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Abstract. A new approach to the Pirogov-Sinai theory of phase transitions is
developed, not employing the contour models with a parameter. The
completeness of the phase diagram is proven.

Introduction

The aim of the following note is twofold.

i) The theory of Pirogov and Sinai describing the behaviour of phase diagrams
of lattice models with discrete spins is based on the notion of a contour model and a
contour model with a parameter. The notion of a contour model goes back to
Minlos and Sinai’s detailed study of the Ising model [1].

If one is interested in the investigation of the behaviour of the point of the
maximal number of phases only, there is no need for introducing the models with
parameter in the Pirogov-Sinai (PS) theory. This was, historically, the first case
studied, but it had many of the essential features of the theory.

Itis the aim of the first part of this note to show that even the full phase diagram
can be constructed without the use of models with a parameter. Instead, we will
introduce an auxiliary “metastable” contour model, not appearing in the usual PS
theory. It seems that this approach is (intuitively, at least) simpler than the original
approach [2]. It gives some additional information, too.

ii) There are some results of Martirosian (see e.g. [4]) concerning the
completeness of the phase diagram constructed by the PS method. The full answer
is given here. The proofis simple and uses the same tools which were developed in
i). In particular, we emphasise the technical main lemma which is crucial in the
proofs of both parts of this paper.

The organization of the paper is as follows:

Section 1 is devoted to the questions mentioned in i). We suppose some
familiarity with PS ideas and notions like contours, contour models etc. For these
notions which are only sketched the standard reference is [2] or [3], but no
technical details of [2] are used in this paper.
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The technical lemmas of this paper are collected in Sect. 2. Here, some
familiarity with the cluster expansion method is useful, as well as with the notion of
a contour (or polymer) model. Basic results of this method (the expansion of the
polymer partition function into the volume and boundary part, in particular) are
stated without proof. As a byproduct of the cluster expansion method, we
formulate also our main lemma.

Finally, the proof of the completeness is given in Sect. 3.

We do not formulate any results about piecewise analyticity of the phase
diagram. Also, we omit a possible generalization to the continuous spin models.
This will be a subject of forthcoming papers.

1. Construction of the Phase Diagram

1.1. Preliminary Notions

Let Z” be a v-dimensional lattice (v > 2), and let S be a finite set (of “spins”). For any
ACZ’, denote by S the set of all configurations on A. Suppose that some family
{®,} of finite interactions (i.e. functions on $4) is given, invariant with respect to
shifts in Z* and with a finite interaction radius r (i.e. such that & , =0 if diam 4 >r).

Note. We consider, here and everywhere in the following, the norm
Iel= 3 1. te2.
Given ACZ’, we denote by 04 the set
0A={te A dist(t, A)=1}.

For each finite 4 CZ” and each x € SZ*, denote by x , the restriction of x on A.
Define the hamiltonians

H (XA)=ACZA D 4(x4), (L.1)
H(x 4/x 1) = A%‘c L ENP (1.2)

Define the mean energy of any periodical configuration x e S%°:
e(x)=lim |A|”*H(x,) (1.3)
Atz

(the limit is taken in the Van Hove sense).
Given g€ S, denote by x, the configuration {x,=q,teZ"'} and denote by
e,=e(x,). Note that e, can be expressed by the formula

e= X AP L(x,)4)- (1.4)

A:A50

1.2. Ground States, Boundaries, Contours

Fix some family {x,qeQ}, QCS of constant configurations. Call these fixed
configurations ground states of our model.
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Note. The connection with the usual meaning of the notion of a ground state will
be seen in Sect. 1.4, where an additional condition (Peierls condition) will be
imposed on x,, g € Q. Typically, in the following, H will be a perturbation of some
hamiltonian H, such that x,, ge Q are exactly the ground states (in the usual
meaning of PS theory) of H,.

Say that a point t € Z" is a g-correct point of a configuration x € S%” if for each
seZ’ such that |t —s| <r, x, has a constant value x,=q € Q. Say that te Z” is a
boundary point of a configuration x if it is incorrect for each “ground” g€ Q.

A boundary of a configuration x is defined as the union of all boundary points of
x. It will be denoted as B(x). A restriction of x to any finite component of B(x) will
be called a contour (of a configuration x), and this component will be called the
support of this contour.

Having some contour I', a component of (supp I')° will be called a g-component
if the neighboring spins of I have the value g. If the exterior component of (supp I')*
is a g-component, then I will be called g-contour and denoted by I'%. For any ¢’ € Q
denote by int,I' the union of all interior g-components of (suppI')". Put

intlI'=\) int, I',
q'eQ
V(I)=suppl'uintIl, (1.5)
extl'=(V(I)).

1.3. Contour Hamiltonians, Expression of H(X 4]X 4c)

Let I'=T" be a contour of some configuration x € SZ°. Put

o= 2. (1Al "|Ansupp '@ (x4)) —e,lsuppT]. (1.6)

Note. This value obviously does not depend on the choice of x.

Proposition 1. Let ACZ" be finite, and let x € S’ be some configuration such that all
its contours satisfy the conditionsupp I’ C A. Denote by A, the set of allt € A such that
either tis a g-correct point of x or t € supp I'? for some contour I'? of x. Then using the
notations (1.4), (1.6),

|An A

H(xAlec)=;<P(F)+§eq|Aq|+A%A—|A—|—<I>A(xA). 1.7

Proof. This is obvious if we substitute

(1514(3@4)——‘[2;1 |71 4(x )
into (1.2) and rearrange, using (1.6) and (1.4), the terms thus obtained.

Note. Obviously, the last term of (1.7) does not depend on x ,. Therefore, discarding
this term from H(x 4|x 4.) does not effect the conditional Gibbs densities. Because
we will consider throughout Sect. 1 only such restricted ensembles where (1.7) is
applicable, we will replace our original hamiltonians by modified ones,

H(xAlec)=; (D(I“)+§ e,la,l. (1.8)
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1.4. Peierls (Gertzik-Pirogov-Sinai) Condition
Suppose that there is a sufficiently large ¢ >0 such that

(') > t|supp | (1.9)

for each contour I'.

