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Abstract. All Wightman axioms, including asymptotic completeness, are proved
for the Federbush model with coupling constants m the range ( — 1/2, 1/2).

1. Introduction

The relativistic quantum field theory under consideration in this paper was
invented and formally solved by Federbush in 1961 [1,2]. Called the Federbush
model ever since, it describes two species of one-dimensional charged massive
fermions interacting through a current-pseudocurrent coupling. A few years later
Wightman' [3] studied (among other things) a number of field theories known to
be formally soluble, and in particular the Federbush model, with the aim of fitting
these theories into the framework of axiomatic quantum field theory. He observed
that a one-dimensional massive free Dirac field has a current that is the gradient of
a "pseudopotentiaΓ σ, and went on to show that σ is a local field that is not local
with respect to the free field. He then indicated how the Federbush field operator
might be given a rigorous meaning in terms of the object \Qxp(ίπλσ)\. The triple
dots denote vacuum subtractions, which are already necessary to ensure the object
σn has a well-defined meaning. In subsequent unpublished work Challifour and
Wightman [4] proved the field \σn\ is a local operator-valued tempered distri-
bution, but they could not show this for the field :Qxp(ίπλσ)\. However, in a later
paper Challifour [5] did show the time-ordered Green's functions of :Qxp(ίπλσ)\
exist for \λ\ small.

Interest in the model revived in the seventies in connection with work on the
massive Thirring and sine-Gordon theories. It was claimed by Tapper [6] non-
zero reflection occurs in second-order renormalized perturbation theory, con-
tradicting the absence of reflection to all orders claimed in [1, 3]. This was
subsequently refuted by several authors [7-10], who pointed out the inclusion of
appropriate counterterms (needed also to respect Ward identities) does lead to
vanishing reflection in second order. In the process a discrepancy between the
S-operators of [1, 3] was resolved by Schroer, Truong, and Weisz, who also
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studied operator-product expansions [10]. They used a Wick-ordered field φλ that
had been shown to be formally equal to ]exp(ίπλσ)[ by Lehmann and Stehr [11].

In a related but independent development Sato, Miwa, and Jimbo published a
series of papers on what they called holonomic quantum fields [12-16]. [The term
is inspired by the fact that the Schwinger functions and other associated
correlation functions of these fields satisfy holonomic (integrable) systems of
nonlinear and linear partial differential equations, which had been previously
studied by these authors.] They were in particular interested in understanding the
continuum field theory that is the scaling limit of the two-dimensional Ising model,
but they also studied a bosonic analog of the Ising model and boson fields φF

λ and
φf, expressed in the annihilation and creation operators on a charged fermion and
boson Fock space, respectively. Only recently they realized the field φ\ is
Wightman's field jexp(zπlσ); in disguise, and established the relation of their work
to the literature on the Federbush and massless Thirring models [17].

We took inspiration from their work [12-16] and our previous work on
Bogoliubov transformations [18, 19] to begin a mathematically rigorous study of
these models [20]. We introduced bosonic analogs of the Federbush and massless
Thirring models, and showed that the fields of the models mentioned above are
closely related or equal to quadratic forms implementing Bogoliubov transfor-
mations generated by local and covariant classical field operators, the locality and
covariance of the quantum fields being a formal consequence of this. In our
formalism the quantum fields appear in Wick-ordered form (in contrast to the
triple-dot fields), and therefore are easily seen to give rise to matrix elements that
are C00 in xelR2 (for a dense set of states). One can therefore rigorously investigate
the equation of motion by letting the linear (free) part of the differential operator
involved act on these C00-functions. The result of this is by construction the matrix
element of a normal-ordered expression. For the Federbush model on the
unphysical sector (i.e., "Dirac sea unfilled") this expression is just the nonlinear
term occurring at the classical level, provided that the coupling constant de-
pendence of the solution presented in the literature is changed. If one starts from
the formal solution on the physical, positive energy sector ("Dirac sea filled"), the
expression has the same properties, but now one also obtains an additional factor
in the free fields that occur in the expression. However, provided a similar factor in
the field φλ is omitted, one does get a solution to the equation of motion with the
nonlinear term defined through Wick ordering [20]. The field thus obtained is
most likely non-local, but leads to the same LSZ S-matrix as the formal solution
[21].

In another paper [22] we studied the two-point functions of the above-men-
tioned models. We proved in particular that the Federbush field does not satisfy
canonical anticommutation relations. On a formal level this can be understood
from the fact that an infinite wave function renormalization is needed to define the
field. However, this circumstance entails that one cannot expect that the field
satisfies the equation of motion if the nonlinear terms are defined through normal
ordering, a point emphasized in particular by Klauder [23]. Rather, one should
define the nonlinear terms through short-distance expansions.

