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Abstract. We consider a conformal invariant formulation of quantum elec-
trodynamics. Conformal invariance is achieved with a specific mathematical
construction based on the indecomposable representations of the conformal
group associated with the electromagnetic potential and current. As a corol-
lary of this construction modified expressions for the 3-point Green functions
are obtained which both contain transverse parts. They make it possible to
formulate a conformal invariant skeleton perturbation theory.

It is also shown that the Euclidean Maxwell equations in conformal
electrodynamics are manifestations of its kinematical structure: in the case of
the 3-point Green functions these equations follow (up to constants) from the
conformal invariance while in the case of higher Green functions they are
equivalent to the equality of the kernels of the partial wave expansions. This is
the manifestation of the mathematical fact of a (partial) equivalence of the
representations associated with the potential, current and the field tensor.

1. Introduction

The development of conformal invariant quantum field theory in the last decade
(see, e.g. [1, 2] and references cited therein) has demonstrated that the traditional
approach to the conformal invariant formulation of massless quantum elec-
trodynamics leads to a purely longitudinal version of the theory. To show this,
consider the transformation law for the electromagnetic potential Aμ under
conformal transformations. We will use the Euclidean formulation [3] of quantum
electrodynamics. Conformal transformations of Euclidean coordinates are obtain-
ed from the following transformations (and translations)

Xμ-+χxμ> x^Rx^-Xp/x2, (1.1)
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where λ is any positive number. For the potential Aμ we have the transformation
law

λ : Aμ(x)-+ VλAμ(x) = λAμ(λx), R : Aμ(x)-+VRAμ(x) = ̂  g μv(x)Av(Rx) , (1.2)

where gμv(x) = δμv — 2xμxv/x2. From this it follows that the conformal invariant
propagator

must satisfy the functional equation

The only solution to this functional equation is the longitudinal function

(1-4)

We obtain, therefore, a trivial variant of electrodynamics containing purely
longitudinal photons. Such a theory has been considered in [4] (see also [5]) for
purposes of method. Various attempts have been tried to overcome this difficulty,
(see [2] and references cited therein). However, the final solution of the problem
had not been obtained until now.

The reason for the difficulty mentioned above lies, as it will be shown, in the
unusual structure of the conformal group representations corresponding to the
field Aμ. The fact is that in the usual approach an irreducible unitary repre-
sentation of the conformal group is attributed to each field and the propagator of
such a field is identified as the kernel of an invariant scalar product in the space of
the representation. It turns out to be impossible, however, to act in such a way if
one adopts the transformation law (1.2) for Aμ. In this case we obtain an
indecomposable representation and the corresponding invariant kernel turns out
to be degenerate [8, 9]. Indeed, in the space of functions with the transformation
law (1.2) there is an invariant subspace consisting of longitudinal functions; if

Aμ(x) = dμφ(x), then A'μ(x)= -^gμv(x)Av(Rx) = dμφ(Rx). However, the complement
x

to this subspace is not invariant, and this fact indicates the indecomposability of
the representation. To work with such representations demands application of
special mathematical apparatus which is reviewed in Sect. II (see also [7, Chap.
Ill] and [10]).

In the present paper we formulate a new approach to the solution of the
problem mentioned above in which fully reducible representations obtained from
the indecomposable ones (1.2) are used instead of the latter. As it is shown in
Sect. II this results in a new transformation law for the potential and the current.
In particular, we obtain

x) , (1.5)
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where Pf = δμδv/Π, instead of (1.2), see also [6, 7]. Analogously the operators V'g in
the new representation are defined for each conformal transformation g:

Vg=(l-P')Vg(l-P*)+VgP*, (1.6)

where Vg is the corresponding operator of the indecomposable representation. [It is
easy to verify that the operators V'g give rise to a representation: VglVg2 = Vgig2. To
do this it is sufficient to use the relation (1 — P^)VgP*Aμ = Q, which follows from the
mentioned invariance of the subspace of longitudinal functions under the transfor-
mation VgJ] The new representation Vg is reducible and an irreducible repre-
sentation acts in each of the invariant subspaces P*Aμ(x) and (l — P*)Aμ(x\ see
Sect. II for more details.

The modified conformal invariant photon propagator corresponding to the
new representation (1.5), (1.6) looks, as it can be easy verified, as follows (see
also [6, 7])

1

D x
(1.7)

where η is an arbitrary constant and the normalization factor l/4π2 is chosen for
the sake of convenience.1 Thus, use of the representation (1.6) solves the problem
of conformal invariant electrodynamics. The new transformation law (1.5) evi-
dently results in modified expressions for conformal invariant 3-point Green
functions and vertices. These expressions can be found in Sect. III.

