3ιι(0)
2c

and so far any c> 1 there is at most one solution with w(0):g 1.
Clearly, as it stands our understanding is incomplete, because for every c > 1

(see Fig. 2), and for oj/3 the hypotheses of Theorem 3.2 are violated.
However, in Sect. V we will see that for large c there is exactly one solution,

using a different method.

IV. Asymptotic Behaviour as c-»αo

4.1. Further Estimates for (w(0), ?/(0))

To recap what we know so far:

3c2 2c2 4-1
— -r^- (Lemma 2.5). (4.2)
4 4c2 v

The next result gives the opposite bounds for ι/(0), ̂ (0), which are effective for
large c.

Lemma 4.1. // (u9η) solves (2.1)-(2.5), then

cu(0) u(0)
η(0) ̂  1 , (4.3)

whence
rιι(tt\ ru((\\

3. (4.4)
2 -""'= 2

Proof. By Lemma 2.4 and inequality (2.17)

CM(0)-/ί(0)-iu(0)2

tt(0)f,(0)-cι/(0)
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Therefore, since the denominator of the left-hand side is — cf/"(0)/3 > 0, it follows
that

v y -v-y /^ ^Λ
2 2c-w(0)' '

Therefore, by (4.1)

The other part of (4.4) has been proved in Lemma 2.3. q.e.d.

Remark. This shows that the estimate given in Lemma 2.3 is sharp for large values
of c.

Corollary 4.2. // (u(0),η(0)) solves (2.1)-(2.5), then

and

,~. 3c 2c2

(4-7)

Proof. From (4.1) and (4.4) it follows that

Hence by (4.2) and (4.4)

3c 2c2-
--. q.e.d.

2 2c3 c '

Remark. These estimates give precise asymptotic values for (w(0), τ/(0)) as c-> oo, viz

(fi(0), ι/(0)) - f ̂  + 0 (-), ̂  + 0(1)) . (4.8)
\ z \c/ ^ /

This observation is central in the next section.

4.2. Limiting Equation as c-»oo is K.dV

If (u, η) is a solution of (2.1)-(2.5) for some c> 1, let ct/(x) = w(x), c2F(x) = y/(x), and
λ = 1/c2. Then 17, F satisfy the equations

(4.9)

(4.10)
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and the boundary conditions (2.3)-(2.5). Here values of λ close to zero correspond
to large values of c, and so (4.8) implies that if ([/, V} satisfies (4.9), (4.10), then

(17(0), 7(0)) = (f,|) + θα) as λ^Q. (4.11)

Theorem 4.3. Whenλ = OEqs. (4.9), (4.10) with the boundary condition (2.3)-(2.5)
have a unique solution. This solution is U = 2φ, V = φ, where φ is the solitary wave
solution of the Kd.V equation travelling wave equation

(4.12)

namely,

. (4.13)

Proof. It is sufficient to show that if ([/, V) is any solution of (4.9), (4.10) with λ = 0
and the boundary conditions (2.3)-(2.5), then U = 2V. Then a substitution reduces
both (4.9) and (4.10) to (4.12) and the unique (non-zero) solitary wave solution is
that given in (4.13).

If (17, V) solves (4.9) and (2.5), it follows by the Maximum Principle that U > V
on R. Moreover, from (4.9) and (4.10) with λ = 0 we obtain

Hence

However, \ 17(0) g l because I7'(0) = F'(0) = 0 andi((λ+ V)U2 + V2)-UV-^V/2

+^[7'F' = 0 [from (2.6)] implies that [7(0) < 2. Hence the maximum principle
implies that U — 2V has neither a positive local maximum, nor a negative local
minimum. Hence U = 2V. q.e.d.

Corollary 4.4. Suppose that (Un9Vn) satisfies (4.9), (4.10) and the boundary
conditions (2.3)-(2.5) for some λn. If λn-*0 then (Un, Vn}^(2φ, φ) in /^(R) as n-> oo.
Hence (Un9 Vn)—*(2φ9φ) uniformly on 1R as n— >co.

Proof. From the fact that Un and Vn are bounded independently of n [see (4.11)] it
follows from (4.9) and (4.10) that Un, Vn9 Uf

n, VJ are uniformly bounded and
equicontinuous on JR. Hence there exists a subsequence (Unk9 Vnj) which converges
in C2(7) for every compact interval / of IR to a solution of (4.9), (4.10) with λ = 0. On
account of (4.11), this solution is non-trivial and must therefore be U = 2φ, V=φ9

where φ is given by (4.13). Now because Unk-^>2φ, Vnk-*φ uniformly on / for every
compact interval /, and because [7Πk, Vnk and φ are even, monotonic non-increasing
on (0, oo ) and converge to zero as x->oo, the uniform convergence of (Unk9 Vnj) to
(2φ9 φ) follows. We have shown that every sequence {(Un9 Vn)} of solutions of (4.9),
(4.10) with ΛM->0 has a subsequence which converges uniformly to (2φ9φ). It is,
therefore, immediate that (Un9 Vn)->(2φ9 φ) uniformly on ]R as n-> oo. Since (Un9 Vn)
satisfy the differential equations in (4.9), (4.10), the convergence in £Γ1(1R) follows at
once, q.e.d.

In the next section we use the implicit function theorem to show that for large
values of c the solution of (4.9), (4.10) is unique.
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V. Uniqueness for Large c

If we write a solution of (4.9), (4.10) as U = 2φ + h, V=φ + k, then we obtain
equations which h and k must satisfy:

(5.1)

(5.2)

In addition we require that

h, k are even on R, (5.3)

limΛ(x)= lim fc(x) = 0. (5.4)
X-+CQ X-»00

If G denotes the Green's function for the differential operator L given by

Lu = u—^u" on 1R

subject to zero boundary conditions at x = + oo, then (5.1), (5.2) can be rewritten

h-k-2A(φh)-^A(h2) = Q, (5.5)

k - A(φh) - 2A(φk) - A(hk) - λA(h) = 2λA(φ) , (5.6)

where the operator A is defined for continuous functions u which converge to zero
at x = ± oo by

A(u)(x)=SG(x9y)u(y)dy.
K.