It is an interesting problem to make rigorous and nonperturbative sense of
such expansions for the Federbush field, and to investigate the equation of motion
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in this context. Here we shall not consider this problem however, but rather study
the more basic question whether the formal Federbush field really defines a
quantum field in the precise sense of axiomatic field theory [24]. A superficial
examination of the work of Sato, Miwa, and Jimbo (henceforth SMJ) referred to
above might give the impression such questions have already been answered. This
is however not the case. What has been proved by SMJ as concerns axiomatic
properties is that the explicit but a priori formal expressions for the n-point
Schwinger functions they derive have a well-defined meaning for large separations
of the points involved and small values of their deformation parameters and
coupling constants the three regions involved shrink as n increases, roughly
speaking. Their arguments concerning locality depend on unproven assumptions,
in particular that convergence holds true in much larger regions than covered by
their convergence proof (cf. [15, Sect. 4.5]).

Before sketching the approach and results of this paper it is convenient to
discuss related rigorous work on the continuum Ising model. Here, too, the
innovative work of SMJ and of McCoy et al. [25] left open questions concerning
the scaling limit convergence of the n-point lattice correlation functions for all
distances between the n points and concerning the validity of the Osterwalder-
Schrader axioms for the resulting continuum functions. These gaps were closed by
two groups of authors in somewhat different ways. Palmer and Tracy [26] based
their proof of scaling limit convergence and the O-S axioms on explicit de-
terminantal formulas for the infinite lattice n-point functions. These expressions
are a consequence of SMJ's astonishing product formulas, which had previously
been proved by Palmer [27] in the infinite-dimensional case (SMJ's proof [12]
only holds in the finite-dimensional case). The only axiomatic property left open in
[26] is rotational invariance of the Schwinger functions the authors state their
formulas are not appropriate to prove this. O'Carroll and Schor independently
proved scaling limit convergence and the O-S axioms including rotational
invariance [28]. In [28] only local invariance is proved. Global rotational
invariance follows from recent work of Palmer and Tracy [44], in which also the
SMJ analysis of "Euclidean wave functions" is rigorized. They employed an
infinite series representation for the infinite lattice n-point functions they had
previously derived from a Feynman-Kac formula [29, 30]. Both in [28] and in
[26] an essential ingredient of the proof is the reduction of temperedness of the
tt-point functions to temperedness of the two-point functions by means of
correlation inequalities (due to Glimm and Jaffe [31] and Newman [32],
respectively) bounding the rc-point function by sums of products of two-point
functions.

The methods used in this paper to prove all axioms for the Federbush model
are quite different. We start with the quantum field as an explicitly given quadratic
form on an explicit Fock space and prove the Wightman axioms instead of the
equivalent O-S axioms. No lattice approximation, finite-volume cutoff or infinite
series expansions are used in the proof, and we need not invoke the reconstruction
theorem, since we deal with the field directly. In the case of the Ising field theory
the lattice approximation is of course eminently reasonable. As indicated above,
the difficult problems in this approach are finding explicit formulas for the
correlation functions and making sense of them, proving scaling limit convergence
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for all distances, temperedness of the two-point functions and rotational in-
variance of the resulting Schwinger functions. However, locality of the recon-
structed Wightman field is a well-known consequence of the symmetry of the
Schwinger functions [33], which trivially follows from convergence for all
separations. In contrast, in our approach to the closely related Federbush model
covariance and spectral properties are clear by inspection, but now the difficulty is
in proving temperedness and locality of the field. (We shall presently discuss
asymptotic completeness.) This is where a restriction on the coupling constant λ
arises: The kernels in the normal-ordered exponential only define bounded
operators for λe(— 1/2, 1/2), and for \λ\ > 1/2 the implementing property no longer
holds. Correspondingly, the "φ-bounds" implying temperedness are only proven
for λe(— 1/2, 1/2) and the analyticity used to extend locality for small coupling is
only shown to hold in the strip |Reλ|<l/2.

We prove locality for small coupling by employing cutoff fields that are non-
covariant bounded operators. These fields implement the Bogoliubov transfor-
mations generated by classical field operators that are approximately local, in the
sense that they commute for a fixed pair x, j/elR2 with x — y spacelike, provided the
cutoff is small enough. As a consequence the implementers commute up to a phase
factor that is a ratio of cutoff two-point functions. This ratio can be proven to
equal one for zero cutoff. Through analyticity arguments we transfer the problem
of proving convergence as the cutoff goes to zero to proving trace norm
convergence of the kernel appearing in the pure creation part of the regularized
cutoff field, and to proving bounds, uniform in the cutoff, on the blow-up of the
trace norm of the kernel as the regularization parameter goes to zero. The same
key points are used to prove locality of the Federbush field for λe{— 1/2, 1/2). Here
we also employ a cutoff approximately local free Dirac field that is a bounded
operator, to ensure pointwise commutation relations make sense.

At this point it is appropriate to explain why the deep machinery developed by
SMJ, in particular the PDE and product formulas referred to above, is hard to use
as a tool to simplify and/or extend these results to arbitrary λ. The problem is that
the PDE satisfied by the Schwinger functions are nonlinear, so that singularities for
finite distances cannot be excluded the product formulas are of little help in this
regard, since it is difficult to make sense of them for small separations. In this
connection we mention that we have proven finite-distance singularities indeed
occur in the context of the bosonic Federbush model: For non-integer λ>\ the
two-point Schwinger functions become singular at a distance that is an increasing
function of λ (cf. [22, Eqs. (2.66) and (2.87) and their proofs]).

