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Abstract. The microcanonical entropy plays an essential role in the equilib-
rium statistical mechanics of gravitating systems. A peculiar feature of many of
these systems is the existence of stable thermodynamic equilibrium con-
figurations with negative heat capacities. Different methods have been de-
veloped for calculating the microcanonical entropy involving multivariate
integrals of constraints and functional integrations. An apparent ambiguity
between an approach due to Hawking and Gibbons, based on an entropy
definition involving an inverse Laplace transform of the partition function,
which they developed to treat quantum systems with gravity, and a different
approach developed by Horwitz and Katz defining the entropy as an equal
weight sum over a constant energy surface developed originally to treat
Newtonian and classical GR systems is shown here to be spurious, at least at
the level of quadratic fluctuations of all variables about the extremal solutions.
The two approaches involve distinct contours for different orders of in-
tegration, each of which is shown to be the appropriate steepest descent path
corresponding to the given order of investigation. Up to quadratic fluctuations
both methods yield identical results. However, they represent different per-
turbation expansions for the gravitational modes of freedom with different
radii of convergence. The discussion is made in terms of a particular
convenient model, a system of point particles interacting via Newtonian forces,
confined to a sphere, but results are quite general.

I. Introduction

Calculations using a microcanonical ensemble (MCE) involve many practical
difficulties for virtually any system. On the basis of the equivalence of different
ensemble which is valid for the usual uniform system, one commonly carries out
calculations in the most convenient ensemble and then one obtains the entropy by
means of a Legendre transformation. Thus, for classical systems, standard
calculations use either the canonical ensemble (CE) or the grand canonical
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ensemble (GCE). The entropy is then obtained for the CE as the energy transform
of the Helmholtz free energy Fy:

S(E,V.N)= - BFy+BE, (1)

where the temperature T ="' (the Boltzmann constant=k,=1), or for the GCE
from the grand potential ¢ with an energy and particle number Legendre
transform:

S(E,V,N)=—pq+BE—aN, 2

with the chemical potential u=o/f.

For quantum systems one commonly calculates with the GCE for reasons of
calculational simplicity [2], carrying out the Legendre transform (2). For gravi-
tational systems, the above is, in general inadequate. Self-bound gravitational
systems are typically nonuniform in space or in time; ensemble equivalence has
been shown to break down for such systems [3]. There exist stable thermody-
namic equilibrium (TDE) configurations and TDE models which are found to be
stable for MCE constraints (fixed E, ¥, N) which could not exist stably or in some
cases not at all for systems in contact with a heat bath (CE) or heat and particle
baths (GCE) [4]. These results have been known for some time and although there
was some reluctance to accept stable negative heat capacity systems, they have
been generally acknowledged. Examples include Newtonian [5] and general
relativistic [6] models of spherical star clusters, quantum states for stars [7] and
TDE black holes in radiation cavities [8], a FRW universe with positive
cosmological constant and scalar conformal bosons [9]. In all of these cases the
ensemble dependence of the stability conditions is striking: the range of parame-
ters yielding stability is increased as one imposes more constraints, hence limiting
fluctuations. For parameters corresponding to an unstable CE, but stable MCE,
the heat capacity is negative; thus the physical partition function does not exist.
An approximate partition function, e.g. that of the mean field approximation can
exist and be real but will have unstable fluctuations.

Gravitating systems raise more basic problems in their statistical mechanics
treatment than the ensemble dependence; the problem of formulating the
equilibrium or nonequilibrium statistical mechanics for these systems presenting
many difficulties. For a Newtonian potential or for GR only in the form of a
background metric, more or less standard definition can be used, but there are
serious convergence problems, spatially or temporally. However, for classical GR
even more strikingly than for quantum GR, there is no obvious first principle
definition for the entropy when gravity contributes to the statistical state.

In an earlier work on Newtonian systems [5], a functional integral formulation
for the MCE entropy of TDE systems was derived; CE and GCE results for
spherical star clusters were obtained for various models [10] and compared with
those for the MCE. A phenomenological, analogous treatment was developed for
classical GR systems again for various ensembles, including the MCE [6].
Subsequently, we were able to calculate the MCE for quantum fields with
cosmological metrics in a formalism based on quantum gravity [9] from which a
quasi-classical contribution was extracted [11]. A particular feature of this
method was that the quadratic form was diagonalized in a specific order,
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constraint variables prior to gravitational degrees of freedom, in order to obtain
the correct ensemble dependent stability conditions.