1.5. Definitions of Various Partition Functions

Given a contour I'=T", denote by X(I') the set of all configurations x,, on V(I")
which satisfy the condition that being extended by ¢ to the whole Z, they have I as
one of its contour. Further denote by X,.4(I") the set of all configurations x, on
V(I') which satisfy the condition that after extending them by ¢ to the whole Z°,
each contour of the extended configuration has a distance at least 2 from supp[".
Define the “crystallic” partition functions

2= % exp(—Hovlx), (110
and also the partition functions
Z(I;.4, H)= XZ o exp(— H(le(xq)V(I‘)C) . (1.11)
Xy €Ared

For any finite ACZ”, denote by X (A) the set of all configurations x, on A
which, being extended by ¢ to the whole Z" satisfy the condition dist(V(I"), A) =2
for each contour of the extended configuration. Define the “diluted” partition
functions

Z, (A H)= 3 exp(—H(x4(x,) ) (1.12)

x4€Xq(A)

Note. 1) The hamiltonians H((-)|(-)) are expressed by (1.8) everywhere.
i) We emphasise that in the definition of X (A) we used the condition

dist(V(I), 49=2 (1.13)

[and not dist(suppl’, A =2 for example]. Note, however, that if A has simple
connected components (this holds e.g. if A=int,I" for some I" and ¢) then the
condition dist(suppl’, A°)=2 implies the condition (1.13).

1.6. Contour Functional and Contour Model

Define a contour functional

P(I') =108 Z(I;.q, H)—log Z(I', H), (1.14)
and denote by
Z,A,¥)= {;} exp (—2 Y’(Fﬂ)) , (1.15)

where the sum is taken over all families of contours {I;?} such that (1.13) is satisfied
for each I}* and moreover

dist(supp ;4 supp ;=2 whenever i+i. (1.16)
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Define also the “crystallic” partition function of the contour ensemble [compare
(1.10)!]

Z(I,P)= % exp — (z 'P(I}q)> , (1.17)

where the sum is taken over all families of contours {I;7} 3 I'? satisfying (1.16) and
such that suppI;C V(I'%) for each i [notice that suppl cV(I') = V(I)cV ()
because of the note below (1.13)].

Proposition. Let U be a class of contours (e.g. a class of all contours — another
concrete choice of W will be specified below ). Denote by Z* the partition functions of
the type (1.12), (1.15) but with an additional restriction that only those x,
respectively {I}%} are accounted in the sum whose external contours belong to the
class A. Then

Z:(A, H)=exp(— e ANZ(A, P). (1.18)
Also, for any contour I'%,
Z(I', H)y=exp(—e,|VI')Z(I, V). (1.19)

Proof. Define the level of any contour I" as a maximal number n such that there is
some sequence of contours [ =TI, I}, ..., I, such that suppI;, ; Cint[;. Define the
level of ACZ as a maximal level of any contour I' such that V(I')C A.

Proceed now by the induction on the level of I' respectively A. Denote by
EXT;(A) the family of all systems of contours {I;? € A} satisfying (1.16) such that
V(I}%) are mutually disjoint and dist(V(I}9), A°) = 2(=external contour systems).
Notice the relations

ZX A, H)= Y exp(—elext{I})[1Z(}%, H), (1.20)
EXTg(A) i
and
2(A, V)= Y TIZI%WP), (1.21)
EXTY(A) i

where ext{[}%} =/1\U V(I%. Thus (1.19) implies (1.18) for a given level
Conversely, using thel very definition of ¥(I') [see (1.14)], we get
Z(I'*, H) =exp(—Y(I")Z(I 4, H)
=exp(— V(') —e,lsupp I'|)Z,(int "%, H)
=exp(—PY(I')—e, |V(II'))Z,(intI', P)
=exp(—¢,|VIINZI, ¥P),

which gives (1.19) for the next greater level, g.e.d.

1.7. Truncated Contour Functional and Truncated Contour Model

The reason for introducing the contour models is that they can be studied, under
the conditions of the type (1.9), by powerful methods of the cluster expansion. But,
of course, we cannot expect conditions of this type to hold in the case of functionals
Y(I') (in general).
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We choose the following method: we construct an artificial “metastable”
contour model where “unstable” contours (i.e. such contours for which the
condition of Peierls is violated — see Definition 2) are “stabilized” by fixing their
energy at a sufficient level — see Definition 1). Later it will be proved that for some
distinguished values of g (“stable” g), such artificial contour models are equal to
the usual contour models and therefore describe some “stable” phase.

Definition 1. A truncated contour functional is defined as
W’(F):max(W(r),§|suppr|>. (1.22)
Definition 2. A contour I' is called stable if

¥(I)z 5 suppT (1.23)
[ic. if ¥(I)=¥()].

Definition 3. Replacing ¥ by a contour functional ¥, we define the truncated
partition functions

Z,A,P), Z}AY), ZI4LY)
quite analogously as in (1.15), (1.17), Proposition 1.6.
Definition 4. Define the free energy of the truncated model
Sq:,lli}?v 14| 'ogZ (A, ) (1.24)

(see Sect. 2.1). Define also the following quantities:
h,=e,—s, [see (1.4)]
ho=min{h,

¢ thq) (1.25)
aq == hq - ho
a=min{a,:a,#+0} .

