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Renormalization Group for a Critical Lattice Model

Effective Interactions Beyond the Perturbation Expansion
or Bounded Spins Approximation

K. GawQdzki1 and A. Kupiainen2

IHES, F-91440 Bures-sur-Yvette, France

Abstract. New methods are developed for the study of the Kadanoff-Wilson
renormalization group for critical lattice systems of unbounded spins. The
methods are based on a combination of expansion and analyticity techniques
and are applied to a nonlocal hierarchical model of the dipole gas. They
remove the main obstacle against the use of the block spin strategy in more
realistic models such as φ*9 the dipole gas and the anharmonic crystal.

1. Introduction

In the previous publications [4-6] the present authors have developed methods
for a non-perturbative analysis of the Kadanoff-Wilson renormalization group
(RG) in the context of massless lattice theories such as the dipole gas and φ\,
d^4, at the critical point. It was soon realized that the main problem was the
simultaneous control of the clustering and positivity properties of the effective
interactions. To study these questions separately, we introduced a hierarchical
approximation to the systems (see [4] for more details and the motivation). We
considered different cases depending on whether the fields describing fluctuations
on a given distance scale were bounded or unbounded in magnitude and whether
they had covariance totally local or one with an exponential falloff (as in the real
models). The bounded nonlocal model was suitable for the study of clustering [4,
5] whereas the unbounded local model dealt with the positivity problem [6]. The
first case was solved by use of a cluster expansion to compute the effective
potential, the solution of the second one was based on the study of the analyticity
improving properties of the RG transform.

In the present paper we combine these two ideas to carry out the analysis in the
unbounded nonlocal case. We prove that for a wide class of potentials the RG
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drives the system to the line of massless Gaussian fixed points. We show this for
the potentials but, as in [5], the analysis could be extended to the correlation
functions giving their infrared behavior. Once combined with a careful study of the
Gaussian piece of the effective interactions, the methods developed here lend
themselves to the study of more realistic models mentioned above. Briefly, the idea
here is that if the Gibbs factor is analytic in fields in a polystrip, then the RG
transformation expands the analyticity region due to the scaling involved,
producing a contractive effect. This is exhibited by analyzing the fluctuation field
integral by means of a partially resummed cluster expansion. The resummation is
done in the regions where the block spin field is large and the expansion would not
converge. The (usually large) contributions from these regions are estimated by
iteration of an a priori bound showing that they are not too large and do not spoil
the positivity of the action.

Section 2 of the paper gives the description of the cluster expansion and its
partial resummation. Section 3 states the inductive bounds for the effective
interactions and shows how they carry over to the next step.

2. Set-Up of the Expansion

We work with the periodic boundary conditions. Our field ψ = (ψx) (the block spin
field of the model on some scale) lives on the periodic lattice ΛN: = Zd

LN, (viewed
also as ] — ^LN, \LN[_df]Zd), see [4, Sect. 2]. For notational convenience L is taken
odd. The (effective) interaction for ψ is an even functional V(ψ)9 V(0) = 0, invariant
under periodic translations of ψ. The block spin field on the next scale φ = (φx)
lives on ΛN_ί and is related to ψ by

xpx = L-dllφ{L-ix] + stf{x-L\_L-'x\)Z[L-^ (1)

where Z is by definition the fluctuation field (on ΛN_ 1). Here s4 is a fixed function
bounded by 1, with mean zero, supported by the L x... xL block in TLd centered at
the origin. Also, \L~ιx\ denotes the integral point nearest to L~ιx. The effective
interaction V on the next scale is a functional of the block spin field φ obtained by
averaging out Z in the Gibbs factor for ψ

exp[- V\φ)-\ = ί exp[ - V{ψ)] dvΓN_ ffl/iφ = 0), (2)

where dvΓ(Z) is a Gaussian measure with covariance Γ, and we have normalized
the expression so that F'(0) = 0.

The covariances ΓN will be obtained from a single covariance Γ = (Γxy)XίyeZd

such that
*x + ay + a = *xy> w )

Γxx = l, (4)
and

J y ) ] , (5)
with A sufficiently big.