A different approach was developed for evaluating the entropy of quantum
fields and quantum gravity by Hawking [12] and Gibbons and Hawking [13]. In
their approach, they postulated the partition function Z, on the Feynman
formalism as a functional integral over the Euclideanized action including gravity,
correcting the usual gravitational Lagrangian by a surface term. The entropy was
then determined not from the thermodynamic connection of the Legendre
transform (1), but instead as the inverse Laplace transform of Z, (expressed as a
Feynman integral)

expS= [dp/2niexpBE  Zy= [[d¢][dp/2miexpBEexp—I(B, {$}). (3)

the f integral being taken perpendicular to the real axis. This formulation was
introduced with the awareness of the necessity of using the MCE, when the heat
capacity is negative. However, precisely for such conditions the partition function
is not well defined ; this difficulty they resolved by rotating contours in a manner
which we shall discuss in more detail below. However, they gave no real
justification for the distortion of the integration contours which were introduced
to make the integrals finite and real, and there was no clear statement of the
conditions for stability of the results obtained. Partial answeres to these questions
are given in the work of Gibbons et al. [14].

After we summarize the two formulations we shall observe that their respective
bases are conceptually different, but they are, in particular cases, formally
equivalent except for involving different orders of integration and correspondingly
different contours when stable negative heat capacity systems occur. At the level of
quadratic expansion around the extremal values in all variables, the steepest
descent paths depend on the order of integration, the original contour being the
appropriate steepest descent path for the order of integration used by Horwitz and
Katz, and the rotated contours the appropriate ones for the order of integration
used by Hawking and coworkers. Both are correct when appropriately used and
lead to identical stability conditions. They, however, represent different expansions
and potentially have different convergence conditions. This difference is especially
noteworthy when noting that the common approximations involve treating the
integrals of the statistical constraint (f) quadratically to test convergence and
treating the gravitational variables by a perturbation expansion not necessarily
limited to one loop. Most of these points will be illustrated in terms of a system of
classical point masses interacting via Newtonian forces in a closed volume. The
results obtained are, however, quite general ; but for heuristic reasons, we chose to
develop it in terms of a specific model.

II. Formulation of the Thermodynamic Equilibrium MCE

Let us first consider some arbitrary system which can be described in terms of a
classical action; we shall assume that the system has among its constants of
motion a suitable energy operator, a Hamitonian obtained as a projection of the
energy-momentum tensor on a static time-like Killing vector [15] characterizing
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the background metric. Then we can define the Gibbs MCE entropy for
thermodynamic equilibrium

expS=Tr™§(E - H) 4

(the Dirac deltafunction should more properly be spread over a narrow energy
range small compared to E, but this difference is not significant in our analysis).
The trace here is an equal weight sum over N particle states for the quantum
system, and the corresponding result for classical systems is an integral over a 6N-
dimensional phase space multiplied by a factor of (N!)~ . Introducing an integral
representation of the d-function
+ico =pfo
expS(E,V,N)=Tr™ [ dp/2riexp(BE— BH). 5
—iowo + fo
If the order of integration does not matter this becomes
Bo+ico
expS(E,V,N)= | dp/2niexpPE-Z,, (6)

Po—ico
where the partition function Z analytically continued to complex f3:
Zy=Tr'"™ exp— fH =exp— fFy(p) (7

with Fy, the Helmoltz free energy; this result is the inverse Laplace transform
relation (3). The partition function can be expressed as a Feynman integral

Tr™exp— pH = [ [d, ] exp—I{¢,}, ®)

where the ¢, represents the various field in I, [d¢,] is a measure of the function
space and I{¢,} is the “Euclideanized” action corresponding to ¢,(0) = + ¢ (f), the
upper sign corresponding to boson and the lower to fermion operators.

In this way we have obtained the entropy in the form of an inverse Laplace
transform of the partition function. One commonly then relates the results of
steepest descent integration of § whose extremal value identified with f, is the
Legendre transform relation

Sexe=PBoE—BoFn(Bo, V), ©)
where f3, is determined by
E={(H),=Tr"™"(Hexp— f,H)/Tr™ exp— B, H, (10)

and whose convergence is associated with positive fluctuation term in the f
integral (since the path of integration is over imaginary values)

G~ Fy)| _ CHY, _

o o OB
C, being the heat capacity at fixed ¥ and N. The apparent instability when C,, is
negative contradicts the results found in a variety of cases involving gravitating
systems where negative heat capacity domains are known to be stable thermody-
namic equilibrium states. Probably the simplest example of a system showing this
kind of behavior is a system of N, equal mass (m= 1), classical particles interacting

CH*>o—C(HY3=B5Cy, (11)
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via Newtonian forces confined to a spherical volume, with the potential cut off at
short distances to prevent divergences due to clustering. All the essential features
of the general problem are illustrated by this simple system.

