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Abstract. According to the theory of Schréder and Siegel, certain complex
analytic maps possess a family of closed invariant curves in the complex plane.
We have made a numerical study of these curves by iterating the map, and have
found that the largest curve is a fractal. When the winding number of the map
is the golden mean, the fractal curve has universal scaling properties, and the
scaling parameter differs from those found for other types of maps. Also, for
this winding number, there are universal scaling functions which describe the
behaviour as n— oo of the Q,™ iterates of the map, where Q,, is the n™ Fibonacci
number.

1. Introduction

During the last few years, considerable progress has been made towards under-
standing the onset of turbulence or chaos of dynamical systems by studying the
properties of one- and two-dimensional maps of real variables. Scaling and
renormalization group ideas have elucidated the appearance of universal quan-
tities associated with these maps which are directly relevant to physical systems. In
particular, the period doubling transitions have now been found experimentally in
various systems with exponents in good agreement with the predictions of the
scaling theory [1]. Also progress has been made in applying scaling and
renormalization group concepts to one-dimensional maps of the unit circle, which
are believed to be generic for transitions which exhibit mode-locking on the route
towards chaos [2], and also to the area-preserving twist map relevant to the study
of critical Kolmogorov-Arnold-Moser (KAM) trajectories [3]. Other routes to
turbulence, such as the scenario described by Ruelle and Takens [4], are
understood only qualitatively.

In this paper, we study the scaling properties of a map z—f(z), where z is a
complex variable and f(z) is complex analytic, and usually a polynomial. Apart
from the fact that such a map is a natural extension of the well-studied quadratic
map on the unit interval [1], we were motivated by finding numerically that under
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certain conditions, repeated iteration of the map generates sequences of points
lying on closed curves in the complex plane. In fact, the existence of such curves
was recognized by Schroder in the last century, although it was only relatively
recently that Siegel made Schroder’s argument rigorous [5]. We review this theory
in Sect. II. Fundamental studies of iterates of rational complex maps were initiated
by Fatou [6] and Julia [7], and have continued up to the present time [8-11].
Note that the Schroder theory for complex maps corresponds to Moser’s twist
theorem, which states sufficient conditions for the existence of a KAM trajectory
for area-preserving maps in the plane [5], [12].

Our main results concern the limiting curve beyond which the Schrdoder theory
breaks down. This curve is not smooth, but rather has fractal properties. In
Sect. II1, we consider the class of maps whose winding number (the average angle
of rotation about the origin per iterate) is the golden mean. We present evidence
which supports the conjecture that the fractal curves associated with almost all of
these maps have universal scaling behaviour. The relationship between this scaling
behaviour and the Schroder theory is discussed in Sect. IV. In Sect. V we study the
generalization of the period doubling bifurcations which occur for iterated maps in
the complex plane.

Finally, a note on our style of presentation: we have direct numerical evidence
for almost all the statements in this paper which are not proved. We have
presented as Conjectures those of our results which are of greatest generality, and
for which it would be most valuable to have an analytic proof.

II. Schroder Theory and the Fractal

Let z— f(z) be a complex analytic map with a fixed point at z=0, and a convergent
power series

f(z)=az+ i 17 (2.1)

We denote the n'™ iterate of z by f"(z), defined inductively by f"(z)=f(f""'(2)),
f°%z)=2z. We shall usually take f to be a polynomial, which guarantees the
existence of all these iterates. The fixed point is stable if |a| <1.

In this section, we assume that |a|=1 and w=(2n) !arga is irrational.
Numerical iteration of the map then leads to a striking result. For any point z
sufficiently close to the origin, all iterates of z appear to lie on a smooth curve
passing through z, which is filled more and more densely as the iteration proceeds.
Topologically the curve is a circle surrounding the origin. If the initial point is far
from the origin, then the iterates may escape to infinity or there may be a transient
behaviour until some iterate lands on one of the invariant curves. Thereafter, all
iterates stay on this curve.

