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Expansions and Phase Transitions for the Ground State
of Quantum Ising Lattice Systems

James R. Kirkwood1 '2 and Lawrence E. Thomas3

Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Abstract. Expansions for the ground state of some transverse Ising-like models
are developed. These expansions are easily estimated by the solutions to some
simple implicit equations. Short range or long range order obtains, depending
on the coupling constants of the models.

Introduction

Let HΛ(ε) be a quantum lattice Hamiltonian associated with a finite volume A C Έ
and analytically dependent on coupling constants ε = (ε1, ...,εΛ). Let ψΛ(ε) be the
corresponding normalized ground state eigenvector, and formally let

ρ( ;ε)= lim<^(ε),(-)^(ε)> (U)

be the corresponding state defined by the ψΛ(έys in the thermodynamic limit. The
purpose of this article is to show that ρ(ε), as a function of ε, can exhibit short or
long range order, i.e. that ρ(ε) undergoes a phase transition in ε in all dimensions
v^ 1, at least for a particularly simple family of Hamiltonians HΛ(έ).

The Hamiltonians we consider, transverse Ising models, which we assume to
depend on two parameters ε = (ε, (5), are defined by

- HA(e, δ) = Σ (1 + δK{i9 σ
z)) σx(ί) + ε £ V(A) σ\A). (1.2)

ieΛ AcΛ

Here, σx(ί) and σz(i) are the usual Pauli spin matrices acting at the site i,
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taken in a basis so that the first term of (1.2) is a spin-flip term, the second term a

multiplication (Ising) term. The V(A) are real coefficients, σΣ(A) = (X) σ\i), and the
ieA

K(i,σz) are functions of the σz's [and such that HΛ(ε,δ) is selfadjoint]. For
simplicity of the analysis we assume throughout that HΛ(ε,δ) is translation
invariant; in particular, we assume that A is rectangular in shape and that in
Eq. (1.2) periodic boundary conditions are imposed.

There are two reasons for investigating the correlations of ψΛ(ε, δ) and ρΛ(ε, δ).
First, one expects ρΛ(ε, δ) to approximate the extremely low temperature thermo-
dynamic states corresponding to HΛ(ε,δ) (spin-wave approximation). If, for
example, ρΛ(ε,δ) has only short range order, one might conjecture that the
thermodynamic states do not undergo a phase transition at any temperature in
other words, quantum fluctuations coming from the spin-flip terms of HΛ(ε, δ) are
sufficiently strong in comparison with the Ising terms that long range order is not
possible at any temperature.

The second reason for considering the correlations of ψΛ(ε9 δ) is their relevance
to dynamical phase transitions for Markov semigroups. We discuss this reason
from a formal viewpoint. LetX 1 ? ...,XN be multiplication operators and define the
(thermodynamic) state ^(ε, δ, β) by

ρJβίi(t1)...XN(tN);ε9δ9β)

'HΛX1e'it2-tί)HΛX2...e-itN-tN-ί)HΛXNe-(β-tN)HΛ). (1.4)

The state ρΛ(ε,δ,β) defines [at least for δ sufficiently small so that
(l + δK(i, crz))>0] a periodic stochastic process [1] which becomes a Markov
process in the β->oo limit. The path space measure associated with the infinite β
state ρΛ(ε, δ) clearly satisfies

ρΛQC, ε, δ) = <ψΛ(ε, δ)9XψA(ε, <5)> , (1.5)

so that in the A\Έ limit, the resulting infinite volume path space measure has
short or long range order depending on ε, δ, at least in spatial directions.

Technically, the proofs of short and long range order are simpler for ρ(ε, δ) than
for the thermodynamic states but the proofs do present a novel feature. The idea
is first to choose an orthonormal basis so that ψΛ(ε9 δ) is represented as an
/2-function exp — \φΛ{σ,ε,δ), σe{ — l,l}Λ. (By standard Perron-Frobenius argu-
ments this function may be taken to be positive.) The function φΛ is then expanded
in a power series in ε, δ with power series coefficients obtained successively by a
nonlinear recursion relation. These coefficients are however easily estimated by the
power series coefficients of functions defined implicitly by some (nonlinear)
equations. Curiously, these implicit equations are essentially the same as those
considered by Hagedorn and Rafelski [2] recently for rather different reasons.

Section II describes the small ε, δ expansion in detail from which short-range
order follows. Section III describes a large ε-expansion and a proof of long range
order, for the simple transverse nearest neighbor Ising model this section is also
intended to illustrate that more complicated flipping mechanisms besides the
single site flips of Eq. (1.2) can be accommodated by the same techniques.

