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0. Introduction

This paper is the second in a proposed series of three papers on classical and
quantum mechanical systems of Toda lattice type (cf. [G-W2]). The main purpose
of the present paper is to study the solutions of the classical periodic and non-
periodic Toda lattice type systems. The third paper (in preparation) studies the
solutions of the quantized systems. (The complete integrability of both classical
and quantized systems was proved in [G-W2], and the eigenfunctions for the
quantized non-periodic systems were constructed in [G-W1].)

The phase spaces for these Hamiltonian systems can all be realized as coadjoint
orbits for suitable finite-dimensional solvable Lie groups. The basic idea that we
exploit here is that the “Lax form” of the systems immediately points to the
solution in terms of an Iwasawa type factorization of a “large” Lie group. (This has
been also observed by various other investigators, e.g. [Syl, O-P, R-S1, G-S]; cf.
the review article [S-T-S].) For the non-periodic Toda systems this “large” Lie
group is a split finite-dimensional real semi-simple group G. Our main results in
this case can be phrased in the following form: The generic Hamiltonian systems of
non-periodic Toda type are linearly imbedded in the action of a vector group on
the real flag manifold for G. The scattering of these systems is then naturally
determined from the Bruhat decomposition of the flag manifold. We also obtain a
general method for constructing new completely integrable systems in terms of the
root system of G. (Special cases of this construction have been treated by Symes
[Sy1, Sy2].)

In the case of the periodic Toda lattices, our results are more technical and less
explicit. This time for the “large” real Lie group we must take one of the infinite-
dimensional Banach Lie groups G constructed in [G-W3]. The Lie algebra of G is
the (completed) affine Lie algebra associated with a finite-dimensional real semi-
simple Lie algebra. The appropriate Iwasawa factorization of G was established in
[G-W3]. The preliminary form of the solution to the periodic Toda systems is then
given in terms of this factorization, as in the non-periodic case. We then express the
solution in terms of representative functions of the “standard” (infinite-
dimensional) modules for G. The formula we obtain is a generalization of
Kostant’s formula [Ko] (which gives the solution of the non-periodic Toda lattices
in terms of matrix entries of finite-dimensional representations of G) to the
periodic case. To obtain explicit solutions, the next task is to calculate the
representative functions defined by highest weight vectors along certain one-
parameter subgroups of G. We derive a non-linear system of ordinary differential
equations satisfied by these functions. In the special case of SL(2, R)", we can
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identify these functions with Jacobi theta functions. For general groups we find the
representative functions corresponding to the fixed points of the periodic Toda
lattices. We expect that for general initial values these functions are given in terms
of the restrictions of Riemann theta functions to an imbedding (corresponding to a
specific choice of a basis of holomorphic differentials) of a hyperelliptic curve into
its Jacobian variety. Evidence in this direction can be found in the papers [R-S2,
A-vM].

The detailed organization of the paper should be apparent from the table of
contents. The opening sections on Lax equations and Euler equations
(Sects. 1.1-2.1 and 3.1) apply to both the “periodic” and “non-periodic” systems.
(One of the main purposes of [G-W3] is to provide the necessary Banach-Lie
group results which permit such a unified treatment.)

The middle sections (Sects. 2.2-3.6) analyze the systems of “non-periodic Toda
lattice type” in terms of the Riemannian symmetric space G/K and the coadjoint
orbits O of S (G=S - K split semi-simple as above, with K maximal compact and S
solvable.) The Hamiltonians for these systems come from K-invariant functions on
G/K via the Killing form of g, and mutually Poisson-commute on O (this is the
basic “involution theorem” for Toda-type systems). One has a distinguished
Hamiltonian, namely the function corresponding to the Killing form on g, and one
looks for other functionally independent such Hamiltonians. This naturally
suggests that O be considered “generic” if it has the property that we call
“J-regularity”: independent sets of K-invariant functions on G/K give rise to
independent Hamiltonians on 0. Under this condition (which we show is satisfied
by the orbits associated with the generalized non-periodic Toda lattices), the
scattering for the flow corresponding to the Killing form is given by a specific
element of the Weyl group. When O is J-regular and has minimal dimension
(=2rank(G/K)), this flow is then completely integrable. We call such orbits “Toda
orbits,” and set up a general root-system technique for obtaining them. A related
notion of Toda orbit was introduced by Symes in [Syl]; our work corrects an
error in [Sy1] concerning the appropriate form of the regularity condition. Our
scattering results also yield information on the “QR” algorithm for diagonalizing a
real symmetric matrix. The technical machinery used in this part of the paper
consists of standard facts about the Bruhat decomposition of G, as in [He2, Wal,
War], together with some root system calculations [Bo2].

The last part of the paper (Sects. 4 and 5) treats a class of systems which include
the generalized periodic Toda lattices. These systems can be viewed as the geodesic
flows on certain (finite-dimensional) solvable Lie groups. The “explicit”
integration of the geodesic flow is then obtained via an Iwasawa factorization in a
suitable infinite-dimensional group G and the representation theory of this group,
as explained above. The paper [G-W3] provides the technical tools for much of
this part. For this explicit solutions in terms of Jacobi elliptic functions, we use the
classical work of Jacobi and his successors in the theory of elliptic functions [Han,
W-W1.

The principal results of this paper were the subject of lectures by the authors at
the University of California, San Diego in the Spring of 1981 and at the
Oberwolfach Conference on Harmonic Analysis and Representation Theory, July
1981.
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1. Lie Group Factorizations and Lax Equations
1.1. Factorizations and Flows

Let G be a Lie group, with Lie algebra g. (We allow dimg= o0, in which case we
assume that G is a Banach-Lie group as in [Bo1].) Suppose that there are closed
Lie subgroups S and K of G, with corresponding Lie algebras s and f, such that

g=f®s (Banach-space direct sum); )
the map S x K—G given by s, k—sk is an analytic manifold isomorphism.(2)

Let n,;: g—f and 7,: g—s be the projections corresponding to decomposition (1),
and let k: G- K, s:G— S be the analytic maps defined implicitly by (2). Thus for
g € G we have the factorization

g=5(9)-k(g) . (©)

Consider the homogeneous space S\G with its natural right G-action. By the
decomposition (3) we may identify S\G with K, thus making K a right G-space.
Explicitly, the action of ge G on ke K is given by k- g=k(kg). In particular, an
element X € g defines a vector field X on K via the action of the one-parameter
group exptX on K: X f(k)=(d/dt) f(k(kexptX))|,—,, for fe C*(K), ke K. We
may calculate X as follows:

Lemma. For X €g, ke K, one has
Xi=Li(Ad(K) X)), - “)

Here L(Y), for Y €1, is the right-invariant vector field on K defined by Y: L(Y) f (k)
=(d/dt) f(exp(tY)k)l;=o-
Proof. We can write
kexptX =exp[t Ad(k) Xk
=exp[tr(Ad(k) X) +trn(Ad(k) X)]k .

Hence if fe C*(K) and t is near 0, then by the Campbell-Hausdorff formula,
Sf(k(kexptX))= f(exp[tn(Ad(k) X)]k) + O(t*). This implies (4). [

1.2. Solution of Lax Equations

Suppose now that-in addition to the decomposition Sect. 1.1 (1), we also have a
decomposition

g=I®p (Banach space direct sum), §))

where p is a closed subspace of g such that Ad(K)p Cp.

Proposition. Given X, and Y, ep, set k,=k(exptYy), X(t)=Ad(k,) - X, and Y(t)
=Ad(k,) - Y,. Then the pair X(t), Y(¢) satisfy the “Lax equation”

X'(O)=[m(Y(0), X(0)] . @



Systems of Toda-Lattice Type. 11 181

Proof. By Sect. 1.1, Lemma, we can write Ad(k,,,)=Ad(exp(sZ,)k,)+ O(s?),
where Z,=m,((Y(t)). Hence

(d/dt) Ad (k) =ad(Z,) Ad(k,), 3)
which yields (2). O

Corollary. Assume that there is a non-degenerate continuous K-invariant bilinear
form B on p. Suppose ¢ € CR(p)* has a gradient V¢ relative to B. Then the Lax
equation

dX/dt=[m(V§(X)), X], X(0)=X, 4
on p has as solution
X(1)=Ad(k(exptV¢(X,))) - Xo. &)

Remark. Here C(p)¥ denotes the real-valued smooth Ad(K)-invariant functions
on p. The gradient hypothesis means that there is a smooth map V¢ : p—p such
that d¢(Y)=B(V¢(X),Y), for X, Yep. This is automatic, of course, when
dimp < o0, since ¢ is assumed to be smooth. The existence of B is also automatic
when K is compact.

Proof of Corollary. By the K-invariance of B and ¢ we have V@(Ad(k) - X)
=Ad(k) - V¢(X). Hence taking Y,=V¢(X,) in the Proposition gives Y(z)
=Ad(k) - Vo(Xo)=V(Ad(k) - Xo)=VH(X(1)). U

2. Solution of Lax Equations on p
2.1. Lax Equations on Riemannian Symmetric Spaces

Let G be a finite-dimensional linear, connected semi-simple Lie group. Fix an
Iwasawa decomposition G=NAK (g=n+a+f) and a Cartan decomposition
G=exp(p)K (g=F+p), where K is a maximal compact subgroup. Let 4= A(g, a)
be the roots of a on g, and 4* the set of positive roots defining N. Set S=NA4,
s=n+aq, and let B be the Killing form on p. The assumptions of Sects. 1.1-1.2 are
satisfied here, so we can solve the Lax equation Sect. 1.2 (4) via the K-component of
the one-parameter group generated by V(X ). Let us consider this family of one-
parameter subgroups for varying ¢ and fixed X, €p.

Let a* be the open positive Weyl chamber associated with 1. By the polar-
coordinate decomposition of p, there exists k, € K and H, in the closure of a* such
that X,=Ad(k,)- H,. When X is regular, the element k, is uniquely determined
mod M, where as usual M is the centralizer of 4 in K. If p” denotes the set of regular
elements of p, then the map K/M x a* —p’, given by kM, H—Ad(k)-H is an
analytic manifold isomorphism [He2, Chap. IX].

Suppose peCR(p)X. If Hea then Vé(H)ea [G-W2, Lemma 8.1].
Furthermore, if H is regular, then a={V¢(H): ¢ € S(p)*}, where S(p) denotes the
real-valued polynomial functions on p. Indeed, the differentials of a set of /=dima
basic polynomial invariants are linearly independent at H [Bo2, Chap. V, Sect. 5,
Proposition 5].
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Suppose X,=Ad(k,)-H, as above, and ¢ e Cx(p)*. The solution X(¢) in
Sect. 1.2, Corollary, to the Lax equation Sect. 1.2 (4) is then given as

X(t)=Ad(k(ko exptV¢(Ho))) - Ho - M

To interpret this formula geometrically, observe that the right action of 4 on K
(Sect. 1.1) gives rise to a right action, call it #, of 4 on K/M: (kM) - n(a)=k(ka) M.
Hold ¢,=koM and H, fixed, and define y(@)=¢, - nlexpV@(H,)). Then {y(¢): ¢
e CR(p)¥} C&y-n(A), with equality when H, is regular. Furthermore, X(t)
=Ad(y(t¢)) - H,. Thusitis evident that the flows on p defined by the Lax equations
Sect. 1.2 (4) correspond to the right action of 4 on K/M. We shall make this
correspondence more precise at the end of Sect. 2.2.

2.2. Asymptotic Behavior of Solutions and the QR Algorithm

Continuing in the context of a Riemannian symmetric space G/K of non-compact
type, we recall the Bruhat decomposition of G, in the following form [He2,
Chap. IX]: Let M"=Normg(A4), and set W =M’/M, the Weyl group of G/K. For
each we W, denote by M, the coset w viewed as a subset of M’. Let 4.
={aed*: —w-aed™}, and set

nw = 2 gw'as N‘; = exp nW M

aedy,
Then the Bruhat decomposition may be written as
G= | SN M, (disjoint union) (1)

weW

[He2, Chap. IX, Sect. 1]. Since G=SK, we obtain from (1) a corresponding
decomposition of K, in the following form:

Lemma. For we W, defineamap B,,: N,, x M,,—K by ii, n—k(@)m. Then ., is a
regular analytic imbedding, and

K=\ kK(N;)M,  (disjoint union) . 2)

weW
Here the analytic manifold structure on M, is obtained from that of M by
translation.