Here

Let #e(R) denote the Hubert space of even functions in /^(R). The following
properties of A are now easily verified :

O)ltfi(iR) ̂  (const)|w|L2(R) ̂  (const)MHι(1R) ,

[Note the last property makes sense since Hl(]R) is an algebra.] These properties
can be seen most simply by noting that

J u(x)2dx= J ύ(k)2dk (ParsevaΓs identity),
R R

Mέέ(R) = ;̂ ~ ί (1 + k2)ύ(k)2dk, ue #g(R),
2τι R

and

f A f Λ ^ / / Λ 3^)
V^V^/y V^/ ~~ o , i 2 '

where Λ denotes Fourier transform. Let X = Hl(1/R) x //e(R) x R.
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Lemma 5.1. The operator <$P:

Now define the operator sέ: X^X by

' f c \ / f t- fe-2^ft)- i^(f t 2 )

k = lk-A(φh)-2A(φk)-A(hk)-λA(h)\

λ I \ λ I

Clearly, <$/:X-+X is a smooth mapping, and we want to investigate its
invertability in a neighbourhood of (0,0,0)eX using the Inverse Function
Theorem. The linearization of si about (0,0,0) e X is

h-k-2A(φh)

k-A(φh)-2A(φk)

λ

has a continuous inverse <£ -1: X-*X.

Proof. Since &: X^X is a bounded linear operator between Banach spaces it
suffices, by the Open Mapping Theorem, to show that J5? is invertable. Let
(ζ, ρ, μ) E X. We need to show that the equation

(5.7)

has a unique solution (ft, fe, λ) E X for every right-hand side. This is so if and only if
the equations

(5.8)

(5.9)

(5.10)

ft - 3A(φh) - 2A(φk) = ξ + ρ ( = γ say),

k-A(φh)-2A(φk) = ρ,

having a unique solution for every right-hand side (y, ρ, μ) e X. Clearly, λ = μ. Now
since φ(x) decays to zero at x= ± oo, it follows immediately that the mapping

k)^\A(φh) + 2A(φk)J

maps HlQR) x Hl(JR.) compactly into itself. Hence by the Fredholm Alternative,
(5.8), (5.9) are uniquely solvable for every right-hand side if and only if the system

h-3A(φh)-2A(φk) =

k-A(φh)-2A(φk) =

(5.11)

(5.12)

has a unique solution in Hl(ΊΆ) x H^(]R), namely, h = k = Q. Now if (ft, k) satisfies
(5.11) and (5.12) then clearly ft, k e C2(R) and are even,

(5.13)

(5.14)
and

limΛ(x)= (5.15)



Homoclinic Orbits of a Boussinesq System 253

Now multiplying (5.14) by 2 and subtracting from (5.13) gives

By (4.13), (1 — φ)^ 1/4 on R, and so by the Maximum Principle h — 2k can neither
have a positive maximum nor a negative minimum on R. Hence, h = 2k if (5.13) and
(5.14) hold. It suffices, therefore, to show that in ff *(R) the only even solution of the
problem

(5.16)

fc(x)->0 as x|->oo (5.17)

is h = 0 on IR. Here φ is given explicitly by (4.13). Note that φf satisfies (5.16) [this is
clear from differentiating (4.12)] however, φ' is an odd function and so does not lie
in #*(R). But it is easy to see that φ' is the only (normalized) solution of (5.16) which
decays to zero at x= ± oo. [To see this, suppose that φ' and h are such solutions.
Then (φ'h' — φ"h)' = Q, whence φ'h' — φ"h = Q on account of the asymptotic
behaviour, and φ'/h = const.] This completes the proof of the lemma, q.e.d.

Theorem 5.2. For all c sufficiently large there is a unique solution of (2.1)-(2.5).
Moreover, the solution (u,η) is a smooth function of c~2 eR.

Proof. By the Inverse Mapping Theorem the smooth function s$\X^>X is
injective in a neighbourhood of zero in X, and its inverse is a smooth function.
Now this means that for each μ > 0 sufficiently small there exists a unique solution
of the equation

h-k-2A(φh)-±A(h2) \ / 0 \

k = ik-A(φh)-2A(φk)-A(hk)-λA(h)\ = \2μA(φ)\ .

λ I \ μ I

Clearly, λ = μ and (h, /c, λ) is a solution of (5.5), (5.6). But since (5.5), (5.6) is another
version of (5.1), (5.2), we have established the existence of a unique smooth curve of
solutions for Λ > 0 but close to (0,0,0) of (4.9), (4.10). Since for λ>0 sufficiently
small all solutions are close to (0, 0, 0) by Corollary 4.4 this completes the proof of
the theorem, q.e.d.

Remark 1. It is conspicuous that in applying the Inverse Function Theorem here
we have restricted attention to values of λ > 0, even though it applies equally well
for A<0. Recall that in (4.9), (4.10), λ = ί/c2>0. The case of λ<0 corresponds to
considering imaginary values of c, the significance of which is unclear for travelling
wave solutions of the system under consideration here. Such solutions, however,
do exist, as we have shown for imaginary ic with c sufficiently large.

Remark 2. Using the analytic expression for G it is possible to obtain an estimate
for the size of c, where uniqueness is guaranteed, using the contraction mapping
principle. We have not attempted this.
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