That the simple one-dimensional transverse Ising model has a phase transition
in its ground state is well-known cf. the article of Pfeuty [3] who proves the
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transition by exploiting the Jordan-Wigner transformation and the close relation
between this model and the two-dimension anisotropic Ising model. Our results
extend the proof of a transition to more general interactions and, of course, to
higher dimensions. The expansions we obtain should be compared with those of
Pfeuty and Elliot [4] and, particularly, those of Kadanoff and Kohmoto [5] who
expand the ground states themselves rather than their logarithms. The logarithm
expansions, we believe, lend themselves to investigating questions of short and
long range behavior moreover they are remarkably simple to estimate.

We also mention that an approach to phase transitions for the ground state, in
principle, is to examine the β-^oo limit of the thermodynamic states as in Eq. (1.3)
above (before taking the Λ\TΠ limit). For v ^ 2 dimensions, the thermodynamic
states can be analyzed via space-time Peierls contours, following Ginibre [6], to
establish long range order. But the estimates fail for β^ oo effectively ε must go to
oo as well for these estimates to show long range order, an unphysical result.
Alternatively, an argument of Lieb and Frδhlich [7] exploiting reflection posi-
tivity (when it applies) can be used to infer long range order for the thermody-
namic states (v^2) with ε sufficiently large and fixed which is uniform in β,β->oo
and which therefore implies long range order for the ground state. A discussion of
these points is contained in [8] and will be reported elsewhere.

Finally, we remark that the techniques described here can be adapted to obtain
low temperature expansions for thermodynamic states which do not directly
involve Trotter product approximations. This work, too, will be reported
elsewhere.

II. Small £, δ Expansion

We first introduce some notation. Let σ denote a point (configuration) in
{ — 1,1}71; let σ(ΐ) be the coordinate of σ at side ieA [σ(i) is just the usual Ising
variable] and set σ(A) = ]Ί[ σ(i) for Ac A. We denote by σ the configuration

ieA

obtained from σ by flipping the spin at site i, i.e. σi(k) = σ(k) kή=i, σi(k)= —σ{k)
fc=l, and σ.j the configuration obtained from σ by flipping at sites i and j . As

orthonormal basis for the Hubert space (X) (C2 with the usual inner product, we

take vectors of the form |σ> = (X) |σ(i)> with |σ(ί)> the state at site i which is spin up
ίeΛ

or down with respect to σz(i) according to whether σ(ϊ) = + 1 or — 1 respectively.
As ansatz for the (unnormalized) ground state eigenfunction ψΛ(ε, δ) we take

V^M)=Σv>,s,a)|<7>, (2.1)
σ

with

(± £ JΛ(A,ε,δ)σ(A)), (2.2)
)

(
\ ACΛ

with the constants JΛ to be determined from φΛ(U σ> £> S) defined below and

φΛ{Uσ,cδ)= ΣUA,B,δ)σ{A). (2.3)
A:
ieA
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Let || || denote the I1-norm of the Fourier transform of functions of σ, i.e. if

χ(σ)=Σχ(A)σ(A), (2.4)
A

then

11x11 = Σl*U)|.
A

Given a set A C A we let range A = sup \ί — j\, where \i—j\ is the minimal path length
UjeA

between ίj computed along the bonds of Zv. Given a function χ(σ) with expansion
(2.4), we set range χ = sup range A with the sup over all A such that χ(A) + 0.
Finally, we let range χ based at i be sup range (Av{i}) with sup again over all A
with

Theorem 2.1. Assume HΛ(ε,δ) defined by Eq. (1.2) is translationally invariant and

assume that range K{i) based at i and range I £ V(A)σ(A)\ are both rgr for some
A

ίeA

r < oo, independent of A. Then there are constants cv c2(ε, δ), c3(ε, δ), ε0, δ0 such that
for ε<ε 0 , (5<^0,

(i) 0^(1, σ, ε, δ) is an absolutely convergent power series in ε and δ and

\\φΛ(i,;ε,δ)\\<clSup(\c\,\δ\).

(ii) Further,

| |φΛ(i, σpε, δ)- φ/i, σ, ε, δ)\\ £c2(ε, δ)(sup(|ε|, \δ\)f-M'.

(iii) The estimates are uniform in A. In particular if AC A' and ieA,

\\φΛ(i, -,ε,δ)~φΛ,(i, ,ε,<5)||^c3(ε,<5)(sup(|ε|,|5|)d/r,

where d is the distance between i and the boundary of A.