Proof. Obviously (2) is just a restatement of (1). The map f,, is an immersion
because this is true for the map S x N,, x M,,—G given by multiplication [Wal,
Corollary 7.5.20]. Under the identification of K with S\G, the set k(N,,)M,,
corresponds to the orbit SWNM of NM. Since there are only |W| such orbits, each
orbit is open in its closure, hence regularly imbedded [War, Lemma 5.2.4.1]. O

Now we combine the Bruhat decomposition (2) of K and the polar-coordinate
decomposition of p. Letting C1(E) denote the closure of a set E, we have

p=Ad(K)-Cl(a*)= UWAd(k(N;))-Cl(w-a+). 3)
Thus X € p can be written as "
X=Ad(k)- H=Ad(k()w-H, 4
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where H e Cl(a*) is unique, ie N, , and w is unique mod Wy ={re W:r- H=H}.
(Here w- H denotes the action of W on a.) In any event, the elements H and w- H
are uniquely determined by X.

Theorem. If X €p is given by (4), then
lim k(exptX)=k k(@) ™*, 5)
t=>+ o0

where k€ K and Ad(k,)w-H=w- H. In particular,
tliinw Ad(k(exptX))- X=w-H. (6)
Proof. By (4) we have exptX =k(i7) exp(tw - H) k(1) ~*. But k(sgk) =k(g)k for se S
and ke K. Since k(i) =s(i1) ~ 71, it follows that
k(exptX)=k(exptw- H)k(7) !
=k(exp(—tw- H)inexp(tw- H)) k(@)™ *.

The eigenvalues of ad(w- H) on it,, are non-negative (and strictly positive if X is
regular), so that

liI;n exp(—tw-H)ynexp(tw- H)=7n,€ G,
t—=>+ o0

where G, ={ge G:Ad(g)w- H=w- H}. Note that if X is regular, then i, =1.

From the root-space structure of the Lie algebra of G; one sees easily that
k., =k(a1,) € G, also, which gives (5). Since Ad(k(7) " !)- X =w- H, we obtain (6)
from (5). O

Remarks. 1. If X is regular, then k=1 and lim,_, , , k(exptX)=k(7) " '. In this
case the theorem has the following geometric interpretation: If He a* and & is in
the set k(N,,)M,,CK/M, then

lim &-exptH=w

t=>+ o0

(where A acts on the right on K/M asin Sect. 2.1, and we view w as a point in K/M).

2. The relation (6) is a continuous time version of the “QR algorithm” for
diagonalizing a symmetric matrix [Ru, Satz 12.6]. To verify this, define Q,, R,, T,
by the recursive algorithm

To=expX,
Qu+1=Kk(T), R,+=5(T),
T,,1=0Q,+1R,+1 (note reversal of order).
It then follows inductively that
T,=0,...0,exp(X)Q;*...0, !, expnX=R,...R,0,...0;.
Hence Q,...0, =k(expnX), and so by (5),

lim Q,...0, =k
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exists. Furthermore, by (6),

lim T,=exp Ad(k) X =expw-H. U

Now we introduce the following decomposition of the set of regular elements in
p: For we W, define

p'w), =Adk(N,)w-a*. (7

By the theorem we have p'(w) , =Ad(k(N,,))w-a*. From the lemma above and
the polar coordinate decomposition of p’, we see that p’(w), is an imbedded
analytic submanifold of p” of dimension equal dim(f,,)+dim(a). Furthermore,

p’= U p'w), (disjoint union). (8)
weW

In particular, if w, denotes the unique element of W which sends 4* to — 4™, then
dimp’=dimp’(wy), >dimp’(w) ,, if w+w,. Thus when we solve the Lax equation
dX/dt=[n(X), X] with “generic” initial data X(0)ep’(w,),, then the solution
tends to the negative Weyl chamber w, - a* as t— + 0o. Thus the same behavior
occurs in the discrete time QR algorithm in Remark 2 (cf. remarks after Satz 12.6 in
[Ru]).

Under suitable regularity assumptions on the initial data, we can obtain the
asymptotic behavior of the solutions to the general Lax equations Sect. 1.2 (4) from
the theorem above, as follows:

Corollary. Let X ep’, ¢ € CX(p)X, and assume that V§(X) e p’. Write X =Ad (k) - H,
withke K and H e a*. Choose w, € W so that w, - V$(H) € a*, and choose w, € W so
that kwi '€ SN, M,,,. Then

tliin Ad(k(exptV¢(X))) - X =w,w,-H. ©)

Proof. There exist representatives w; € M,,, for i=1,2, and 71, € N, such that
k=k(7,)w,w,. Hence

Vo(X)=Ad(k)- V(H)=Ad(k(7i))w, - Hy,
where H, =w, - V¢(H). Since H, ea™, we obtain from (5) that

liin k(exptVo(X))=k(@i,) " *.
t—>+ o
Thus the limit in (9) is Ad(k(7i,) ) X =w,w,-H. O

Remarks on ““Linearization.” With the Bruhat decomposition of K/M at hand, we
can be more precise about the nature of the simultaneous isospectral flows on p
associated with all the K-invariant polynomials on p. Suppose X,ep’. Write
X,=Ad(k(i,)) - H,, wherei,e N,,, Hyew-a*,and we W. As noted at the end of
Sect. 2.1, the flows passing through X, are parametrized by the subgroup A4 via the
formula

a—Ad(k(afiga™ 1)) Hy . (10)
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We may view (10) as the composite of two maps: the linear action of 4 on it,:
a-Ad(a)-Z,, Z,=logn,, 11

followed by the non-linear map
Z—-Ad(k(expZ2))-H,, Zeh,,. (12)

By the Bruhat decomposition the map (12) is injective and regular. Thus the
dimension of the “isospectral leaf” through X, is dim 4 —dim Cent 4(Z,), and the
maximal leaves occur when Cent ,(Z,) = {1}. We shall study this case in detail in
Sect. 3.2.

2.3. Scattering

We continue in the context of Sect. 2.2. If X € p, set

$+(0)= lim Ad(k(exptX))-X. (1)

We note that replacing X by —X in (1) gives
—¢p(—X)= lim Ad(k(exptX)) - X. ?2)
t— — o0

Calling the limit on the right side of (2) ¢ _(X), we thus have

—$(—X)=9¢_(X). 3
The “scattering transformation” associated with the Lax equation
dX/dt=[n(X), X]is then themap ¢ _(X)— ¢, (X)from ato a. We shall calculate it
for the regular trajectories of the system, i.e. when X e p”.

There are elements k. €K such that ¢, (X)=Ad(k.)-X. Thus ¢.(X)
=Ad(k, k=Y - ¢_(X). But if two elements of a are conjugate under K, then they
are conjugate under W [He2, Chap. VII, Proposition 2.2]. Hence we obtain
the following:

Lemma. There exists w=w(X)e W such that ¢ . (X)=w-¢_(X).

Remark. If X e p’,then ¢, (X) e anp’. In thiscase k . k~' € M’so that the element w
in the lemma is k k-1 M.
To calculate the element w{X), let p’(w), be defined by Sect. 2.2 (7), and set

pPw)-={Xep:d_(X)ewwy-a}. (4)
Taking into account the relations (3) and wwy-a* = —w-a*, we have
pPw)-=—p(w),. &)

Thus from Sect. 2.2 we know that p’(w), are imbedded submanifolds of p” of
dimension equal dim(n,, )+ dim(a). Also from Sect. 2.2 (8) and relation (5) we have

= U W{P/(W1)+F\P'(W2)_}. (©)

Wi, Wa€
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In particular, since dimp’(w), <dimp if w=+w,, we see from (6) that
p” = p'(wo)+ Np'(wo) - M
is open and dense in p.

Theorem. L et X e p’(w,) . "' (w,) _. Then ¢ .(X)=w,wow; * - ¢_(X). In particular,
if X €p”, then the scattering transformation for X is wy (“‘generic scattering”).

Proof. By definition, ¢ _(X)ew,wq- 2" and ¢, (X)ew,-a*. Hence wwow, !
-¢_(X) and ¢,(X) are in the same Weyl chamber. Since we also know that
¢,(X)=w-¢_(X) and ¢_(X) is regular, this implies that w=w,wow; *. 0

3. Integrable Hamiltonian Systems on Iwasawa Groups
3.1. Solution to Euler Equations on s*

Let the notation be as in Sect. 2. We now relate the “Lax equations” on p to “Euler
equations” on s*. This connection is by now well-known (cf. [Sy1l, O-P, R-S1,
Ad]). For the reader’s convenience and to establish notation, we describe the result
with sketches of proofs.

Let B denote the Killing form on g. Then f=p* and p =F* relative to B, so we
have a linear isomorphism y: p—s*; p(X) (Y)=B(X, Y). By the decomposition
g=1®s we also have a linear isomorphism 7, : p—s. Since B(X, Y)=B(n(X), Y)
for X, Yep, it is clear that

m(X)=p* 1 (X), 1)

where p* : s—p* is the adjoint of y and X — X* is the map from p to p* defined by
the form B. One also has the map f— f” from s* to s, such that y(X)’ =n(X) for
Xep.

Suppose ¢eCR(p)X. Then [V¢(X),X]=0 for Xep. To see this, take
Yet and calculate as follows: B(Y, [Vé(X), X])=B([X, Y], Vé(X))
=(d/d)p(X —t[Y, XDl,—o = (d/dt)¢p(Ad(exp—tY) - X)|,— o =0. Since [p,p]CT and
BJ;«; is non-degenerate, the result follows.

One next observes that if X, Yep and [X, Y] =0, then

Y([n(Y), XD = —n(Y) - p(X), )
where the dot on the right side of (2) denotes the coadjoint action of s on s*. (To
verify (2), note that [X, Y]=0 implies [n(Y),X]= —[n(Y),X] and use the
invariance of the form B.) In particular, if ¢ € Cx(p)%, then

W([m(V9(X)), X1) = —n(V§(X)) - p(X). 3

Finally, to obtain an “Euler equation” on s* for the function H (&)= ¢(yp ~'(¢))

from the “Lax equation” for ¢, we use (1) to calculate that n(V¢(X)) = p* ~ 1 (dp(X))

=dH 4(yp(X)). [Here V(X ) =d¢(X) by definition of the gradient, and we identify

s** with s, so that dH, maps s* to s.] Substituting this calculation in (3) then
completes the proof of the following result [Syl, Theorem 2.2]:
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Proposition. Let ¢ € Cx(p)* and define H 4(w(X))=¢(X) for X € p. Then under the
map y the vector field X >[n(V#(X)), X] on p corresponds to the vector field
E——dH (&) & on s*.
Corollary. Let {,=y(X,)es*. Then the solution to the “Euler equation”
E=—dH,(¢)-& &0)=C, on s* is given by
&) =s(exptVg(X)) "' &. “4)
Proof. By the proposition and Sect. 1.2, Corollary, one has £&(¢)
=y(Ad(k(exptVé(X)))-X). Since [V¢(X), X]=0, we can exchange the K and S
components of exptV¢(X) as follows:
Ad(k(exptV¢(X))) - X = Ad(sexptVé(X)) ' exptV (X)) - X
=Ad(s(exptVe(X)™ 1) - X.

This implies (4) by the invariance of the form B. [J

Recall that the Poisson bracket of functions F, and F, on s* is defined by
{F,F,} (&)=&[dF(&),dF,(£)]). A basic observation in this regard is that when
F;=H,, with ¢;e CR(p)%, then {H,,H,,}=0. There are several proofs of this
“involution theorem” (cf. [Ra]). The argument which seems most suitable for both

the finite and infinite-dimensional cases is due to Symes [Sy1], and goes as follows:
Let £ =y(X). By the calculations above and the invariance of the form B, one has

{Hy,, Hy,} (O)=B([n(V'$1(X)), n(V$,(X))], X)
=B(n(V'$1(X)), [ (V' $(X)), XT)
=B([n,(V¢:(X)), X], m(V$,(X)))
=B([X, m(V (X)), m(V 4,(X))) -

But the last expression vanishes since [p, ] Cp and £.Lp. In particular, this proves
the following result (cf. [G-W2] for a proof that also applies to the quantized
systems):

Theorem. Let I =S(p)¥, and set J={H:$el}. Then J is a Poisson-commutative
algebra of functions on s*.