Once one knows the axioms mentioned above hold true, it is obvious that the
Federbush field satisfies all assumptions of the Haag-Ruelle theory [33], so that
the question arises whether the axiom of asymptotic completeness can be proved.
We solve this problem in the affirmative by combining our previous results on the
LSZ limits of the Federbush field [21] with Hepp's extension of the Haag-Ruelle
theory [34]. As a corollary it also follows that the polynomial domain is actually
dense in the Fock space we started out from. The analogous results for the Ising
field theory also hold true as a consequence of the axioms proved in [26, 28,
44], Hepp's results [34] and our results on the LSZ limits of the Ising field [21].
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This renders the Federbush and Ising models the first interacting relativistic field
theories for which asymptotic completeness has been rigorously proved.

To our knowledge the Federbush model is also the first Lagrangian field
theory that is renormalizable but not superrenormalizable for which the
Wightman axioms have been proved. The main question left open by our results is
what happens for \λ\ ^ 1/2. There are remarks pertaining to this (and other open
problems) at several places in the main text. Here, we only note that it is easy to see
the field is a well-defined operator for any AeC if it is smeared with test functions
that are C£ in momentum space (cf. Sects. 4A and 5 A). It also readily follows that
this gives rise to Wightman distributions in 2' that are entire in the coupling
constants. The question is therefore whether these distributions are tempered, and
whether they have the locality property. Could it be that for \λ\ > 1/2 they are not
in S", but still in one of Jaffe's classes of ultradistributions [35, 36]? This is actually
more or less suggested by our results on the two-point function Sλ(t) of φλ [22] :
For |A| ^ 1/4 (and probably for |A| ^ 1/2 too) it behaves like {l/t)2λ2 for ί->0 (up to
eventual less singular terms), but for \λ\ > 1/2 it seems likely the blow-up is no
longer polynomial; it is however certainly O(exp(l/ί)c(λ)) for any λ, which entails
the corresponding Wightman function may not be tempered, but still is an
ultradistribution.

We conclude this introduction with a more detailed sketch of the paper.
Chapter 2 has a preparatory character. We collect here the results from the
classical (single-particle) theory we have occasion to use. Section 2A contains
definitions of various operators and summarizes earlier results on classical field
operators and conjugacy relations. In Sect. 2B we collect bounds on trace norms of
operators that are closely related to the classical field operators. Section 2C
concerns the cutoff classical field operators that will only be used to prove locality
for small coupling. We shall need quite detailed information on these operators
and their conjugates, which is assembled in several subsections.

Chapter 3 prepares the ground as regards quadratic forms and operators on
the charged fermίon Fock space that will occur in the sequel. Some of the results
have an independent interest and will therefore be denoted theorems. In Sect. 3 A
we consider the factors out of which the normal-ordered exponentials arising as
implementers are built. In Sect. 3B we collect some results on implementers from
[18, 19] and then proceed to define the cutoff quantum fields and prove the
properties needed to establish locality of the Federbush field for small coupling.

The field φλ is the subject of Chap. 4. It is defined in Sect. 4A, where also a
number of simple properties is derived. The main results are stated in Sect. 4B.
The φ-bound lemma (Lemma 4.1) and the locality lemma (Lemma 4.3) may be
regarded as the technical core of the paper. Here we have occasion to use almost
all of our results cited or derived in the preceding work. The proofs of these
lemmas can be found in Sects. 4C and D together with remarks on φ-bounds in
related models and on cutoff field operators, respectively. In Sect. 4B we also
derive more or less direct consequences, viz., temperedness (Lemma 4.2) and more
generally the main result of Chap. 4, the Wightman axioms for the field φλ for
/Le(— 1/2,1/2) (Theorem 4.4). This result might be taken as a starting point to
study the charged Federbush field ψλ of Chap. 5 from the point of view of algebraic
quantum field theory and the theory of charged superselection sectors.
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In Chap. 5 we finally consider the Federbush field ψλ along the same lines as
φλ. Section 5A contains the definition and other preliminaries. In Sect. 5B we state
the results: A φ-bound lemma (Lemma 5.1), a lemma detailing commutation
properties (Lemma 5.2), and the principal result of the paper, Theorem 5.3, stating
all Wightman axioms including asymptotic completeness hold true for the field
ψλ, provided λe(— 1/2,1/2). These results are proven in Sect. 5C. The validity of
the tp-bound lemma is easily reduced to that of the corresponding Lemma 4.1 in
Chap. 4, while the proof of Lemma 5.2 parallels the proof of the locality lemma
spelled out in Sect. 4D. The only statement in Theorem 5.3 that then still needs
proof is asymptotic completeness. As mentioned above this is shown by combining
previous results of ours [21] with results of Hepp [34].

Throughout this paper we use the symbols C, C{λ), and C(λ,λ0) to denote
positive constants and positive continuous functions that vanish for λ^O and
λ->λ0, respectively. The domain of such functions will usually not be explicitly
specified, as it will be clear from the context.