The invariant curves very close to the origin are approximately true circles, for
then the nonlinearity of f is small, but those further out are less circular, and,
remarkably, there is a limiting invariant curve with fractal properties. We shall
refer to this curve as the fractal. It seems to be continuous but not differentiable,
and the density of points on it, after a fixed number of iterations, is highly non-
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uniform. A key observation is that there is a point on the fractal, denoted by z,,,
which is a stationary point of the map, i.e., f'(z;)=0. An example of such a fractal
curve, and one of the nearby smooth curves, is shown in Fig. 1. Here f(z)=az— 2%,

and the winding number is the golden mean w, =§(l/§— 1).
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Fig. 1. Fractal and nearby smooth invariant curves for the map z—az— z?, where a=exp2niw, and
w,=H)/5-1)

Some of the above results follow from the classical Schroder theory [5].
Suppose there is an invertible mapping ¢~ ' from the z-plane to a complex w-plane
such that the effect of f in the z-plane is reduced to a simple rotation about the
origin in the w-plane. Then all iterates of z lie on the image under ¢ of a circle in
the w-plane, hence on a curve. The functional equation for the Schroder function ¢
is

f(p(w)=plaw). (2.2)

In the w-plane the rotation per iterate is w, so the average rotation per iterate, or
winding number, of the map f is also exactly w.
A formal series solution of (2.2) can be obtained. Let

dpw)y=cw+ Y ¢w*, c=*0. (2.3)
k=2
Then (2.1) and (2.2) imply that
Y cld—awr =Y flew+ Y cwhY. (2.4)
k=2 i=2 k=2

The coefficient of w* on the left hand side is ¢,(a* — a), whereas the coefficient on the
right hand side involves only {¢;:2<i<k—1}. The coefficients c, can therefore be
computed sequentially in terms of the coefficients of f and the arbitrary scale
parameter c. Since w is irrational, the denominator a*— a is never zero.

The Schroder series may have zero radius of convergence if w is too close to an
infinite set of rationals, but Siegel proved the following theorem [5]:
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Theorem. If there exist positive numbers A, u (depending on w) such that for all
integers m,n (n>1)

lwo—m/n|>Ain"*, (2.5)

then the Schroder series has finite radius of convergence for all functions f (whose
power series (2.1) has finite radius of convergence).

The winding numbers satisfying (2.5) form a set of measure one on the unit
interval.

The best way to study rational approximations to the irrational w is via the
continued fraction representation

o= — (2.6)

r,+
2t

where {r;} is a set of positive integers. The rational approximant p,/q, is obtained
by truncating the continued fraction at r,, and can be computed inductively by
pnzrnpn~1+pn—2> qn:rnqn—1+qn—2?
po=0, gq,=1, p. =1, gq,=r,.

The condition (2.5) fails only if r; increases too rapidly with i. In particular, if
r,<R Vi, then (2.5) is satisfied with u=2, A=R™ ™.

In terms of Schroder theory our main observation can be formulated as the
following:

2.7

Conjecture 1. For some large class of maps of the form (2.1), the associated Schréder
series converges on its circle of convergence, and the image of the circle of
convergence is a fractal curve passing through a stationary point of the map.

While it is clear (see below) that the stationary point of the map prevents a
larger radius of convergence, it is surprising that we have not encountered a
smaller one.

Since a complex analytic function is infinitely differentiable inside its circle of
convergence, the invariant curves inside the fractal must be smooth. However, the
fractal itself cannot be smooth. To see this, consider the derivative of the Schroder
equation (2.2)

f(@w)¢'(w)=ag'(aw), (2.8)

and suppose z, = ¢(w,). Since f'(z,)=0, it follows that if ¢'(w) exists at all on the
circle of convergence, either ¢'(w)=0 for all w=a"w,, or ¢'(w)=o00 for all
w=a""w,,(n>0). These image and preimage points w are dense, so the fractal is
not even piecewise smooth. We shall conjecture below that the fractal is nowhere
differentiable. This argument could fail if /" had poles on the curve, but such poles
are certainly absent for polynomial maps.

Because the map f is conformal, the neighbourhood of any point on the
fractal, other than the stationary point, is geometrically similar to its image under
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/- This statement has content even if the curve has neither left nor right derivatives,
and hence no corners. For example, if the part of the fractal near z is bounded by
lines passing through z, then the same is true at f(z), with the same angles between
the lines.