Remark. The proofs and results of this section apply equally well to the case
dimg = co, provided one assumes that V¢ exists in p (and hence that dH ; exists as a
map from s* to s). We shall use this in Sect. 4 without further comment.

3.2. J-Regular Orbits in s*

Let G be as in Sect. 2. We now make the additional assumption that g is split over
R. In this case we have the triangular decomposition g=n@®a®fi, and a is a
Cartan subalgebra of g. Set [=dima.

Given & es*, set

5.={Yes:Y- (=0}, S.={seS:s5-{=(}.
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Since S is an exponential-solvable Lie group, the coadjoint orbit O=S-¢ is an
imbedded manifold in s*, analytically isomorphic to S/S. [Be, Chap. I]. It is a
symplectic manifold relative to the canonical Kirillov-Kostant form o°.

If €en* we extend € to s by £(a)=0; similarly, if € a*, we extend S to s by
B(m)=0. With these conventions we have

S-(B+O=p+S8-¢ )

for f € a* and £ e n*, since ([, s]) = f(n) =0. Thus for calculating S orbits in s* it is
enough to consider orbits of elements on w*.

In this section we study the isotropic foliations of these orbits associated with
the Poisson-commutative algebra J in Sect. 3.1, Theorem. (Since G is split, the
functions in J in fact come from G-invariant polynomials on g; cf. Sect. 4.1,
Lemma 1.)

Given a function FeC®(s*), we have the differential dF:s*—s. The
Hamiltonian vector field X* on the symplectic manifold (0, w) corresponding to F
is (X");= —dF(&)- £, [G-W2, Sect. 7]. Consider the distribution of tangent spaces
(L, ={(X");:FeJ} in the tangent bundle of s* Since J is Poisson-
commutative, the subspace L, is isotropic for (w°).. In particular, one has

dimO2=2max {dimL,} .
ée0

Furthermore, if ¢, ..., ¢, are homogeneous polynomials which generate S(p)* (cf.
[Hel, Chap. X]),and F;=H,,, then the vector fields {X"¢: 1 <i<1} span L at every
point. In particular, dimL, <! for all {es*.

Lemma 1. Let X € p and set {=y(X). Then dim L, =1iff X is regular and satisfies
the transversality condition

g¥na={0}. (T)
(Here g* is the centralizer of X ing.)

Proof. Let u={V¢(X): ¢ e S(p)*}. We observed in Sect. 2.1 that dimu </, with
equality iff X is regular. The linear map V'¢(X)—dH 4(£) - £ from u to L, is surjective,
by definition. Thus we may assume that X is regular. Now the centralizer of X in {
is trivial, since g is split over R. Thus g* =uCp, as noted in Sect. 2.1.

The kernel of the map above is characterized by the equation

[m(V (X)), X]=0, @
by Sect. 3.1, Proposition. Thus the solutions to (2) satisfy V¢(X) € pns=a. Hence
dim L, <[ implies that condition (T) does not hold.

Conversely, suppose that (T) fails. Hence there is some ¢ with 03V ¢(X) e a.
Then ¢ satisfies (1), which implies that dimL.<[. [

Let OCs* be an § orbit. Define O,.,,={{€0:dimL.=1}. Since O, is the
subset of O on which the analytic vector fields X*:, 1<i<lI, are linearly
independent, it is clear that O, ., is open, and is either empty or dense in O. We shall
say that O is J-regular when O, is nonempty. To state a criterion for J-regularity,
we need some additional notation.
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Forae A™ choose 0+ X, €g, and let {X*:ae A%} be the basis for n* dual to
{X,}. Given ¢ e s*, define ®,={oe 4™ : &(X,)+0}. Writing o€ 4™ in terms of the
set of simple roots IT ={ay, ..., o} as a=n,0, + ... + moy, we define the support of «
to be Supp(x)={o;:n;#+0}. We then associate with ¢ the following subset of II:

Supp(®,)= ki Supp(2).
ae &

Note that @, measures the extent to which ¢ is “non-diagonal;” e.g. @, is empty if
£ e a*. Our criterion for J-regularity is then the following root system condition:

Theorem 1. The set O,., is nonempty iff there exists ¢ € O such that Supp(®,)=11.

Proof. The necessity of the criterion in Theorem 1 is easily established. Indeed,
suppose that there exists a simple root o such that for all £€ O, a¢ Supp(P,).
Choose H € a with a(H)=1 and B(H)=0 for fe I1\{a;}. Then we have H 1 ®,, and
hence H- ¢=0,forall £ 0. But H - p(X)=vy([H, X]), for X e p. It follows that no
element of ™ '(0) satisfies condition (T) in Lemma 1, and hence O,., is empty.

The proof of the sufficiency of the criterion in Theorem 1 requires some
preparation.

Let 5=a+1i, and use the form B to define a linear isomorphism y:5—s*,
Denote by a’=anp’ the regular elements in a. We shall first prove

there exists X € p” with p(X) € O iff there exists
Hea and Yen with y(H+Y)€O. (A)

Indeed, given Hea’ and Yeti, a well-known result of Harish-Chandra [He2,
Chap. IX, Lemma 1.5] asserts that there exists i€ N~ such that Ad(R) H=H + Y.
Set X =Ad(k(n))H €p’. Then

wX)=s@ ' -y(H+Y), ©)

by the invariance of the form B. Hence if y(H+Y)e O, then yp(X)e O also.
Conversely, if X ep’, then there exists ke K and H ea’ such that Ad(k)H=X.
Applying Sect. 2.2, Lemma, to write k=sam, with se S, e N,,, me M,,, one has
p(X)=s-y(Ad(Am)H)=s-yw-H+Y) for some Yet,. Since w-Hea’, this
completes the proof of (A).

Next, let a e I1. We claim that

X,LOiff forall €O, aé¢Supp(P,). (B)

To verify this, suppose that X, 1 0 and ¢ € O. Then U(n) - ¢ vanishes on X,. But by
Lemma 1 of the appendix, for every y € 4™ such that o« € Supp(y), there are positive
roots 8, ..., B,such thatad X, ...ad X, (X,) =X, with ¢4 0. Hence ¢(X,) =0, so
thaty ¢ @.. This shows that o« ¢ Supp(®,). Conversely, if there exists some £ € O with
&(X ) *0, then trivially o € Supp(®,). This proves (B).

We can now complete the proof of the sufficiency of the criterion in Theorem 1.
Assume that there exists {,e O with Supp®, =II. For each aell, define an
analytic function r, on O by

rfQ)=4(X,), (£e0. 4)
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From (B) we have r,+0. Since ra- &) =a % (&) for ae 4, it follows that r, is
nonconstant, for every a € I1. Since O is connected, there thus exists &, € O such
that for all a € I, r (&,) +0. Observing that X, - Xj|,=0,,p for o, f 47, we then
have s- &,],=a* It follows that the projection map from O to a*((—¢|,) is a
submersion at £;. Hence the image of O under this map contains a nonempty open
set, by the implicit function theorem. We conclude from (A) that Ony(p’) is
nonempty. Finally, since this set is open in O, there exists £, € Onp(p’) such that
r(&,)#0 for all xeIl. Then X =y~ 1(¢,) is easily seen to satisfy condition (T).
Hence ¢,€0,., by Lemma 1. [J

Remark. From the proof just given one obtains the following alternate necessary
and sufficient geometric condition for O,., to be nonempty:
There exists &€ O such that the projection of O into a* is a submersion at &.
We can also express the criterion for O, to be nonempty in terms of Iwasawa
subgroups of S. For this, we introduce the following notation: Given IT, CII,
denote by A*(I1,) the positive roots in the span of IT,. Define
nIl)= > g,

aedt(II1)
Clearly n(I1,) is a subalgebra of n stable under Ad(4). Let
a(ll,)=span{H, :aell},
where H, is the coroot to a. [So B(H,, H)=2x(H)/(x, ).] Define
s(I1,)=a(Il,)+n(I1,).

The corresponding connected subgroup S(II,) C S is an Iwasawa group for the split
semisimple group G(I1,)CG with Lie algebra g(I1,)=n(I1,)®a(Il,)®n(1,)".

Via the root space decomposition, we identify n(I1,)* with the subspace of n*
spanned by {X¥*:a0eA*(I1,)}. We identify a(IT,)* with the span of IT,. Then
n(Il,)* consists of all £ e n* such that ®,C47(I1,), and we have s(IT,)* Cs*. These
identifications are consistent with the coadjoint representation:

Lemma 2. Let &, en(I1)*. If X es(Il,), then ad,,(X)*¢; =X - &, (where the dot
denotes the coadjoint action of s on s*). Furthermore, S(II,)- &, =S-¢;.

Proof. Let o, f,yeA*. Then (X,- X})(X,)=0 if fa+7. On the other hand, if
a,feA*(I;) and f=o+y, then ye A¥(I1,). Furthermore, X, - Xj|,= 0,50, H- X}
=—B(H)X},for Hea. From the definition of the embedding of 5(I1,)* into s* and
these calculations it is clear that the first statement of the lemma holds. The same
calculations show that X,;- ¢, =0and H-¢,=01if B¢ A (I1,) and H € IT1. Since
a=a(I1,)®II7, this gives the second statement. [

Combining Theorem 1 [and statement (A) in its proof] with Lemma 2, we
obtain the following description of coadjoint orbits:

Theorem 2. Let O Cs* be a coadjoint S orbit. Define I1,={aell:{X,, 0)+0}.
Then there exists 6 € a* and & e (Il )* such that 0 =6+ S(Il,) - £. Furthermore, the
following are equivalent:
(i) O is J-regular;
@) II,=1,
(iii) there exists &€ O such that Supp @, =1II.
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3.3. Orbits of Toda Type

Let O Cs* be a coadjoint S-orbit. We shall call O a Toda orbit if dimO =2l and O is
J-regular, in the sense of Sect. 3.2. (Here /=dima.)

These orbits are of interest because of the “involution theorem” of Sect. 3.1. If O
is a Toda orbit and ¢ Cg(p)¥, then the Hamiltonian H=H, is completely
integrable in the classical sense: Take ¢, ..., ¢, as generators for S(p)¥, and define a
map A:0-R' by A(E)=(4(),...,d4(E). If A(E)=c, then the level surface
(“isospectral leaf”) 47~ '(c) through ¢ is smooth and has tangent space L,, with
dimL,=%dimO, for all ¢ in a dense open subset of O. These Lagrangian
submanifolds give a foliation of O (possibly with singularities). The flow generated
by H (cf. Sect. 3.1, Corollary) follows the leaves of this foliation.

We observe that the Toda orbits are those of minimal dimension, if we exclude
orbits belonging to proper Iwasawa subgroups (Sect. 3.2, Theorem 2). We also
have from Sect. 3.2, Theorem 1, the following criterion for Toda orbits:

Proposition. Let O Cs* be an orbit of dimension 21. Then O is a Toda orbit iff there
exists £ € 0 with Supp®.=1I.

Example (Jacobi Matrices). The best-known example of a Toda orbit is the
following: Choose €={(¢y, ..., &) with each &= +1, and set

1
Js= {H-'_ Z ci(Xai_GXa,)} Cp,
i=1

where H € q, ¢;¢;> 0, and 6 is the Cartan involution. Then O =y(J ) is the S-orbit of
the element

!
&: Z giX:,"
i=1

The structure of O has been studied by several people, especially Kostant [Ko] (cf.
[G-W2, Sy1] for further citations). It is obvious that Supp ®.=1II and dim0 =2I,
so O is a Toda orbit by the proposition.

