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Abstract. A new approach to the Pirogov-Sinai theory of phase transitions is
developed, not employing the contour models with a parameter. The
completeness of the phase diagram is proven.

Introduction

The aim of the following note is twofold.
i) The theory of Pirogov and Sinai describing the behaviour of phase diagrams

of lattice models with discrete spins is based on the notion of a contour model and a
contour model with a parameter. The notion of a contour model goes back to
Minlos and Sinai's detailed study of the Ising model [1].

If one is interested in the investigation of the behaviour of the point of the
maximal number of phases only, there is no need for introducing the models with
parameter in the Pirogov-Sinai (PS) theory. This was, historically, the first case
studied, but it had many of the essential features of the theory.

It is the aim of the first part of this note to show that even the full phase diagram
can be constructed without the use of models with a parameter. Instead, we will
introduce an auxiliary "metastable" contour model, not appearing in the usual PS
theory. It seems that this approach is (intuitively, at least) simpler than the original
approach [2]. It gives some additional information, too.

ii) There are some results of Martirosian (see e.g. [4]) concerning the
completeness of the phase diagram constructed by the PS method. The full answer
is given here. The proof is simple and uses the same tools which were developed in
i). In particular, we emphasise the technical main lemma which is crucial in the
proofs of both parts of this paper.

The organization of the paper is as follows:
Section 1 is devoted to the questions mentioned in i). We suppose some

familiarity with PS ideas and notions like contours, contour models etc. For these
notions which are only sketched the standard reference is [2] or [3], but no
technical details of [2] are used in this paper.
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The technical lemmas of this paper are collected in Sect. 2. Here, some
familiarity with the cluster expansion method is useful, as well as with the notion of
a contour (or polymer) model. Basic results of this method (the expansion of the
polymer partition function into the volume and boundary part, in particular) are
stated without proof. As a byproduct of the cluster expansion method, we
formulate also our main lemma.

Finally, the proof of the completeness is given in Sect. 3.
We do not formulate any results about piecewise analyticity of the phase

diagram. Also, we omit a possible generalization to the continuous spin models.
This will be a subject of forthcoming papers.

1. Construction of the Phase Diagram

1.1. Preliminary Notions

Let Έv be a v-dimensional lattice (v ̂  2), and let S be a finite set (of "spins"). For any
v, denote by SΛ the set of all configurations on A. Suppose that some family

{ΦA} of finite interactions (i.e. functions on SA) is given, invariant with respect to
shifts in Zv and with a finite interaction radius r (i.e. such that ΦA = 0 if diamyl > r).

Note. We consider, here and everywhere in the following, the norm

Given A C Z v, we denote by dΛ the set

For each finite A C Z v and each x e S z v, denote by xΛ the restriction of x on A.
Define the hamiltonians

H(xΛ)= Σ ΦA(XA), (LI)
ACΛ

H(xΛ/xΛc)= Σ ΦΛ(XΛ) (1-2)
AtAc

Define the mean energy of any periodical configuration x e Szυ:

e(x)=\im\Λ\-1H(xΛ) (1.3)
Atiy

(the limit is taken in the Van Hove sense).
Given qeS, denote by xq the configuration {xt = q,teΈv) and denote by

eq = e(xq). Note that eq can be expressed by the formula

eq= Σ \A\-γΦA{{xq)A). (1.4)
A:A?0

1.2. Ground States, Boundaries, Contours

Fix some family {xq,qeQ}, QCS of constant configurations. Call these fixed
configurations ground states of our model.
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Note. The connection with the usual meaning of the notion of a ground state will
be seen in Sect. 1.4, where an additional condition (Peierls condition) will be
imposed on xq, qeQ. Typically, in the following, H will be a perturbation of some
hamiltonian Ho such that xq, qεQ are exactly the ground states (in the usual
meaning of PS theory) of Ho.

Say that a point t E ΈV is a q-correct point of a configuration x E SZV if for each
seZv such that ||ί — s\\ ^r, xs has a constant value xs = qeQ. Say that £eZ v is a
boundary point of a configuration x if it is incorrect for each "ground" q e Q.

A boundary of a configuration x is defined as the union of all boundary points of
x. It will be denoted as B(x). A restriction of x to any finite component of B(x) will
be called a contour (of a configuration x), and this component will be called the
support of this contour.

Having some contour Γ, a component of (suppΓ)c will be called a ̂ -component
if the neighboring spins of Γ have the value q. If the exterior component of (suppΓ)c

is a ̂ -component, then Γ will be called g-contour and denoted by Γq. For any q' e Q
denote by int^Γ the union of all interior ^'-components of (suppΓ)c. Put

intΓ= U inVΓ,

V(Γ) -suppΓuintΓ, (1.5)

1.3. Contour Hamiltonians, Expression of H(xΛ\xΛC)

Let Γ = Γq be a contour of some configuration x E 5'ZV. Put

Φ(Π= Σ (l^l^l^nsuppΓIΦ^xJJ-^lsuppΓI. (1.6)

Note. This value obviously does not depend on the choice of x.

Proposition 1. Let Λc%v be finite, and let x E S7^ be some configuration such that all

its contours satisfy the condition s u p p Γ C A. Denote by Λq the set of all teΛ such that

either t is a q-correct point ofxorte supp Γq for some contour Γqofx. Then using the

notations (1.4), (1.6),

j l^l+ ΣJ-T^l Φ A ( ^ ) - 0-7)

Proof This is obvious if we substitute

teA

into (1.2) and rearrange, using (1.6) and (1.4), the terms thus obtained.

Note. Obviously, the last term of (1.7) does not depend on xΛ. Therefore, discarding
this term from H(xΛ\xΛC) does not effect the conditional Gibbs densities. Because
we will consider throughout Sect. 1 only such restricted ensembles where (1.7) is
applicable, we will replace our original hamiltonians by modified ones,
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1.4. Peίerls (Gertzίk-Pirogoυ-Sίnaί) Condition

Suppose that there is a sufficiently large τ > 0 such that

Φ(Γ) >τ|suppΓ| (1.9)

for each contour Γ.