Remark. Let μyl(ε, δ) be the Ising Gibbs measure defined by

μΛ({σ}9 ε, δ) = ψ2

Λ(σ, ε, δ),

with

ΈΛ(ε, δ) = Σ ψ2

Λi
σ> ε > δ ) = <ΨA(^ δ)> WA^ > δ)y

σ

and < > the Hubert space inner product. Using standard expansion methods
[9, Chap. 4] and the above theorem, it follows that μΛ(ε, δ) has a unique
thermodynamic limit A\Έ? with the resulting measure having short range
correlations, for ε, δ sufficiently small. In particular,

(ψΛ(ε,δ\σz(i)σz(j)ψΛ(ε,δ)}

decays exponentially fast in \i—j\, and short range order obtains.
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Proof of the Theorem. The eigenvector equation

- HA(ε, δ)ψΛ{c, δ) = \Λ\ eΛ(ε, δ)ψA(ε, δ)

with \Λ\eΛ(ε,δ) the eigenvalue, can be written in terms of ψΛ(σ,ε,δ) and then, in
turn, after division by ψΛ(σ, ε, δ), in terms of the φΛ(i, σ, ε, δ)

Σ(l + δKi(σ))expφΛ(i,σ,ε,δ) + ε Σ V(A)σ(A) = \Λ\eΛ(ε,δ). (2.5)
i ACΛ

Expanding (and suppressing the A subscript)

φA(Uσ,ε,σ)= ί ^ ( i > , ί ) , (2.6)
n = 0

oo

eΛ{ε,δ) = Σ eTen(S), (2.7)
« = 0

and equating powers of ε, we obtain

Σ (1 + δK(U σ)) exp0o(i, σ, δ) = \Λ\eo(δ), (2.8a)

Σ(l+δK(i,σ))(expφo(i,σ,δ))φι(ί,σ,δ)+ Σ V{A)σ{A) = \Λ\e,(δ), (2.8b)
ie/l ACΛ

and, otherwise,

Σ [(1 + δK(Uσ))(expφo(i, σ,δ))(φ,,(i, σ,δ) + P^φ^i, σ,δ)),..., φn_ ,(i, σ,<5))]

= \Λ\en(δ), π ^ 2 , (2.8c)

where Pn(x1? ...,xπ_1) is the polynomial defined by the generating functional

Note that Pπ has positive coefficients; by definition P1=0.
To solve Eqs. (2.8a)-(2.8c), we first note the important closure property, which

follows from Eq. (2.3): If σ(A) occurs in the Fourier expansion for φΛ(i, σ, ε, δ) with
coefficient JΛ(A,ε,δ) and e^ , then σ(A) also occurs in the expansion for φΛ(j,ε,δ)
with the same coefficient JΛ(A, ε, δ). In particular, if φΛ(i, σ, ε, δ) and φΛ(j, σ, ε, δ) are
expanded in power series in ε, (5, and A contains i and j , then the coefficient of
δmεnσ(A) in both expansions will be equal.

We proceed to the solution of Eq. (2.8a). Writing

φo(i,σ,δ)= Σ δmφmtΌ(i9σ)9 (2.9)
m= 1

eo(<5)=l+ £ δ* emι0, (2.10)
m = 1

and substituting into Eq. (2.8a), we obtain

σ)) = \Λ\eltO, (2.11a)
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and

} (2.11b)

Using the facts that φ(i, σ, <5, ε) and hence φm 0(z, σ, δ, ε) are homogeneous in σ(i)9

and the closure property, the reader can convince himself that these equations
have a unique solution.

We next estimate the series Eqs. (2.9) and (2.10). It is convenient to define

Xm, θft σ ) = Φm. θft σ ) - em, 0 ( 2 1 2 )

Note that by the closure property, translation invariance and the fact that the
Fourier expansion for φm 0(i, σ) contains no constant term, we have that

|Σxm,o(0||=Mlllzm,o(0ll, (2.13)

and

HWOIIHIΦm,o(OII+k,,ol. (2.14)

Using these estimates, Eqs. (2.11a) and (2.11b) give the estimates

(2.15a)

(2.15b)

Let g(δ) be the analytic function defined in a neighborhood of δ = 0 (g(0) = 0) by
the implicit relation

(Hg,δ) = 2g-eβ+ί-\\K(ί)\\δeβ = 0. (2.16)