One of Kostant’s results is that O = O, ., in this case, so that the foliation of O by
isospectral leaves has no singularities. We now show that this result follows easily
from the results of Sect.3.2. Let X €J,. Clearly X satisfies the transversality
condition (T) of Sect. 3.2, Lemma 1, so we only need to prove that X is regular.
Write X = Ad(k(77)) - H as in Sect. 2.2 (4), where we W, HeCl(w-a*)and e N, .
Then Ad(s(77)) X =Ad(n)H = H + Y, where Y e it,,. It follows from Sect. 3.2 (3) that
y(H+Y)e 0. This forces w=w,, since y(Y)(X,) +0 for all «eIl. Furthermore,
writing n=expZ, withZen,weseethat Y=[Z_,H],where Z=Z_,+Z_,+...
is the principal gradation of Z (cf. Sect. 4.2). Hence a(H)=+0 for o€ I1. But we
already have a(H) <0 for a € I1, since H € Cl(w, - a*). Thus H is regular, and so is
X. O

3.4. Construction of Toda Orbits (Basic Examples)

In this section we construct Toda orbits under the assumption that g is split and
simple, i.c. the set II of simple roots defines a connected Dynkin diagram. The
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orbits will be of the form S- X* for suitable ae 4*. We first observe that the
calculation of the dimension of such an orbit can be done via the root system, as
follows:

Lemma 1. For aeA*, set [,={feA*:a—BeA™}. Then
dimS - X*=Card(l,)+2. 1

Proof. Lets,={Zes:Z - X¥=0} be the isotropy algebra of X¥. We observe that
s, is stable under Ad(A4), and calculate that X, e s, iff ¢ {a}UI,. Thus

so=Ker(al,)+ > a5, (2

where the sum is over f € A™\({a}UT}). Since dim S - X ¥ = dims — dims,, we obtain
(1) from (2). (Recall that dimg,=1, since g is split.) [J

Theorem. Suppose that either o =0, + ... + aorelsea=(H, + ...+ H))", where H; is
the coroot to o, and ” is the “‘root<«>coroot” operation. Then S - X} is a Toda orbit.

Proof. By Lemma 1 of this section and Lemmas 2 and 4 of the appendix, we see
that dimS - X =2l. Since @, = {a} when {= X, it is clear that Supp®,=1I1. The
theorem then follows by Sect. 3.3, Proposition. [

Remarks. 1.1In the simply-laced case (4 of type A, D, or E), the two choices of o in
the theorem coincide, giving rise to two such Toda orbits for each Dynkin diagram
(we could have taken — X ¥ instead of X¥ in the choice of basis). In the multiply-
laced cases (4 of type B, C, F, or G), the two choices of « are distinct (the first is a
short root; the second is long). Hence we obtain four such Toda orbits for each of
these Dynkin diagrams.

2. For 4 of type A4, _(g=sl(n,R)), these Toda orbits were found by Symes
[Sy2, Sect. 10].

We turn now to a more detailed description of the orbit O0=S- X} when
o=(H,+...+H)" Thus a is a long root. Similar results can be obtained in the
multiply-laced case for the short root a =a, + ... + ;. Instead of using Lemmas 3
and 4 from the appendix, however, one must do a number of root calculations on a
case-by-case basis. We omit the details.

We first construct a 2I/-dimensional subgroup of S which acts simply-
transitively on O. Let {f,....5-1}V{}1,...,»71-1} be the polarization of I,
described in Lemma 4 and Table 1 of the appendix. Set

X;=X;, Y=X zZ=X,. 3)

Ry

By Lemma 3 of the appendix, we have the following commutation relations (after
an appropriate rescaling of Z):

[X;, X1=[Y, Y;]=0,
[Xi’Z]=[Yi=Z]=0> [Xi’ Yj]:éijza
[Hain]:Xiv [Hw Y;]= Yii [HawZ]:zZ

Here H, is the coroot to a. Set u=span{X,, Y,,Z:1<i<[—1}. Then u is either
abelian (if /=1), or else a 2I—1 dimensional Heisenberg algebra with center
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spanned by Z. Let U=expu be the corresponding Heisenberg group. Clearly A
normalizes U. Also, ad H, generates the usual group of dilations of U, since (H,)
=v,(H,) =1 (cf. appendix, Lemma 3). Let R=exp(RH,)U be the semi-direct
product of U with the dilation group. The Lie algebra of R is

r=RH,+u. 4)
Let s, be the isotropy algebra of X7. By (2) and (4) it is clear that
s=1@®s, (vector space direct sum). (5)

Since S is exponential-solvable, we know that the isotropy group S, of X7 is
connected. It follows from (5) that SynR= {1} and O =R - X}. Thus R acts simply-
transitively on 0. To obtain an explicit parametrization of O in terms of R, we
make the following calculation, where { X7, Y*, Z*} are dual to {X,, Y;, Z}:

Lemma 2. Suppose feU-Z*. Write f=expXexp(Y+(Z)-Z*, where
X espan{X,} and Yespan{Y;}. Define &;=X}X) and n;=Y*(Y). Then the
projection of f onto u* is

1-1
Z*+ ¥ Xf-EYE
i=1
The projection of f onto a* is
-1
Co+ _;1 (&mi) B; -

Proof. We first observe that

s-a*=0, (6)
Y, Z¥=X¥. (7

Next, we claim that
Y, Xf=0 ®)

for all i, j. Indeed, the left side of (8) has weight y,— f; relative to the coadjoint
action of a. But by Lemma 4(i) of the appendix, we know that y,> f;, while all
weights of a on s* are negative, relative to the order on A defined by 4*. This
proves (8). Obviously Z - Z* =«, so combining (6), (7), and (8) gives

-1
exp((Z+Y)-Z*={a+ 2%+ ¥ n,X}. €))
i=1

Now consider the action of expX on (9). We have
X; - Z*=-Y}*. (10)

The higher order terms X; ... X, -Y*eu', X; ... X, - X¥eu*, by Lemma 4(ii) of
the appendix, if m=1. It follows from ) and (10) that the prO]CCthIl of f ontou*is
as claimed. Since X;- X = f,;, we also obtain the projection of f onto a* from (6)
and (9) in the form stated 0

We can now give a set of global canonical coordinates on O.
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Proposition. Let O=S- X}, where a=(H,+...+H,)". Let X;, Y;, Z be as in (3).
Then f(Z)>0 for f€ 0. The functions p(f)=f(X)/f(Z)'"?, a(f)=f(Y/f(2)'?
for1<igi—1and p(f)=f(H,), q(f)=1log f(Z) are global canonical symplectic
coordinates on O ({p;,q;} =1 and all other Poisson brackets are zero). The map

=@y ., (), ()5 .., q(f)) is an analytic manifold isomorphism from O
onto R?,

Proof. Let feO. Then f=exp(tH,)exp(X)exp(Y+(Z)-Z*, where

-1

-1
X=3X§X;, and Y= 3 y,Y,.
i=1 i=1

Since R acts simply-transitively on O, itisclear that {t, &, ... &_ 1, 113, .- 1— 1, (IS @
global coordinate system on O. By Lemma 2 and the fact that §(H,)=vy,(H,) =1,
we find that f(Z)=e*, and for 1 <i<I—1, p(f)=1m; 9{f)= — & Also q,(f)= —t
and

-1
p(f)=2{+ i§1 & -

This shows that the p’s and g’s give global analytic coordinates on O. From the
commutation relations after Eq. (3), it is easily checked that the only non-zero
Poisson bracket among the p; and g;is {p;, ¢;} =1 (use the same argument as on p.
380 of [G-W2]). O

Example. Let G=SL(n, R), S =upper triangular unimodular matrices. Identify s*
with the lower triangular trace-zero matrices via the trace form. Let O be the orbit
of the elementary matrix E,,. If n=2, then S=R is the “ax+b” group and
dimO =2. The parametrization in the proposition above is

p 0
(s q)—><eq _ p)-

When n=3, we still have N=U, but dimS/R=1. Now dimO =4, and in terms of
the canonical coordinates in the Proposition, O consists of the matrices

2 0 0
—pie ®  piqy 0
e 2 gie”? —p,—piq;

When n=4, then N+ U [dimN =n(n—1)/2 while dim U =2n—3]. For n=4, one
has dimN/U =1. An explicit matrix calculation of O in canonical coordinates
slightly different than those used above may be found in [Sy2, Sect. 10].

3.5. Construction of Toda Orbits ( Amalgamation)

In this section we develop inductive procedures for obtaining Toda orbits of
S =S(II) from Toda orbits for smaller Iwasawa groups S(II,), where IT, CII. We
do not require that the Dynkin diagram for I be connected.

Recall from Sect. 3.2 that if O is a coadjoint S-orbit, then there is a unique
subset II,=1II,CII, and a {es* with Supp®,=1II,, such that O=S(II,)-¢.
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Writing a=¢|, and &; =¢|q,), we have Supp®, =II, and O=0+0,. Here
0,=8(I1,)-¢, is a coadjoint S(II,)-orbit, by Sect. 3.2, Lemima 2. Conversely,
every such orbit O, may be viewed as an S-orbit. In this connection, we will say
that O, is J,-regular when it satisfies the regularity condition of Sect. 3.2 relative to
the group S(I1,).

Proposition 1. Let II=1I1,0UI1,, with I, and II, disjoint. Assume that O, is a
coadjoint S(I1))-orbit for i=1,2 and set 0=0,+ 0, (vector sum). Then

(a) O is a coadjoint S orbit;

(b) Oy=11,,01,,;

(¢) dimO=dim0, +dimO,.

In particular, if O; are J-regular (respectively of Toda type) relative to S(II;)
for i=1,2, then O is J-regular (respectively of Toda type) relative to S.

Proof. Pick {; € O; with Supp @, =11, and set £ =&, + &,. Since S(IT;) fixes s(11,)*
for i=j, one has (515,) - =5, - & +5, - &, =(s,8,) - &, when s;€ S(II;). The group S
is generated by S(I1,) and S(I1,), so S-¢=0,+0,, proving (a).

By definition, ITp = {a € IT : X ,¢ O*}. Since n(IT;) Ln(II * for i=j, it is thus clear
that (b) holds. We also have s(IT,)*ns(II,)* = {0}, so (c) is obvious.

When O; is J-regular for S(IT;), then I1,, =1II;, so that by (b) we have I1,=1I.
Thus O is J-regular, by Sect. 3.2, Theorem 2. If O, is a Toda orbit relative to S(II,),
then II, =II; and dimO;=2Card(II). Hence O is J-regular and
dimO =2 Card(II) by (b) and (c). [

Corollary. Let [T=1II,u ... UII, be a disjoint union, and suppose that O;Cs(Il,)* are
Toda orbits, for | Ki<r.SetO0=0,+...+ O, (vector sum). Then O is a Toda orbit
for S.

Examples. 1. Take IT;= {0}, 0;=S(II,)- X*, for 1<i<I. Then each O, is a two-
dimensional orbit associated with a non-periodic Toda lattice of one degree of
freedom. Forming 0 =0, +... + O, we obtain the Toda orbit for the non-periodic
generalized Toda lattice associated with IT (cf. Sect. 3.3, Example).

2. Let IT be of type A,,(G=SL(2k+1,IR)). Take IT,= {0t5; - 1, %,;}, for 1 i<k,
Then each subgroup G(I1,) is a copy of SL(3, IR), embedded in block diagonal form
in G. Take O, to be the four-dimensional Toda orbit for the corresponding
Iwasawa group §; described in Sect. 3.4, Example, and set 0=0, +... + O,. Then
the canonical coordinates p;, p; + 1, 4i» 4; + 1 00 €ach orbit O; jointly give a canonical
parametrization of 0. When k=2, then O consists of the 5x 5 lower triangular
matrices of the form

gy H 0 0 |
51’13_‘12 P1D2 0 i 0 0

O P 25 % U |
0 0 I —pse ™ pspa O E
0 0 el g™ —pepyds]
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The boxes in dashed lines indicate the orbits O, and 0,, with overlap in the middle
of the matrix.

3. (Amalgamation with overlap). Let I =IT,UII,, as before, but now allow an
overlap of one root:

NIl ={d}. 1)

Take f8;€ 47 (IT;) such that Supp(f;) = IT;and dim S(IT;) - X}, =2 Card [T, fori=1,2
(cf. Sect. 3.4, theorem, for examples of such roots f;). With this choice, the orbit of
X} under S(II;) is a Toda orbit relative to s(I1,)*. Set (=X} + X}, We want to
determine whether S - f is a Toda orbit relative to s*. Since I, C4¥(I1;)and 4*(I1,)
NA4*(I1,)={5} by condition (1), the subsets I}, i=1,2, are either disjoint or else
satisfy

LD~ (3} @
Proposition 2. Assume (1) and (2) hold, with f;, & as above. Then S - £ is a Toda orbit
in s*,

Proof. Clearly Supp(®,)=I1,UII, =II, so by Sect. 3.3, Proposition, we only need
to check that dimS- &=2/, ie. that dims,=dims—2l.