1.5. Definitions of Various Partition Functions

Given a contour Γ — Γq, denote by X(Γ) the set of all configurations xv on V{Γ)
which satisfy the condition that being extended by q to the whole Zv, they have Γ as
one of its contour. Further denote by Xred(Γ) the set of all configurations xv on
V(Γ) which satisfy the condition that after extending them by q to the whole Έv,
each contour of the extended configuration has a distance at least 2 from suppΓ.
Define the "crystallic" partition functions

Z(Γ, i ϊ )= Σ cxp(-H(xv\(xq)V{Γr), (1.10)
xveX(Γ)

and also the partition functions

Z(Γ r e d, H)= Σ exp(-H(xv\(xq)V{Γ)c). (1.11)
xVeXred(Γ)

For any finite ΛcΈv, denote by Xq(Λ) the set of all configurations xΛ on A
which, being extended by q to the whole TLy satisfy the condition dist(V(Γ), Ac) ̂  2
for each contour of the extended configuration. Define the "diluted" partition
functions

Z,(Λ,ff)= Σ exp(-H(xA\(xqW- (1.12)
xΛeXq(Λ)

Note, i) The hamiltonians 77(( )|( )) are expressed by (1.8) everywhere,
ii) We emphasise that in the definition of Xq(Λ) we used the condition

dist(F(Γ),Λc)^2 (1.13)

[and not dist(suppΓ,Λc)^.2 for example]. Note, however, that if A has simple
connected components (this holds e.g. if y4 = int^Γ for some Γ and q) then the
condition dist(suppΓ,Λ.c)^2 implies the condition (1.13).

1.6. Contour Functional and Contour Model

Define a contour functional

Ψ(Γ) = logZ(Γred, iϊ) - logZ(Γ, H), (1.14)

and denote by

f ) (1.15)

where the sum is taken over all families of contours {Ft

q} such that (1.13) is satisfied
for each Ft

q and moreover

dist(supp/7,supp/7)^2 whenever i + V. (1.16)
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Define also the "crystallic" partition function of the contour ensemble [compare
(1.10)!]

Ψ)=Σ exp- (Σ nm), (1.17)
? V )

where the sum is taken over all families of contours {Γf} sΓq satisfying (1.16) and
such that s u p p l e V(Γq) for each i [notice that suppf C V{Γ) => V(Γ)cV(Γ)
because of the note below (1.13)].

Proposition. Let 91 be a class of contours fe.g. a class of all contours - another
concrete choice of% will be specified below). Denote by Zm the partition functions of
the type (1.12), (1.15) but with an additional restriction that only those xΛ

respectively {Γ^} are accounted in the sum whose external contours belong to the
class 91. Then

*Λ9 Ψ). (1.18)

Also, for any contour Γq,

\ Ψ). (1.19)

Proof Define the level of any contour Γ as a maximal number n such that there is
some sequence of contours Γ1=Γ,Γ2,...,Γn such that supp/]+1 CintΓJ. Define the
level of AcΈv as a maximal level of any contour Γ such that V(Γ)cA.

Proceed now by the induction on the level of Γ respectively A. Denote by
EXT f(yl) the family of all systems of contours {Γf e 91} satisfying (1.16) such that
V{Γf) are mutually disjoint and dist(F(77),ylc)^2(ΞΞ external contour systems).
Notice the relations

)= Σ exp(-e4 |ext{^}|)ΠZ(^,//), (1.20)
EXT|(Λ) i

and
Zξ(Λ9Ψ)= Σ ΠZ(/ϊβ,!P), (1.21)

EXT^(yl) ί

where ext{Γf} = A\U V(Γf). Thus (1.19) implies (1.18) for a given level.

Conversely, using the very definition of Ψ(Γ) [see (1.14)], we get

Z(Γq, H) = exp(- Ψ(Γ*))Z(I?cd9 H)

= exp( - Ψ(Γq) - eq\svφpΓq\)Zq(intΠ9 H)

= exp(- Ψ(Γq) -eq\ V(Γq)\)Zq(mtΠ, Ψ)

= Qχp(-eq\V(Γq)\)Z(Γq,Ψ),

which gives (1.19) for the next greater level, q.e.d.

1.7. Truncated Contour Functional and Truncated Contour Model

The reason for introducing the contour models is that they can be studied, under
the conditions of the type (1.9), by powerful methods of the cluster expansion. But,
of course, we cannot expect conditions of this type to hold in the case of functionals
Ψ(Γ) (in general).
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We choose the following method: we construct an artificial "metastable"
contour model where "unstable" contours (i.e. such contours for which the
condition of Peierls is violated - see Definition 2) are "stabilized" by fixing their
energy at a sufficient level - see Definition 1). Later it will be proved that for some
distinguished values of q ("stable" q), such artificial contour models are equal to
the usual contour models and therefore describe some "stable" phase.

Definition 1. A truncated contour functional is defined as

Ψ\Γ) = max ( Ψ(Γ), I IsuppΓlj. (1.22)

Definition 2. A contour Γ is called stable if

y (Γ)^ | | suppΓ | (1.23)

[LeAϊΨ'(Γ)=Ψ(Γ)l

Definition 3. Replacing Ψ by a contour functional Ψ', we define the truncated
partition functions

Zq(Λ,Ψ'), Zf(Λ,Ψ'),

quite analogously as in (1.15), (1.17), Proposition 1.6.

Definition 4. Define the free energy of the truncated model

M Λ f O (1.24)

ho = min{hq}

(see Sect. 2.1). Define also the following quantities:

hq = eq-sq [see (1.4)]

(1.25)

a = min{aq:aqή=0}.