2. Classical Theory

A. Preliminaries

We begin with a summary of definitions, conventions and facts about conjugates
that will be used throughout the paper. For more information the reader is
referred to [19,20]. First, let us introduce some operators on the space
Jt^^idx1)2 of two-component Dirac wave functions: The free Hamiltonian of
mass 1,

HQ=-ίy5-^Ί+y\ (2.1)

the momentum operator,

i^ΞΞ-Z-^, (2.2)

the charge conjugation operator,

(2.3)

the parity operator,

( P / K x 1 ) ^ 0 ^ - * 1 ) , (2.4)

and the "kink operator,"

I7λ = exp(iπλε( )), Ae(C. (2.5)

Here,

H i) (; %
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and

We employ a spectral representation of Ho on the space J^ = L2(dθ)2 of rapidity
wave functions. This representation is generated by the unitary operator
W: Jf-><#, defined by

' 2 Σ $dθexp(iδx'shθ)wδ(θ)gδ(θ), (2.8)
s=+, -

with inverse

(W ιf)ΰ(θ) = (2πΓ m ί άxx exp(- ίδx1 shθjwffl fix1). (2.9)

Here, wδ(θ) are the Dirac spinors

H,+(e)Ξ§)" 2p> e-^), w_(θ) = i£)ll2(eiθ,-e-iβ). (2.10)

Henceforth, we use the convention

A = W~ιAW (2.11)

if 4̂ is an operator on sfc, and vice versa. With this convention,

(Hof)δ(θ) = δchθfδ(θ), (2.12)

( P 1 / ) ^ ) = ̂ sh(%(0)) (2.13)

(Cf)δ(θ) = f-δ(θ), (2.14)

(Pf)a(θ) = δ/ i (-θ), (2.15)

and {7λ acts as convolution with

, n | , (2.16)

where P denotes the principal value. The representation of the Poincare group is
most easily defined on Jtif. It is given by

(U(a, Λ)f)δ(θ) = exp(i<5(α° ch θ - α1 shθ))fδ(θ - α), (2.17)

where
ίchr/ shr/\

(2.18)\shα chα/

We further introduce the notation

Ax=U{x,l)AU(x,l)*, (2.19)

q = P+-P., (2.20)

jr^PtMr, (2.21)

Aδδ, = PδAPδ,, (2.22)
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where P + and P_ are the spectral projections of Ho onto [1, oo) and (— oo, — 1],
respectively, and note the commutation relations

CPδ = P_δC, CU{x,ϊ)=U(x,l)C. (2.23)

Let U be a bounded (but not necessarily unitary) operator on ffl such that
U__ has a bounded inverse [as an operator on L2{άΰ)~ffl_\ Then the
transformation φ:l/->Z, defined by

Z_ + Ξ - L r _ _ ~ 1 ( 7 _ + , Z _ _ Ξ ( 7 _ _ ~ 1 ,

is a bijection of the set of such operators, since it follows from its definition that
φ2 — \. We shall refer to Z as the conjugate of U. It follows from (2.24) by
straightforward calculations that the conjugacy relation satisfies

(2.25)

φ(U) = Z <=> φ(U~1) = Z'\ (2.26)

(2.27)

where we assumed U and Z have inverses in the domain of φ. We also note that if
U1 and U2 are in the domain of φ, VγU2 in general is not, and if it is, one has
φ{UίU2)=¥φ(Uί)φ(U2) in general. A final important property of φ requires one
more definition: An operator A is called pseudo-unitary if it satisfies

A*qA = AqA* = q. (2.28)

The property is that φ transforms unitary and pseudo-unitary operators into
pseudo-unitary and unitary operators, respectively. Again, this can be readily
verified from (2.24).

We shall now determine the conjugate Zλ of Uλ. Since Uλ acts as convolution
with (2.16), it acts as multiplication by the matrix

_J_/chπ(y + U) isinπλ \

ch πy \ ί sin πλ ch π(y — iλ)j

after a Fourier transformation. For λ in the strip 5, defined by

| | < ^ } , (2.30)

L/λ__ has a bounded inverse, so that (2.24) implies Zλ corresponds to multipli-
cation by the matrix

1 / chπy ismπλ]
chπ(j/— ίλ) \— iύnπλ chπy j

Thus, Z; acts as convolution with

cosπλδ(θ) +
sinπ/l

~2π~( λθ

ch^θ
λeS. (2.32)
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Note that (2.31) implies Zλ is pseudo-unitary for λe(— 1/2,1/2), in accord with the
unitarity of Uλ for λe(— 1/2,1/2). Note also (2.31) leads to a well-defined operator
for any Ae(C, periodic in λ and unbounded on the lines Re/ί= 1/2+ Z. In contrast,
one infers from (2.32) that Zλ considered as a form with domain CJJ\ extends to an
entire, non-periodic form. For |Reλ| > 1/2 this form is most likely not the form of
an operator, but it will naturally arise below nevertheless.

We conclude this section by introducing the classical field operator associated
with the Federbush model. It is defined by

φlM(x)=υi, λe<E, (2.33)

and has the crucial properties of covariance, i.e.,

U(a, Λ)φκ cl(x)U(a, A)* = φκ d(Λx + a), (2.34)

and locality, i.e.,

# C. (2.35)

B. Trace Norm Estimates

This section contains bounds on the trace norms of various operators that will
occur in later chapters. Their derivation is based on the following simple fact.