Although it appears difficult to explicitly compute the Schroder series (2.3) by
the method described earlier, even for the simplest map f(z)=az—z2, we have
been able to compute the coefficients numerically. For convenience, we fix the
scale parameter ¢ so that ¢(1)=z,. The radius of convergence is now unity,
assuming that Conjecture 1 is true. Since the fractal is the image of the unit circle

de)=ce’+ ) ce™, (2.9)
k=2

the coefficients can be obtained from its Fourier transform. In practice, we need
values of ¢(e') for a uniformly spaced set of angles 6. There is no exact way of
getting these, but if we take a rational approximant p/q of w, and replace
a=exp2niw by a=exp2nip/q, then we can regard z, and the g— 1 iterates of z, as
approximately the set ¢p(exp2mninp/q), 0 =n<g— 1. The angles 2nnp/q have uniform
spacing 2n/q. Alternatively, one can leave a unchanged, take g— 1 iterates, and
interpolate.

We have good numerical evidence in just one special case (see Sect. IV), but are
prepared to make the following general conjectures about the coefficients.

0

Conjecture 2. (i) ) |c,| converges.
k=2

(i1) klim |kc,| does not exist ; in particular, it is not zero.
— 00

The first of these conjectures has the important consequence that the Schroder
series (2.9) converges absolutely and uniformly on the unit circle, so the fractal is
continuous. Since ¢(expif) is bounded, the interior of the fractal has finite area.
The second conjecture prevents term by term differentation of the series and
suggests that the fractal is nowhere differentiable.

A general property of ¢, which follows from the Schrdder equation and the
single-valuedness of f, is that ¢(expif) can equal ¢(expif’) for some 046 only if
¢(expif) is periodic in 6 with period 2n/N, N >1. But ¢ is 1 —1 on circles close to
the origin, so by continuity of the winding number, N =1 is impossible. Therefore
¢ is continuous and 1 —1 on the unit circle, and its image, the fractal, is a Jordan
curve, It follows that its interior is a domain D, and ¢ ~! is the Riemann map from
D to the unit disc.

A final conjecture, based on numerical evidence for one particular map
discussed in Sect. I11, is that the fractal has infinite length, and a dimension d> 1.

III. Scaling Properties

In this section we describe results obtained when the winding number is the golden
mean w0=§(]/§— 1)=0.618034 ... The golden mean has the continued fraction
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representation

1+

1+ ...

and its rational approximants are of the form Q /Q,,,, where Q, is the n™
Fibonacci number. Siegel’s theorem guarantees that the Schroder series has finite
radius of convergence for this winding number.

We have worked mainly with maps f(z)=a,z—z>+ Cz>, where a,=exp2nic,,
and in particular with the quadratic map (C=0). The fractal curves associated
with them exhibit scaling behaviour which is independent of C (except for some
special values to be discussed), and we believe that this same behaviour is universal
to a much larger class of maps, including almost all polynomials whose constant
term vanishes and whose linear term is a,z, and for which f(z) has just simple
roots.

When z lies inside the fractal curve, the Schrdder function is differentiable, so
the sequence of Fibonacci iterates of z, f2(z) approaches z along a smooth curve
at a rate determined by the winding number w,. We have Q,w,=0,_; —(—o,)".
Hence, for large n, if z=¢(w), then

121(2) = Pp(e*™ 0w, (3.2)
S0
F2(z)— zxi(— wg)e,(2) + 03"cy(2), (3.3)
where
c,(2)=— 2nw%,
, p (3.4)
cy(z)=—2m" (w£ +w? d—wii) .

Note, in particular, that

On+1 _
lim fo—(—Z()Z)_ZE = —w,. (3.5)

When z lies on the fractal, the derivatives of ¢(w) do not exist and we expect a
different behaviour. Consider first the stationary point of the map z,, which lies on
this curve. In contrast with (3.3), for large Q, (we have gone up to n=28) we find

S (zg) = zg = a0 (3.6)
where o =0-741932..., 20, =107-27° ..., and ¢, is a complex constant. A more

precise way of expressing this result is

lim S+ (z0)— 2 — et 20

neverpne S (2020

(3.7)
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Because the map f is conformal everywhere on the fractal except at z,,, Eq. (3.7) is
also valid if z, is replaced by any preimage of z,. However, assuming that
f"(z,) %0 (which excludes some values of the cubic coefficient C), at the image of
z, we have

() =) st
1 =aZe™ 40
nevenrn Oz ) —f(zg)

nodd "
and this scaling behaviour is propagated to all succeeding iterates of z,.