Aside from the ensemble dependence, we note that gravitating systems show a
number of unusual features among which are:

1) The absence of the usual thermodynamic limit, N and V going to infinity
with N/V finite; but some cases have an alternative limiting behavior [7].

2) A property related to 1) is that TDE gravitating systems are usually
nonuniform spatially, or in cosmology temporally ; this presents along with other
problems substantial computational complexity.

3) The physical relevance of the CE or GCE becomes questionable when
gravitational forces contribute to the TDE state: one can no longer treat part of a
closed system as a CE or GCE due to the long range of gravitational interactions.
The replica definition of these ensembles [16] may be still formally meaningful,
but the applicability is uncertain; this is relevant even when Cy, is positive.

4) The problems we have presented above, associated with the treatment of
negative heat capacity domains for the inverse Laplace transform relations, will be
seen to be associated with the technical difficulties of treating the multivariate
integrals involving constraint integrals like that over f and sums over gravi-
tational degrees of freedom of the system.

The last two points are the central issues of the present work, particularly 4).

III. The MCE for Newtonian Particles in a Spherical Volume

We shall discuss some very basic problems of functional integrals with micro-
canonical constraints for the specific, simple, classical model. This model calcu-
lation illustrates all of the essential problems of ensemble dependence of gravi-
tational systems generally. Our system comnsists of N particles of mass m=1,
interacting via Newtonian forces and confined to a spherical volume V=%nR>.
There is an implicitly assumed short distance cut off in the potential, but this will
not be explicitly indicated, as at the level of approximation which we examine
explicitly it has no consequences except to eliminate the UV divergence of our
fluctuation spectrum ; our concern in the present work is with the thermodynamic
limit of stability which is a long wavelength instability. We use units in which
8nG =1, G being the Newtonian constant. Thus we consider the Hamiltonian:

1Y 1
H== 3% pi+V=T—5>"(Ix,—x})~". (12)
2 i=1 2 ij
The MCE entropy can then be written
N do®™
expS=[[] &*x,d>p/NIS(E—H)= | N o(E—H). (13)
i=1 .
This is conveniently represented in the form
fo+ico
expS=[do™/N! | dp/2niexpB(E—H). (14)

Bo—io



122 G. Horwitz

This can be expressed as a functional integral [5, 17] of one particle terms by
noting that

1 X _ 1
V=—3 3 (x—x)""=5&xd*ya(x)u(lx—ylo(y), (15)
2 5% 2
where
N
ox)= Y o(x;,—x), (16)
i=1
and
v(x—yh)=—(x—y)~". (17)
Thus with V expressed as a quadratic form in g:
exp— BV =exp—3 B[ d>xd>yo(x)v(x—y)a(y), (18)

one can write the functional expression:
exp — BV =C[[dW(x)] exp—[[d*xd>yW(x)v~*(x—y) W(y) + B*/* [ d>xo(x) W(x)].
(19)

Here C is an irrelevant constant (generally infinite) normalization factor, and the
inverse potential v~ ! is given by

[&@yu(z—y)p~ Hy—x)=d(x~y). (20)

W(x) must go asymptotically as 1/|x| as |x|]— o0, and in the case of the Newtonian
potential (ignoring the short distance cutoff)

v (x—y)=—245,(x—y), 21

and the contour of the integration of W(x) is taken over real functions in order to
get the convergent quadratic form since V is negative. Then

N

expS= [[dW(x)][dp/2ni H [@®x,d>y,

-exp [j PxWXAWX)+BE—BYpl,~ /B Y W(x,.)}. (22)

Due to homogeneity of the solution, we obtain (in the large N limit)
expS = [[dW(x)]1{dp/2niexp P(N, B, {W(x)}), (23)
where
P(N, B, {W(x)})= [d*xWAW + BE+NInN—N+N1IndB,{W}),  (24)
with
(B, {W(x)})= [[d*xd*pexp—[3fp* + |/ Wx)]. (25)

This is a somewhat different form from that which we exploited in [5], where an
additional constraint integral was introduced for N. In fact, it is analogous to our
treatment there of the relation between the GCE and the CE involving the N
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constraint integral instead of the E constraint integral. In order to deal with the
question of the order of integration in the simplest and clearest way, we have
preferred here to express results in a manner which involves only a single
constraint integral.