Definition 5. If aq = 0, q is called stable.
The main result of Sect. 1 is the following statement:

Theorem, i) Nonstable contours satisfy the inequality

! (1.26)

In particular, if q is stable, then all the contours Γq are stable and Ψ'(Γq) = Ψ(Γq)for
each contour Γq. Further, there is some universal constant C, such that for each finite

V, the following estimates hold:

ii) Z,(^/ί)^exp(-/ιJyl |)exp(-C|^|), (1.27)

iii) Z/yl,H)^exp(-/z0M|)exp(C|δ/lc |). (1.28)

The constant C can be chosen as C = 2C(2,5) (where C ( 2.5 ) is from (2.5)/
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Corollary. For any stable q we can construct a Gίbbs state which is a perturbation of
the qth ground state, in the sense described in [2], such that the statistical properties
of its external contour systems are the same as in the contour model with a functional
Ψ(Γq). Thus, for each stable q we obtain a distinct phase. The behaviour of the phase
picture thus constructed will be studied in Sect. 1.10.

We omit the proof of the Corollary, as it uses some standard arguments of the
theory of limit Gibbs states (see [2]). It is based on Proposition 1.6.

1.8. Proof of Theorem 1.7

We will proceed again by the induction over the levels of Λ9 Γ. The induction step
for iii) uses substantially the main lemma of 2.2.

Proof of ii). By Proposition 1.6,

Zq(A,H) = exp(-eq\A\)Zq(A,Ψ).

Because trivially Zq(Λ, Ψ)^Zq(Λ, Ψ% and

Zq(Λ, «P)^exp(sβμ|)exp(-C|δyl c |) (1.29)

by (2.5), we get the desired relation (1.27), with C = C ( 2 > 5 ).

Proof of i). We use the induction argument for iii). Both i) and iii) are trivial if Γ
respectively A has level 0 (for τ sufficiently large). Nonstability means, by (1.23),
that

Z(Π, H) > exp (̂  - T- |suppΓ*| J Z(Γ/ed, H). (1.30)

On the other hand, by the induction assumption for iii) we get

Z(Γq,H)^Qxp(-Φ(Γq)-eq\suppΓq\-h0\intΓq\ + 2C\suppΓq\) (1.31)

[because suppΓqDδ(intΓq)c^ with C = C ( 2.5 ).
By Proposition 1.6 and by (2.5),

Z(Γq

ed, H) ^ e x p ( - e β \ V(Π)\)Z(Γ*cd, ¥")

^exp(-/zJintΓ α | -C |suppΓ^ |-^ | suppΓ^ |) , (1.32)

where C = C(2.5).

If we combine the relations (1.30), (1.31), (1.32) we obtain

aq\intΓq\^Φ(Γq)-^\suppΓq\-3C\suppΠ\^ (^ -3c\ | suppH, (1.33)

with C — C(2.5), but this is (1.26) for a large τ. q.e.d.

Proof of 'iii). This is the main step of the proof. To have some idea notice that iii)
follows from (1.18) and (2.5) whenever all contours Γf in (1.5) are stable. We need,
therefore, some method of handling the unstable contours.

The inconvenient property of the notion of unstable contour is that it is not
hereditary with respect to the inclusion suppΓ^CintΓ5: if Γq is nonstable then fq

may be stable.
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We introduce the following important notion:

Definition 1. Say that a contour Γq is small if it is hereditary stable, i.e. if there is no
unstable Γq such that suppΓ^CintΓ^. Say that Γq is large if it is not small.

Notation. Recall that in the definition of Zm we fixed some family of contours 91,
not specified until now. Assume, in the rest of Sect. 1, that 91 is the family of all small
contours.

Given xΛ e Xq(Λ)9 fix all its external large contours [i.e. external contours of the
configuration xΛv(xq)ΛC - we recall the assumption (1.13) - which are large].
Denote by {Γq

xti} the collection of all external large contours of xΛ. Denote by

ext = extxΛ = Λ\\JV(I?xώ. (1.34)

Denote by Wq, qeQ the union of the interior ^-components of the set

Λ\ U supp(J^ t i). Fix, for a moment, the family of external large contours {Γq

xtί}.
\ i

To determine the whole configuration xΛ e Xq(Λ), we must specify some
configuration xexteXq(QxtxΛ) such that xe x t has no exterior large contours.

At the same time we must specify some family of arbitrary configurations
), qeQ. We get the relation

Zq(Λ9H) = Σ Zj(ext,fJ)Πexp(-Φ(/?xti)
{ΓgxtI}

-eq\suppΓq

xti\) Π Zξ(W^H). (1.35)
qεQ

Denote by sf the free energy of the contour model with a contour functional

ψ*(Γq) = Ψ(Γq), \ΪΓq is small,

!P*(Γ*)=+oo, if Γq is large.

Obviously, sf<sq. Using Proposition 1.6 and the estimate (2.5) we get the bound

Zj(ext, H)^ exp(C|δ exf | - fcj|ext|), (1.37)

where hf = eq—s^. By the induction assumption for iii),

(1.38)

[ C = C(2.5) everywhere in the proof of iii)].
Substitute the bounds (1.37), (1.38) into the relation (1.35). We obtain the

following estimate: Denoting by a^ = hf — h0,

exp(-αj|ext|)
{Γlx t ί}

Π e x p ( - Φ(Γq

xtί) + (h0 - eq) |suppJ7χtίl)
i

) (1.39)
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Now we use the main lemma of Sect. 2.2. Factorize the contours with respect to
the equivalency

Γq~fq iff

For any equivalence class [Γ g ], put

Φ([Γ«])=-log Σ exp(-Φ(f«)). (1.40)

Notice that by (1.9) there is some universal constant K depending only on \S\ such
that for each contour Γq,

Φ(ίΓq])^ |suppΓ«| (τ - K). (1.41)

Notice also that [see (1.36), (1.37) and the definition of cξ~\

<ξ^aq. (1.42)

Finally, it is a simple geometric consideration to show that

2 Σ I ^ Ί + |3exf|^|3/Lc| + 3Σ|suppΓelu |, (1.43)
qeQ i

[In fact, it is possible to replace 3 by 2 if dist(ext, Wq)>2, q e Q.~] Factorizing the
contours in (1.39) and using the estimates (1.43), (1.41), and (1.42), we get

Σ exp(-<|ext|)Πexp(-Φ(Ktί])

l x t i | )
Σ exp(-α|ext|)

. (1-44)
i

Now, if τ is sufficiently large (notice that ho — eq^sq->0 as τ^oo), we can use the
estimate (2.13), as explained in detail in Sect. 2.2 [notice that each Γ = Qxti satisfies
the condition (1.26), and therefore Proposition 2.2 can be applied to verify (2.11)].
We obtain

Zq(Λ, H) ^ exp( - ho)\Λ\) exp(2C|δ/lc|), (1.45)

where C = C ( 2.5 ). But this is the required estimate (1.28).