Proposition. The operator A on L2(dθ), defined by

A = F(θ)G(idθ)F(θ), (2.36)

where

jF( )eL 2 nL°°, G{-)eLlnL™, (2.37)

is trace class and satisfies

^ 2 \ (2.38)

Proof Since G G L 1 , G1/2(idθ) acts as convolution with an ZΛfunction g(θ) that
satisfies

jdθ\g(θ)\2=~jdy\G(y)\. (2.39)

Hence,

\\A\\1^\\F(θ)Gil2(idθ)\\2\\Gil2(idθ)F(θ)\\2

= μθ1dθ2\F(θ1)g(θ1-θ)\2

2)\

(2.40)

concluding the proof. •
The L^-restriction in (2.37) can be dropped, but we do not need this. As is clear

from (2.31), Z Λ + _ is norm-analytic in S. We denote its A-derivative by Z'λ+ _. We
now introduce a regularization

e-
itcM, (2.41)
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where λeS and the regularization parameter t is strictly positive. We collect the
bounds we need in the following lemma. As regards notation used, recall the
convention made at the end of Chap. 1. Also, Ko denotes the modified Bessel
function of zeroth order.

Lemma 2.1. The following bounds hold true for λ,λoeS:

t), (2.42)

(2.43)

II Z\ + _ - Z\a +_\\,ύ C(λ, λo)Ko(t), (2.44)

\\(Z\+ - - Z'λ0+ _)(λ- λ0Γ
1 - Z'lΰ+ _ || 1 ί C(λ, λo)Ko(t), (2.45)

\\Z'λ+_-Z'λo+_\\l\λ-λo\-^C(λ,λo)Koit), (2.46)

|| Z2+_ || ̂ ( C W + W ) - (2-47)

Proof These bounds are straightforward consequences of (2.38), the well-known
GO

relation K0(t)= J dθexp(— tchθ), and the easily verified fact that the function
o

ύnπλ$Qchπ(y — iλ) is holomorphic in the //(dj^-norm for λeS. •

C. Cutoff Classical Field Operators

C.ί. Introduction. Let oφc1) be a real-valued odd C00-function that equals 1 for
x1 > 1 and is monotone increasing on (— 1,1). In this section we study a "smeared-
out kink operator" defined by

Uλjε = eχp(iπλa{ /ε)), Ae(C, ε > 0 , (2.48)

and related operators, in particular the cutoff classical field operators

β > 0 . (2.49)

Note these operators are not periodic in λ, in contrast to Uλ and φλfd(x).
We close this subsection by deriving some properties of a general character.

Further properties will be considered in later subsections. When possible we
restrict ourselves to Uλ>ε, the corresponding properties of φλtEtCι{x) being obvious
from this.

Lemma 2.2. For any λe<£ one has

s

For any λe(— 1/4,1/4)L/Aεό5 has a bounded inverse satisfying

s-limUλ,e=Uλ. (2.50)
£-+0

Γ\ (2.51)

and

s-lim Uλ εδδ~* = Uλδδ~
1. (2.52)

The conjugate Zλ>ε of Uλ^ε exists for any λe(— 1/4,1/4), and one has

s-limZλ ε = Zλ, VAe(— \,\), (2.53)
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and

λ,εss y,y), (2.54)

where

y Ξ Ξ π ^ t a n " 1 ® . (2-55)

Proof. The first assertion is clear. To prove the remaining ones we note that for
λe(— 1,1) we can write

Uλt ε = cosπλ + i sinπ/Lί^ ε, (2.56)

where Λλ ε acts as multiplication by a complex-valued C00-function and satisfies

i (2.57)
λ β ( )

ε-»0 '

A moment's thought also shows that

11̂ ,11 = 1, Vλe[-ϋ] . (2.58)

Since we may write

Uλ,εδδ = cosτd(l + i tanπλAλ>εδδ), (2.59)

it follows UλtEδδ has a bounded inverse for |λ| < 1/4, given by the Neumann series

^ Σ > J " . (2.60)

The bound (2.51) is clear from this. Since Uλδδ~
ι has a similar representation for

|/l|<l/4, with Aλzbb replaced by ε( )̂ > (2.52) follows from (2.57) and the norm
convergence of the series. The assertions concerning Z λ ε readily follow from the
definition of the conjugate [cf. (2.24)], and from what we have already proved. In
particular we have

^ ^ ^ 1 , (2.61)

implying (2.54). •

C.2. Approximate Locality. The purpose of this subsection is to state and prove
the following lemma, which shows the cutoff classical field operators are "approxi-
mately local."

Lemma 2.3. Given x ^ e R 2 with (x —y) 2<0, one has

lVx,eJx)><Px',e,ci(y)]-=O> Vλ,λ'e<C, (2.62)

for ε small enough.