We now proceed to evaluate S by expanding about the extrema in  and W(x)
respectively and then examining the quadratic fluctuations.

Y=y9O0 Ly 5y, (26)
with the first order fluctuations vanishing:
0= PN, B, (Wylx)}) =SB{E— [doo’ f(x, p)Lp* + Wo(x)/B4/1)
+ [P xW(X)[24W, — BE/*ny(x)]1, 27

(the latter after an integration by parts since W(x) asymptotically ~ x|~ !) where
the resulting distribution function f; is:

folx,p)=Nexp—3Bop® — B> Wo(x)/ fdo exp— [3Bop” + By Wo ()], (28)

and the corresponding density
= [pfy(x,p)=N exp— L2 Wy(x)/ [ d*xexp— B Wy(x).  (29)
The vanishing coefficient of W corresponds to the Poisson equation for the mean

Newtonian potential Uo(x) = W,(x)/BY2, (30)

while the vanishing of the coefficient of 6 determines the temperature T, =f, ' as
a function of the energy E of the gravitating particles in the mean field
approximation of the gravitational energy.

The zero order term is then

YO=B [d*xUyAU,+Bo,E+ NInN—N+NInd(B,, {W,}), (31)
while the quadratic fluctuations can be written in the form
PO =1D(3B/Bo)* — [d>xBX)OW(x)B/ B, — 5[] d>xd> yoW(x)0(x, y)dW(y), (32)

where

B(x)=no(x)(1 = BoUy(x)+BoUo) = By *io(x), (33)
and
D=B,[(2T, + Vo) +5B,N(US— UF)], (34)
with the bar denoting the average
A=N"1{dxAX)n,(x). (3%)
The mean kinetic and potential energies are respectively
T,=3NBy !, (36)
and
V,=iNU,, (37)
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and the binary fluctuation operator

O(x,y)=[— 24— Bono(x)]é(x'— Y+N" lﬁono(x)no()')] . (38)

The central point of our analysis is now to determine what are the conditions
on the quadratic form (32) such that the integrals on 48 and W lead to a
convergent, real result. In terms of the defining integrals for § (14) and for W(x):
(18), the contours are defined in a particular way, perpendicular to the real axis for
p and for real functions W(x). In terms of these contours, different orders of
diagonalizing the quadratic form appear altogether nonequivalent, as we shall see
more precisely below: If we diagonalize first with respect to dW(x), we arrive at a
form equivalent to the inverse Laplace transform relation (6) with the partition
function evaluated as a quadratic expansion around the extremal solution in W(x).
This corresponds to the starting point of Hawking and Gibbons and would appear
to lead to a breakdown of convergence according to (11), when C,, changes sign
plus to minus infinity. They then proposed rotating the contour when C,, is neg-
ative. The alternative order of diagonalization which was employed by Horwitz
and Katz was to diagonalize with respect to f first. Thus, in the first approach
one finds

PP =1D(6B/Bo)? — L[] d*xd® ysW)O(x, Y)JSW (1), (39)
where
SW(x)=SW(x)+ [d*y0O~ (y, x)B(y), (40)
with
[0~ (x,y)0(y, 9)d®y = (x —2), (41)
and
D=D+ [[d*xd®yB(x)0~ '(x,y)B(y). (42)
It is clear that
D=C,. (43)
In the other order of diagonalizing, we obtain
W =1D(6B/B,)* — 4[] d>xd®ys W(x)O(x, y)OW(y), (44)
where
SB/Bo=5p/Bo— | d*xdW(x)B(x), (45)
and
O(x,y)=0(x, y)— B, i(x)ii(y)/D . (46)