To obtain a set of equations defining s,, we note thatif X =H + 3’ a,X, isin s,
with H € a, then

X-Xp=—apfi—p(H) X} + ; a,N, g— X )
aelp,

Here N, ; are the structure constants defined by [ X,, X;]1=N, ;X . From (3) we
see that X es,iff

ap,~sNs p, -5+ ap,- N5 p,-5=0, “)
a,=0, for aely Iz \{f;—0,B,—05}, )
ag, =aﬂ2=ﬁ1(H)=.BZ(H)=0' (6)

Counting equations, we find that dimS-¢=3+Card(I,uI};,) =2+ Card(I},)
+Card(I},), by condition (2). But we know by Sect. 3.4, Lemma 1, that Card([})
=2 Card(Il;)—2. It follows that dimS - ¢ =2 Card(I1,)+2 Card(Il,)—2=2]. [

3.6. Scattering on J-Regular Orbits

Let O Cs* be a J-regular S orbit, in the sense of Sect. 3.2. Consider the asymptotics
of the Hamiltonian flow on O coming from the Killing form on p. We saw in
Sect. 2.3 that this flow, viewed as a flow on p, has for “generic” scattering
transformation the longest element w, of the Weyl group (“generic” in this case
meaning on the dense open subset p”). Now we shall sharpen this result by showing
that for almost all points of O, the scattering transformation is still given by wy,.

Theorem. Let O be a J-regular S orbit in s*. Let p” Cp be defined by Sect. 2.3 (7).
Then p(p”")NO has complement of measure zero in O (relative to the canonical
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measure on O). Thus for almost all choices of initial data in O, the Hamiltonian
system E= —&"- & on O has scattering transformation E(+ 00)=w, - &(— o).

Proof. (A) For aell, let r, be the analytic function on O defined in Sect. 3.2 (4).
Then r, is non-constant, by Sect. 3.2, Theorem 1.

(B) Define 0'={,€0:¢(Hy)+0,Yfe4™}. Then O’is open in O. Define 7: 0’
—0 as follows: Given &€ 0, write ¢=y(H + Y), where H € a’ and Yefi. Define
fie N~ implicitly as a function of H and Y by the equation Ad(71) H = H + Y, and set
7(&)=s() " ! - ¢[cf. Sect.3.2, Theorem 1, proofof statement(A)]. Themap tis analytic
on 0.

(C) Foraell, set O, ={¢e€0’: {(X,)=0}. Then O, has measure zero in O by
(A). Hence 7(0,) also has measure zero in O, by (B). Butif we W, and w-ae 4™,
then we claim that

W(p'(w)+)N0C1(0y). M

Indeed, if X € p’(w) . then by Sect. 2.2 (7) and the proof of Sect. 3.2, Theorem 1, we
can write w(X)=1(y(H+Y)), with Hew-a" and Yeii,. Since X, 1, we have
Y(H+ Y) € O, proving (1). In particular, if w = w,, then there exists o € IT such that
w-oeA*. Hence by (1) we conclude that y(p’(w),)nO has measure zero in O in
this case.

(D) Since O,, C(p’), we may use the decomposition Sect. 2.2 (8) of p’ to write

Oreg = wks)W {W(p/(w) +)f'\ Oreg} .

By (C) all terms on the right have measure zero in O except for the term with w = w,,
Since the same argument applies to the J-regular orbit — O, we conclude from
Sect. 2.3 (5) that w(p”)nO has complement of measure zero in 0. Now apply
Sect. 2.3, theorem. 0O

Remarks. 1. For the examples of Toda orbits in Sect. 3.4, Proposition, one can
show by some detailed calculation that the sets O, in part (C) of the proof just given
are empty, when the root system is of type B, C, F, or G (multiply-laced). Thus O,
Cy(p”) in these cases, and every element of O, has scattering transformation w,,.
For the simply-laced root systems (ADE-type), the sets O, can be non-empty for
certain a.

2. In connection with the QR algorithm (cf. Sect. 2.2), it was known that for a
“generic” symmetric matrix, the diagonal entries produced by the algorithm
appear in monotone order [Ru, Satz 12.6, Remarks]. The stronger assertion made
by the theorem just proved is that this behavior is still “generic” among the
matrices restricted to lie on v~ 1(0), where O is any J-regular orbit.

3. In the case of the Toda orbit O of Jacobi matrices described in Sect. 3.3, we
already noted Kostant’s result that O = O,,. It is obvious that O, is empty for every
o € IT, by the explicit parametrization of the orbit. Hence by parts (C) and (D) of the
proof just given, we have OCwy(p”) in this case. This proves the following
generalization of J. Moser’s scattering results for the original non-periodic Toda
lattice (cf. [Ko, Chap. 7]):

Corollary. The scattering transformation for the generalized non-periodic Toda
lattices is always given by the longest element of the Weyl group.
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4. Hamiltonian Systems Associated with Affine Root Systems
4.1. Lax equations on loop groups

In this chapter we study a class of (finite-dimensional) Hamiltonian systems which
are obtained from affine root systems. To give a unified treatment of all these
systems within the framework of Chap. 1, we need to introduce some infinite-
dimensional Lie groups associated with affine root systems, and a suitable
Poisson-commutative algebra of functions. We first recall some well-known
structural properties of semi-simple Lie groups [He2], and the analogous
properties of the associated “loop groups” [G-W3].

Let G be a simply-connected complex Lie group, whose Lie algebra g is
simple. Let gCgg be a normal real form, and let GC G be the corresponding
connected real Lie group. Denote by ¢ the involutions of G and g defined by this
real form. Fix Iwasawa and Cartan decompositions

G=KAN, g=t+a+n,
G=KP, g=I+p.

Then u=f+ip is a compact form of g, and g =u+ ¢ is a Cartan decomposition,
where e =iu. Furthermore, a is maximal abelian in e as well as in p. Let U CG¢ be
the connected group with Lie algebra u. Denote by 7 the involution (respectively
conjugation) of G (respectively gg) whose fixed-point set is U (respectively u). The
following result is an immediate consequence of the Chevalley restriction theorem
[Hel, Chap. X, Theorem 6.10]:

Lemma 1. The restriction map from S(e)¥ to S(p)%, f— f |, is bijective. Denote the
inverse map by ¢—g. (Here we identify S(e) with the polynomlal functions on e via
the Killing form, as usual.)

Let Go=C>(T, Gg), where T = {ze € : |z| = 1}, be the smooth “loop group” (or
“current group”) associated with G¢. With the C* topology, it is a Fréchet Lie
group, with Lie algebra g, = C*(T, g). We extend the conjugation ¢ of G and g
to a conjugation on the loop group and algebra by setting (¢ f) (z) =a(f(2)),
(£ = complex conjugate of z). We denote by G and § the fixed-point sets of the
extended o. Then G is a real form of G, with Lie algebra §. (In terms of Fourier-
series expansions on T, § C§¢ consists of the elements whose Fourier coefficients
are in g.) We extend the involution 7 to G¢ and d¢ by (7 f) (z) =1(f(2)), for ze T.
[This formula for the extended 1nvolut10n 7 can be viewed as follows: If f has a
finite Fourier series, for example, and is extended holomorphically to €C*, then
QO =1(f(C 1)), where {eC*. Note that {—»{ ! is the involution of C * whose
fixed-point set is the compact real form T.]

The extended involutions 7 and ¢ commute, so G and g are invariant under 1.
Let §=T+ p be the decomposition of § into +1 and — 1 eigenspaces for . Let K be
the fixed-point set of 7 in G. Then G=K - P, where P=exp(p) (cf. [G-W3,
Chap. 6]). Observe that if fe§, then feT (respectively p)iff for all zeT, f(z)eu
(respectively e).
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From the Killing form B on g, we obtain a bilinear form B on § by integration
over T:

2n
Box, )= 5. BO(E), ¥ do.

Clearly B is positive-definite on §, by the corresponding property of B on p.
Likewise, one has p LT relative to B. Let d,, be the degree-derivation of §: dox(e®)
= —i(d/d0) x(e”). Denote by §° the semi-direct product of § with Rd,,, and set
a —a®le0 Integrating by parts and using the g-invariance of B shows that
ad(x)|; is skew-symmetric relative to B for any xe§°.

leen # € S(p)X, we may similarly define a function ¢ on by integration over
T (taking into account Lemma 1 and the remarks above):

Fo=o- { Faedo.

Lemma 2. [ f ¢ is a K-invariant pol ynomial on p, then ¢ is invariant under the adjoint
action of K on p. Furthermore, ¢ is differentiable, and d§ (x) (y)=B(V § (x), y), for
X,y €, where VE (x)(t)=(V§) (x(t)) for t e T. Thus § has a gradient, relative to the
form B.

Proof. The K invariance of § is obvious, as is the differentiability. The formula for
the gradient of §, as a map from § to P follows from the integral formula. Note
that @(z)=¢(0z)~ for zepe, which implies that (Vd)(oz)=0(Vh(z)). Hence
V(x)ep if xep. O

Let de(a®)* be defined by d(a)=0 and d(d,)=1. With the notation as in
Sect. 3.2,let d= Y. n;o; be the largest positive root, and set o= —d. Then the

1<is<l
roots of a® on §° are integral combinations, with all coefficients of the same sign, of
the roots g, a4, ..., . Take H, € a satisfying a(H,)=1, for 1<i<|1. Set

h=1+8Hy) =1+ Sn

(Coxeter number of the root system of g). Let Hj=hd,+ H,, and define the
principal derivation of §° to be ad(Hj). Note that this operator is skew-symmetric
relative to the form B. Since a(H§) =1 for 0<i =</, one has the principal gradation
§=a+ T G,
n*0
where §, is the eigenspace for ad(H§) with eigenvalue n.

We recall from [G-W3, Sect. 6.8] the following properties of the Banach-Lie
group G,,CG with Lie algebra §,,Cg. Here w is a weight function on Z, i.e. wis a
positive function on the integers such that w(k+m)<w(k)w(m), and w(k)
=w(—k). We shall assume that w is rapidly increasing:

lim w(n)n™*=o0 €))

n— oo

for all s>0. We shall also assume that w is of non-analytic type:

lim w(n)'"=1. #))

n— oo
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Take any faithful, finite-dimensional representation of G. Then G, (respectively §,,)

consists of the elements x in G (respectively §) whose matrix-valued Fourier series
3 a,e™ is absolutely convergent relative to the weight w:

neZ

lxllw= Zzllanll w(n) <o . A3)
Note that by condition (1), the convergence of (3) implies that x is a C* function.
Using (2) and results on the inner-outer factorization of matrix functions on the
circle, one obtains that G,, has Cartan and Iwasawa decompositions

Gw:KW'ﬁwa §w=¥w+5w (4)
G,=K,-A-N,, §,=I,+a+f,. (5)

Here K,,= K G, is a Banach-Lie subgroup of G, with Lie algebra , = §,,nf, and
P, =exp(p,). One has N, =exp(it,), with ft,, the closed span, in the w-norm, of §,,
n>0.

We set S,=AN,, §,=a+ii,, and denote by k:G,—»K,, s:G,—S,, the
analytic maps defined by the factorization g =s(g) k(g). We denote by =, : §,,—F,
the projection corresponding to the decomposition (5), and denote by y : p,,—(3,,)*
the map defined by the form B. It is easy to check that Lemma 2 is valid with K and
p replaced by K, and p,,. Also, if we take ¢ € S(p)¥ and define a function H, s0n(3,)*
via the map vy, then H,, is differentiable, and dH, : (5,,)* —§,, is given by dH 4(y(x))
— (7 §(x).

By virtue of Lemma?2 and the properties just recalled, the results of
Sects. 1.1-1.2 and 3.1 can now be applied in the present context, replacing G by G,,,
Kby K,, Pby P,, S by S, etc. We summarize the results as follows:

Theorem. Let ¢ € S(p)X. Then the Lax equation
X=[m(V§(X)), X1, X(0)=xo€ P, (6)
has as solution the curve in p,,
X(®)=Ad(k(®) - xo, ()

where k(t)=k(exp(V@(x,)). If FeS(p)X, then F is constant on the curve (7).
Furthermore, the solution to the Euler equation

E=—dHy9)-¢,  &0)=E&=1p(xo) ()
on (8,,)* (where - denotes the coadjoint action) is given by
EB)=s)""- &, )

where s(t) =s(exptVé (x,)).