Definition 5. If a,=0, q is called stable.
The main result of Sect. 1 is the following statement:

Theorem. i) Nonstable contours satisfy the inequality
a,Jint I > §1supprq; . (1.26)

In particular, if q is stable, then all the contours I'? are stable and W' (I') = ¥ (I'?) for
each contour I'?. Further, there is some universal constant C, such that for each finite
ACZ, the following estimates hold:

i) Z. (A, H)Zexp(—h,|A]) exp(—C|oAT), (1.27)
1ii) Z.,(A, H)<exp(—ho|A]) exp(C|oA9). (1.28)

The constant C can be chosen as C=2C, 5, (where C(, 5, is from (2.5)).
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Corollary. For any stable q we can construct a Gibbs state which is a perturbation of
the g™ ground state, in the sense described in [2], such that the statistical properties
of its external contour systems are the same as in the contour model with a functional
Y(I'9). Thus, for each stable q we obtain a distinct phase. The behaviour of the phase
picture thus constructed will be studied in Sect. 1.10.

We omit the proof of the Corollary, as it uses some standard arguments of the
theory of limit Gibbs states (see [2]). It is based on Proposition 1.6.

1.8. Proof of Theorem 1.7

We will proceed again by the induction over the levels of A, I'. The induction step
for iii) uses substantially the main lemma of 2.2.

Proof of ii). By Proposition 1.6,
Z,(A, H)=exp(—e JADZ (A, 7).
Because trivially Z (A, ¥)=Z,(A, ¥), and
Z,(A, V) =exp(s,A]) exp(— C|oA°]) (1.29)
by (2.5), we get the desired relation (1.27), with C=C, 5.

Proof of ). We use the induction argument for iii). Both i) and iii) are trivial if I"
respectively A has level 0 (for t sufficiently large). Nonstability means, by (1.23),
that

(1%, H)zeXp<— %ISUPPF"O (I, H) . (1.30)

On the other hand, by the induction assumption for iii) we get
Z(I', H)<exp(—P(I')—e,|supp I'!|— hy|int I'Y|+2C|supp I'?)) (1.31)
[because supp D d(int '], with C=C, s).
By Proposition 1.6 and by (2.5),
(I, H) zexp(—e,|[VIIMDZ(Liy, 1)
= exp(— h,lintI'| — Clsupp Y| — e,[supp '), (1.32)

where C=C, s).
If we combine the relations (1.30), (1.31), (1.32) we obtain

. 2
a,lintl = &(I')— %lsuppfq|—3C|suppF"|g <§ — 3C> [suppl|, (1.33)

with C=C, s), but this is (1.26) for a large 7. q.e.d.

Proof of iii). This is the main step of the proof. To have some idea notice that iii)
follows from (1.18) and (2.5) whenever all contours I in (1.5) are stable. We need,
therefore, some method of handling the unstable contours.

The inconvenient property of the notion of unstable contour is that it is not
hereditary with respect to the inclusion suppI'Cint [: if I'? is nonstable then [
may be stable.
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We introduce the following important notion:

Definition 1. Say that a contour I'* is small if it is hereditary stable, i.c. if there is no
unstable I'? such that suppI'Cint . Say that I'? is large if it is not small.

Notation. Recall that in the definition of Z* we fixed some family of contours 2L,
not specified until now. Assume, in the rest of Sect. 1, that 2 is the family of all small
contours.

Given x, € X ,(A), fix all its external large contours [i.e. external contours of the
configuration x,U(x,) — we recall the assumption (1.13) — which are large].
Denote by {I%,;} the collection of all external large contours of x,. Denote by

extzextxA=A\U V(I4,). (1.34)
Denote by W, §eQ the union of the interior §-components of the set

A\U supp( ex") Fix, for a moment, the family of external large contours {I'4,,}.

To determine the whole configuration x,e€ X, (4), we must specify some
configuration x., € X (extx,) such that x., has no exterior large contours.

At the same time we must specify some family of arbitrary configurations
Xy, € Xq(Wp), G Q. We get the relation

Z(AH)= 3 Zg(ext, )1 Texp(=®(I15)

Txe

—¢,|supp i) H 7,(W; H). (1.35)

Denote by s;' the free energy of the contour model with a contour functional
YUY =y, if I'is small,

1.36
YU =+o0, if I'islarge. (139

Obviously, s; <s,. Using Proposition 1.6 and the estimate (2.5) we get the bound
Zz‘(ext, H)<exp(C|o extcl—hﬁ‘lextl), (1.37)
where hgl =e,—s,. By the induction assumption for iii),

Z,(W,, H) < exp(2CIOWE| — ho| W) (1.38)

[C=C,.5) everywhere in the proof of iii)].
Substitute the bounds (1.37), (1.38) into the relation (1.35). We obtain the
following estimate: Denoting by aj = by —h,,

Z (A, H)exp(—hold]) 3 exp(—ajlext)

: Ii—[exp(_ ¢( extl)+(h0_ e ) Isupp equ
“exp <C<ZZ |OWg|+ |0 extcl». (1.39)
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Now we use the main lemma of Sect. 2.2. Factorize the contours with respect to
the equivalency
Iri~r* iff suppl=suppl®.
For any equivalence class [I'?], put
o([I])= —log fq;m exp(— &()). (1.40)

Notice that by (1.9) there is some universal constant K depending only on |S| such
that for each contour I'Y,

S([1"]) 2 [supp I (1 —K). (1.41)
Notice also that [see (1.36), (1.37) and the definition of a} ]
a'=a,. (1.42)

Finally, it is a simple geometric consideration to show that

2 3 [0Vl +10 ext| |04+ 3 X Isupp [ » (1.43)
4eQ i

[In fact, it is possible to replace 3 by 2 if dist(ext, W) >2, g € Q.] Factorizing the
contours in (1.39) and using the estimates (1.43), (1.41), and (1.42), we get

Z.(A, H) <exp(— holA|+ ClaA))
>, exp(—aylext)) [Texp(—P([1,])

{I'éxe)
+(3C+ho—ep)lsupp ')
Sexp(—holA|+CloAT) 3 exp(—alext])

exti

exp(3C+K —1+ho—e,) X |supp Il (1.44)

Now, if 7 is sufficiently large (notice that h,—e,<s,—0 as t—c0), we can use the
estimate (2.13), as explained in detail in Sect. 2.2 [notice that each I' = I, ; satisfies
the condition (1.26), and therefore Proposition 2.2 can be applied to verify (2.11)].
We obtain

Z,(A, H) = exp(—ho)|A]) exp(2C|0A%), (1.45)
where C=C, s). But this is the required estimate (1.28).