In the form P{? it would appear that the condition of having a negative definite
quadratic form given (3)? is negative is that C;, >0 and that the quadratic form
[[83x83ydW,, W is positive definite. As we shall see below, the spectrum of O(x, y)
determines both, when the lowest eigenvalue of O(x, y) goes negative, both the 6§
integral and one of the integrals of the functional integrals of 6 W go negative. This
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appears as a breakdown of stability, but in fact if we were to carry out the integral
over the quadratic form in the regime where the eigenvalue approaches zero and
go to the limit, we find a finite result, see below. These divergences are then seen to
be spurious. The Hawking and Gibbon procedure was to rotate the contour; this
corresponds then to going over to the appropriate steepest descent path for the
order of diagonalization which they use into the region with negative heat
capacity. In the other order D does not change sign when D does, and the lowest
eigenvalue of O(x,y) is shifted from that of O(x,y), so that it changes sign under
completely different conditions. Thus, there is no problem of carrying out the
quadratic integration to and beyond the point where the heat capacity goes
negative; the limit of stability is then found to be where C,, =0, corresponding to
where the lowest eigenvalue of O(x,y) goes to zero. In the analysis below we will
show that this same limit of stability is found by use of the first diagonalization
and corresponding integration path of Hawking and Gibbons. Let us now turn to
examine the matter in more detail.

IV. Eigenvalue Analysis of the Quadratic Fluctuations

It is most convenient to express the results in terms of a spectrum related to the
operator O(x,y), Eq. (38), but we cannot use the ordinary eigénvalue expression
[@>y0(x, y)p,(y)=¢,,, because the asymptotic properties of W(x)~|x|™?, [x|—> o0
would lead to eigenfunctions without finite norms. Instead we proceed as in [5] to
consider the orthonormal solutions of

JOx, y)p,(V)d*y =e,(— D (x), (47)
with normalization defined by
[8x0,(x) (= Do (x)=5,,. (48)
Then expanding dW(x) in the ¢,(x)
W)=Y a,0,(x), (49)
A
with (49) the quadratic form P{¥ (39) becomes
PP = 3 Y e,a; —5DOB/Bo) (50)
A
where in terms of this spectrum
D=D+ Y A%/e,=Dx,, (51)
A
with
A, = [d’xB(x)¢,(x). (52)

Thus the relation between D and the heat capacity is

C,=D+ ) Alle,, (53)
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which is positive when all eigenvalues ¢,>0, and diverges positively when
¢, =0, and then goes negative for ¢, going negative. If we find as was the case for
various models of star clusters, that the eigenvalues decrease monotonically with a
relevant parameter, then beyond the value where the lowest eigenvalue goes
negative, the next eigenvalue (say ¢,) goes to zero and then negative in turn. Then
when ¢, goes to zero, C,, must again diverge positively. In between the zeroes of
the first two eigenvalues there must therefore be a zero of C,, ; as we shall show (cf.
[5]), that corresponds to the true singularity and stability limit for the micro-
canonical ensemble. Here C;, =0 corresponds to the unbounded fluctuations in the
temperature of a microcanonical system, the physically plausible result for a
system constrained to have fixed energy.

The alternative diagonalization ¥{? will also be evaluated in terms of this
spectrum ¢,. Introducing the ¢, representation,

1 ~ 1 1 1
P2 = ED(é[i/ﬁo)z— 3 ;azaﬁ— E(Z Alai)z/D- 528uaﬁ, (54)

the states labelled u refer to the unmodified nonspherical modes, 4, =0. This is, of
course, not yet diagonalized. If we now introduce the quantities

Z.= Y Aj/e,D
2> i (55)
g, =¢,+A[(1+Z)D] =, [(1+2)/(1+2Z))],

where

= Y A%e,D, (56)

A=A

here /, denotes the n™ eigenvalue and

Ma,=a,~a,4,4,[e,(1+2)D]"". (57)
Then one finds
1 1
V= S DERIB ~ 33,6 — 5 T AV (S Va,a,) 203 Taal. (59
2 2 A> A A> Ay 2 n

Since this leaves the quadratic form for terms 4> 4, in the identical form as in (54),
this procedure can be trivially iterated to diagonalize completely the quadratic
form:

PO =LDOB/B)? — 528 Va; =3 e,al. (59)

Here
&,=¢, [(1+2)/(1+2,_ )], (60)

and
(=D, =D 02 4 A [De, (1+2, )] 7L (61)

Notice [see (53) and (55)] that &, goes to zero when C,, goes to zero, and remains
positive through the range of negative C,.
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V. Steepest Descent Contours and Interpretation of Quadratic Fluctuations

Let us now consider the steepest descent integration of ¥® with the alternative
orders of diagonalization of the quadratic form ¥{® and ¥{?