Throughout this paper we use the distance d(x, y)=Σ \χl ~ ^1 on IRd /̂ r will be
i

the average of Γ\ΛNXΛN over periodic translations by vectors in Έd

LN. It is



Critical Lattice Model 79

straightforward that ΓN satisfy the periodic versions of (3)-(5). Our estimates will be
uniform in N.

We shall consider various subsets of periodic lattices D, X, Y and the like,
which we always assume to be built of the blocks of Ld sites centered at points of
LΈd, unless otherwise stated or obvious from the definition. For any general lattice
subset B, B will denote the smallest subset containing B built of the blocks,
L~XB\ = {[L"*x] :xeB}, LB: = {Lx\xeB}. For X built of blocks, by \X\ we shall
denote the number of blocks contained in X and by JSf (X) the length divided by L
of the shortest connected graph on the centers of the blocks contained in X. Then
X is said to be connected if the graph on the centeres of the blocks building it,
obtained by joining those corresponding to the nearest neighbor (n.n.) blocks, is
connected (i.e. the centers of blocks ofX cannot be divided into two non-empty
subsets with no graph lines between them).

Suppose at the beginning that

v= Σ vγ+ Σ vx, (6)
0 ^FYCΛN xeΛN

where Vγ, vx are even, vanish at zero, and depend only on ψ\γ and ψx respectively.
Then for DcΛN, partly resumming the Mayer expansion for exp[ — F],

exp[-F]= ΣΠ
{Yα} a

we obtain

exp[-K]= Σ vγ-Σ*
Y:Yn/uXΛ =0 xφD

(7)

where the sum over {Xj} runs over the sets of disjoint subsets XjCΛN such that

\JXjDD and that DnXj are built from connected components (c.c.) of D. Here

θx?X]= ΣΠ(«P[-^]-D Π expC-rJ, (8)
{Yσ} a ' xeDnXj

where ]Γ is restricted as follows: (DnXj) [jl[j Y^\ =X 7 and X. cannot be divided
{Y) \ α

into two subsets (built of blocks) such that each c.c. of DnXj and each Ya is in
either one. In the future whenever such restrictions appear we shall shortly state
that Xj is to be connected with respect to c.c. of DnXj and Ya.

In the sequel we shall use the representation (7) for the Gibbs factor after n — n0

RG transformations (2) for ψ such that \ψx\ < n2 on Λ\D. Hence g will contain the
information about the behavior of V for large fields.

Notice the relation between g\ and g^\ with DιDD:

; n - j - i ) π
{Xj} j {Ya} a xeDι\D

Here ^ runs over the sets of disjoint subsets oϊX1 such that DnXj is built from

c.c. of D and IJ X p D . Also £ is over sets of subsets ofXΛ (JX^ such thatX 1 is

connected with respect to c.c. of Dv Xj, and Ya.
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To produce representation (6) and (7) for V we shall cluster-expand (2) by the
method of [9,2]. Let us order the points of TLά. Let y be the first point of ΛN_V For
se[0,1] define the covariance Γs (we omit the subscript TV— 1)

Γ = ί Γ * i* 2

 i f e i t h e r χi=χ2=yoτ χi*y a n d χ2*y> n m

XίX2 \sΓXίX2 otherwise. l }

Then

\F{Z)dvΓ{Z)= \F{Z)dvΓ0{Z)+ )ds^-\F{Z)dvΓS{Z)
o us

= J F(Z)dvΓ0(Z) + Σ ί ds JIJ- Γyy, J - F(Z)) dvΓS(Z). (11)
\O£y OΔy, j

Iterating (10) and (11) we obtain

J F(Z)dvΓ(A) = Σ ί Π S0UF(Z)dvΓS(Z), (12)

where

is a sequence of different points in ΛN_ί, yl being the first of them in the fixed
order,

runs over the sets {yj such that {ya} forms a partition of ̂ ljy_ l 5

S(y) = ί, (13)

S(yx)=$dsl...dsriK(yx,SJ for n β >l, (14)

K(yx,sx)=f\K(i,sσ)> (15)
i = 2

^ r ^ . r ^ 5-"1^^ f o r J'<1''

Γ ^ = 0 for α Φ ^ . (19)

Besides (12) our cluster expansion will also contain the Mayer expansion

Π e xPC - Vγl = Σ (exPC - Vγl -1). ( 2 0)
\Y\>1 iYβ)

and the partition of unity specifying the region where the fluctuation field Z is
large:

1= Σ XR(Z)> (21)
RCAN-1
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where

The

XR(Z) = Π 1(1-
yeR

superposition of (12), (20),

α \Yβ\>l

yeΛN- i
-vΔy{\

and

β

p)—

Bn2) Yl l(\Zy\<Bn2).
yφR

(21) for the right hand side

(exp[— Vγ(ψ)~] — 1)

Σ vx(ψψR(Z)dvΓS(Z)/(φ =

of (2)

0),

81

(22)

gives

(23)

where Δy is the block in ΛN centered at Ly. Now we have to exhibit factorization
properties of the expansion (23). Let R contain R and the blocks being the n.n. of
those in R. Consider the subset

(24)

of ΛN_ v Draw a graph on the centers of the blocks building it the following way:
there is a line for two different points if

one is the center of a block in R and the other of its n.n.
block,

both blocks centered on them contain points in a single
171 Yβ or a single _ya.

Use the c.c. of this graph to select the clusters (polymers) Xζ in X. Fixing {X^} and
performing the rest of the summation, we obtain for exp[— V'~\ the expression
involving the partition function of a system of polymers [11, 12] :

exp[ - V'iφ)] = / Σ Π Qxζ(Φ)/(Φ = 0)) exp
\ { X } d i j i t ζ /\{Xζ}disjoint ζ

where f o r X c ^ - ! the polymer activity

- Σ v'x(Φ) (27)

QX(Φ)-=ΣΣ
R {yn){Yβ}

• f ] e x Pf - VΔy(ψ)- Σ vχ(xP)}) XR(zx)dvrs(zx)l( Π e x P [ - <W>)J) > (28)
yeX [ xsΔy \j I \xeX j

with ZX = Z\X, and

exp[ - w'y{φ)li: = f exp[ - VΔy(ψ) - Σ vχ(ψ)] 1%(zy)dvryy(
z

y) > ( 2 9)

In (28) the sum over R, {yj and {Yβ} is restricted as follows: RcX, {ya} is a
partition ofX, I7β

ι YcX, \Yβ\>l and the graph on the centers of blocks inX drawn
according to the rules described above is connected. Using (27) we would like to
obtain an analogue of (6) for V. This is possible if the activities QXζ{φ) are small.
For YCΛN_1 put (see [1, Chap. II])

yrrf / I \ . V^ V ΓT

Y\τ) ' /_j r i I £_j 1 1 ' '

(Xζ)f=ί ^' yc leyc
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where Σ runs over connected graphs on vertices {1, ...,Ξ} and

[ 0 otherwise.

Now, with

(33)

v= Σ K+ Σ v'χ (34)
YCΛN-1 X<=ΛN-1

holds at least provided that the polymer activities ρXζ(φ) are small so that the series
in (31) converges. Actually the activities are not small for large values of φ, and
neither (6) nor (34) makes sense. What will be shown to make sense is (7) and its
analogue for V with D containing the region where the field is large. However we
find it worthwhile from the pedagogical point of view to arrive at the final
expansion by cluster-expanding everywhere and partially resumming the expan-
sion, regardless of the fact that these two steps are only formal.

As a result of the partial resummation done exactly as in (7), we obtain for
D'CX'

Qχ: = Σ Π (e xP [ - K.1 - 1) Π exp[ - v'J, (35)
{Yoc} a xeD'

with the same restrictions on {YJ. Now using (33) and (31) we obtain

g$ϊΦ)= Σ Σ Π(κJ™JΓ\-
{Yα}

«α + m α > 1

Σ (ΛΠM!)-1 Σ Π A(t) ft ΰχ,(Φ) f ί »^/0)
(XU...,XN;YI,...,YM) 7 ley i=ί j = l

= Σ Σ Π f o . W M I ^ f ί ^ ί O ) , (36)
{Xi,...,XN} ( Y i , . . . , Y M ) i = l j=l

disjoint

where the sums over Xί9 ...,YM are restricted by requiring that X' be connected
with respect to them and the c.c. of D'.