[The function g exists since dG/θg(0,0)φ0.] Substituting

0 = Σ <5m0m (2-17)
m = 1

into the rearranged equation

we get the nonlinear recursion relations

^ = 11̂ (011, (2.18a)

9π, = Pj3v-,9m-1)+\\Kι\\(gm-1+Pn-1ig1,...,gm-2)), m^2. (2.18b)

By induction,
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so that both series Eqs. (2.9) and (2.10) are absolutely convergent with bounds

\\Φo(hδ)\\ύg{δ), (2.19a)

\eo(δ)-l\^g(δ), (2.19b)

for δ sufficiently small.
Recall that K(i) is assumed to have range r based at i. Equations (2.11a) and

(2.11b) then imply by an inductive argument that φm>0{i) has range ^rnr.
Consequently for some c(δ\

The same reasoning leads to an estimate on the difference of φ0 Λ's for different
Λ's. We summarize.

Lemma 2.2. Under the assumptions of Theorem 2.1, φ0 Λ satisfies, for δ sufficiently
small,

i) \\ΦojUσ,δ)\\^coδ;

ii) WΦoJUσ^-φoJUσ^W

and φm 0 Λ(i, σ) has range 5* mr.
iii) For ΛcΛ' and some c'(δ)

where d is the distance between i and the boundary of A.

It remains to define and estimate the φnΛ's, and en's for n^ 1. It is convenient to
define K(ί,σ,δ) by

(1 + δK(U σ)) exp φo(i, σ, δ) = 1 + K(i, σ, δ). (2.20)

Note that \\K(i,δ)\\=O(δ). In terms of K(i,σ,δ) the φn Λ's and en's are from
Eqs. (2.8b) and (2.8c) given by

Σ Σ V(Λ)σ(Λ) = \Λ\e1(δ), (2.21a)
ACΛ

Σ n n ί n 1 n
ίeΛ (2.21b)

Here, for example, φx{U σ, δ) can be obtained as a Neumann series (not in powers of

8)

φι(i,σ,δ)= Σ φmA{i,σ), (2.22)
m = 0

with

Σ K^)σ(^) = 0, (2.24a)
ACΛ
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and otherwise

Σ(Φm,1(i,σ,δ)-eml(δ))+ΣK(i,σ)φm_ul(i,σ,δ) = O, m^ί. (2.24b)
ί ί

As before, the solution to these equations are uniquely determined by the
requirements that c/)1(i, σ, (5) is homogeneous in σ(i) and the φ^i.σ^δ) satisfy the
closure property. The φn's n>\ can be determined similarly.

From Eqs. (2.21a) and (2.21b) and the closure property, we obtain the
estimates

and

\\xm^\ + ]^{l)iPn(\\xMl---Axn-M\)> «^2, (2.25b)

with

χn(i,σ,δ) = φβ,σ,δ)-en(δ), n^ί. (2.26)

Set a(δ)= \\Xl(i)\\, Hδ) = (ί + \\K(ί)\\W - M I D - Let f(ε) be the analytic func-
tion defined in a neighborhood of ε = 0 [/(0) = 0] by the implicit relation,

F(f, ε) = b{em -1) - (b + l)/(ε) + αε = 0. (2.27)

As before, substituting

/(ε,<5) = /(ε)= Σz"m (2-28)
n= 1

into the rearranged equation

/(ε, δ) = f(ε) = b(efM - 1 - /(ε)) + aε

gives the non-linear recursion relations,

h{δ) = a{δ), (2.29a)

fn(δ) = bPn(fv. ..,/„_,), n^2. (2.29b)

Again by induction,

so that the series Σεnχn and hence the series for φΛ(ί,σ,ε,δ\ e(ε,δ), Eqs.(2.6) and
(2.7) are absolutely convergent with bounds

δ), (2-30)

\e(ε9δ)\^l+g(δ)+f{ε,δ)9 (2.31)

for (5,ε sufficiently small, by Ineqs. (2.19 a) and (2.19 b).
The decay estimates for φΛ(U <?, £, δ), (ii) and (iii) of the theorem are straightfor-

ward but tedious here we summarize the arguments. Statement (ii) of the lemma,
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and the definition of K, Eq. (2.20), imply that if K(i) is expanded,

OQ

m = 1

then Km(i) has range ^mr. Using this fact in Eqs.(2.21a) and (2.21b), we obtain
inductively the result that φmn(i, σ), the coefficient of δmεn in the expansion for
φ(U σ, ε, δ\ has range S(n + m)r. This result along with the fact that φo(U σ, δ) = O(δ)
implies all the estimates of the theorem.