1.9. Lίpschίtz Condition for sq

We will use the following norm on the space of all hamiltonians having a fixed
range r:

(1.46)

Proposition. Let {Hλ = H + λίϊ, 2 e Φ ( 0 ) c R } } \\H\\ = 1 be α family of hamiltonians
satisfying the condition (1.9). Denote by sq(λ) the free energy of the truncated contour
model corresponding to the hamiltonian Hλ and a given qεQ Then the onesided
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derivative ———rSq(λ) exists and satisfies the inequality
aλ(±)

(1.47)

where ε(τ) is such that lim ε(τ) = O.

Proof. By differentiating logZ^Λ, Ψ'λ) with respect to λ and by taking the limit
ATΈ1, we obtain the formula

dλ(±)'
)= Σ

Γ:OesuρpΓ dλ(±)
(1.48)

where Pλ(Γ) is the correlation function of Γ in the infinite ensemble (with a contour
functional Ψ'λ). Use the simple bound

(1.49)
dλ{±)

which follows from the inequality —-logZ(Γ, Hλ)<,\V(Γ)\ and a similar
dλ

redJ^λ)observation for

By substituting (1.49), (1.50) into (1.48), we get

d

Use also the Peierls inequality

;sq(λ) <2 Σ
ΓrsuppΓθO

exp(-||suppΓ|j|7(r)l-0,

(1.50)

(1.51)
dλ(±)

as τ^oo. q.e.d.

1.10. Investigation of the Phase Diagram

Theorem. Let v ̂  2, let S be a finite set. Let Ho he some finite range hamiltonian
invariant with respect to all shifts on Szv. Let Hu ...,Hm_1 be another hamiltonians
of the same type. Consider a family

°U being some neighborhood of zero in R n 1. Suppose that there is a fixed family
{xq,q€Q}, QcS, \Q\ = n of constant configurations, such that the following
conditions are satisfied:

i) all eq(H0), qεQ are the same,

ii) let qu q2,' ,Qn be same ordering of Q. Then the vectors ef

= (eqi(Ht),...,eqn(Hι)) are independent and their linear span L does not contain the
vector (1 , . . . , 1) (— degeneracy removing assumption),

iii) the condition (1.9) is satisfied for all H = Hλ, λe°U with a sufficiently large τ
(therefore, {xq, qeQ} is just the set of all ground states - in the usual sense of PS
theory).
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Given h e RM, denote by

h° = h-( min {hj\(l, . . . , l) . (1.52)

Denote also by (Rn) 0 = {h°,heIR"}. Then, for some neighborhood of zero
Y C (Rn)°, there is a homeomorphic mapping

{h<W(h0)}, (1.53)

defined on Y and such that for each h° e Y,

° o = h0, (1.54)

where h(λ) denotes the vector (hqί(λ), hq2(λ),..., hqn(λ)). In particular, q e Q is stable
with respect to the hamiltonian

Hλ,λ = λ(h°) iff hJ = O.

Notes, i) The precise bound for τ will be specified later. It depends on °U and {ef}.
ii) Denote by Q(λ) = {q<=Q:qis stable with respect to Hλ}. For any λe% and

any q e β(/l) we can construct, using the appropriate contour model [given by
Ψλ{Γq)~\ and Proposition 1.6, some Gibbs state P\ on Sz\ We will not give the
details of this construction (see [2]). The mapping (1.53) is usually called the phase
diagram. We will not investigate further properties (analyticity, for example) of the
manifolds

G (1.55)

respectively

{{λ\{λ))\Q{λ) = Q} (qeQ). (1.56)

This will be the subject of a forthcoming paper.

Proof of Theorem. Denote by symbol $£ the linear mapping

(1.57)

Given helR", denote by [h] the ray { h ' e l R ^ h ^ ^ h 0 } , and denote by hL the
intersection of [h] and L. Consider, on %, the mapping

(1.58)

and also the mappings

1 L L ) (1.59)

(the values of h being specified later).
We want to solve the equation

&h(λ) = λ. (1.60)

Let us show that J^ (and therefore lFh, too) is a contraction mapping on ΰlί. Because

= £- \s\λ) - sL(A0), (1.61)
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[where s(λ) = (sqι{λ), sq2(λ),..., sqn(λ)~], and because

1 n 1 / 2 , (1.62)

where \λ\2=Σ W2, |h| 2 = Σ \hq\
2, accordingly is defined || jSf " 1 | | , ε(τ) was defined in

i q

(1.47) and α is the angle between L and (1,..., 1), we see that ^ is a contraction if τ is
sufficiently large. Denote by K the contraction constant of # \ Because

- IIif-'(-^(O)II ̂ fi'(τ)->0, (1.63)

as τ->oo, we may further assume that there is a neighborhood of zero
and a ball B r = {A: μ i l ^ r J c R 1 1 " 1 such that ^h(0) = JSf"1(h-s(0))eB r for each
h e Ψ* and also

BrQ{\-κ)%. (1.64)

Put

λ(h) = lim (#h)"(0), h e 1T. (1.65)

By (1.64), Λ(h)e^. Because hL(/l) = h for /ί = /l(h), we see that (1.54) is satisfied.
Clearly, {h->/l(h)} is the desired homeomorphism. q.e.d.

2. Main Lemma

In this section, the technical tools used in both Sects. 1 and 3 are collected. First, in
Sect. 2.1, we present some rudiments of the theory of "polymer" models and the
method of the cluster expansion, without proof. In Sect. 2.2 we formulate the main
lemma. It describes, in the simplest model situation, the behaviour of the system
with "unstable" boundary condition, especially the formation of large contours
with a "stable" phase in its interior. Finally, in Sect. 2.3 we generalize the main
lemma in view of its applications in Sect. 3.