Proof It suffices to show this for x = (α,a + δ) and y = (— a, — a— δ), where
and δ >0. Also, we need only show the commutator vanishes on the subspaces jtr

and Jft of Jf for ε small enough, where JtjJίfΊ consists of the functions in jt whose
support is to the right/left of the origin. Fixing ε ̂  <5 henceforth, we assert that the
operators φλtεtCι{x)/φλ't£tCι(y) act as multiplication by exp(— iπλ)/exip(iπλ') on J^/J^.
(i), and that they leave ^J^ invariant (ii). From this, (2.62) readily follows, so it
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remains to verify (i) and (ii). To see (i) holds, use the fact that the "kink width" of
Uλ ε equals 2ε and use the finite propagation speed of exp(ziϊof). To prove (ii), note
that

so that (ii) can be reduced to the already established invariance of J^/^ζ under

Φ-λ,ε,cl(Xyφ-λ>,ε,cl(y) •
We remark the proof shows (2.62) is valid for any εe(0, flx1 - / | - \x° - y°\)/2].

We shall not need this more detailed information, however.

C.3. Implement ability. Since Uλ is a convolution operator, its off-diagonal parts
are not in the Hilbert-Schmidt class J2. Thus the Bogoliubov transformation it
generates is not unitarily implementable. The main purpose of this subsection is to
show Uλ ε does have off-diagonal parts in J2 for any Ae(C, so that it generates a
unitarily implementable transformation for any λ e R In the process we shall
introduce an operator l/£ ε and derive formulas that will also be used in the two
following subsections.

First we recall Uλ ε acts as multiplication by a C00-function Qxp(iπλa(x1/ε)) that
equals e±ιπλ for x1^+ε. In order to exploit this, we introduce a comparison
operator (which is unitary for AeR),

t ^l- -iλ\, λe(£. (2.64)

2 \ε /

The point is that the difference operator

Dλ,*=Uλtε-ϋc

λtB (2.65)
then acts as multiplication by a function in S(IR), while the Fourier transform of the
function thπ/2(x — iλ) (regarded as a tempered distribution) can be found explicitly.
It reads

? ^ (2.66)J W ~ 2 V ; i shp-

For / ^ e S t l R ) 2 and |ReA|<l we then obtain using (2.8) and (2.9),

\JV LJλ,εJ2)==

δ,δ'=+,~

(2.67)

where the kernels are given by

, (2.68)

Θ> + ΘΛ (2.69)

and Cλ is the function

Cλ(p) = s inπ^ λ p /π shp. (2.70)
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Similarly, we get

(^θή (2.71)

(2.72)

where Dλ is the S(lR)-function given by

Dλ(p) = — \ dxe ~ιpx cos (πλoc(x)) — cos πλ

+ i(sm(πλ<x(x))-sinπλth^(x-iλ))\. (2.73)

In view of (2.65) we then have

Uλ,εδΛθ1,θ2) = UlεδAθ1,θ2) + Dλ^(Θ1,θ2). (2.74)

We are now prepared for the following lemma.

Lemma 2.4. The operators Uλ εδ_δ are || ||2-entire functions of λ.

Proof We begin by noting that Unλε = (Uλ^)n and that the operators Uλiεδδ are
norm-entire in λ, since Uλ ε evidently has these properties. Thus we need only show
Uλ εδ_δ are || || 2-analytic for λ in the strip S. To prove this we first observe that by
virtue of (2.74), (2.69), (2.72) and the estimate

(2,75)

the operators Uλεδ_δ are in J2 for λeS. We now claim that for λ,λoeS one has

\V\\{Kλ{V)-Kφ)){λ-λQrι-K^V)\^C{λAQ){\+V

2r\ Kλ = Cλ,Dλ,
(2.76)

where the prime denotes the pointwise A-derivative. Clearly, this estimate ensures
the analyticity in S we wanted to show, so it remains to prove the estimate. It
clearly holds for Kλ = Cλ, so let us consider Kλ = Dλ. By virtue of (2.73) we have

P( 1 + P2) ίΦλ{p)- Dλo(p)) (λ-λ,)-1- D'λ0(pn

where

F(λ, x) = — πλoc'(x) sm(πλa(x))

+ iπ λot'(x) cos {πλoc(x)) - - sin τd/ch2 ~(x- iλ) . (2.78)

Noting α'eCJ, the estimate now readily follows for Kλ = Dλ, too. •
In the remainder of the paper we shall only need to know the off-diagonal parts

are in J2 for small real λ. We present a stronger result, since its proof is not much
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longer and since this might be useful in a further study of the cutoff quantum field
operators corresponding to Uλ ε for real λ with an eye to operator product
expansions. One useful consequence is for instance that for real λ Uλ>ε_ _ can only
fail to have a bounded inverse on a discrete subset of R\(— 1/4,1/4). This follows
from (2.51) and the analytic Fredholm theorem applied to

ί/-Λ>e- + ^ e + - = l - - - ^ - λ , β - - U λ f ε - - ϊ (2-79)

since the right-hand side equals 1__ — | l / A ε _ _ | 2 for real λ. Thus the conjugate

(2.24) is well defined off the exceptional set. Also, since UλiE commutes with CP,

one has

+ + = Uλtε_-CP9 VλeR, (2.80)

where we used (2.23) and the fact P commutes with Pδ. It follows that

(2.81)

This in turn implies that on the exceptional set the new vacuum, though it is
orthogonal to the old one, still belongs to the charge-zero sector (cf. [18, Eqs. (5.1)
and (5.2)]), a fact that also follows in a different way from a recent paper by Carey
et al. [37]. It is an open problem whether or not the exceptional set is empty. In
this connection it may be of interest to point out that a similar question arises in
the external field problem, cf. Theorem 2.8 in [38] and Theorems 2.3 and 2.4 in
[39]. The approach of the paper [37] just quoted might be useful in finding
answers to such questions.