Remarks. 1. Take a faithful matrix representation of G¢ so that 7(g) ~ ! =g* is the
usual conjugate-transpose map. The solution (9) can be calculated from the “inner-
outer” factorization of the positive-definite matrix valued function 0—expty(e®)
on T, where y =V (x,) € P, and the variable ¢t now plays the role of a parameter.
To see this, combine the Iwasawa factorization expty =s(expty) k(expty) and the
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equation exp2ty=(expty) (expty)* to write
exp2ty =s(expty)s(expty)* . (10)
Thus s(expty) is the (suitably normalized) “inner factor” of exp2ty.
2. The theorem is also valid if the weight function w only satisfies (2), but is not
necessarily rapidly increasing, e.g. w=1. In this case, G,, is a subgroup of the
continuous loop group on G. Conditions of the form (1) will be used when we

calculate in Sect. 5 the solution X (¢), for special choices of x,, using representation
theory.

4.2. Finite-Dimensional Subquotients of §

To apply the results of the previous section to finite-dimensional Hamiltonian
systems, we consider in more detail the principal gradation of §°(cf. [A-vM]). Asin
Sect. 4.1 we take H{ = hd, + H,, where h is the Coxeter number of the root system
of g. Then g has the principal gradation

8= 2 G

—h<n<h

where g, is the eigenspace for ad(H,) with eigenvalue n. Since ©(H,)= — H,, one
has t(g,)=g_,. Let g, be the eigenspace for ad (H§) with eigenvalue n. For eachn, g,
is finite-dimensional, and is spanned by elements xe™®, where x € g, and r+ kh=n.
Thus if n>0 and 1<r<h, then
gnh +r= greino + gr - hei(n R greinﬂ . (1)
Since ©(§;)=§_,, we have
‘3 =a+ kgo ﬁk s

where §,={x+71(x)|x € §;}-
Now consider the subalgebras ii= Y §, (topological direct sum in §) and
k>0

§=a+1t. From the above description of the root spaces, it is clear that i is

generated by §,, and that i*= 3 §,. Thus the quotient algebra b, =5/f**! is a
r2k
finite-dimensional, exponential-solvable Lie algebra, with nilradical w, =ft/f**!.
As an a® module,
W= 2> G- @

1=r=zk

Examples. 1. Consider b,. The space g, _,=g_; is one-dimensional, and by (1) we
have b; =a®u, where u=u, is an /+1 dimensional abelian ideal. Under the
adjoint action of a, u is the sum of one-dimensional weight spaces with weights
{—&yuIl. These algebras were studied in [G-W2]. Note that if we form the
algebra b¢ by adjoining the derivation d,, then the weights of a® on u are
Ol Oy vney O

2. If k= h—1, then we see from (1) that the Iwasawa algebra s =a +n for g can
be viewed as a subalgebra of b,. Relative to the derivation d,,

bk=5+nka
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where v, is an ideal (the sum of the positive eigenspaces of d;). We may identify s*
with the subspace v; Cby. Since v, acts trivially on vi, the coadjoint actions of b,
and s coincide under this identification. For example, fix k=h—1 and write v =1p,.
Then one finds that b, =s+ v, where v is an abelian ideal in b;. As an a® module, »
~ €"%1t, where it is the span of the negative root spaces in g. Relative to the adjoint
action of n on v, the commutation relations are adg(x,) (X _,€"®) = [x,, X _,.] - €",
where b=b,, x;eg;, m>0,n>0,and [ -,-]_ denotes the projection onto 1 along s
of the bracket in g. In particular, the center of the nilradical u,=n+v of b, is [+1
dimensional, and isomorphic to g,®g_ ¢ as an a® module.

Denote by B, the connected and simply-connected Lie group with Lie algebra
b,. It is clear from (2) that B,=AU,, where U, =expu,, and that the map h,u
—exphexpu from a x u, to B, is an analytic manifold isomorphism. Consider the
coadjoint orbits of B, with their canonical symplectic structure. Given f '€ b, and
a weight function w as in Sect. 4.1, we may naturally view f as an element of (§,,)*
which vanishes on £ 1. (Obviously replacing § by §, makes no difference in the
definition of b,.) The Lie group B, may be identified with S,/V;, where V; is the
closed normal Lie subgroup of S, with Lie algebra fi** 1. The coadjoint B,-orbit O
of f is the same as the orbit of f under the action of §, and the functions H, »®
€ S(p)X, restrict to analytic functions on O.

Remark. When k=h—1, we may view S as a subgroup of B, and identify s* with a
subspace of b as above. Clearly the S and B, orbits of elements in s* coincide, and
the functions H, have the same restriction to these orbits as in Sect. 3.
Since B(§;, §;)=0if i +/+0, and §; is non-singularly paired with §_; it is clear
that via the form B, we have a linear isomorphism v, : p*— b, where
pr=at 3 B 3)
1=5jsk
Use this isomorphism to define an inner product ( -, -) on b from the form B on §*.
The theorem of Sect. 4.1 when applied in this case then yields the following result:

Theorem. Let O Cb be a coadjoint B, orbit, and let ¢ € S(p)¥. The Hamiltonian flow
on O generated by H, has the trajectories

t-st)"'-f, feO, “)

where s(t) =s(exptV$ (x)) and x=v; '(f) € p*. In particular, the flow generated by
the Hamiltonian H(f)=41(f, f) is

t—s(exptx)” - f, 5

and the functions H,, ¢ € S(p)~, are constants of motion.

4.3. Geodesic Flow on B,

As we have seen in Sect. 4.2, the form B on p gives rise to an inner product on b,
k=1,2,.... This in turn induces a left-invariant Riemannian structure on the
group B,. Since the inner product is not Ad(B,) invariant, however, the geodesics
for this metric are not one-parameter subgroups of B;. In this section we show how
the geodesics can be calculated from the flow 4.2 (5).
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Recall that the cotangent bundle T* B, can be canonically trivialized as B, x by,
with the left B,-invariant functions on T*B, being identified with the functions on
b} [G-W2, Sect. 7]. Let »:bf—b, and #: b,—b} be the maps induced by the inner
product on b¥. Define a function H on B, x b} by H(b,f)=3(f,f). Then the
integral curve through (b, f) for the Hamiltonian vector field generated by H on
the symplectic manifold T*B, is

t=(by(0), (dLG(©) ™)y 7)) 1)

Here y is the geodesic through 1 with tangent vector j(0)= f", and L(b) is left
translation by b e B,. (This is the “geodesic flow” on T*B,; cf. [A-M, Chap. 3,
Sect. 3.71.)

Theorem. Let x € p*, f =1 (x) € b¥, and let Q, : S,,— B, be the quotient map. Then the
integral curve of the geodesic flow on T*B, passing through (1, f) is

t—(Qi(s(exptx)), s(exptx) "' - f). (@)
In particular, the geodesic through 1 with tangent vector f’ is the curve t
—Qu(s(exprx)).
Proof. Set s(t)=s(exptx) and s,(t) = Q,(s(t)). We first calculate that

(s() ™" )" =dL{s(t) ™ gy 3u(0) - G)

For this, it simplifies the notation to take a faithful matrix representation of G¢, so
that the elements of G and § are matrix-valued functions. Then dL(s(t) st 5(2)
=s(t) "' $(¢) (pointwise matrix multiplication). Write s(t)=exp(tx) k(t)~ !, where
k(t)=k(exp(tx)). Differentiating gives the equation s(¢)~'s(t)=k(t) xk(t) ™!
—k(t) k() ! in §. It follows from the orthogonality of T and  that

(s()~ " 3@ =w(k(t) x)=5() " f 4)

(cf. proof of Sect. 3.1, Corollary). Projecting this equation onto B,, we obtain (3).

Now let t—y(t) be the geodesic through 1 with tangent vector f’. The
projections onto b of the geodesic flow are the integral curves for the Euler field f
— —f"- f(cf. [G-W2, Sect. 7]). Applying the theorem of Sect. 4.2 and (3) above, we
conclude that

dL(y(t)~ l)y(t) P(t) =dL(s,(t)~ 1)sk(t) 5i(0) ®)

for all t. From (5) and the formula for the differential of the exponential map [He2,
Chap. II, Sect. 4], it is a straightforward induction, whose details we leave to the
reader, to show that y™(0) =s{"(0) for n=1, 2, ... . Since y(0)=s,(0) =1, it follows
by the analyticity of the curves that y(t)=s,(¢t) for all . O

Corollary. Define curves h(t) in a and u(t) in u, by the factorization Q,s(exptx)
=expu(t)exph(t). Then the tangent vector field along the geodesic y(t), when
translated back to 1, is given by

_ p,—adu(t)
ALO®) ™y 1O = (D) 720 {I—afm(T} (o) ©)
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Proof. With the notation as in the proof above, the left side of (6) is the projection
onto by of s(t) ~*$(¢), under the quotient map from §,, to b, [cf. (4) and (5)]. By the
Iwasawa decomposition Sect. 4.1 (5), we have s(t) = expii(t) exph(t), where ii(t) € ft,,
projects onto u(t). By the formula for the differential of the exponential map, it
follows that

1 — g~ adii)

§(t)=€"" {ad—ﬁ(t)} #(t) e +5(t) () .

Multiplying on the left by s(¢) and projecting onto b, then yields (6). [

4.4. Solution of Periodic Toda Lattices

We now specialize the results of the previous section to the group B;. In this case,
the nilradical u=u, is abelian, and hence formula Sect. 4.3 (6) simplifies. As a
result, we can calculate the solution to the “generalized periodic Toda lattice”
Hamiltonian system from the A-component in the Iwasawa factorization of exptx,
xep’, as follows:

Theorem. Let f,eb¥, x=vi'(f,)ep’, and let s(exptx)=expu(t)exph(t) as in
Sect. 4.3, Corollary. Then the integral curve with initial datum f,, for the system with
Hamiltonian 3 (f, f) is given by

fO=H0'+ 3 fX)etoxs. M

Here {X;; 0<i<I} is a basis for u with X;eu,, and {X}} is the dual basis.
Proof. By equation Sect. 4.3 (6), we have
f@ =h(t)+e™*"u(r). @)

Take X eun,, write f(f)=f,, and consider the function ¢(t)=f(X). From the
Hamiltonian equations for the flow and (2), we calculate that

4O =~ LX) = L1, XT) = (1)) 4(0) -
Since h(0)=0, it follows that

q(t) = fo(X)e**®. ©)

Expanding the u* component of f(¢) according to the basis {X;} and dual basis
{X¥} and using (2) and (3), we obtain (1). O

Assume that f, is generic, in the sense that ¢;= f,(X;) +0 for 0<i <. The orbit
0=B, - f, then has dimension 2/, and we can write the solution (1) in terms of
canonical symplectic coordinates ¢;,...,4;, py,...,p; on O as follows: As in
[G-W2, Sect. 7], we parametrize points of O as

! !
f= igl pio; + j;o ge VX¥, “)
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where ¢;=sgn(c;) and
1
do=7— .21 nd; - (%)
i=

Recall that ay=— Y mn0; on a.) Here y is a constant on the orbit, with

158l
e’'=|coct ... )| the value of the Ad*(B,)-invariant function |Z| [G-W2, Eq. (9.1)].
Note that if

1
Jola= ‘21 a;%;
=

then f, has coordinates p;=a;, ¢;= —log|c;|. If we take X, to be a unit vector
relative to the inner product on b,, then the Hamiltonian H(f)=3(f,f) in these
coordinates becomes

! !
H=1/2 ¥ (%,0)pp;+1/2 3 e 2. (6)
N i=o

L=

Comparing (1) and (4), we see that along the solution curve,
40)=—logle] —oy(h(1)), for 0<j<I. )

Since p;={H, p;} =0H/0q;=n;e” % —e~>% we can calculate p(t) by a quadrature
from (7). Or we can use the equation g, = {H, ¢, } to obtain p; by inverting the linear
system

!
021 (g o)pj=—qy, 1=k=I. (8)
=

Remark. From the calculations above, it is easy to see that on each orbit O, the
flow has exactly one fixed point, characterized by the equations

p;=0, g¢;=qo—zlogn;, 1=<j<I. )

To prove this, it suffices to show that Eq. (9) determines g; uniquely, when g, given
by (5. But the coefficient matrix is I+v'w, where v=[1 1...1] and
w=[n,n,...n]. Any vector in the null space of this matrix must be a multiple of v.
Since wv >0, v is not in this null space. Hence the matrix is invertible.