Introduce now for D' CX

Σ Π . Π (37)
{Xi} ί xeD'

where the sum runs over the sets {X } of disjoint X such thatX is connected with
respect to X. and c.c. of D'. Notice that for empty D'

Qχ = Qχ. (38)

We may rewrite (36) as

N M

H O ) , (39)g'Dx'(Φ)=
{Xu

Σ
...,XN) (Y

Σ
N

') Ϊ
 = 1

M
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with restrictions requiring that Xt be disjoint, D'nXi be built of c.c. of D' or be
empty, \JXpD' and that X' be connected with respect to Xt and Yy

i

The polymer activities ρ%' may be obtained by selecting differently the clusters
of the cluster expansion: working with (25) we could have considered the set

(40)

and have drawn additionally lines between the centers of the n.n. blocks in D' when
building the graph used to select the c.c. of (40). This would have given

exp[-F'M>)] = ( Σ Π 4 n * W ( n = ° J ) Π exp [ - 1 ^ ) ] , (41)
\{Xζ) ζ I \U —V//xφD'

where X^ are disjoint, X^D' are built of c.c. of D' or are empty and (J Xζ D D'. The

polymer activities are ζ

Qs(Φ)=ΣΣ Σί(Π%α)Π(eχp[-^>)]-i)Πeχpf-Vv)- Σ »

•χR(Zx)dvΓs(Zx)lί H exp [-.;((/,)] Γ |exp[-w;(0)]\. (42)
/ \xeX\D' xeX )

Here the sum over R, {ya} and {Yβ} is restricted similarly as in (28), except that
now the graph on the centers of the blocks in X with lines for the centers of n.n.
blocks in D' added is to be connected. It is straightforward that (37) and (42) give
the same object.

The crucial property of the activities ρ%'n^(φ) is that they are sufficient to give
g'g'^Xφ) and Vγ(φ) for DfnY=0 [see (39) and (33), (31), (38)] and that in turn they
may be expressed by a Z integral of expressions involving only gχnX{ψ) and Vγ{ψ)
for DnY = 0 with D = L(D'vR). Partially resumming Π ( e x P C ~ Vγβ^~ *) i n ( 4 2)
we obtain β

Q$(Φ)=Σ Σ Σ Σ(
R [Xi XN) (y«) {Yβ) \ a 1=1

Π exp[-^(φ)] Π exp[-o»]
^jL-iXt xeLX\D

Π p ; Π p ; (43)
eX\D' )

with the following restrictions on the sums: R cX, L~ xXt cX,Xt are disjoint,

are built from c.c. of D, [JXpD9^a are disjoint, [j^a=X, L~1YcX,
ί α ^

7̂ 1 > 1 and the graph on the centers of blocks of X obtained by drawing lines
between the centers of blocks in R and their n.n. and between two different points
such that both blocks centered at them contain points in a single L~ ̂ ^ L~1 Yβ or
γa, is connected.
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If φ in (43) is small outside D':\φx\<%Ld/2(n + l)2 for xφD', then ψ under the
integral is also small outside D:\ψx\<n2 for xφD. This follows from (1), the
definition D = L(D'KJR) and

2"(w+ I)2 + Bn2 <n2, (44)

which holds for n _ n0 if B is chosen properly.
We shall still have to rewrite (43) in a slightly changed form. Let

υx(φ) = c2φl + ϋx{φ), where —-^ Cx(0) = 0. Similarly vf

x(φ) = cx + ΰ'x(φ). Now

ej?'W0=Σ Σ Σ Σ Π e χPc20ί ^Π eχp[(^2-c2)Φχ]
K {XI,...,XN} {y*} {Yβ} xeR\D' xeX\(D'uR)

• ί ( Π S(yJ Π βχ?Xi(ψ) Π (exp [ - VYβ(ψ)-\ - 1) Π exp [ - VΔy (ψ)]

exp[-i5»]
xeLX\D

χR(Zχ)dvΓ.(Zχ)l( Π e x p [ - g χ ( 0 ) ] Π e x p [ - < ( O ) ] ) , (45)

with the same restrictions on the sums as in (43).
Equations (29), (30), and (44) or (45) together with (39) and (33), (31), (38) define

new v'x, Vy, andg'χ>in terms of the old ones. For those expressions to make sense it
is enough that the activities ρx(φ) be small only when DnX — 0 or when 0 = 0, that
is for small block spin fields. This will be shown to hold for all interations of the
RG transformation. From the way the expressions for v'x, Py,#'£'were obtained it is
obvious on the level involving manipulations with ill-defined formal power series
that the analogues of (7) and (9) hold again. To show that with full rigour, we have
to proceed in another way, having chosen the formal one since it was more
instructive. Let us sketch here the other argument leaving the details as an
exercise to the reader.