The main result of Sect. Ill is the analysis of the Maxwell equations for the
Euclidean Green functions. We will show that the Maxwell equations for the
3-point Green functions are consequences (as well as the equations for Euclidean
classical fields, see [7]) of the conformal invariance. Then it will be shown that in
the case of higher Green functions the Maxwell equations are equivalent to the
condition of the equality of the kernels in the partial wave expansions. It means
that the fields Aμ9 jμ, Fμv appear in the conformal invariant theory as an unified
object and the Maxwell equations serve as a manifestation of equivalence of the
corresponding representations of the Euclidean conformal group.2

In Sect. IV skeleton perturbation theory will be formulated and a proof will be
given of its conformal invariance (see also [6, 7]).

II. The Structure of Conformal Group Representations

First we introduce a space HA of test functions for the vector potential. Let HA be
the space of the representation TA of the conformal group which is created from a
vacuum by a quantum field A . It consists of the vector functions with the
transformation law

1 A nontrivial propagator with somewhat different longitudinal part was exhibited in [11]
2 An interpretation of the Maxwell equations in Minkowski space as an intertwining relation was
proposed by Jakobsen and Vergne [12]. See also Chap. VII of [2]
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and the function D1™8 (1.4) defines an invariant hermitian form in this space. In the
space HA (do not confuse with the space of classical fields of which it was said in
the introduction) there exists an invariant subspace consisting of the transverse
functions fμ(x\ Sμfμ

τ(x) — 0. An invariant hermitian form having as a kernel the
conformal invariant propagator (1.4) vanishes on this subspace. According to the
known mathematical theorems, in this situation one cannot introduce an invariant
scalar product and consequently, the Green functions D^0

v

ng, having the property of
being non-degenerate on the full space HA. This is the cause of the difficulty
mentioned above.

A way out is as follows. Consider the quotient space

HA = HA/H«. (2.2)

The equivalence classes consisting of all functions in the space HA differing by a
transverse function are the elements of this space. The subspace HA is isomorphic
to the space of longitudinal functions. To the space HA we associate the direct sum
of spaces

HA-^H = Hi

A®H^A. (2.3)

It is known that an irreducible unitary representation of the conformal group acts
in each of the spaces ίfj and HA. Denote these representations as T% and TA.
Evidently, the unitary representation T%®TA acts in the space H; thus there exists
an invariant scalar product in this space. The kernel of this scalar product is an
invariant function to be identified with the photon propagator (1.7).

To elaborate on this program it is suitable to choose in each equivalence class
from the space H^A the longitudinal representative. Then the space H can be
realized as the space of vector functions

/» = /» + //(*), (2-4)

where f£(x)εIf A, fμ is the longitudinal representative of an equivalence class from
HA. With such a realization each function fμeH has an unusual transformation
law. The transverse part fμ transforms according to (2.1) while the longitudinal
one, being the representative of an equivalence class, has the following transfor-
mation law accomplished in two steps

and then

The last step is connected with the fact that the property of longitudinally has been
lost after the conformal transformation, see e.g. (2.5), therefore it is necessary to go
again to the longitudinal representative of a given equivalence class.

Consider an invariant scalar product on H, The transverse function D^v(x)

}—2 can be chosen as the kernel of an invariant scalar product on
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H^. One can directly verify that the scalar product

(where fμ and φ* are transverse functions from H^) is conformal invariant, see [8]
and Sect. IV for more details. The kernel D^°v

ng of the scalar product on Re

A

coinciding with (1.4) is the longitudinal function. A superposition Dir

μv + D^8 can
serve as the kernel of an invariant scalar product on the whole space H if one
realizes the latter as it has been described above. As it has been pointed out, this
kernel can be identified with the photon Green function. Thus, in the described
realization of the space H we obtain a conformal invariant formulation of
quantum electrodynamics in which the photon propagator is as in (1.7).