5. Periodic Toda Lattices and Representations of Affine Groups
5.1. Standard Representations

In this chapter we show how the solution to the (generalized) periodic Toda lattice
systems in Sect. 4.4 can be calculated in terms of representative functions on a
Banach-Lie group G,,, which is a central extension of the loop group G,,. The
structure and representation theory of these groups was worked out in [G-W3].
We summarize now the results relevant for the present application.

Let w be a weight function as in Sect. 4.1. Assume that w satisfies the non-
analyticity condition Sect. 4.1 (2) and the following stronger version of the rapidly
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increasing condition Sect. 4.1(1):

J0,1<0<2, suchthat lim |n|~ " logw(n)= 0. )]

[For an example of a weight function satisfying both these conditions, take
1<s<1/o and set w(n)=exp(n|).] Then there is a complex Banach-Lie group
[Gl,, which is a central extension of [G],, by € *. The Lie algebra [§],, of this
group is the corresponding one-dimensional central extension of [§¢],,, and is just
the completion in the w-norm Sect. 4.1 (3) of the affine Kac-Moody algebra g
associated with go. We shall denote the corresponding completed “normal real
forms” by G, and §,,. Thus §,, is a central extension of the Lie algebra §,, in Sect. 4.1
by R. There is a Cartan decomposition G,,=K,, - P,,, P,,=exp$,, and an Iwasawa
decomposition G,=N,-A- Kw, obtained by lifting the corresponding
decompositions of G,. Here A=A -expIRe, with c a basis for the center of §, and
N, ~N,. There is a projection

Pu—Py 2

with kernel Re. For k=0, define the ﬁmte dimensional subspace H* of ,, to be the
inverse 1mage of P kunder (2), and let ¥ : p*— b} be the composition of the map (2),
restricted to p*, with the map v, in Sect. 4 2. Thus Y is surjective, with kernel Re.

The algebra §o admits a family of irreducible “standard modules” V*,
parametrized by the dominant integral functionals A on @, that are completely
analogous to the irreducible finite-dimensional representations of g;. These
modules carry a positive-definite Hermitian form ¢ -|- ) which is contravariant
relative to the involution 7 of Sect. 4.1: (X - u|v) = —(u|t(X)-v) for X € § and
u,ve V*. Let H* be the completion of ¥* in the norm defined by this inner product.
If o and the weight w are related by (1), then there is a Fréchet space S%, of “Gevrey
vectors of order ¢”, with V*CS2C H* The representation of § on V* extends by
continuity to a continuous representation of [§¢], on S2. Furthermore, this
representation can be integrated to a holomorphic representation n* of the group
[éC]w on Sﬁ

For any pair of vectors u, veS2, one thus has a holomorphic function
g—{n*(g)ulv) on [G],. In particular, let v, be a normalized highest weight vector
for V*, and define

vi(g)=<nH(g)v,lv,> for ge[Gcl,. €)

If g=exp X, with 1(X) = — X, then y,(g) =y,(g ') >0. (For further properties of
the functions y,, cf. [G-=W3, Chap. 6].) When 4 is one of the “fundamental weights”
@;, 0<i<I, then n* is called a “fundamental representation.” We shall write 7’ for
n*, Vifor V2, v; for v* and v, for y* in this case. We note from [G-W3, Sect. 6.2]
that if A=Y m,®;, where {m;} are non-negative integers, then

PA0)= T o™, @

Lemma. Let x€p,, teR, and define h(t) € a by the Iwasawa factorization expix
=n-exph(t)-k, where ne N,, and ke K. TakeX € p,which projects onto x in (2).
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Then
Wo= 3 e(OH,, 5

where c(t) = — 3 logyexp —2tX). Here H, is the coroot to o; for | <i<l, and H, is
the coroot to —d. (Recall that the coroot H,€a to o€ a* is defined by (H,, H)
=20(H)/(a, ), for He a.)

Proof. This follows from [G-W3; formulas 6.5 (2) and 6.6 (1)]. O

5.2. Solution of Periodic Toda Lattices via Representative Functions

Continuing with the notation of the previous section, we recall that the extended
Cartan matrix [A4;]o<;;j<; Of the root system of g is defined by A4,
=2(oy;, o;)/(or, &), where o= —d. Let {e;, f;,h;:0<i<I} be a set of canonical
generators of the affine algebra §. The commutation relations are

[e;, f,] = 5ijhia (A, hj] =0,
[hja ei]=Aijei’ [hjafi]= _Aijfi-
Note that p! has basis {h;, e;+ f;:0<i< 1.

Theorem. The solution to the generalized periodic Toda lattice system, with
Hamiltonian Sect. 4.4 (6) and initial data py0), q(0), 1 £i <1, is given in terms of the
fundamental representative functions as follows:

1
2:()=4,(0)+1/2 2. Ajjlogy(exp —tX), (M
i
and p; is obtained either by quadrature from
pj=nje 20— %4, )

or by inverting the linear system

(m'(exp —tX)X -v;|v;>

! !
La)pi=1/23 A, 3
,;1 (o, 00)p;=1/ }_;0 j v(exp —iX) 3)
for 1<i<l. Here X €p is defined by
! !
X=3 (o,0) p(0)h;+ 3 (o), “j)llze_qi(o)(ej"’fj), 4
i=1 j=0

and q is defined by Sect. 4.4 (5).
Remark. Equation (1) also holds for g,(t), as is easily checked.

Proof. It is a straightforward calculation, using the invariant form and the
commutation relations [h;, e;]=2e,, [¢;, fi]= h;, to verify that we may take the set
{1;¥(e; + f7)} as the orthonormal basis {X#} in Theorem 4.4, where u? = (u;, o;})/4.
With X defined by (4), we then have

1 1
PX)= X 2p0)o;+ X 2e” 40X}, ©)
i=1 i=o
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Now apply Sect. 4.4, Theorem and Sect. 5.1, Lemma to the solution with initial
data f, given by Y4 X). O

Corollary. The functions e 249 extend meromorphically in t, and are the ratio of
two entire functions of exponential order of growth <2.

Proof. By [G-W3, Theorem 6.1], we know that ¢(t)=w(exptX) is an entire
function of ¢, and satisfies the growth estimate |¢(t)| < A exp B|¢|*** for all £>0,
with constants 4, B depending on ¢ and X. (Since X is in the finite-dimensional
space ', | X||,, < oo for any admissible weight function w.) The result now follows
from formula (1). [

Remark. 1f we let y— + oo in the defining relation Sect. 4.4 (5) for g, [i.e. set the
coefficient of X§ in (5) to zero], then the element X in (4) lies in the finite-
dimensional algebra g. In this case
wiexptX)= 3 c,e",
nex
where X is the spectrum of the self-adjoint operator ¢ ,(X), ¢, 20, and > c,=1.
Here g, is the irreducible finite-dimensional representation of g with hlghest

weight A=4|, . In this case formulas (1) and (3) become Kostant’s formulas for the
solution of the generalized non-periodic Toda lattices ([Ko, Theorem 7.57; see also

[Sy1]).

Example. Take G=SL(n,IR), n=3. In this case Sect. 4.4 (6) is the periodic Toda
lattice Hamiltonian, in a particular choice of canonical coordinates. The extended
Cartan matrix 4;;= — 1 ifi—j= £ I(modn), 4;;=2, and all other entries are zero.
If we define y,=log[¢,/4;_ ], where ¢(t) =y;(exp —tX) and the subscripts are read
mod(n), then we can write (1) as

4:(t)=q:0)+ [y(t) — yi+,(©]/2. (6)
We then obtain p(t) by quadrature from
2t b o

P T e
where logc;= — g,(0).
For the case SL(2, R) (the periodic Toda lattice with one degree of freedom),
the extended Cartan matrix has A,,= —2, and the formulas above become

41(6)=41(0) +1og[¢1(t)/¢o(D)] ®)
P1=c5($1/$0)* —ci(bo/d1)* . )

5.3. Differential Equations for Representative Functions

Using representation theory, we now obtain a system of non-linear differential
equations satisfied by the basic representative functions y; along certain one-
parameter subgroups exptX. Assume that

1
X= EO cile;+ 1) ey
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is in ', where c;e R [e.g. in Sect. 5.2 (4), take initial data p(0)=0]. For 4 a
dominant integral functional on 4, set ¢,(t)=y,(exp —tX), with X given by (1).
When A=d; is a fundamental weight, write ¢, =¢,. Recall (Sect. 5.2, Corollary)
that ¢, extends holomorphically to an entire function of ¢ and {c;}, of exponential
order £2int.

Proposition. For 0<i<1, one has
d? ! B
s logddt)=ci I 40", 2
i=0

with initial conditions ¢,(0) =1 and ${(0)=0. In particular, ¢; is an even function of t
and {c;}.

Proof. Wefirst recall that the action of the canonical generators e;, f;, ana h; on the
highest weight vector v; is given by

ei'szo, hi'vj=6ijvj, (3)

and if i#j, then
fi-v;=0. 4)
From the commutation relations for the canonical generators, one calculates that
hjfi'vi:(éij_Aij)fi’via ejﬁ'vizéijhi'vi' )

Now fix i, write e;=e, f;=f, h;=h, v;=v, and consider the vector
E=2"120R fv— fv@U}
in Vi@ V. From (3) and (5), it follows that ¢ is a highest weight vector in the tensor
product representation, with weight

1
j=

Furthermore, {f-v|v) =0 and
If-vll?=<ef v|v)=<h-v|v)=1,

so that & is a unit vector, relative to the canonical inner product on V:® V. Thus
we may calculate the representative function y, using the vector ¢ and the
representation n'@n':

w9) =<(m(9)@7(9) ¢
={n'(g) f-vlf v> pig)— <) f - vlv) {m(g)vlf - v), (6)

for ge[G¢l,. When g=exptX, we can calculate the right side of (6) in terms of
derivatives of ¢, using (3), (4), and (5):

(d/dt) ¢(t) = —<{m'(exp —tX) X - v|v) = —cm'(exp —tX) - v|v) ()

(d/dt)? ¢t)=cm'(exp —tX) f 0| X -v) = ci{n'(exp —tX) f-v|f-v)  (8)

(In the last equation we have used the self-adjointness of X.) Thus (6) implies that
c;9a(t) =47 ¢:(t) — [$1(D)]* - ®
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On the other hand, we can also calculate ¢, using Sect. 5.1 (4), which gives
¢i= 11,0 *.
JjFi

Substituting this in (9) and dividing by ¢7, we obtain (2), since 4;=2. The initial
condition ¢{(0)=0 follows from (7). The uniqueness of solutions to the system (2)
implies the symmetry under changes of sign of t and ¢;,, O

Example. Take G=SL(n,R). Then Eq. (2) reads

d? _ i1 (D) hiv 1 ()
g 1080 =" (10)

where the subscripts are read mod(n).

5.4. Matrix Entries Associated with Fixed Points
We assume for simplicity that the root system of g is simply-laced, and we
normalize the inner product so that («;, «;)=2, for 1 i< 1. Take
l
X=eot+fot 2 clet+f),
i=1
where the coefficients c; satisfy
1
S Fo=a.
i=1

(There are 2' choices of sign for these coefficients. Let n; = c? as usual.) This choice
of X corresponds to the fixed-points of the corresponding periodic Toda lattice (cf.
Sect. 4.3 and Sect. 5.2, Theorem). We write

! !
u=eo+ ‘21 cie;, v=fo+ '21 ¢if;-
i= i=

Then from the commutation relations among the canonical generators (Sect. 5.2),
we have [u, v]=c, where

l
C=h0+ Z n,-hi
i=1

spans the center of § (cf. [G-W3, Sect. 1.3] for details). Hence
exptvexptu=expt(u+v)exps t[v, u]
=exptX exp —3t%c.
Thus n*(exptX)v, =exp[2 t2A(c)] n*(exptv) - v;. Now {n*(exptv)v,|v,> = 1. Hence
we can calculate the representative functions , along the subgroup generated by
X:
pi(exptX)=e*O2, (1)

Taking 4= &; to be a fundamental weight, we have A(c)= 1 for i =0, while A(c) =n;
for 1<i<] [G-W3, Sect. 1.3]. Hence the functions ¢t)=w,(exptX) are as
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follows:
g{()=exp[3nit®], O0Zigl, 2

where ny=1.