2.1. Polymer Models

Suppose that some real or complex function kτ of finite connected subsets ToϊZv is
given. We define, for each finite AcΈv the "polymer" partition function

, (2.1)

the sum being taken over all families {7]} of connected sets such that
dist(7ϊ, 7],)^2 for any zφf and dist(F(7]), Λc)^2 for any i (see 2.2).

Proposition. Suppose that the functions kτ are invariant with respect to all shifts in
Έv. Suppose moreover that the condition

|fcΓ|^exp(-τ|Γ|) (2.2)

is satisfied for each Γ, with a sufficiently large τ. Then ZΛ + 0 for any finite AQΈV.
The limit

s=limMΓ1logZΛ (2.3)
Λ/Zυ
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exists, with a proper choice ofΊm logZ^, as an analytical function of all the variables
kτ, and satisfies the estimate

s< Σ \kτ\. (2.4)
T ΓBO

In particular, s ->0 as τ -• oo. Finally there is an universal constant C = C(τ) such that
C->0 as τ—>GO and for each finite

(2.5)

where dΛc = {teΛ:dist(ί,Ac) = 1.

Usually, we will use (2.5) for the contour models: if Ψ(Γq) is a contour
functional, we can define its factorization

kT= Σ exp(-nn) . (2.6)
Γβ:suppΓ« = T

Obviously, Zg(/L, *F) = ZΛ in such a case and we can use the expression (2.5) for ZΛ.
ii) We omit the proof of the proposition. The only nonelementary statement is

(2.5), which is proven using the method of the cluster expansion. Such statements
were used by many authors (also in [1], but see e.g. [5,6] for a more recent
references). They are based on the expression of the correlation functions by cluster
expansion series.

2.2. Main Lemma

Consider the following artificial model.

Definition 1. By a contour everywhere in Sect. 2.2 we mean, a finite connected
subset of Έv. Given any contour T, we denote by int T the union of all inner
components of T. We denote by V(T)= TvintT.

Definition 2. Fix some finite volume AcTD'. By a configuration in A we mean a
consistent choice of external contours {Tt} in A everywhere in Sect. 2.2, i.e. such a
choice of contours {7]} that V{Tt)cA\dA for each i and dist(F(7]), V(TV))^2
whenever i φ ϊ. Denote by Xext(Λ) the set of all such configurations. Given any
configuration xΛ = {7~|} e Xex^Λ), denote by

extxΛ = ext {η} - A\(J int Tt (2.7)

[a slight difference from (1.34)].

Definition 3. Suppose that some constant α > 0 and some function Φ(T) ("contour
hamiltonian") is given. Define a hamiltonian of any configuration xΛ e Xext(A) as

H(xΛ) = a\extxA\+ΣΦ(Td (2.8)
i

Assumption. Suppose that there is a sufficiently large τ > 0 such that for each
contour T,

Φ(T)>τ\T\. (2.9)
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Suppose also that Φ(T) are invariant with respect to all shifts.

Definition 4. Let C be the constant from (2.5). [We will assume that τ, C are such
that C^C^r'), where τ '=τ —C] Define an auxiliary contour functional

Φ*(T) = Φ(T)-C|T | . (2.10)

Definition 5. Denote by s* the free energy of the polymer model with a weight

fcΓ = exp(-Φ*(Γ))

Main Lemma. Consider the situation described so far in Sect. 2.2. Assume that

s*<α. (2.11)

Denote by

Z(Λ,H)= Σ exp(-H(xΛ)), (2.12)

the hamίltonian H(xΛ) being given by (2.8). Then

Z(Λ,H)<expC\dΛc\. (2.13)

Notes, i) (2.11) is satisfied e.g. in the case when

Σ exp(-Φ*(T))<α (2.14)
T .TsO

[compare (2.4)]. A simple example when (2.14) is valid will be shown later in the
proposition. This example will also explain our use of the main lemma in the proof
of Theorem 1 of Sect. 1.

ii) To obtain some interpretation of the main lemma (and to indicate its use in
Sect. 3) replace (2.12) by a stronger inequality

(2.15)

Say that a point t e A is an unstable point of a configuration

if teεxtxΛ.

Denote by ZN(A, H) the partition function corresponding to configurations from
Xext(A) with at least N unstable points. Then (2.13) gives the estimate [notice that
(2.11) is replaced by (2.15)]

ZN(Λ, H) < exp ί - IJVJ exp (C\dAc\). (2.16)

Suppose, on the other hand, that the condition

Z(Λ,H)>Qxp(-C\dΛc\) (2.17)

is satisfied, with another constant C (such a condition will be satisfied in any case
which we will be interested in). Then, a typical configuration from Xext(A) has only
O|iMc| unstable points.

Proof of the Main Lemma. Consider the auxiliary polymer model with a weight

fcτ = exp(-Φ*(Γ)).
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Use the notation Z^ for the partition function of this polymer model. By (2.5),

Z i n t T exp(-5* | intΓ|)exp(-C|T|)<l (2.18)

for any contour T. Thus, if we "fill in" each set int Γby other contours we get, using
(2.18), the inequality

S Σ exp(-α|extx^|)Πexp(-Φ*(η)-5*|intη|ZintΓι
XCχt(Λ) i

^exp(-^Λ|)Z^exp(C|<3Λ c | ) . q.e.d. (2.19)

Definition 6. Say that T is a stable contour if

τ\T\>a\V(T)\. (2.20)

Say that T is a large contour if there is an unstable contour T such that

fcintΓ (2.21)

[compare the analogous notions of Sect. 1 and (1.26)].

Proposition. Suppose that (2.9) is valid and moreover suppose that Φ*(T) = + oo for
all small contours T Then (2.14) is valid.

Proof As a first step we will prove:

Lemma 1. There are universal constants K>0 and κ>0 such that any large contour
satisfies the inequality

\T\^κ(-) . (2.22)w
Proof of Lemma 1. Because

= 0((diamT)v), (2.23)
and

diamT^|T | , (2.24)

we see from (2.20) that unstable contours satisfy the inequality
1

() (2.25)

W
for some universal constant K>0. By (2.21) we obtain (2.25) also for any large
contour. Using (2.24) we obtain (2.22). q.e.d.