1.9. Lipschitz Condition for s,

We will use the following norm on the space of all hamiltonians having a fixed
range r:

IH]|=sup({le,I}o{@(I') [suppI|~'}). (1.46)
Proposition. Let {H,=H+/.H, L e #(0)CR}, |H|| =1 be a family of hamiltonians

satisfying the condition (1.9). Denote by s,(A) the free energy of the truncated contour
model corresponding to the hamiltonian H, and a given q € Q. Then the onesided
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derivative ——— 7 (+) s,(4) exists and satisfies the inequality

’ D q(z), <e(0), (1.47)

where &(t) is such that lim g(t)=0

Proof. By differentiating logZ,(A, V) with respect to 4 and by taking the limit
A/, we obtain the formula

d (4) d
di(£) so(2)= mezsupprp (F)dl(+)

where P,(I) is the correlation function of I' in the infinite ensemble (with a contour
functional ¥). Use the simple bound

d

di(+)

v, (1.48)

YD) =2|V(D)| (1.49)

[which follows from the inequality ;idjlogZ(F ,H,))Z|V(I')| and a similar

observation for logZ(I .4, H x):|- Use also the Peierls inequality

Py =exp(—¥y(I). (1.50)
By substituting (1 49), (1.50) into (1.48), we get

T
ERG e G U [ EUE)
as t—ooo0. g.ed.

1.10. Investigation of the Phase Diagram

Theorem. Let v=2, let S be a finite set. Let H, be some finite range hamiltonian
invariant with respect to all shifts on ST’. Let H,, ..., H,,_ | be another hamiltonians
of the same type. Consider a family

n—1
{H,1=Ho+ > AiHi,/1=(/11,...,im_l)e%},
i=1

U being some neighborhood of zero in R"~*. Suppose that there is a fixed family
{x,,q€Q}, QCS, |Ql=n of constant configurations, such that the following
conditions are satisfied:

i) alle(H,), g€ Q are the same,

ii) let qy, q,,....q, be same ordering of Q. Then the wvectors e;
=(e,(H)), ..., e, (H))) are independent and their linear span L does not contain the
vector (1,...,1) ( =degeneracy removing assumption),

iil) the condition (1.9) is satisfied for all H=H ,, 1 € U with a sufficiently large t
(therefore, {x,,q € Q} is just the set of all ground states — in the usual sense of PS
theory).
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Given heR", denote by

ho=h— <k:n3m n{hk}>(1, 1. (1.52)

.....

Denote also by (R"°={h°heR"}. Then, for some neighborhood of zero
" C(R")°, there is a homeomorphic mapping

{h®»Ai(h°)}, (1.53)
defined on 7 and such that for each h®e 7,
hO(A(h®)=hO, (1.54)

where h(4) denotes the vector (h,,(4), h,,(4), ..., h, (4)). In particular, g € Q is stable
with respect to the hamiltonian

H, i=ih% iff hQ=0.

Notes. i) The precise bound for t will be specified later. It depends on % and {e;}.

i) Denote by Q(2)={q e Q: q is stable with respect to H,}. For any € % and
any q € Q(4) we can construct, using the appropriate contour model [given by
¥ (I'Y)] and Proposition 1.6, some Gibbs state P4 on SZ°. We will not give the
details of this construction (see [2]). The mapping (1.53) is usually called the phase
diagram. We will not investigate further properties (analyticity, for example) of the
manifolds

{Aew:Q(1)=0} QcCQ, (1.55)
respectively
{Ah(2):0H=0} (qeQ). (1.56)
This will be the subject of a forthcoming paper.
Proof of Theorem. Denote by symbol £ the linear mapping
n—1
{AM > lie,}:lR"‘laL. (1.57)
i=1
Given helR", denote by [h] the ray {h"'e R":h"®=h°}, and denote by h" the
intersection of [h] and L. Consider, on %, the mapping
FA)=i—2L (h)), (1.58)
and also the mappings
F(A)=A—L 1 (h“(1)—h") (1.59)

(the values of h being specified later).
We want to solve the equation

FA)=2. (1.60)
Let us show that & (and therefore 4, too) is a contraction mapping on %. Because

FN)—F(V)=L (4 (I)—sH1), (1.61)
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[where s(4)=(s,,(4), 5,,(4), ..., 5,,(4)], and because
2~ 1" (A =s" AN 1A=L e(x) (sine) ™ 'n'2, (1.62)
where |A|* = ZIMZ lh|? = Zlh |2, accordingly is defined |# 1|, &(t) was defined in

(1.47)and a s the angle between Land(1,...,1), we see that & is a contraction if t is
sufficiently large. Denote by « the contractlon constant of . Because

17O =12~ (=s"(0)] =&'(z)-0, (1.63)
as t— o0, we may further assume that there is a neighborhood of zero ¥~ C(IR")°
and a ball B,={A: ||| <r}CR""! such that #,(0)=2""'(h—s(0)) e B, for each
he " and also

B,c(1—x)% . (1.64)

Put
Ah)= lim (Z#)(©0), hev . (1.65)

By (1.64), A(h)e %. Because h*()=h for /= A(h), we see that (1.54) is satisfied.
Clearly, {h—A(h)} is the desired homeomorphism. q.e.d.

2. Main Lemma

In this section, the technical tools used in both Sects. 1 and 3 are collected. First, in
Sect. 2.1, we present some rudiments of the theory of “polymer” models and the
method of the cluster expansion, without proof. In Sect. 2.2 we formulate the main
lemma. It describes, in the simplest model situation, the behaviour of the system
with “unstable” boundary condition, especially the formation of large contours
with a “stable” phase in its interior. Finally, in Sect. 2.3 we generalize the main
lemma in view of its applications in Sect. 3.