i) In (2) we perform the expansion (12) and insert the partition of unity (21).

ii) We use (7) with D = L(D'uR) to express the Gibbs factor.

iiί) The Mayer expansion of exp — £ ŷOp)
Y:yn(yX,j=0

| y | > i

iv) We select the polymers decomposing

is performed.

with the help of the graph joining the centers of the n.n. blocks, one in R, the other
in R or of the blocks, both containing points in a single L~ 1Xp L~ * Yβ or ya. The
activities of these polymers are Qχ'nX(φ) as given by (43) or (45).

v) In the expression (41) which results this way, we Mayer expand

Π e x p [ — Wy(0)]5 which is the , term. Then Xζ and Yβ forming clusters X'.
γ \D =0/
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connected with respect to Xζ and Yβ around c.c. of D' give rise to the term

ΓΊ#x;'nX'J °̂  e x P t ~ V^ ^ n e r e s ummation of th e other term produces

expί- Σ VΊ~Σ
L Y YnίuX'Λ =0 xφD'

Thus we obtain (39) together with an analogue of (7).
vi) One shows using (43) and (9) that for D\ JD'

Π exp[-i;;((/))], (46)
D'^D'

where we sum over sets of disjoint Xy such thatXjCXv D'n%jare built of c.c. of D1

or are empty, ( J X p D and Xxis connected with respect to X and c.c. of D'v
j

vii) The analogue of (9) follows from (39) and (46).

3. The Estimates

We start formulating inductive assumptions on vx,VY,g^. For Xl9 X2CΛN,
X1nX2 = 0, define

B{XvX2;rvr2):={{φx)xeXίuX2:\lmφx\<ri for xeXv\φx\<r2; for xeX2}. (1)

Our inductive assumptions will involve the following parameters: δ, L, A, r, K, E, n.
We shall always assume that 0<<5<l, L>L0(δ), A>A0(δ,L\ r>ro{δ,L,A),
\κo(δ,L,A,r)<κ<κo(δ,L, A,r), E>E0(L, A,r), n>no(δ,L, A,r,E) with appropriate
choice of Lo, Ao, r0, κ0, Eo, and n0.

Assumptions

1. vx(φ) = v(φx) is an even analytic function on Bφ, {x};0, fπ2), real for real

— Γ

aφx

2. Vγ(φ) is an even analytic function on Bφ, Y; 0, f π2), real for real φ, J/y(0) = 0,

φχ9 φ) = 0, v(φx) = c2φ
2

x + v(φxl where —Γί5(0) = 0, \c2\<$κ9 \v\<δn.
aφ

3. θχ(φ) is an even analytic function on B(D, X"D;n2, n2),

Q\M\

dφ
fθDχ(Φ) \φx\

2-

We shall prove that i^, Vy, ^', satisfy the same assumptions with n-+n+l,
κ-+κ! = κ(l + 0(n~2)) and the other parameters not changed.

The Estimates of the Local Potential

By (2.29)

\VΔy(ψ)- £ vx(xp)]
\xeΔy

• exp[ - c2(Σ ^W2)Z,2] Xl(Zy)dvrJZy). (2)
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It is straightforward that

and

Hence

\C I ^ l l
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(3)

)• (4)

(5)

Now w'y{φ) is analytic for \φy\<%-^ 2, see (2.44). For

dΦΊ
But

- lM + const,w'y(φ)= - l o g ί l + /expf - VΛy(ψ)-

where < — ) is the expectation in the probability measure

ΛΓ 1 expf - c2(Σ ^(x)2\zξ\ χ&(Zv)dvΓJZy)

and

expί — VΔ (ψ)— Σ vx(ψft ~~ 1

for \φy\<l~Ld/2(n + l)2. Hence, for m > 0 by the Cauchy formula,

-l) 2 Γ m (L d +
dm

(6) and (9) give

(6)

(7)

(8)

(9)

1. (10)

Thus v' possesses the required properties. We also see the mechanism which drives
the local potentials down (except for the quadratic terms). This is the expansion of
the analyticity region by factor O(Ldl2) each time the RG transformation is
applied. We shall use this mechanism still once more below when estimating V'Ύ
with small Y.