Let us now consider the properties of the representation corresponding to the
current jμ. This representation is indecomposable. Denote as Hj the space of the
representation TJ. It consists of the vector functions φμ with the following
transformation law

λ : φμ(x)-+λφμ(λx), R : φμ(χ)-> ~ gμv(x)φv(Rx). (2.7)
x

It can be shown that Hj has an invariant subspace R£. consisting of the
longitudinal functions. Let us introduce the quotient space ί/V = JΐyTf j" consisting
of the equivalence classes. This space is isomorphic to the space of the transverse
functions. The irreducible unitary representations T*r and T? act [8, 9] in H" and
H*. Define analogously to (2.3) the space

H = HJ®H*. (2.8)

Choosing in each equivalence class from Hj the transverse representative we
obtain a suitable realization of the space H^ to be used later. With such a
realization the space of the vector functions

) , (2.9)

where φ*μeH*9 φl

μ are the transverse representatives of the equivalence classes from
Hlj, can be chosen as the space H. Like the functions fμ [see (2.5) and (2.6)] they
are transformed in two steps

R : < (x)- φ;tr(x) = gμv(x) ̂  φl

v\Rx) , (2. 10)

<Γ(*M<5μv - WΠK'M . (2.11)

The transformation (2.11) is due to the fact that the transversality is violated after
the .R-transformation (2.10), and it is necessary to go back to the transverse
representative of a given class again. As a result, we obtain for the vector functions
(2.9) the transformation law (1.5).

It is essential that the relations of equivalence [8]

Tf-Tj , 7/~Ti (2.12)

take place between the irreducible unitary representations 7?r and 7^r, T? and 7^
introduced above. The corresponding spaces are isomorphic. This isomorphism
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can be written down with the aid of the kernels D**v and Dl™g. We have

#(*!) = J dx2(D^)trFv(x2) = (δμvO - 8μdv)Fv(x2) , (2. 13)

where fμ

τEH^ Fv(x) is any representative of the equivalence class from ίfj.r;

φfciH^!^ (2 14)

where φjejyί, φv(x) is any representative of the equivalence class from H*A.
Invariant kernels3 (D"/)11 and D1™* appear as intertwining operators for equiva-
lent representations (2.12). The relations (2.13) and (2.14) expressing the isomor-
phism of the spaces of these representations are conformal invariant. These
relations play an important role in the analysis of the Maxwell equations.

III. Maxwell Equations

In this section it will be shown that the Maxwell equations for each pair of
Euclidean Green functions

(3.1)

(3.2)

constitute one of the ways to express the relations of partial equivalence of
representations, see (2.12) and (2.13), (2.14). We start with 3-poίnt Green functions.
Consider the Green function Bd

μ'*(z\xίx2\ including a potential Aμ with scale
dimension ΔA = i and two different spinor fields with dimensions d and /. As
known, there exist two invariant structures with such quantum numbers

£-ά\ V2 2
13 23

3 Contrary to Dl*v the transverse kernel (DAtv

1)tΓ(x12) = (^vΠ"^^(^12)is conformal invariant:

(D /Πx.^^ίx^^-V^^i^vv'ί^)^;^1^!-^))^-
It defines an invariant scalar product on the space Hj
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The function Cd^μ is longitudinal. It4 can be considered as a function belonging to
H*. It should be noted that one cannot construct a transverse superposition from
the functions Cd^fμ and C%fμ. This is due to the structure of the space H* which
consists of the equivalence classes. The function Cd^μ can be considered as a
representative of such a class. According to Sect. II it is necessary to select the
transverse representative in each class; only in this case the choice (1.7) of
propagator can be justified (see Sect. IV for more details). It is necessary, therefore,
to make the substitution

Ct^lx^^-^-a^^/Π^Ct^zlx^,). (3.5)
Thus, the most general expression for the Green function is [6, 7]

Consider the Green function Bd

μ'*(z\xίx2), including the current^ (the current
dimension is -̂ = 3) and two spinors. In this case there also exist two invariant
structures one of which is transverse

£+d-l d-έ+2 έ-d+2

(χ?2)
\(χl3)μ

x2

2 (x2

13)
 2 (x2

23)
 2

(X23^
χ223

1r (3.7)

*12
t? + d- 1

(x2 } 2

V Λ 12^

1
d-^+2

(Ύ2 \ 2
1X13/

1

^-d+2
ίγ2 \ 2
V Λ 2 3 /

(^I3)μ

*?3

The transverse function Cd^μ belongs to the space H% while C%fμ is a repre-
sentative of equivalence class from H*A. As in Sect. II let us choose the longitudinal
representative in each class

C^lx^H |p Cl/ΛΦΛ). (3.8)

As a result we find for Bd

μ'*,

Bd'e = C^μ+
S-^C^. (3.9)