III. A Large ε-Expansion

In this section we consider, for illustrative purposes, the particular ferromagnetic
Hamiltonian (transverse-Ising)

with ε large. Here, the second sum is over nearest neighbor bonds. The
Hamiltonian is clearly unitarily equivalent to

(3.2)

and we will work instead with this Hamiltonian. [It is the unitary transformation
taking ^ ( ε ) to H'Λ(ε) which plays the role of a duality transformation.] We again
employ the vectors {(σ)} as an orthonormal basis.

Note first that with respect to the basis H'Λ(ε) is reduced states with an even
number or odd number of up spins are mapped invariantly by H'Λ(ε). For this
reason our ansatz for the ground state,

ΣJ2(Λ,ε)σ(A))\σ}= Σ>>,β)|σ> (3.3)
A I σ

is a restricted sum over even-up or odd-up states only. [The J's are not unique
since e.g. σ(A)= ±σ(Λ-Λ) on even or odd states, respectively.]

As before, we substitute ψ^(ε) into the eigenvalue equation,

ε), (3.4)

to obtain (again we suppress the subscript A)

Σ = Mk±(ε), (3.5)

where ε|/t|β±(ε) is the eigenvalue, and (for all iJeΛ)

φ±(i,j,σ,ε)= Σ JHλeXA). (3.6)
A:

ieA, jφA

In calculations below we observe the conventions that σ{A)σ(B) = σ(AΔB), but that
&(Λ)= ±1 according to whether \A\ is even or odd.
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Theorem 3.1. For the transverse Ising model defined above, with i,j neighboring, for
ε sufficiently large, there are constants c1 ? c2{ε), c3(ε), c4(ε) such that

i) \\φ±{i,],σ,ε)\\ScJε,

ϋ) \\φ±(ij,σ,8)-φ±(ίj,σk,ε)\\^c2ε-\ί-k\,

iii) for Ac A' and iJeΛ,

where d is the distance between (ij} and the boundary of A.
iv) The states ψ^, ψ^ are asymptotically degenerate in the sense,

for A a cube of sides L.

Before proceeding to the proof of this theorem, we show that it implies long
range order.

Proposition 3.2. For ε sufficiently large the ground state of HA(ε) exhibits long
range order, i.e. there is a constant k(ε}>0 such that

independent of A for all k, I

Proof The expectation in the transformed representation is equal to

But the right hand side of this inequality is strictly positive here, for example,

by (ii) of the theorem. This concludes the proof of long range order.

Proof of the Theorem. The proof is similar to that of Theorem 2.1, where however,
we expand in powers of 1/ε. Writing

φ±(i,],σ,ε)= Σ z-'ΦHuίσ), (3.7)
n= 1

oo

e±(ε) = v+ Σ ε~ne+- (3.8)
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(recall v is the dimension of the lattice), we obtain

= \Λ\ef, (3.9a)

and otherwise

(3.9b)

These equations are solved just as in Sect. II, but where we observe the convention
0"(Λ)= ± 1 , appropriately.

By induction, φn(ίj,σ) has range ^n— 1. Assuming convergence of the series
for φ± and e±, this fact implies statements (ii) and (iii) of the theorem. It also
implies that the system of Eqs. (3.9a) and (3.9b) is the same for the ( + ) and ( —)
cases for n sufficiently small so that no σ(Λ)-teτm occurs, for n<L. Hence the
expansions for e+(8) and e~(ε) are identical to order ε~L, statement (iv) of the
theorem.

Regarding convergence, we set

χϊ(ij9 σ) = φϊ(i,j, σ) + φfa /, σ) - β±/v. (3.10)

Note that

WxHU)\\ = WΦHύW + ll^O δll + l^/v|. (ill)

From Eqs. (3.9a) and (3.9b), we have that

WxHhM^l/v, (3.12)

and

\\xHUM^Pn{\\xt(iM...A\X?-1(Uj)\\), n^2. (3.13)

By the same argument used in Sect. II,

WxHUM^K, (3.14)

with

oo

A(z)= Σ ?K> ( 3 1 5 )
n= 1

defined in a neighborhood of 0 by the implicit relation (h(0) = 0)

2h{z)-eh(z)+l-z/v = 0. (3.16)

In particular, for ε sufficiently large

ύ (3.17)

(3.18)

This concludes the proof of the theorem.
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