Since both the images and preimages of z,, are dense on the fractal, this type of
scaling behaviour excludes the possibility that the fractal is even piecewise
differentiable. It is also not surprising that the scaling behaviour (3.5) on the
smooth curves is intermediate between that of (3.7) and (3.8), i.e. that

(3.8)

wr<wy<o, 20, <m<40, . (3.9)

The Fibonacci preimages of z, [denoted f ~2%(z,]] are obtained by iterating the
inverse map f ~!(z). When f(z)=a,z— 22,
2 1/2
“1(5= %o _ (% _

I (.10)
with the branch cut directed outside the fractal, and f~*(0) set to zero. Defined
this way, f ~! has the same invariant curves, including the fractal, as f. We find
that

7 (zy)—zgc_ale - (3.11)

where 20_=119.6°... and c¢_ is a new constant. This scaling behaviour is similar
to that of (3.6).

These results are illustrated in Fig. 2a, which shows part of the fractal close to
z, for the quadratic map. The points where the fractal and the lines with opening
angle 20, intersect are Fibonacci iterates of z, (the number of iterates is indicated).
The Fibonacci preimages of z, are where the fractal intersects the lines with
opening angle 26 _.

These observations concerning Fibonacci iterates are special cases of a more
general approximate scaling property of invariant curves near z,, including the
fractal. We find that the fractal is self-similar after a uniform expansion about z,
by the scale factor «~ !, and a reflection in the symmetry axis shown in Fig. 2a,
which bisects the opening angle between the two lines generated by the Fibonacci
iterates of z,. Fig. 2b shows part of the curve in Fig. 2a, but expanded by o~ '. In
Fig. 2c, this is further reflected in the axis of symmetry and brought into
coincidence with Fig. 2a. (The small offset is for clarity.) Furthermore, a segment of
a smooth curve through a point z,+# on the symmetry axis coincides, after the
same rescaling and reflection, with a segment of the curve through the point
2o +n/a, provided |y <€1.

The approximate self-similarity of the fractal near z, enables us to define a new
non-closed curve. Thus z, + 6 lies on this new curve if there is a sequence of points
{zo+0,} on the fractal such that lim d,/a*" exists and equals é. Heuristically, the

resulting curve is like Fig. 2a, bounded between the lines shown, but stretching to
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Fig. 2a. Part of the fractal of Fig. 1, close to z,, and some Fibonacci iterates of z,. Positive numbers
denote forward iterates and negative numbers denote iterates of the inverse map. The dashed line is the
symmetry axis. b Same as a, but rescaled by « ™ 1. ¢ Superposition of b, after a reflection in the symmetry
axis, and a. This shows the self-similarity of the fractal near z,
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infinity. It is exactly self-similar. This curve is important because we have evidence
that up to a linear transformation, it is universal, occurring for almost all maps
with winding number ®,. We shall therefore refer to it as the universal fractal.
We now present a generalized scaling result involving Fibonacci iterates of any
point z lying on an invariant curve and close to z, This has been verified
numerically to high accuracy in a certain domain. To start it is convenient to
introduce a new variable ¢=(z—z,)e %, where y is the angle between the
symmetry axis and the real axis. Under a reflection in this axis, £ —=&*. Now define
FY&)=[["(zy+€*E)—z,]e” ™ Our result is that for large Q, and small |£],

o F (&) > (F 2+ 1(al*))* . (3.12)
When £=0, this relation leads to Eq. (3.6).
The general form of the solution to Eq. (3.12) is
Fo(&)~a"g,(&/a")+(=)"ig,(&/a"], (3.13)
where g, and g, are real analytic functions which will be referred to as scaling
functions. More precisely, we define the scaling functions as a limit (which we
believe exists), namely

F&n(n
OEO( ) =¢,(&)£ig,(9). (3.14)

lim
neven
nodd }"_}00
It is clear that they are defined on the universal fractal and on the half-space to one
side of it corresponding to the fractal’s interior. We conjecture that the scaling
functions themselves are universal.