The functions Bμ and Bμ [more precisely, their convolutions, see the footnote
after (3.4)], are elements of the spaces introduced in the preceding section: BμeH,
BμeH. Since the representations acting in H and H are equivalent, these functions
can be connected via relations of the type (2.13) and (2.14). To obtain these

4 More generally, it is its convolution ^dxidx2χ(x1)C^fμχ(x2), where χ and χ are spinors, that can be
considered as a function belonging to H*
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relations it should be noted that by a suitable choice of normalizations the
functions C1 2 and C 1 > 2 satisfy the conformal invariant amputation relations

- -(^vΠ^-^^OCt/^Jx,^), (3.10)

<^(*ll*l*2)=f^

~$dz2dΐdϊlnzl2 Cϊfv(z2\XιX2). (3.11)

Here (3.10) is analogous to the relation (2.13) expressing the isomorphism ofjthe
spaces H^ and ίf while (3.11) is analogous to the relation (2.14). The function C2 μ

enters the right-hand side of (3.11). In view of the longitudinality of the kernel D{t°v

ng

one can keep only the longitudinal part of this function, i.e. it is possible to pass to
a longitudinal representative (3.8) and then to take the inverse of the obtained
relation

^ C*'(Zl \Xlχ2) = J dz2(D^(Zl 2)rn^fv(z2\Xlx2)

-δ^'Cf^JxΛ). (3-12)

Evidently, one can pass to full Green functions (3.5) in the right-hand side of (3.10)
and (3.12)

l ΏZ)C2> v(z\Xlx2) - dldlBv(z\x,*2} .

Substituting these relations into (3.9) we obtain

(3.13)

Two arbitrary parameters - an overall normalization (set equal to 1 below) and
the constant 1/η enter this relation. This arbitrariness is due to the possibility of an
arbitrary choice of the normalizations of kernels D*v and Dl™g. Putting £ = d'm
(3.13) we obtain the Maxwell equations for 3-point Green functions in the
generalized Feynman gauge.

ί(z|x1x2) = Gi(z|x1x2). (3.14)

Thus, we have demonstrated that these equations follow from conformal
invariance.

Consider higher Green functions (2.1) and (2.2). One can represent them as
partial wave expansions (see [1,2] and references therein). For G^ we have

(3,15)

Here the quantum numbers σ = (/, s), where / is dimension 5 is spin, are attributed
•j 2 + ioo

to the internal line, £ = —: J d^ ]Γ, Q* is an invariant 3-point function. A
σ 27Π 2-ioo s
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dotted leg of these vertices corresponds to the vector potential Aμ while the solid
line corresponds to the spinor field ψ. For s = 1/2 they coincide with functions

(3.5): Qμ/2(x3\xίx2) = Bμ(x3(x3\XιX2)
 In cl°se analogy with (3.15) we have for the

Green function

(3.16)

The current jμ is associated with the dotted leg of the invariant functions Qs . For
s= 1/2 they coincide with the invariant functions (3.9):

It is essential for future use that the normalization of the functions Qs

μ and Qμ

can be chosen in such a way that they can be connected by an amputation relation
(as in the case of Bμ and Bμ this follows from a partial equivalence of
representations) :

The inverse relation is

(3.17)

^ (3.18)

For s = l/2 it reduces to (3.13). The normalization is further fixed by the
orthogonality relation

— ^ '~^ — f> ' Λ _^ ̂  -̂" -- --- ^ ̂  ». . I

(3.19)

where a dotted internal line corresponds to a (5-function and ]Γ /σσ,/(σ') =/(σ) for
any / σ/

Now we are ready to find the quantities R and R entering (3.15) and (3.16).
Making use of (3.19) we have

(3.20)

(3.21)

where the dotted internal line corresponds to a δ-function. Suppose that the Green
functions Gμ and Gj

μ satisfy the Maxwell equations (in the generalized Feynman
gauge):

-Vu (3.22)



538 E. S. Fradkin, A. A. Kozhevnikov, M. Ya. Palchik, and A. A. Pomeransky

Let us represent the δ-function corresponding to a dotted internal line on the
right-hand side of (3.20) as

Making use of the Maxwell equation (3.22) and relation (3.17), one can transform
the right-hand side of (3.20) to the right-hand side of (3.21). It means that the
equality

(3.23)

follows from the Maxwell equations. An opposite proposition is also true: if one
postulates (3.23) then the Maxwell equations follow from conformal invariance.