The Estimate of the Polymer Activities

In order to show that Fy and g'£ satisfy Assumptions 2 and 3 we shall have to
estimate ρ${φ) as given by (2.45). From (2.1), (2.44), and (2.43) or (2.45) it is obvious
that ρ%'(φ) is analytic in

B(Df,X\Df \Ldl\n + I)2, \Ldl\n + I)2).

Let us write

(11)
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where τα is a graph (tree) on ya with lines / = (/_,/+), /_ earlier than l+ in ya9 such
that each yι

a for i> 1 appears once and only once as l+. Then

(12)
/eτα

where, if / = ()£, j$ , then s^s1 ...sj 2 (sι = 1 if j — i ̂  1). Let μ be the family of points

[each point y appearing so many times (|μ(y)|) as there is derivatives over Zy in
(11)]. Let

be the partition of μ determined according to which term in (2.45) is differentiated

over

QΪ\Φ) = Σ Σ Σ Σ Σ Σ Π exp[c'Cl Π exp[(c'2-c2W>x

2]
R {X} ( P ) {Y} {τα} {μi} xeR\D' xeX\(D'uR)

N β\βι\

Π

exp[-δ»]
lMyl

(13)

The expressions with derivatives under the integrals in (13) are bounded as follows

π
i= 1

fl\βι\

δZ" ;) + £|£>||, (14)

, (15)

(16)

(17)

(18)
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where C depends only on L.
Using Assumptions (3), (4), and (14)—(18), we obtain

ύ Σ e x P [ * Σ \Φx
RΛXihiy*} [ xeD'

{Yβ},{τ*hiμi)

Y\Qχpl-AJ?(Yβ)-] Π
β ί e u τ α

• Π lδn{l + Cδn)~\ exp [Cκ\X\] exp IE\LR\ + 2κn*\L(R\D')\~]
β

• J Π dsjτβjJ expjC/c £ ZJ] χR(Zi)dvΓAZg). (19)£ J
It is straightforward to show that the Z integral on the right hand side of (19) is
bounded by

exp \_CK\K\\ Π exp [ - i# V ] . (20)
yeR

The sums in (19) will be estimated by the method of combinatoric coefficients [7] :

Σl/J SsupcJ/J if Σc ^ l , cα>0. (21)
α α α

Let us start with the sum over {μ^.

i) We first sum over the choices of {μ.}5 (J μ̂ , ί (J μy 1, ί (J μ U , and {μy}. This
I ί { J

is controlled by the combinatoric coefficient
ii) We sum for each Yβ over the choices of the subsets Q of Lβ 1 Y of points y with

1̂ (3̂ )1 >0. The coefficient f j2 | 7 / j | controls this sum.
β

iii) For each y we sum over the partitions of (J μ ί̂y) into {μβ(y)}β:yeQβ' This is

controlled by the coefficient β

y

iv) For each y we sum over the partitions of (J μyy into {μ^}. The coefficient is

Σ |μyy| -

Λyy
y

Π

v) For each x we sum over the partitions of (J μ^ into {μ^}. The relevant

coefficient is

Altogether we pick up a coefficient which may be bounded by

l. (22)
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Inserting (20) and estimating the sum over {μ7} in (19) with the use of (22), we get

Σ maxίexpk £ \φf+ ELd\D'
R,{Xi},{y*) {μi] I ί

(23)

(24)

(25)

(26)

• exp [Cκ|X|] Π exp [ - iB 2 « 4 ] j Π

An easy estimate [4, Lemma 2] yields for ε > 0

Hence by virtue of the connectivity properties of X
N

i = l

Another easy estimate [8, Lemma 10.2] gives

μ\2SC^ Π exp[d(Z_,Z + ) ] .
le u τ α

Inserting (27) and (28) into (23) and using (2.5), we get

_ maxjexp[κ; £ \φx\
2 + ELd\D'\

Π(Cμ)exp[-(

Ze u τ α

--Ad(LΛ)

Now

(C(^l)r-

{

VII

T'expCCK IXQΠexp

Πeχp

Σ Πeχp

Σ Π(exp

-ίAdβ.