5.5. Explicit Solutions for SL(2, R)"

We conclude by calculating the basic representative functions ¢; of Sect. 5.3 in
terms of theta functions and elementary functions in the case of the group
SL(2,R)". For this, we will use the connection between representative functions
and the periodic Toda lattice [Sect. 5.2, Egs. (8) and (9)], together with the
differential equations derived in Sect. 5.3.

Let X be defined by 5.3 (1), withI=1and co=1(1 +k),c; =1 (1 —k). Here kisa
parameter which we take in the range —1 <k <1. Define the functions ¢(t) and
¢,(t) as in Sect. 5.3 in terms of X. Let q,, p; be the canonical coordinates for the
periodic Toda lattice with one degree of freedom, and set g, =y — ¢q,, as before, with
y depending on the associated coadjoint orbit. Relative to the dual of the Killing
form for sl(2, R), one has («, ;) = 3. Hence by Sect. 4.4 (6), along the trajectories of
the system one has §; = —0H/dp, = — % p,, while o= —¢, and p, =e 290 —¢ 241,
as derived in Sect. 4.4. From the equation for p,, it is natural to define

x=2"1%e 0—¢7),  y=1p,, z=2"1%(e W04 ),
Then along the trajectories, x, y, and z satisfy the system of bilinear differential
equations . . .
X=—yz, y=xz, Z=-—Xxy. €))]
Now choose the initial data and coadjoint orbit so that
Po(0)=0,  go(0)=—log[2'*(1+k)],  q,(0)=—log[2"*(1—k)].

Then x(0) =k, y(0)=0, and z(0) = 1. Hence it follows from (1) that x, y, z are given
in terms of the Jacobi elliptic functions as

x=ken(t, k), y=ksn(t,k), z=dn(k) ?2)

[W-W, p. 493]. Returning to the canonical coordinates, we thus have the solution
to the periodic Toda lattice for this choice of initial data:

dn(t, k
00=0,0 +log{ PEDTERED], ®

p.(t)=2ksn(t, k). (@)
Comparing (3) with Sect. 5.2 (8), we see that
@4(1) _ dn(t, k) +ken(t, k)
do(t) 1+k '
Using (5) in Sect. 5.3 (10), together with the basic identities

dn(t,k)+ken(t,k)  1+k
dn(t,k)—ken(t,k)  1—k’

k*en(t, k)* =dn(t, k)* +k* -1,

Q)
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we find that ¢, and ¢, satisfy the equations
2(logpy)’ =dn*+kdncen+2(k*—1), 6)
2(logé,) =dn?—kdncn+2(k?—1). @)

These equations can be integrated as follows: Following the standard notation
in the theory of elliptic functions, as in [W-W], we let

m/2 /2
K= | (1—k?sin20)"Y240, E= | (1—k*sin%6)'/?d0
0 0

be the complete elliptic integrals of the first and second kind with modulus k. Let
the number ¢, 0< g < 1, be defined implicitly in terms of k by the equation [W-W,

p. 481] o (L_gin1)®
—_ 2= - -
1-e= ]

Take Jacobi’s original theta function ©(t)= 0 ,(nt/2K, q). Then (d/dt)*logO(t)
=dn?(t,k)— E/K [W-W, Sect. 22.73]. Furthermore,

dn(t, k)—kcn(t, k)
1—k

[W-W, p. 516]. Recalling from Proposition 5.3 that ¢{0)=0, and ¢,0)=1, we
calculate from (6) and the cited formulas that

_O(1) dn(t,k)—ken(t,k) ..
dolt)? = 0(0) ) 1—k e

where v=(k?—1)/8 + E/4K. Similarly, starting with (7), we find that ¢,(¢)* is given
by the right side of (8), with k replaced by —k.

As noted in Sect. 5.2, we know that the functions ¢; are entire functions of .
Hence the right side of (8) must be the square of an entire function. To calculate this
function explicitly, we use the infinite product expansions [Hancock, p. 255(1)]:
= (1—a,)(1-b,)

dn(t,k)—ken(t, k)= n]:lom ,

(d/dt)*log =kdn(t, k) cn(t, k).

)

O1)=G I1 (1—a)(1-b}),
n=0
where a,=q""1?e", b,=q""2e~™ and u=nt/2K. Here G = G(k) is independent

of t. Using these factorizations in (8), we see that the zeros of @ indeed cancel the
poles of dn—kcn, and we obtain the factorization

4o(6)=Goe™ T (1=a) (1-b). ©)

with a,, b,, v as above, and G, a constant (depending only on k), determined by the
initial condition ¢,(0)= 1. Similarly, we have

$:(0=G,e™ [T (1+a)(1+b,). (10)
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From Jacobi’s infinite product expansions of the theta functions [W-W,
Sect. 21.3], we may also write these formulas as

$o(t)=e""0,Gu,q'%)/0,(0,4'), Oy
$1(=e""05Gu, 4'%)/05(0,4'?), (10)’

with u and v as above.

From their representation-theoretic definition, we know that the functions ¢¢)
are positive for real ¢, and positive-definite for purely imaginary ¢t [G-W3, Sect. 6].
From the Fourier series for @, and formula (9), we calculate that

Polit)=Coe ™" 3 (—1)e™ o), 1)
neZ

where C,, e= —%logq, b=v+1/(¢K?), and c=m/(4¢K) are positive constants
depending on k. There is a similar formula for ¢,. It would be interesting to have a
representation-theoretic interpretation (or derivation) of these formulas, as well as
a “physical” interpretation via the periodic Toda lattice.

Remark. In the case of the “twisted” affine Lie algebra A3 (cf. [G-W3, Sect. 6.9]
and [R-S1]), the solutions to the corresponding Toda-type system can be
expressed in terms of the Weierstrass o-function.

Appendix. Some Root System Results

Let 4 be a reduced root system, 4™ a set of positive roots, and IT = {a,, ..., o} the
set of simple roots in 4*. Define, for 1 <i<lI,

1
Af = {yeA* :y=j§1njocj, ni>0}

(the set of positive roots containing «;). For y as above, set |y|= > n,.

Lemma 1. Let y € A} and suppose that |y|=2. Then there exist f,, ..., B, € A" such
that

(@) a;+ B +...+Bed™ for 1<kZr;

(b) o+ +...+B,=".

Proof. By induction on [y|. If [y| = 2, then y = o; + ;. Thus we may taker=1, f; =a;
in this case. Assume now that the lemma holds for roots of length <m, and take y
with |y|=m. Then y ¢ IT, so there exist o, f € A such that y=o+ f. Since y € 4;", we
may assume that o€ 4;". By induction, we can find a sequence B, ..., J, for a.
Adjoin f,,,=p to get a sequence which works for p. [

Assume now that A is irreducible. Given ae 4™, set I,={fe 4" :a—peA™}.
Lemma 2. Let a =0, +...+&;. Then Card(l)=2]-2.

Proof. By [Bo2, Chap. VI, Sect. 1, Corollary 3 to Proposition 19], I, consists of all
roots of the form

Zaia

ieY
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where Y and its complement are non-empty connected subsets of the Dynkin
diagram for I1. Using the classification of Dynkin diagrams, it is easily verified that
there are 2/—2 such subsets Y (cf. Lemma 3 and Table 1). For a proof without
classification, we could also invoke the following combinatorial result, whose
proof we leave to the reader (cf. [Bo2, Chap. 4, Annexe, Proposition 2]):

Scholium. Let I be a tree with l vertices. Then there are exactly 21 connected subsets
of T whose complements are also connected. (Here we allow the empty set as a
connected subset.)

Recall that 4 has elements of at most two lengths (which we call short and long;
in the case of only one root length, all roots will be called long).

Lemma 3. Suppose that ae A" is long.
@) If p,yel,and f+ye A, then B+y=u;
(i) If Bel,, then a+ ¢ 4;
(ii)) Card(I;) is even.

Proof. (This argument was suggested by [Jo, Sect. 2].) We first claim thatif fe I,
then
2(0, P/, )=1. 1)

Indeed, we have |la—p|?*=a|>—2( B)+|B]% so the assertion follows
immediately once we know that f and o — § have the same length. But the case f§
short, «—f long (or vice versa) cannot occur, since it would imply 2(o, f)
= ||B|I* < ||«||?, contradicting the root system axiom that 2(«, )/(«, ) be an integer.

With (1) established, now let 8,y € I, and assume that f+7 € A. Then (f +7, ®)
=(a, ) by (1), while || +y|| = | «| since f+7 is a root. Hence the Cauchy-Schwarz
inequality forces B+y=a. Similarly, [+ )%= ol?+2(c B)+|BlI*>=2]x|>
+ )1 > ||ec]|, so .+ B¢ 4, since « is long. This proves (i) and (ii). As for (iii), we
observe that the map sending f§ to o — f has no fixed points on I, since 23 ¢ 4. Since
this map is an involution, we obtain (iii). [

Definition. Let aeA™* be long. A polarization of I is a partition of I, into
complementary subsets {f, ..., f,} and {y,, ..., 7.}, such that §;+y,=afor ISi=<r
(where 2r =CardI).

By Lemma 3 it is clear that polarizations exist, and have the property that

ﬁi+ﬁj¢A+a Vi+?j¢A+- (2
We now fix
“=(H1+...+Hl)v, (3)

where H; is the coroot to «;, and " is the operation of passing from root to coroot.
Thus when all roots have the same length, then

O(=0€1+...+O(l. (3)ADE
When the ratio of squared root lengths is 2: 1, then

=2 o+ X o;. )scr

short long
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Finally, when this ratio is 3:1 (G, root system), then
O(=3O€1 +O(2, (3)G
where o, is short. In all cases « is long (see Table 1).

Lemma 4. Let o be as in (3)5 _g. Then the set I, has 21— 2 elements, and admits a
polarization I,={B, ..., Bi—1}U{y1, ... V1—1} with the following properties:

(1) Thereis amonotone ordering B, <f,<...<B,_, <y;<o for alli, relative to
the lexicographic order on A™ associated with the set I;

(il) For any choice of indices iy, ...,i, with n=2, one has

yil_ﬁiz—"'—ﬁi"¢l—;: ﬁil—ﬂiz_---_ﬁin¢1;-

Proof. See Table 1 for the existence of a polarization having property (i). In the
calculation of Table 1 we make frequent use of the property that the sum of the
simple roots in any connected subset of the Dynkin diagram for IT is a root (cf.
Lemma 2). Property (ii) follows immediately from Lemma 3 (i). I

Table 1. Polarizations of I, a=(H,, +... + H,)

A, Diagram:

o o o
0y 5 ]
o=y +...+0o

Polarization:
Bi=0is1t... oy
yi=oi+...+a; (A=igl-1).

B, Diagram: o o o o

&y 23] G-y o
=0+ ...+ 01 +20

Polarization:
Bi=tipq+ ..oy 20,
yi=o+...+a; (Zig]-2),
Bioi=0,  po1=0+...Fa.

C, Diagram: o o o o

&y *x %—1 o
=20 +...+20_1+0

Polarization:
Bi=og+ ... +oy_y,
V=0t +20 e 20 4o (1Si=1-1),
with

Yi-1=0+...+.
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Table 1 (continued)

D, Diagram:
/0“1—1
o0—o0 o oy sy
&y %z %-3 \o o
a=d1+...+(x1
Polarization:
Bi=0iy+... 4oy,
yi=oa+...+o;  (1Zi=1-3),
Brz=0—1,  V—p=01t... oyt
Bi-i=o  yii=ogto oy,
E, Diagram:
"
o O O O O
oy %z %y-4 %-3 %-2 %—y
O(=061+...+a1
Polarization:

Bi=tisi+...

vi=og+.. o+ (1=i21-4),
Bi-s=w-p+oy-y,  Y—z=og .ty toy
Bi-za=w—y,  pma=0g ..o toy,

Bioi=0  Yor=0gt .oy

F, Diagram:

O O O
oy o, o Oy
=0y 40y + 203+ 20,

Polarization:
Bi=oy+2054+ 20y, Y=oy

Ba=aztoy,  ya=oyt+oytaztay,

Bi=0y, yz=0q+a,+205+0,.

G, Diagram: o o
o oy
=30, 40,
Polarization:
Bi=oy, y1=20+a,.
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