2.1. Polymer Models
Suppose that some real or complex function k; of finite connected subsets Tof Z" is
given. We define, for each finite A CZ" the “polymer” partition function

ZA_Z}HkT: 2.1)
the sum being taken over all families {7;} of connected sets such that
dist(T;, T;) =2 for any i=i" and dist(V(T,), A)=2 for any i (see 2.2).

1 13

Proposition. Suppose that the functions ky are invariant with respect to all shifts in
Z*. Suppose moreover that the condition

k7| = exp(—1|T|) (2.2)

is satisfied for each T, with a sufficiently large ©. Then Z =0 for any finite ACZ".
The limit

s=lim |A|"'logZ, (2.3)
APZP
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exists, with a proper choice of ImlogZ. ,, as an analytical function of all the variables
kr, and satisfies the estimate

s< ., > kgl (2.4

:T>0

In particular, s—0 as t— 0. Finally there is an universal constant C = C(t) such that
C—0 as t— o0 and for each finite ACZ”,

[logZ ,—s|A]| < CloA9], (2.5)
where 0A°={t e A :dist(t, A9 =1.

Usually, we will use (2.5) for the contour models: if ¥(I'%) is a contour

functional, we can define its factorization
kp= > exp(—Y(I). (2.6)

I'd:suppld=T
Obviously, Z (A, ¥)=Z , in such a case and we can use the expression (2.5) for Z ;.
il) We omit the proof of the proposition. The only nonelementary statement is
(2.5), which is proven using the method of the cluster expansion. Such statements
were used by many authors (also in [1], but see e.g. [5,6] for a more recent
references). They are based on the expression of the correlation functions by cluster
expansion series.

2.2. Main Lemma

Consider the following artificial model.

Definition 1. By a contour everywhere in Sect. 2.2 we mean, a finite connected
subset of Z*. Given any contour T, we denote by intT the union of all inner
components of T¢. We denote by V(T)=TuintT.

Definition 2. Fix some finite volume ACZ". By a configuration in A we mean a
consistent choice of external contours {T;} in A everywhere in Sect. 2.2, i.e. such a
choice of contours {T;} that V(T;)CA\04 for each i and dist(V(T}), V(T;))=2
whenever i<i". Denote by X (A1) the set of all such configurations. Given any
configuration x, ={T;} € X (A1), denote by

extx, =ext{T}} =A\U int T, (2.7)

[a slight difference from (1.34)].

Definition 3. Suppose that some constant a >0 and some function &(T) (“contour
hamiltonian”) is given. Define a hamiltonian of any configuration x , € X (A1) as

H(x ) =alextx |+ > &(T). (2.8)

Assumption. Suppose that there is a sufficiently large 7>0 such that for each
contour T,

&(T)>1|T]|. (2.9)
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Suppose also that @(T) are invariant with respect to all shifts.

Definition 4. Let C be the constant from (2.5). [We will assume that 7, C are such
that C = C(7"), where t'=t— C.] Define an auxiliary contour functional

®*(T)=d(T)— C|T). (2.10)

Definition 5. Denote by s* the free energy of the polymer model with a weight
ky=exp(—@*(T)).

Main Lemma. Consider the situation described so far in Sect. 2.2. Assume that

s*<a. (2.11)
Denote by
ZAH)= 2 (A)CXP(—H(XA)), (2.12)

the hamiltonian H(x ,) being given by (2.8). Then

Z(A, H)y<expCloA9. (2.13)
Notes. 1) (2.11) is satisfied e.g. in the case when

> exp(—P¥(T))<a (2.14)

T:T>0
[compare (2.4)]. A simple example when (2.14) is valid will be shown later in the
proposition. This example will also explain our use of the main lemma in the proof
of Theorem 1 of Sect. 1.

ii) To obtain some interpretation of the main lemma (and to indicate its use in
Sect. 3) replace (2.12) by a stronger inequality

s*<da. (2.15)
Say that a point t € A is an unstable point of a configuration
X, ={T}e X (4) if teextx,.

Denote by Z(A, H) the partition function corresponding to configurations from
X .(A) with at least N unstable points. Then (2.13) gives the estimate [notice that
(2.11) is replaced by (2.15)]

Z(A, H)<exp ( - gN> exp (CJOA)) . (2.16)

Suppose, on the other hand, that the condition
Z(A, H)>exp(— C’|0A9) (2.17)

is satisfied, with another constant C’ (such a condition will be satisfied in any case
which we will be interested in). Then, a typical configuration from X (/) has only
0]0A¢| unstable points.

Proof of the Main Lemma. Consider the auxiliary polymer model with a weight

kr=exp(—®*(T)).
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Use the notation Z , for the partition function of this polymer model. By (2.5),
Z. rexp(—s¥int T exp(—C|T|) <1 (2.18)
for any contour T. Thus, if we “fill in” each set int T'by other contours we get, using
(2.18), the inequality
Z(AH)= % exp(—alextx,)]Texp(— (1)

ext

< 3 exp(—dlextx ) [Texp(—@*(T) —s*int T Zip, 7,

< )e(x;;((A )— s¥ADNZ ,Zexp(CloAY]). q.e.d. (2.19)
Definition 6. Say that T'is a stable contour if
7|T|>a|V(T)|. (2.20)
Say that T'is a large contour if there is an unstable contour T such that
TcintT (2.21)

[compare the analogous notions of Sect. 1 and (1.26)].

Proposition. Suppose that (2.9) is valid and moreover suppose that ®*(T)= + co for
all small contours T. Then (2.14) is valid.

Proof. As a first step we will prove:

Lemma 1. There are universal constants K >0 and k >0 such that any large contour
satisfies the inequality

IT|zK (2) : (2.22)
Proof of Lemma 1. Because
V(T)=0((diamT)"), (2.23)
and
diamT<|T), (2.24)
we see from (2.20) that unstable contours satisfy the inequality
1
diam T2 K (g->* ' (2.25)

for some universal constant K >0. By (2.21) we obtain (2.25) also for any large
contour. Using (2.24) we obtain (2.22). q.e.d.