I,;= [ d8p/2mi [ [ASW(x)] exp P28, SW(x)) = Of dp/2n [[]da,exp P2, (62)
- A

T 1
= 1 dBexp— 5 DOIB [1] diexp— 3 T, 2 (142, /(1 +)]. (6

where
i5ﬁ=B, (64)
o 1/2 1/2 np, |'? m\t?
= B [T L+ )0+, )1 s) m} H(;) . ©9)
1 1 1
=exp—5InDfnf}— 5 Tine,, — 3 In(1 +,). (66)
1. ~ 1
=exp— zlnD/nﬁé—— 3 Y lng, . (67)

Notice this expression has no singularity at zeroes of &, and is only singular at
14+ 2,=0.In[5] we have shown that there is no stable region beyond the first zero
of 1+ 2, in the star cluster problem. See a more detailed analysis of this problem
by Katz [18].

If we now consider the alternative diagonalization ¥{?, for ¢, >0, C,, >0, and
the given contour gives well defined results; in fact, exactly that of (66) obtained
above for integration of ¥'». This remains well defined to the limit ¢, =0. The
question is what to do when this point is passed and both ¢, and D go negative. In
that case the steepest descent path is distorted so that the J integral is taken
parallel to the real axis in the neighborhood of the extremum and the a, integral is
taken perpendicular to the real axis in the neighborhood of zero. This corresponds
to the rotation of the contours proposed by Hawking and Gibbons. The two
integrals are finite and real and yield for the entropy

§=— llnD/nﬁ(Z)— % Y Ine,/n—In[le,]/I1+e,]

2 A> 2

(67)
= 1lnD/nﬁg— ! Y Ing,/m—Ing,,
2 2 A> 2

which remains identical with the previous result. However, when &, =0 and goes
negative, an unstable regime has been reached. There is no rotation of the contour
which will make the integral finite and real. Thus the &, are the physically relevant
spectrum  associated with the singularities for the thermodynamic
fluctuations C, !, the quadratic evaluation of the fluctuations around the mean
field can be evaluated in whichever order of diagonalization one chooses with,
however, the appropriate contour, which in these cases depends on the order of
diagonalization.
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If the quadratic evaluation were the whole story, that would be the end of the
matter. But, in general, this quadratic evaluation is the basis of a more general
expression based on a perturbation expansion. In that case the different orders of
diagonalization represent different perturbation expansions with different do-
mains of convergence. Furthermore, most commonly one terminates the expan-
sion in the quadratic order of the constraint parameters 6§, while developing a
perturbation expansion in the field variables [here dW(x)]. In that case the
perturbation expansion in 0 W(x) will not be equivalent at all even in the domain
where they are both convergent.

V1. Summary and Discussion

The central point of this work is the manner in which instability in the CE can be
eliminated by the energy constraint. In the Horwitz-Katz formulation this is seen
in an explicit modification of the fluctuation spectrum incorporating the con-
straint condition on the fluctuations. In the Hawking-Gibbons approach the
unstable mode of the CE, which in other contexts might be interpreted as a bounce
calculation (cf. Gross and Perry [19]), with the joint rotation of amplitude of the
unstable mode and of the constraint variable yielding a finite and real value for the
entropy. We have shown that these two versions appear as the corresponding
steepest descent paths for different orders of diagonalizing the quadratic form of
fluctuations, dynamic plus constraint, or equivalently the order of performing the
integrations to the quadratic level. In a more general context where the quadratic
treatment would be inadequate, the problem of what would comprise an
acceptable perturbation expansion involving both types of variables remains
uncertain. Beyond the level of terms quadratic in SW and 4, it is not at all obvious
whether any kind of convergent expansion exists which does not mix df and oW
fluctuations. For example, in some approximation like that which we have
evaluated for the generalized random phase approximation (RPA) for a star
cluster in the GCE [20], the density depends on the quadratic fluctuations in the
form Ax)=expA  n(x). (68)
where

A=Y A2/De,. (69)
A

This diverges when ¢, goes to zero and no distortion of the contour can rectify this.
For this type of difficulty it is clear that a modified spectrum incorporating
coupling to the Jf fluctuations would thoroughly modify the result. Thus there
would appear to be some distinct advantages to the choice in which there is no
singular behavior for the perturbation expansion and hence doing the constraint
integrals first would appear to be a preferable way of evaluating the entropy in the
presence of gravity.
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