Note. More accurate estimates of K, K can be obtained using the isoperimetric
inequality.

Now we can prove (2.14). We use the estimate ^ [where K ( = K(v)) is an
universal constant] for the number of contours T such that Ts 0 and \T\ = N. We
use also the estimate (2.9) and definition (2.10), with τ sufficiently large.
Obviously.

exp((C-τ)iV)X*
Tlar8e:Γ30 ^

1 • — - - - " (2.26)
1-expC
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The last expression of (2.26) is smaller than a, for a sufficiently large τ, because of

the trivial relation q\aj =o(ά), α-»0, q<\.

2.3. Generalization of Main Lemma

Consider the following model.

Definition 1. By a contour everywhere in Sect. 2.3 we mean a pair

where suppΓ^ is a connected set and signΓg( ) is a function of components of
(suppΓ9)c having values from {0,1,2,...,«}, the exterior component of (suppΓψ
being signed by a nonzero value q.

We denote by V(Γ) = F(suppΓ) (see Sect. 2.2, Definition 1). Also, we denote by
int^Γ the union of all interior ^-components of the set (suppΓ)c. We consider the
pair (φ, q) as a contour.

Definition 2. By a configuration xΛ in a finite ΛcZv everywhere in Sect. 2.3 we
mean a consistent choice of contours {/]} containing ( ,̂ g) for some nonzero q,
consistency being meant in the sense that: i) V(Qc\dΛ for each z,

ii) dist(ί;, Γv)^ 2, iΦ Γ and if C is a component of Λ\[j supp/] and {fj C {/]}
\ i

is the set of all contours which touch C, including {φ,q) if CDΛ\ then the
functions signfk( ) coincide on C,

iii) into/^n ( (J supp/^Λ = 0 for each i.

Definition3. Suppose that some aq>0 and also some "contour hamiltonians"
Φ(Γq) are given for q = 1,..., n. Denote by Λq{Γt} the set of sllteΛ which are either
^-correct (i.e. are signed q by any of the function signfk mentioned in
Definition 2, ii)) or belong to the support of some g-contour from the system {/]}.
Define the hamiltonian

H(xΛ) = Σ aq\Λq(xΛ)\ + Σ Φ(Q, xΛ = {/]}. (2.27)
q=l i

Suppose that all Φ(Γ) are invariant with respect to shifts in Έv. Suppose that a
Peierls condition

Φ(Γ) >τ|suppΓ| (2.28)

is satisfied for each Γ, with a sufficiently large τ. Define the auxiliary contour
functionals

Φ*(Γ) = Φ(Γ) - C |suppΓ|, (2.29)

where C is from (2.5). Define the classes of equivalency [g, suppF*] consisting of
all Γq with the same q and suppΓ*2, and define the factorized contour functionals

= -log_ Σ exp(-Φ(f<0. (2.30)
f
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Notice that (2.28) implies the inequality

Φ([«,suppΓ«])^(τ-L)|suppΓ*| (2.31)

for some universal constant L depending only on n. Denote by s* the free energy of
the polymer model with a weight

W (2.32)

Assume that for each q= 1,...,n the inequality

s*^aq (2.33)

is satisfied. Assume that τ, C are such that C^.C(τ/), where

τ' = τ - L - 2 C . (2.34)

For any finite A C Z v and any q, denote by Xq(Λ) the set of all configurations (in the
sense of this Sect. 2.3) xΛ = {/]} on A such that {/]} 3 (φ, q), i.e. the exterior contours
of xΛ are g-contours. Put

Z,(Λ,JΪ) = Σ exp(-H(xJ).
Xq(Λ)

Then

(2.35)

Proo/. Introduce again the notions of a level of a contour and of a level of a finite set
AcZv (see Sect. 1, Proposition 1.7). We will prove (2.35) by induction on the level
of A. First notice that the case when A has a level 0 is trivial. To prove the induction
step we will use the main lemma. Given any configuration xΛ = {/J} (in the sense of
this section) denote by {Γ&

q

xtj} its external contour system. Fix {Γ*xtj} and notice that
each set A^ = intξ(Γ^tj) has a level smaller than the level of A We can therefore use
the induction assumption for Z^(/l|, if). Clearly, if we denote by ext( = extx^) the
set Λ\U intΓ/xtJ , then

W

Zβ(Λ,iϊ)= Σ J
{Γext,} j Q

ύ Σ (-αjext| Πexp(- Φ(fe supp/?xti])
{[ςf,suppΓlxt>,]} j

+ C'|suppΓiu|), (2.36)

where Φ is the factorized functional [see (2.30)] and where we used the inequality
[compare (1.43)]

ΣΣ|3(Λ«) c |^Σ|suppi? x t i | (2.37)
j Q J

Now we use (2.31). By (2.34), T - 2 C - L is sufficiently large such that (2.13) could
be applied to the last sum in (2.36): we obtain

Zq(Λ, H)^ Σ exp( - αjext|) Π exp( - Φ*([«, J

{[<Z,sUppΓ«xtj]} j

^exp(C|5ylc |). q.e.d. (2.38)
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3. Completeness of the Diagram

3.1. Basic Ideas

We consider again the model introduced in Sect. 1 (1.1-1.5).

Definition 1. Given any configuration xΛeXq(Λ) [see (1.10)], denote by i f
( = J?(xΛ)) the system of all large contours Γq of xΛ which satisfy the following
condition:

suppΓqCint/^ for no small contour Π of xΛ. (3.1)

Definition 2. Given xΛ e Xq(Λ) consider a canonical configuration x f correspond-
ing to the configuration xΛ, defined as follows:

i) (xf)t = (xAfoτte (J suppΓ. (3.2)
Tese

ii) IfC is a component of the set Λ\ (J suppΓ, then x f has a constant value on
CudCc. Xτ^ (3.3)

Definition 3. A stable domain of xΛeXq(Λ) is defined as the union of all
components of Λ\ [j suppΓ which have a stable value (in the sense of Definition 5

of 1.7) in the canonical configuration xjf. The points of stable domains will be
called stable points of the configuration xΛeXq(Λ).