Note. More accurate estimates of x, K can be obtained using the isoperimetric
inequality.

Now we can prove (2.14). We use the estimate K¥[where K (=K(v)) is an
universal constant] for the number of contours T such that Ts0 and |T|=N. We
use also the estimate (2.9) and definition (2.10), with ¢ sufficiently large.
Obviously.

> exp(—9XT)NZ X exp(C—m)N)KY

Tlarge: T30 x
verls

T
a

1 LT\ , ~



574 M. Zahradnik

The last expression of (2.26) is smaller than a, for a sufficiently large 7, because of

the trivial relation q(gjkzo(a), a—0, g<1.

2.3. Generalization of Main Lemma

Consider the following model.

Definition 1. By a contour everywhere in Sect. 2.3 we mean a pair
= (suppl%signg,),

where suppl™® is a connected set and sign,(-) is a function of components of
(supp ') having values from {0, 1,2, ..., n}, the exterior component of (suppI'%)°
being signed by a nonzero value q.

We denote by V(I') = V(suppT') (see Sect. 2.2, Definition 1). Also, we denote by
int,I" the union of all interior g-components of the set (suppI')‘. We consider the
pair (¢, g) as a contour.

Definition 2. By a configuration x, in a finite A CZ" everywhere in Sect. 2.3 we
mean a consistent choice of contours {I;} containing (¢4, q) for some nonzero ¢,
consistency being meant in the sense that: 1) V(I;) C\dA for each i,

ii) dist(I;, I)=2, i#i" and if C is a component of A\U suppl; and {I;} C{[}}
is the set of all contours which touch C, including (¢,q) if CDAC, then the
functions signz, (-) coincide on C,

iii) intoFim< U suppl}) =0 for each i.

i Fi

Definition 3. Suppose that some a,>0 and also some “contour hamiltonians”
(I'") are given for g=1, ..., n. Denote by A,{I;} the set of all t € A which are either
g-correct (ie. are signed g by any of the function sign; mentioned in
Definition 2,ii)) or belong to the support of some g-contour from the system {I;}.
Define the hamiltonian

H(x,)= Zl a4 (x )+ 2D,  x,={[}. (2.27)
q= i
Suppose that all &(I') are invariant with respect to shifts in Z*. Suppose that a
Peierls condition
&) >|supp | (2.28)

is satisfied for each I', with a sufficiently large 7. Define the auxiliary contour
functionals

O*(IN)=d(I')—C|suppl], (2.29)
where C is from (2.5). Define the classes of equivalency [¢, supp '] consisting of
all I'* with the same ¢ and supp % and define the factorized contour functionals

&([q,suppl?]= —log > exp(— o). (2.30)

Tae(q,suppld]
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Notice that (2.28) implies the inequality
(g, suppI]) = (t—L)lsupp I (2.31)

for some universal constant L depending only on n. Denote by s} the free energy of
the polymer model with a weight

ksuppf =exp(— dj*[q? supp Fq]) . (232)
Assume that for each ¢g=1, ..., n the inequality
s¥<a, (2.33)
is satisfied. Assume that 7, C are such that C= C(7"), where
v'=1—L-2C. (2.34)

For any finite 4 CZ" and any g, denote by X () the set of all configurations (in the
sense of this Sect. 2.3) x, = {I;} on A such that {I;} (¢, q), i.c. the exterior contours
of x, are g-contours. Put

Z,(A,H) =XZ(A) exp(—H(x,)).

Then
Z,(A, H)Zexp(CloA°). (2.35)

Proof. Introduce again the notions of a level of a contour and of a level of a finite set
ACZ (see Sect. 1, Proposition 1.7). We will prove (2.35) by induction on the level
of A. First notice that the case when A has a level Ois trivial. To prove the induction
step we will use the main lemma. Given any configuration x , = {I;} (in the sense of
this section) denote by {1} its external contour system. Fix {I%,;} and notice that
each set A9=int;(I%,;) has a level smaller than the level of 4. We can therefore use
the induction assumption for Z,(A%, H). Clearly, if we denote by ext(=extx ) the

set A\U intI4,;, then
J

Z(AH)= ¥ exp(—aextx,)TTexp(—H(E) 1 Zy(AL H)

{Fexty}

s X (—aglext|[Texp(—®([g, suppls;])

" {lg, suppT e}

+Csupp I, ), (2.36)
where @ is the factorized functional [see (2.30)] and where we used the inequality
[compare (1.43)]

2 210(A%) | = 2 Isupp Ly (2.37)
J 4 J

Now we use (2.31). By (2.34), t —2C — L is sufficiently large such that (2.13) could
be applied to the last sum in (2.36): we obtain

ZAH)=s eXp(—aqlexﬂ)l;[exp(—fb*([q, supp I ;1)

{lg,suppI'dxe 1}

<exp(CloAY). gqed. (2.38)
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3. Completeness of the Diagram

3.1. Basic Ideas
We consider again the model introduced in Sect. 1 (1.1-1.5).

Definition 1. Given any configuration x,e X (4) [see (1.10)], denote by &
(=%(x,)) the system of all large contours I'? of x, which satisfy the following
condition:

supp ' Cint I for no small contour '@ of x ;. (3.1

Definition 2. Given x 4 € X ,(A) consider a canonical configuration x;; correspond-
ing to the configuration x ,, defined as follows:

i) () =(x), for te U suppI’. (3.2)
ii) If Cisacomponent of the set /1\ U supp[, then x has a constant value on
CuoC-. (3.3)

Definition 3. A stable domain of x,e X (A) is defined as the union of all
components of /1\ (U supp I which have a stable value (in the sense of Definition 5

of 1.7) in the canonlcal configuration x%. The points of stable domains will be
called stable points of the configuration x & X (A4).