To recover Eq. (3.7), it is necessary that
g9,0)=c_ cosO,, g,(0)=c, sind,. (3.15)

On the other hand, suppose that |¢] is large, but that z, +o"e'*¢ is interior to the
fractal for all sufficiently large n. Now we have made a crossover from the scaling
associated with the fractal to the scaling associated with the smooth invariant
curves, and Eq. (3.3) is satisfied provided that as |]— o0,

g1(6)26+g}—1, gz(é)zgfg, (3.16)
with
/
P =2p,+1, p,= ”}22(0—1:0.612.... (3.17)

Note that for z near z,, Egs. (3.16) and (3.17) also give the z dependence of the
functions ¢, and ¢, occuring in (3.3) as a power law with coefficients determined by
w, and a.

Because of the defining property of Fibonacci numbers Q,+0,.,=0, . >,
there are two composition rules, namely

FOnei(Fo(&)) = Fo+2(¢), (3.18)
FOr(F2r+1(&)=F%+(¢). (3.19)
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We can use these to obtain two functional equations for the scaling functions. Let
us first change notation slightly, and define g(&) =g,(&) +ig,(£). Then g*(&*)=g,(¢)
—ig,(&), because g, and g, are real analytic. From (3.18) and (3.14) we deduce (for
n either even or odd) that

1 o,
9&)=—g" (&g (azé)), (3.20)
and from (3.19) and (3.14), that
1
0(6)= 5 glag*(2£")). (321)

We do not know if these equations are sufficient to essentially determine g.
However, they correspond to Shenker’s equations for maps on the unit circle when
& and g(¢) are real [3]. Asymptotically, the form of g given by (3.16) satisfies (3.20)
and (3.21) provided the exponents satisfy (3.17) and also 8, =3p,f2.

Let us now summarize the main results of this section as the following
conjecture :

Conjecture 3. When the winding number of the map f is the golden mean, the shape of
the invariant fractal near z,, the map’s stationary point, is characterized by a
universal self-similar curve. The Fibonacci iterates of points close to z, have a
scaling behaviour which enables one to define a scaling function g on one of the half-
spaces bounded by the universal curve, and there are a pair of functional equations
which may essentially determine g.

Another scaling property concerns the length of the fractal curve. We have
found numerically that the length increases as the number of points increases, in
such a way that we can associate with the fractal a definite dimension d>1. For d
to have an unambiguous value, we must take the Q (+1) points
{f(z0):—[50,]<i<[30,]}, ie. an equal number of forward and backward
iterates from the stationary point of the map. These points have a well-defined
order given by the order of their images on the unit circle under the inverse
Schroder map. Joined up in this order they form a polygonal curve, whose length
L, defines the length of the fractal for Q, points. We find that

lim L—"L+—1 =r~1013.... (3.22)

n—ow
n

A simple definition of the dimension d is suggested by this procedure. Let
e,=L,/0, denote the average distance between adjacent points, and let us require
that lim Q,e; exist. Since Q,/Q,, , ~,, we obtain

d= 0% 058 (3.23)

Inw, +Inr
To conclude this section, we note that the quadratic map has two associated
inverse maps corresponding to the two branches of the square root in Eq. (3.10).
The region generated from the fractal and its interior by iterating both these
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inverses is a domain whose boundary is the Julia set for the quadratic map. This
Julia set is shown in Fig. 3, indicating that it, too, is a fractal. (For reference we
have included some points of the original fractal.)
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Fig. 3. Julia set for the map whose invariant curves appear in Fig. 1

IV. Scaling and the Schroder Series

The simplest map z— f(z) exhibiting the scaling properties described in the last
section is f(z) =a,z— z%, where a, =exp2niw, and w, is the golden mean. Figure 4
is a plot of the absolute values of the coefficients {c,} of the Schroder series (2.3) for
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Fig. 4. Absolute values of the Schroder series coefficients for the map whose invariant curves appear in
Fig. 1. The data is not reliable for lognS6
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this map. This data was obtained as described in Sect. II, by Fourier transforming
the fractal curve shown in Fig. 1. The coefficient ¢, is particularly large when n— 1
is a Fibonacci number, but this is not surprising, since the denominator ag— a, is
then very small.