Note. If t e A is a stable point of xΛ e Xq(Λ), then either q is stable or the following
condition is satisfied: there is a contour Γ of xΛ and a stable q such that t e int^Γ.
The converse statement is not true because for a nonstable q there may be a small
contour Γq such that int^Γ 9 φ0 for some stable q.

Proposition. Denote by Xq(Λ) the subset of Xq(Λ) consisting of configurations with
at least N unstable points. Denote by

Zΐ(Λ,H)= Σ exp(-H(xA\(xq)Ae). (3.4)
xΛeX%{Λ)

Let 0 < α < 1. Let τ in (1.9) be sufficiently (depending on a) large. Then

% (3.5)

with some constant C = C(τ)9 such that C—>0 as τ—>oo.

Note. This statement is an essential step in the proof of the forthcoming
Theorem 3.2. In the proof of (3.5), we use the results of Sect. 2, Lemma 2.3 and
Proposition 2.2 in particular.

Proof The summation over Xq(Λ) in (3.4) will be carried out in two steps: 1) Fix

some canonical configuration x J , xΛ e Xq{Λ), and sum over all xΛ e Xq(Λ) with the

same xf. Let i f = {/]}. Denote by Wί, ...,Wm the components of yl\U supp/^.
\ i

Notice that each xΛ from the equivalence class given by xf7 satisfies the following
property: its restrictions to any Wj have only small external contours. Actually, this
is, assuming that all Γt are contours of xΛ, an equivalent characterization of those
xΛ e Xq(Λ), which give the same xJ.
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2) Now debote by CAN*(/1) the set of all possible &(xΛ), xAeX%(Λ), and
sum over all S£ e CAN*(A): writing

we get the relation

Z£U H) = Σ Π exp( - Φe(m Π Z ^ j } ( ^ , tf), (3.6)

where Z®(W,H) denotes the partition function corresponding to the
configurations which have only small external contours (the same notation as in
the proof of iii), Theorem 1.6) and q{Wj) is the value of xf in Wy Using the very
definition of a small contour and using Proposition 1.6, we can rewrite (3.6) as

Σ Π e x p ( - Φe{Γίi) Π exp(- eq(Wj)\ Wj\)Z*iWj)(Wj9 ¥ " ) . (3.7)
^feCAN^(yl) i j

Using (2.5) for the factorized weight

kq

τ= Σ exp(-nn),

we get the inequality

Zq(W9 Ψ')SZq(W, r ) ^ e x p ( 5 j P ^ | + C|3PFc|) (3.8)

with the same constant C as in (2.5). Substituting this into (3.7) and (3.6), we get

^ (3.9)
j

where

Φ*(Γ) = Φ ( D - ( f t 0 - e β + 2O | suppΓ | , (3 1 0 )

and where we used the inequality [see also (1.43)]

(3.11)

Now, a suitable factorization of contours is needed such that Lemma 2.3 could be
applied to the estimate (3.9): consider the equivalency Γq~Γq iff s u p p Γ ^ s u p p Γ 9

and miq,Γ
q = 'mXq,Γ

q for each nonstable q'. Each equivalency class [Γ 9] we identify
with a contour in the sense of Sect. 2.3. Put

Φ*([Γ*]=-log Σ exp(-Φ*(Γ0). (3.12)
f<ie[Γ<i]

Define the free energy s* according to Lemma 2.3. It is easy to see [from (2.26)] that
for a large τ = τ(α) we have, instead of (2.33), a stronger inequality

s*<(l-φq, (3.13)

for any unstable q.
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Return now to (3.9). Using Lemma 2.3 and (3.13) we get

e x p f - Σ Φ * ( [ Γ 9 ] ) Π e x p ( ( « - ί)aq(Wj)\Wj\)
V i j

(by [JSf], [CAN^(Λ.)] we denote the equivalence classes, corresponding to the
equivalency classes [Γq~\)

^ e x p ( - / ι o μ | + 2C|δylc |-ααiV). q.e.d.

3.2. General Boundary Conditions

It is a time now to drop the assumption about the special boundary conditions,
used in the definitions of partition functions Zq(Λ, H), Z(Γ, H) throughout Sects. 1
and 3.1, and to consider a general partition function

Z(Λ,xAC9H)= Σ cxp(-H(xΛ\xΛC), (3.15)
xΛeSΛ

where xΛC is an arbitrary configuration on Λc.

Note. We return to the original form (1.2) of H(xΛ\xΛC) if needed. Also, we will not
omit the third term of (1.7) if this expression is used.

Definition 1. Let A be a simply connected set. Given any configuration xΛ e SΛ and
any boundary condition xΛC, we say that a point t e A is an "inner" point of xΛ if
there is a simply connected set Ac A such that Ast and all points of dΛ are
g-correct points of XA

KJXΛC f° r some (stable or nonstable) q.

Definition 2. Decompose the set of all inner points into the components. Clearly,
any such component C is simply connected and there is some q( = q{C)) such that
xA has, on <3C, a constant value q and all the contours of (xΛ)cu(xq)cc have a
distance at least 2 from Cc. We say that t e A is a stable point of xΛ (at the condition
xΛc) if t is a stable point of some (xΛ)c, in the sense of Definition 3 of 3.1. We denote
by U ( = C/(ί, x, A)) the component of the stable domain oϊ(xΛ)c, which contains ί.