Note. If t € Ais a stable point of x , € X (A), then either g is stable or the following
condition is satisfied: there is a contour I' of x ; and a stable § such that teint,I".
The converse statement is not true because for a nonstable g there may be a small

contour I'* such that int; "+ for some stable §.

Proposition. Denote by X)(A) the subset of X (A) consisting of configurations with
at least N unstable points. Denote by

ZiAH)= % exp(—H(x(xp)) (3.4)
Xy ()

Let 0<a<1. Let © in (1.9) be sufficiently (depending on o) large. Then
Z(A, H) <exp(—hold|—aaN + C|0A) (3.5
with some constant C= C(t), such that C—0 as t— 0.

Note. This statement is an essential step in the proof of the forthcoming
Theorem 3.2. In the proof of (3.5), we use the results of Sect. 2, Lemma 2.3 and
Proposition 2.2 in particular.

Proof. The summation over X}(4) in (3.4) will be carried out in two steps: 1) Fix
some canonical configuration x7, x , € X}(A1), and sum over all x , € X ,(A) with the

same x3. Let ¥ ={I}}. Denote by W,, ..., W, the components of A\U supp .

Notice that each x, from the equivalence class given by x7 satisfies the following
property: its restrictions to any W, have only small external contours. Actually, this
is, assuming that all I; are contours of x ,, an equivalent characterization of those
x4 € X (), which give the same x7.
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2) Now debote by CAN(A) the set of all possible #(x ), x, € XN(4), and
sum over all £ € CANY(A): writing

QI =D(I'") +e,lsupp |,
we get the relation
ZjAH)= 3  Tlexp(—@)I1Zyw (W, H), (3.6)

ZLeCANN(A) i J

where ZJ(W,H) denotes the partition function corresponding to the
configurations which have only small external contours (the same notation as in
the proof of iii), Theorem 1.6) and gy, is the value of x{ in W,. Using the very
definition of a small contour and using Proposition 1.6, we can rewrite (3.6) as

H exp(—04IY) 1:[ exp(— eq(WJ)l VVjDZ?(Wj)(VVja ). (3.7)

erCANsz(A) i
Using (2.5) for the factorized weight
kKi= 3 exp(=¥(),

Ia:suppla=T
we get the inequality
LW, W)L (W, V) Sexp(s,|W|+ Clowe]) (3.8)
with the same constant C as in (2.5). Substituting this into (3.7) and (3.6), we get
YA, 3 oxp( =S TTexp(—hyo W) + CIOWE)
> exp ( -2 4’*(5-))

€CANN(4) i

TTexp(—ayw W), (3.9)
J

= exp(—holA]) exp(CloA) P

where

@*(I') = &(I")— (ho—e,+ 2C) lsupp |, (3.10)

and where we used the inequality [see also (1.43)]
2 |0WF1=2 3 [supp I +10A4°]. (3.11)
J i

Now, a suitable factorization of contours is needed such that Lemma 2.3 could be
applied to the estimate (3.9): consider the equivalency I' ~ [ iff supp ' =supp [
and int, I =intq,f 4 for each nonstable ¢'. Each equivalency class [I'?] we identify
with a contour in the sense of Sect. 2.3. Put

O¥([ '] = —Iogf 3 exp(—o*(). (3.12)

qe[Id]

Define the free energy sy according to Lemma 2.3. Itis easy to see [from (2.26)] that
for a large t=1(o) we have, instead of (2.33), a stronger inequality

sp<(l—wa,, (3.13)

for any unstable g.
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Return now to (3.9). Using Lemma 2.3 and (3.13) we get

ZY(A, H) < exp(—holA| + C|oA|—oaN)
exp ( ”‘; O¥([I1]) IJI exp((o— Dagay )| Wil)

[Z]e[CANF(A)]

(by [#], [CAN](4)] we denote the equivalence classes, corresponding to the
equivalency classes [I'1])

<exp(—hylA|+2CloA°|—aaN). q.ed.

3.2. General Boundary Conditions

It is a time now to drop the assumption about the special boundary conditions,
used in the definitions of partition functions Z (A, H), Z(I', H) throughout Sects. 1
and 3.1, and to consider a general partition function

Z(A, X 4o, H)= Z exp( H(x 4]x 4c), (3.15)

er
where x 4. is an arbitrary configuration on A°.

Note. We return to the original form (1.2) of H(x 4|x 4) if needed. Also, we will not
omit the third term of (1.7) if this expression is used.

Definition 1. Let A be a simply connected set. Given any configuration x , € S* and
any boundary condition x 4., we say that a point ¢t € A is an “inner” point of x , if
there is a simply connected set ACA such that A5t and all points of 04 are
g-correct points of x ,,Ux 4. for some (stable or nonstable) g.

Definition 2. Decompose the set of all inner points into the components. Clearly,
any such component C is simply connected and there is some g (= g(C)) such that
x4 has, on 0C, a constant value g and all the contours of (x,)cU(x,)c have a
distance at least 2 from C¢. We say that t € A is a stable point of x , (at the condition
X 4o) if t is a stable point of some (x )., in the sense of Definition 3 of 3.1. We denote
by U (= U(t, x, A)) the component of the stable domain of (x )., which contains .

Theorem. Let 0 <o < 1. Suppose that t [in (1.9)] is sufficiently large. Then there
is a constant K such that for each finite simply connected set ACZ’ and for
each boundary condition x 4. the following estimate holds: Denote by X () the set
of all x € S* which have at least N unstable points. Denote by

2(Axae )= 3 exp(—Hx ), (3.16)
PY(A, % o0 H) = ZN(A, X 4o HYZ(A, x 00, H) . (3.17)

Then, for any N eNN,
PY¥(A, x 4o, H) <exp(—aaN) exp(K|0A) . (3.18)

Corollary. Let {A;} be a sequence of simple connected finite subsets of Z' such that
A, ZY in the Van Hove sense. Let {x s} be any sequence of boundary conditions.
Denote by P,,. the Gibbs state on S* corresponding to the boundary condition x ..
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Suppose that a limit Gibbs state, defined for each cylindrical set ACSA, A finite, as
P(4)=limP, (4) (3.19)

exists. Suppose moreover that P is a translation invariant Gibbs state. Then P can be
decomposed into the extremal Gibbs states constructed, for various stable q, in
Sect. 1.