The apparent periodicity exhibited in Fig. 4, modified by the increasing density
of sample points, suggests the following conjecture:

Conjecture 4.

r+T ) 1 [wo(r+ T)
Y c,= (ocez”‘ +0 (—7—,)) Yook (4.1)
n=r n=[wor]

for all integers v and T satisfying - >r+T>»r>1.
@y

Here « is the scaling parameter, and y is the angle introduced in Sect. IIL.
[x] denotes the nearest integer to x. We require T3 1, so that [w,T}/T is
approximately w,, but (r+ T)/T need not be much greater than 1.

We have checked the conjecture numerically for a number of values of r and T,
for the simple quadratic map. However, we believe it is true for all maps whose
fractal curve has the universal scaling properties described in the last section.

In what follows we shall argue in the opposite direction. Assuming the
conjecture is true, we deduce a fundamental scaling property for the Schroder
function ¢, from which most of the results of Sect. III follow.

The scaling property of the Schroder function is:

Theorem. For |0| <1, Im0=0,

—iwob*y __
%e@j_ﬁ —ae¥7 4 0(61), “.2)

where o >0.

This theorem will imply scaling behaviour of the fractal (0 real), and of the
nearby smooth curves (Im6>0), close to the stationary point of the map (6=0).

The following is an outline of a proof of (4.2). The argument is formally correct,
but the analysis of the error terms is left as an exercise. To get some control over
the errors we must assume that

B(e”)—p(1)=0(0]", (4.3)

where 0 <7< 1. This is reasonable, since the theorem itself implies that 7 =Ino/Inw,
=0.62... We can now choose a Fibonacci number Q, such that, for small |6],

1
L<T<Qy < = (4.4)

Then

a0

ple™ ™ —p(l)= Y c e " 1), (4.5)

n=0n
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since the terms in the sum with n<Q) approximately cancel. By splitting up the
summation into intervals of length 7, and assuming that the exponential is
approximately constant over these intervals, we obtain

o © ) . Ont(p+1)T~1
Bem )= pl)> ¥ (o) Y 4
p=0 On+pT

Now, use of the conjecture (4.1) and a reorganization of the exponential gives

. ) . © ‘ On-1t(pt+ D weT]—1
(j)(e”‘“"’o)—qﬁ(l)zocez”‘ Z (e—t(QN—1+p[on])0*_1) Z C:‘. (4.7)
p=0 Qn -1+ plwoT]

Then, reversing the steps leading to (4.6), but with Q and T replaced by Q,_, and
[w,T], we obtain

Ple™ ") — p(1) ~ae® (P(e”) — p(1))*, (4.8)
which proves the theorem.

The self-similarity of the fractal is an immediate consequence of (4.2). Recall
that z, = ¢(1) is the stationary point of the map, and suppose z, + ¢'*¢ = ¢(e’) is on
the fractal, with |0| <1 and 6 real. Then z,+ ae'*&* = (e~ %), and so this point is
also on the fractal.

The scaling properties of the Fibonacci iterates also follow from (4.2). If
z= ("), then f2(z)=p(e*™*°2 "), Using the same formula for w,Q, as in (3.2),
and assuming that || <1, we obtain

me 1(20 +oce“‘é*)— Z,
[f9(zo +€%E)— 2,]*
for |¢| < 1. This result is equivalent to Eq. (3.12).

=ae?* 4+ 0(¢]%), 4.9)

V. Bifurcations

Most of this paper has been concerned with maps of the form (2.1) whose stability
parameter a has modulus one. For |a| <1, z=0 is a stable, period one, fixed point.
Here we show that when a is close to a primitive »™ root of unity, and |a| is just
greater than one, there is a bifurcation to a stable cycle of period n.

Note that for maps on the real line, only period doubling bifurcations are
possible, since a is real. Moreover, such a bifurcation can fail to occur if the
equation determining the stable cycle has complex roots. One consequence of
working with complex analytic maps is to make these bifurcations more robust.

Suppose first that a= A, with 4 a primitive n'™ root of unity (4"=1, 4™ 1 for
l<m<n).

Lemma. f(2)=z+0(z""1) (5.1)
for z in some neighbourhood of zero.