ε

4

(27)

(28)

(29)

(30)



90 K. Gawςdzki and A. Kupiainen

where we have denoted by J^iyJ the length of the shortest tree on yΛ and have used
[10, Lemma 5]. Hence the sum over {ya} and {τj contributes the overall factor
C1*1. A similar factor is contributed by the sum over K.

The sum over {Yβ} is controlled in steps.
i) For any Y CΛN we fix one of its blocks. First we sum over the sets Q of points

yeX such that block Δy is the fixed block of some Yβ. This is also controlled by the
combinatoric coefficient C'*'.

ii) For each yeQ we sum over the possible numbers b(y) of Yβ for which Δy is
the fixed block. This contributes the factor f]2 b { y ) =Y\2.

y β

iii) Next we sum over the choices of Yβ with one block fixed. This contributes
exp[C^(7^)] with C sufficiently big.

The sum over {X.} is controlled by C | D ' u R | Π

Altogether £ is replaced by the combinatoric coefficient

(31)
i

Since moreover

K , (32)
i β yeR

and

^ l , (33)

we get finally

|ρf(φ)\^exp[κ Σ IΦJ2 + C(L ? A,E) |DΊ|exp[-(l + εMif(X)]G-^l (34)

on B(D\X\Df;%Ld/2(n+ϊ)2,$Ld/2(n+l)2), where G may be taken big.
We shall need a more refined bound for D' = β on B(0,X; 0,§(n+1)2):

for ^Γ|>2d or X ^ 2 d

? X disconnected, (35)

'δn exp [ - 4JS?(aΓ)]

for |X |^2 d , X connected, (36)

where C is L independent. Notice that when estimating in (13) the terms with
.Rφβ, with more than one Y in {Yβ}, or with one Yβ but μφ(3, we could have
extracted the additional \bn factor. Thus we are left only with the terms with R = 0
and no Yβ or with R = 0, one Yβ and μ = 0. From the terms with R = 0 and no Ŷ ,
only those with μ= (J μy do not carry the additional \δn factor. If we subtract their

y

value at φ = 0, we may extract the additional factor Cr~ιδn0χ][ which will do the
job. In the terms with R = 0, one Yβ, μ = 0 for which i f (7^) > JS?(L~x Yβ) we may use
exρ[ — εA^(Yβy] to extract the additional small factor we need. The other ones
with ^(Yβ) = Sίf(L=ΎYβ) have \Yβ\^2d. For d = 2 they are drawn on Fig. 1.
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Fig. 1

'szΔ

mm P1
1

In this case we shall use the fact that

and is analytic for \φx\<jLd/2(n+l)2 and that odd derivatives of exp[— Vγ (ψ)\
over φ at zero vanish when integrated over Z. The analyticity in a bigger region
yields contraction, as in the case of the local potential, see (6), (9), and (10):

Σ

^ Σ

1

y)^2 y

^ Σ
07)

The sum over Yβ gives at most the factor Lά~ι. Hence the right hand side
CL"1δnexp[-ylJSf(Xr)] of (36).

g'g and Vγ. The Proof Completed

Having bounded ρ%(φ\ we may continue for a while estimating gχ(φ) as given by
(2.39). Notice that (2.31) yields

yc leγc \ ζ

y|, (38)

where we have used the standard bound proven, e.g. by means of a Kirkwood-
Salzburg equation [1, 3]

Σ ^ Σ Π M Π exp [ - c&(xζ) - cιχ ;|] ̂  c, (39)

with

C'= (40)
X containing
a fixed block
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Equation (2.39) together with (34) and (38) gives, after an easy argument involving
combinatoric coefficients,

\ Σ \φJ + {9i)\\pl(+)SeQ)]G'^ (41)
I xeD' J

on B{D\X'ψ \Ldί\n +1) 2 , \Ldί\n +1)2). This is not yet sufficient since C{L, A, E)
is much bigger than £.