Proof of Corollary. We will prove the following statement only (the rest of the
proof is a consequence of standard methods of the theory of limit Gibbs states):

Lemma. Let A be a finite simple connected subset of Z". Let x , and x 4. be arbitrary
configurations on A respectively A°. Recall the notion of the stable component U
containing a given point t € A ( Definition 2). For any stable q, any simply connected
finite A and any integer d, consider the event

Qu(t,d, q)={x:dist(t, U)=d, q(U)=4q}, (3.20)
where q(U) denotes the value of x on dU. Consider further the events
Qut,d, )= () Qxt.d,q). (3.21)
A:4AD04

Then for any integer d, any stable q and any simple connected A,
P(Q (. d,q))=0. (3.22)

Note. Therefore, for each t € Z*, each simply connected finite A and each integer d
we can find, with probability 1, some A>/4 and some simply connected set
U(t, x, A) such that dist (¢, U) >d and the restriction of the given configuration to
0U has a constant value, equal to some stable q. Now it suffices to use the decay of
correlations in any of the Gibbs fields of Sect. 1.

Proof of Lemma. First notice the following obvious consequence of (3.18): Suppose
that Q is a probability on SZ° such that all its conditional probabilities on 4, for
any x 4., are equal to the Gibbsian conditional probabilities. Denote by X™(A) the

event |J XY (A4)CS?". Then

M Q(XN(A) <exp(—aaN)exp(K|0A)). (3.23)
Suppose, on the contrary to (3.22) that for some ¢, d, g, A,

P(@,(t,d,q)>w for some w>0.
Using the translation invariancy of P and the relation
Qit,d,q)>8,(t,d,q), A>A,
we obtain, for any sufficiently large cube WCZ" the inequality
t;‘/ P(Qy(t, d, q))>w|W]|. (3.24)

But > P(Qy(t,d, q)) is the mathematical expectation of the number M of those
teW

t€ A for which x belongs to Qy(t,d, q). Estimate M by using the property that
XEQW(t$d9 q)= > ||t—S“ éd
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for some unstable point S of x, (with respect to x ,.). Clearly, then
M=<(24)'N, (3.25)

where N is the number of unstable points. Thus, the expectation of N (in P) would
be greater than (2d) ~«|W| which contradicts (3.23) if Wis large. This proves (3.22).

Proof of Theorem. We will relate (3.18) to the basic estimate (3.5). Recall the notion
of an inner point (Definition 1). Given x , and x ;. denote by x%" the restriction of
x4 to the set Outx , of all noninner points of x,. Denote by W the set A\Outx,,.
Denote by W, the union of all the components C of W which are g-components (i.e.
such that x,=gq for t € 9C). We get the relation

ZN(A, X 4o, H) =, > }eXp( — H(x%"|xp Ux 40) {NZ} [1Z)«(W,H), (3.26)
x/“’“l a a

where the first sum is taken over all possible {x%"} and the second sum is taken

over all {N,} such that N= 3} N,. Using (3.5) in (3.26) we get
qeQ

ZN(A, X 4o, H) S 0* { > } exp(— H(x%" Xy Ux ) exp <— holA]—aaN + Y. R ( Wq)> ,
(327)

where n* is the number of possible partitionings {N,} of N, and where R (W) is
given by the formula

R(W)=CloW+ ¥ [AnWi B ,((x.).4) (3.28)
Acw  |A|
[see (1.7)]. Notice that
S AlAl B ((x,).) < C,laW]. (3.29)
Aow Al

for some universal constant C,. Notice also [this is a similar inequality as (1.43),
(2.37)] that

3 0w £ |Outx 4| +[04] . (3.30)
q

C,=C;. We obtain the inequality, with C;=C+C,,
ZY(A, x e, H)S1* Y exp(—HOSG X a0))
gy
-exp(—ho|A|—aaN + C;]04|+ C4|Out, |). (3.31)

Because no point of Out x , is correct we can use the Peierls condition (1.9) and the
boundedness of all interactions @, to find another universal constant Cs such that
for each x,

H(x % 40) 2 1|Outx | — C5104]. (3.32)

Atlast, choose another constant Cq such that exp(Cg|T|) would be an upper bound
for the number of all possible x4 with the same Outx = T. Substituting this into
(3.31),
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ZN(A, x g0, H)E0* Y exp(—1|Outx 4|+ c,|Outx 4|+ cg049)
{Out}

-exp(—hglA| —aaN), (3.33)

where C,=Cq+C,, C3=Cs+C;, and the sum is taken over all possible
Out=O0utx,. Notice that Outx,udA is a connected set. It follows from this
observation and (3.33) that for a large t, there is another universal constant K such
that

ZN(A, x 4o, H) <1* exp(K|0A| — ho|A] — 2aN) . (3.34)

To remove n* notice that n* = o(g"), N — oo, for any g > 1. Therefore, for any o’ < a,
there is a suitable K’ such that

ZN(A, x 4o, H) S exp(K'|0A| — holA] — 2/aN) . (3.35)

On the other hand it is clear from the boundedness of all @, that for each stable ¢,
there is another constant L such that

Z(A, X 4o, H) 2 exp(LI0AYDZ (A, H),

ie., by Theorem 1.7, there is a constant L such that for each A and each x 4. the
following inequality holds:

2(A, x e, H) Z exp(L|0A] — ho|A]) . (3.36)
It is clear that (3.35) and (3.36) give the desired estimate (3.18). q.e.d.
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