Proof. A modification of the Schroder series construction shows that there is a
polynomial yp(w) of the form

pw)=w+ ki Wk, (5.2)
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for which
S (W) =p(Aw)+0w" ™). (5.3)

As before, the coefficients ¢, can be computed sequentially. No higher degree
polynomial can be used to reduce the error term in (5.3) because A"* ! — 4=0, so
the Schroder series construction would break down. Equation (5.3) implies

S ww) =p(w)+0(w"" ). (54)

Since 1 is invertible near the origin, the lemma follows. It implies that f"(z)— z has
an (n+ 1)-fold zero at z=0.

The lemma can be checked explicitly for small values of n. The coefficients of
z%, z3, etc. involve a in the combinations 14+a+a®+...+a" "1,
14+a®+a*+ ... +a*" Y, etc. These vanish when a= A.

Now suppose a= A(1 +¢), where [¢] is small and Re ¢>0. By continuity (more
precisely, by Rouché’s theorem) the number of zeros of f"(z)—z near z=0 is still
n+1, and one of them stays at the origin. The remaining n zeros form a closed
cycle under iteration by f (since f"(z)=z=f(f"(2)=f(2)=f"(f(2))=/(2) etc.).

Let us estimate the locations of the new zeros. Using the lemma, we have

f2)=(1+e)'z+0()z+ ... +xz"T 1+ ..., (5.5)

Assume that k=0, To leading order in ¢, f"(z)—z=0 when nez+xz""1=0, ie.,

when z=(—ne/k)}’" or z=0. Provided |¢| is sufficiently small, z is small and the
approximations are valid. In particular, the trajectory of each non-trivial zero z(¢)
has the same tangent vector at e=0 as that given by the estimate.

To check stability we need to estimate |df"/dz| at z=(—ne/x)'/". The leading
approximation gives

df"
dz

=1+ne+x(n+1)z"=1—n% (5.6)

at each of the zeros. For suitable ¢, |df"/dz| <1, so the n-cycle is stable.

It is quite interesting to consider values of the stability parameter a for which
la|=1+¢ (¢ now real and positive) and the winding number w is irrational, and
fixed. For small ¢, one may see a stable cycle of period g, where p/q is a rational
approximant to w. As ¢ decreases, this cycle becomes unstable, but a new stable
cycle can appear with longer period ¢, the denominator of a finer rational
approximant. This behaviour has been seen numerically. We do not know whether
an infinite number of bifurcations can occur as ¢—0, nor whether there are gaps
between the values of ¢ for which there is a stable cycle. However, some aspects of
this problem are discussed by Mandelbrot [9].

VI. Conclusions

We have seen that iterated maps in the complex plane have interesting properties
which complement those already known for real one-dimensional maps, and for
area-preserving and dissipative maps in the plane. One finds a family of invariant
curves enclosing the origin when the origin itself is a marginally stable fixed point
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and the winding number of the map is irrational. This family has a limiting curve
which is fractal. When the winding number is the golden mean, the fractal has
universal scaling behaviour, but the scaling parameter in this case, « =0.741932 ...,
is different from those associated with the real maps mentioned above.

This difference can be understood if one considers the complex map as a real
map in the plane. In polar coordinates z=rexpi(6 + 2nw,), the quadratic map f(z)
= (exp2miw,)z — z* becomes

rsiné
0'=0+2nw,—arctan (m) ,

6.1
¥ =r(1+7r*—2rcosh)/?, (1)

For small r this reduces to the “standard” return map on the circle. The Jacobian J
of the transformation is

J=|f'(z)|=(1—4rcosO+4r*)'/, (6.2)

so J>1if r>cosf, and J <1 otherwise. Hence, from the viewpoint of dynamical
systems, this map is neither conservative nor dissipative. Also, the smooth
invariant curves of the complex map, while being starlike close to the origin, cease
to be so as they approach the fractal. “Starlike” here means that any ray from the
origin intersects the curve exactly once. Therefore, for the fractal and the curves
nearby, it is not possible to define an effective one-dimensional map from the circle
to itself by ignoring the radial coordinate, i.e. by a radial projection onto the unit
circle.

We expect that scaling behaviour occurs for complex maps with any winding
number whose continued fraction is periodic, and not just for the golden mean. We
have some preliminary evidence for this, but further work is needed.
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