To improve (41) with help of (2.9), first we have to estimate Vγ(φ) on
fl(0, Y; 0,f (n+ I)2). By (2.31) and (2.33)

n(Φ)= - Σ ^ Σ Π 4 0 Σ f Π QxM (QXζ (Φ)-QXJP))( Π QxM (42)
(Xζ)f=i ^ l Ίc leyc ζo=l\ζ<ζo / ° \ζ>ζo /

[jXζ = Y

Using (39) we obtain

Π \Qχζ(O)\)\Qxζ(Φ)-Qxζm( Π \Qxζ(Φ)t
<ζo / ° \ζ>ζo

ζ + Cpίζ|], (43)
ζ

where the supremum is taken over (Xζ)f= x such that \JXζ=Y and £ J~] A(l) + 0.
Now (34)-(36) show that ζ v« ί e ^

I F ^ I ^ ^ + ^ x p C - y l ^ y ^ G " ^ ^ (44)

on JB(0, 7; 0,f(n+ I)2). This is the only step which forces us to choose big L.
We may finish now the estimation oίg'χ,\φ). Suppose that for given φ,DcD' is

such that ^ „ ,
Σ IΦxl ^ i ( ^ + l ) for the blocks ΔcD, (45)

xeΔ

\lmφx\<\Ldl\n+\Y for xeD, (46)

|(/y<f(rc-hl)2 for xeXf\D. (47)

Then using (2.9), (41), and (44), we obtain

[κ £ |φJ + C(L,^,£)|D|l Σ Π
L ^ e £ > J {Xj} j

*™) Π e 2 / 3 ^ | 2 + c, (48)

with the restrictions on Σ a s ^n (2-9). The sum over {Xj} is controlled by the

coefficient 2 | 2 )1f|exp[Cj^(X7.)]. Since
j

Σ | 0 J 2 ^ ( n + l ) 4 | 0 | , (49)

we may write

" 'ΣWi- (so)
xeD J

(51)
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The sum over {1 }̂ is estimated by use of the coefficient

2 Γ W X J | Π (2exp[(if(Ya)])^2l°'l Π (2 |y"l +

a a

Notice also that

Π exp [ - A&φjf] Π exp [ - A&{ YJ] [J exp [ - A<?(D'J] £ exp [ -
j α c.c. D[ of D'
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and that

Π ex - C)\D'\]

(£ does not depend on n\). Hence on B{D',X'\D';^Lάl2{n+ί)2,^{n+l)2)

'Σ\ΦJ2 + lκ Σ \ΦX\
2

xeD xeD'\D

(52)

(53)

(54)

Now we are ready to apply the Cauchy integral formula to estimate —τ-gfχ'(φ).
oφμ

Let D be the smallest subset of D' (built of blocks) such that \φx\ <(n+1)2 onX\D.
Then if \zx\ = r

for ΔcD,

L)4 for x e D ,

for xeX'\D9

and (54) holds for φ + z. Hence for φeB(D'9X'\D';(n+l)2,(n+l)2\

;g'x

D\Φ)

• sup

Now, if | 0 λ | ^

(55)

2, then

and if |

Thus

with

(56)
xeD

(57)
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For xeD'\D

\φx + zx\
2^2\φx\

2 + 3r2.

Hence

f* Σ \Φx + zfSκ Σ \ΦX\
2 + C\D'\. (58)

xeD'\D xeD'\D

Inequalities (55), (56), and (58) give finally

dφμ*
^ μ!r μexp *' Σ \Φx\

2-Ag{X') + E\D' (59)

ending the proof of the fact that Assumptions 1-3 hold for υ\ Vγ,gf with n->n+ 1
and κ->κ' = κ{l + O(n~2)).

If we start with an interaction satisfying the assumptions, e.g. V(φ) = λ ]Γ φx

X

with small λ or F(φ) = z £ ( l — cosβ1/2φx) with z small, mimicking the anharmonic

crystal and dipole gas interactions, respectively, we are driven under successive
RG transformations to one of the line of the fixed points corresponding to the
interactions Σcφl. * n t n e n e x t publication we shall extend these results to the

and z(\ — cosβll2Vφ) lattice models, i.e. to the true anharmonic crystal and
the dipole gas. The ideas developed here will have to be supplemented with the
detailed study of the Gaussian part of the effective interactions.
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