It is essential that all the dynamical information is contained in the quantity R.
Thus the Green functions Gμ and Gj

μ constitute a unified object and can be written
both in the following equivalent forms:

(3.24)

The Maxwell equations connect these forms and express the equivalence of the
corresponding conformal group representations.

The Green functions containing the electromagnetic tensor Fμv can be treated
in an analogous way. Let TF be the irreducible representation corresponding to
this field and HF be the space of this representation. It is known [8, 9] that the
representation
above :

TF is equivalent to the representations T% and Ί]r introduced

TF~7f. (3.25)

In particular, the kernel of the intertwining operator connecting TF with Tj.r is

<o| τpμv(x Mx2)\oy - (dμδvτ - 3ΛτW*ι 2) -
The Green function Gμ(z\xί ...yr) = (Q\TFμv(z)ψ(x1) . . . v>(j>Λ)|0> can be represented
as above in the form of the partial wave expansion :

(3-26)

where a dotted line corresponds to the field Fμv. Demanding that the quantity R
coincides with the analogous one in (3.24) one can show that the Green function
G v̂ satisfies the Maxwell equations

G£v = dffi ~ W, - dz

vG
F

μv = G; + dffiG*. (3.27)

These equations are a consequence of the equivalence relations (3.25), and the
Green function GF

V appears to be one more form of the transverse part of (3.24).
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IV. Invariance of Skeleton Theory

In order to clarify the question of the existence of conformal behaviour in
electrodynamics it is necessary also to verify the selfconsistency of the equations
for the vertex and the propagator. As known, these equations play the role of
conditions of existence of conformal solutions in QFT. From these equations it is
possible to calculate the values of the scale dimension of the spinor field and a
coupling constant. In particular, the skeleton equation for the vertex has the form

where conformal invariant vertices and propagators enter the right-hand side.
First of all, it is necessary to prove conformal invariance (in the sense of Sects. II
and III) of the graphs on the right-hand side. Then, as known [1,2], this equation
becomes an algebraic relation determining the parameters of the theory (in the
present case, the parameters d and g). Another condition appears from the
equation for the propagator. More detailed analysis of bootstrap program in
electrodynamics is given in [6]. Here we confine ourselves to the proof of the
conformal invariance of the skeleton theory.

Consider any skeleton graph. As is known, the integrals over internal fermionic
lines are conformal invariant provided these lines join conformal invariant
subgraphs. Therefore, it is sufficient to consider the integral over an internal
photonic line

x^ ^/
(4.1)

where J5μ'
d is the function (3.5). This expression represents the invariant scalar

product on H (because BμeH, see Sect. Ill) and, consequently, is conformal
invariant. Indeed, substituting into (4.1) the explicit expressions (1.7) and (3.9) we
obtain

+ J^5^6C25μ(x1x^x5)^°v

n8(x56)C2>v(x6|x3x4). (4.2)

The first term is an invariant scalar product in the space H^. Its invariance is
provided by the trans versality of the invariant functions C1 μ, since the kernel Dμ

r

v

by itself is not invariant under the jR-transformation. Terms in Dμv appearing after
a .R-transformation and breaking the invariance are longitudinal and disappear
when substituted into (4.2). The invariance of the second term, which is a scalar
product on H*A, is manifest since only conformal invariant functions enter the
integrand.

The special role of the projection operator dμ<9v/Π in (3.9) should be noted.
Due to this operator the cross terms breaking the invariance do not appear when
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passing from (4.1) to (4.2). But in the final expression, in the second term of (4.2),
this operator can be omitted due to the longitudinality of the kernel Dl™g.

Integral (4.1) can also be expressed in terms of the functions Bμ and inverse
propagator D"/. In this case we have

(4.3)

Integral (4.3) is the invariant scalar product in the space H. The presence in (3.5) of
the projection operator (δμv — dμdJ\Σ\) is essential when passing to (4.4). In the final
result it is omitted due to the transversality of the invariant function CD"/)11". The
invariance of the second term [with non-invariant kernel CD"/)10118] is provided by
the longitudinality of the function C2 μ. Thus the integral (4.3) is conformal
invariant.

In conclusion we note that since the vertex Γμ (or the Green function Gμ)
contains two independent structures, the skeleton equation shown in the be-
ginning of this section is in fact equivalent to a couple of equations which may be
suitably presented as equations for conformal invariant functions Γμ

τ and G^μ [6].
In the three-vertex approximation we have

It can be shown that the second of these equations is equivalent to the fermion self-
energy equation.
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