We finally would like to remark that in the massless case the smeared-out kink
operator UλtE only has off-diagonal parts in J2 for λeΈ equivalently, the function
that defines it must be continuous on the one-point compactification of 1R This
readily verified and interesting fact was first pointed out by Raina and Wanders
[40] in their study of the Schwinger model (cf. also [37]).

CA. Trace Norm Convergence ofZ\ ε + _ to Z\ + _. In Sect. 2B we have already seen
that the operator Z\+_ belongs to the trace class Jλ for any λeS and ί > 0 . This
subsection and the next one are concerned with the analogous regularization of
Zλ5g+_, the operator

> , U ) , ί > 0 . (2.82)

In this subsection we state and prove the following lemma.

Lemma 2.5. The operator Z\>c+_ belongs to Jx and satisfies

]im\\Zt

λε+_-Zt

λ+.\\1=0 (2.83)

ε-»0

for any λe{- 1/4,1/4) and ί>0 .

Proof. Since U_λUλ= 1, we may rewrite Zλ+ _ as

Z λ + _ = - l 7 _ λ + + - 1 l / _ λ + _ . (2.84)
Likewise,

Z λ i β + _ = - l 7 _ λ > , + + - 1 l / _ λ > 8 + _ . (2.85)
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Since we have

s-lime~^ t c h θUλ ε+ + ~ 1=e'^tchθUλ+ + ~ι (2.86)
ε->0

by virtue of (2.52), it suffices to prove

71 Λ- ktchθe- j (") oη\
U χ_\ € EJ^, yZ.o I)

Uλ,ε+^e-^heeJl9 (2.88)

and
l i m \\(Uλtε+ - ~ Uλ+ _ ) e " i ί c h θ | | 1 =0. (2.89)

To see this, one needs only verify that the assumptions Bε-+B strongly and Tε-^T
in J 1 imply BεTε^BT in J 1 this easily follows by using finite-rank approximants
for T and the fact that BεP->BP in norm if P is a finite-dimensional projection.
[Note that in our case TεBε-+TB in Jx as well; the order in (2.84) and (2.85) is
needed for the factorization we are about to make.]

To prove (2.87) we note Uλ+_ is proportional to sech(/πδθ) [cf. (2.29)]. Thus
(2.87) holds if we show the operator f{idθ)g{θ) is trace class for /, geS(ΊR). But this
follows by writing it as a product of two operators that are easily seen to be in J2:

f(ίdθ)g(θ) = [{dθ + 1)" \θ + z)" *] [(0 + i) (dθ + ϊ)f{idθ)g(θ)] . (2.90)

We proceed to prove (2.89); from this proof and (2.87) it will be obvious (2.88)
holds too. Since the operator ( 5 β + 1 ) " 1 ch~1//40 is in J 2 we need only show

)£λ,ε+-e"~* Ίl2 = °> ( 2 9 1 )

and

\ + _ - L 7 A + _ ) . - - ί c h θ | | 2 = 0 . (2.92)
ε^O

To prove (2.91) consider the kernel

Here and henceforth,

p = ε(shθ1+shθ2). (2.94)

If dθl acts on Dλ we can majorize the ZAnorm squared of the resulting kernel by

C ε 4 ί d 0 1 d 0 2 c h 5 / 2 0 1 ( l + p 2 ) " 2 c h 0 1 c h 0 2 e - f c h f l 2

5/4

= O(ε1/2). (2.95)

Likewise, the remaining terms are majorized by

= O(ε1/2), (2.96)

so that (2.91) follows.



196 S. N. M. Ruijsenaars

The kernel occurring in (2.92) is proportional to

C h ^ θ ^ + Ijsechί^^-JCG^-Ile-^0^, (2.97)

where

Gλ(p) = eλpp/shp. (2.98)

Consider first the term arising when dθί acts on Gλ. If we get rid of the ensuing
factor c h 2 ^ in the ZΛnorm squared of this term by using the inequality

) 2 ^ 4 c h 2 x 2 c h ^ c h ^ , (2.99)

we conclude this term is bounded by (2.96). The remaining terms can be majorized
by

(θ^^)-tchθ2lGλ(p)-l']2. (2.100)

Now the last term of the integrand is bounded uniformly in ε and converges
pointwise to zero for ε->0. But one also has

SC\dφdθ(ch2θchφ)1/2stch2θe-tchφ

<oo, (2.101)

so that (2.100) vanishes for ε-+0 by dominated convergence. Hence, (2.92) holds
true as well. •

C.5. A Uniform Bound on the Trace Norm of Z\ ε+_. In this final subsection we

prove Z\tE+ _ satisfies a trace norm bound similar to the bound (2.42) satisfied by
Z\+_9 and then add a comment on the proof and that of Lemma 2.5.