Theorem. Let 0 < α < 1. Suppose that τ fin (1.9)7 *s sufficiently large. Then there
is a constant K such that for each finite simply connected set AcTLy and for
each boundary condition xΛC the following estimate holds: Denote by XζΛC(A) the set
of all xΛ e SΛ which have at least N unstable points. Denote by

ZN(A, xΛC, H)= Σ exp(-H(xΛ\xΛC)), (3.16)
xΛeX£Λe{Λ)

P N ( A , x Λ C , H) = Z % 4 , x Λ e , H)Z(Λ, x Λ C , H ) 1 . (3.17)

Then, for any iVeN,

PN(Λ, xΛc, H) ^ exp( - otaN) cxp(K\dAc\). (3.18)

Corollary. Let {ylj be a sequence of simple connected finite subsets of Έv such that
AiΐZ

v in the Van Hove sense. Let {xΛc} be any sequence of boundary conditions.
Denote by PXΛc the Gibbs state on SΛ corresponding to the boundary condition xΛc.
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Suppose that a limit Gibbs state, defined for each cylindrical set AcSΛ, A finite, as

P(A) = \imPXΛ.{A) (3.19)
i

exists. Suppose moreover that P is a translation invariant Gibbs state. Then P can be
decomposed into the extremal Gibbs states constructed, for various stable q, in
Sect. 1.

Proof of Corollary. We will prove the following statement only (the rest of the
proof is a consequence of standard methods of the theory of limit Gibbs states):

Lemma. Let A be a finite simple connected subset ofZv. Let xΛ and xΛC be arbitrary
configurations on A respectively Ac. Recall the notion of the stable component U
containing a given point t e A (Definition 2). For any stable q, any simply connected
finite A and any integer d, consider the event

ΩΛ(t, d, q) = {x: dist(t, Uc) ^ d, q(U) = q} , (3.20)

where q(U) denotes the value of x on dU. Consider further the events

ΩΛ(t,d,q)= Π Ωλ{t,d,q). (3.21)
Λ:ΛZ>A

Then for any integer d, any stable q and any simple connected A,

P(ΩΛ(t,d,q)) = 0. (3.22)

Note. Therefore, for each t e Έ7, each simply connected finite A and each integer d
we can find, with probability 1, some ADA and some simply connected set
U(t, x, A) such that dist(ί, Uc) >d and the restriction of the given configuration to
d U has a constant value, equal to some stable q. Now it suffices to use the decay of
correlations in any of the Gibbs fields of Sect. 1.

Proof of Lemma. First notice the following obvious consequence of (3.18): Suppose
that Q is a probability on Szv such that all its conditional probabilities on SΛ, for
any xΛC, are equal to the Gibbsian conditional probabilities. Denote by XN(A) the
event U X"JΛ)cSz\ Then

Q(XN(Λ))^exp{-<x.aN)exp{K\dΛc\). (3.23)

Suppose, on the contrary to (3.22) that for some t, d, q, A,

P(ΩΛ(t, d,q)>ω for some ω > 0.

Using the translation invariancy of P and the relation

ΩΛ(t,d,q)DΩΛ(t,d,q), ADA,

we obtain, for any sufficiently large cube We 7LV the inequality

^P{Ωw{t,d,q))>ω\W\. (3.24)
teW

But Σ P(Ωw(t, d, q)) is the mathematical expectation of the number M of those
teW

teA for which x belongs to Ωw(t,d,q). Estimate M by using the property that

xeΩw(t,d,q)= > \\t-s\\ ̂ d
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for some unstable point S of xΛ (with respect to xΛC). Clearly, then

M^(2d)vN, (3.25)

where N is the number of unstable points. Thus, the expectation of N (in P) would
be greater than (Id)" vα| W\ which contradicts (3.23) if Wis large. This proves (3.22).

Proof of Theorem. We will relate (3.18) to the basic estimate (3.5). Recall the notion
of an inner point (Definition 1). Given xΛ and xAC denote by xΛ

ut the restriction of
xΛ to the set Outx^ of all noninner points of xΛ. Denote by VFthe set Λ^Out-x^.
Denote by Wq the union of all the components C of FT which are ^-components (i.e.
such that xt — q for tedC). We get the relation

ZN(Λ,xΛc,H)= Σ exp(-H(xr\xwvxAc)) Σ Π^(Wq9H)9 (3.26)
{*?ut} {Nq} q

where the first sum is taken over all possible {x^ut} a n d the second sum is taken
over all {Nq} such that JV= Σ Nq. Using (3.5) in (3.26) we get

Q

(3.27)

where w* is the number of possible partitionings {Nq} of AT, and where Rq(W) is
given by the formula

I A r\ T/Γ/Cl

A((xq)Λ), (3.28)
AtW \A\

[see (1.7)]. Notice that

(3.29)

for some universal constant C 2 . Notice also [this is a similar inequality as (1.43),
(2.37)] that

q

C4 = C3. We obtain the inequality, with C3 = (

Λ\). (3.31)

Because no point of Out xΛ is correct we can use the Peierls condition (1.9) and the
boundedness of all interactions ΦA to find another universal constant C 5 such that
for each x,

H(xrr\xWuAmτ\OutxΛ\-C5\dΛ\. (3.32)

At last, choose another constant C 6 such that exp(C6 | Γ|) would be an upper bound
for the number of all possible x^ut with the same Outx^ = T. Substituting this into
(3.31),
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{Out}

-Qxp(-ho\Λ\-aaN), (3.33)

where CΊ = C6 + C4, C8 = C5 + C 3, and the sum is taken over all possible

Out = OutxΛ. Notice that OutxΛuδΛ is a connected set. It follows from this

observation and (3.33) that for a large τ, there is another universal constant K such

that

ZN(Λ, xΛc, H) S ft* Qxp(K\dΛc\ - ho\Λ\ - ocaN). (3.34)

To remove n* notice that n* = o(qN), N-»oo, for any q>\. Therefore, for any α'<α,

there is a suitable Kf such that

Z*(/l, xΛc, H) ^ exp(iq<9/Lc| - ho\Λ\ - ot'aN). (3.35)

On the other hand it is clear from the boundedness of all ΦA that for each stable q,

there is another constant L such that

Z{Λ, xAC, H) ^ Qχp(L\dΛc\)Zq(A H),

i.e., by Theorem 1.7, there is a constant L such that for each A and each xΛC the

following inequality holds:

Z(Λ, xΛc, H) ^ exp(LΊδτlc| - ho\Λ\). (3.36)

It is clear that (3.35) and (3.36) give the desired estimate (3.18). q.e.d.
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