Lemma 2.6. For any εe(0,1] and te(0,1/4] one has

| . (2.102)

Proof We write Z A ? ε + _ as Uλ ε + _ UλfE_ _ ~ ι and note that

H I / λ f β . _ " V * ί c h β | | ^ l + C(λ) (2.103)

by virtue of (2.51). Thus we need only show

-. (2.104)

i

To this end we shall first prove that

(2.105)
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and then that

To prove (2.105) we note that in view of (2.56) and (2.58) one has

| | l/ A > e + _| |£ | s inπλ | , (2.107)

so that by virtue of (2.65), it suffices to show

\\d2

βDKt+_\\ύC{λ), (2.108)

and

\\d2

eUlε+_\\£C(λ). (2.109)

The operator in (2.108) has kernel

l^ή (2.110)

where Dλ is defined by (2.73). [Also, recall our convention (2.94).] To prove (2.108)
we shall write this kernel as a sum of kernels of integral operators whose norms we
shall bound by using the well-known inequality

^ /sup J ^ 2 ^ ^ ^ ^2)|\/sup J ̂ J i ^ / ^ ^ ̂ 2)|j. (2.111)

From (2.73) it readily follows that the Fourier transform of Dλ and hence Dλ itself
converge to zero in S(1R) for Λ,-»0. We also have

f λ | , (2.112)

since the bound (2.107) also holds for C/?ε+_ by the same arguments. Thus we
need only prove the assertion that for the following two types of kernels, the right-
hand side of (2.111) is bounded uniformly in ε:

(i) ε 2 ( l + p V 4 ) ~ 2 c h M ^ c h θ l 9 (2.113)

(ii) ε 3 ( l + p 2 / 4 Γ 2 s h M - — ^ - c h 2 ^ . (2.114)

Case (i). Using the estimate

(^)(^) (2.115)

we conclude it suffices to majorize the expression

\έ sup fdθ2(l + P

2/4)"2 ch2 l ^ ή ch (

= ε 2sup
θ

= εsup \ du(l + u ch (y — θ)) chych(y— θ), (2.116)
θ o
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where
j/Ξsr r^/β) . (2.117)

To this purpose we consider the integration regions / x =(0,ε/2) and J 2 = (ε/2, oo)
separately. The contribution of / x is bounded above by

Cεsup $ du(l + 2uch{y-θ)y2chθ, (2.118)
θ h

since ch y^{5/4)m on Iv Also, |th y\ ̂ 5 ~ 1 / 2 < l/2|cth 0|, so that
chj/chθ^2|sh)/sh0|. Thus we have

(2.119)

on Iv Therefore (2.118) is bounded by

ε/2

Cεsup j du(l+uchθy2chθ = Cεs\xpl-(l + uchθy1~]f
θ o 0

= O(ε). (2.120)

The second contribution can be bounded by

C $

= c ί
ε/2

SC. (2.121)

Combining this with (2.120) the assertion follows for case (i) kernels.

Case (ii). Using (2.115) we obtain as the analog of (2.116) the expression

1
-ε 3 sup Jd$2(l+p2/4) 2 sh
4 βi

oo

= εsup f du(l + u2ch2(y-θ))~2uchych2(y-θ). (2.122)
Θ o

Arguing as in case (i) we see this is majorized by

ε/2

Cεsup f du{l+{u2ch2θ)~2uch2θ
θ o

gCεsup[-2(l+^u2ch20)-1]f
Θ

= 0{ε) + C, (2.123)

so that the assertion follows for case (ii) kernels as well. Thus we have proven
(2.108).

The operator in (2.109) has a kernel proportional to

sin πλdl Gλ{p) sech -^ 2- , (2.124)
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where Gλ is given by (2.98). Since sinπAGA( ) vanishes in 5(1R) for λ-^0 and since
the kernel sech((θ1 — θ2)/2) defines a bounded integral operator, we need only
show that for the kernels

ε{l+p2/4y2chθ1sechi * 2 J , (2.125)

and

the right-hand side of (2.111) is bounded uniformly in ε to conclude (2.109) holds
true. Using (2.115) we get the bound

^εsu
4 θi

^ε ] dy{l+ε2sh2y)~2chy=\
0 0

<oo, (2.127)

proving this for (2.125). To prove it for (2.126) we use the estimate (2.115) to reduce
this to case (i) considered above [cf. (2.113)]. Consequently, (2.109) follows and
therefore (2.105) is proved.

We are now reduced to proving (2.106). To this end we cite a result of Birman
and Solomjak (cf. [41, p. 55]):

\\f(θ)g(idθ)\\1SC\\f\\2.Λ\\g\\2.Λ, (2.128)

where
oo /n+1 \ l/2

| 2 i l = Σ ί dθ\F(θ)\2) • (2.129)
n= — oo \ n

Thus we need only show

and

{^j (2.131)

Now (2.130) is obvious, while (2.131) follows once we prove

| |exp(-fβ-Vθ |)| | 2 ; 1 SCN, ViVeN+. (2.132)

But this follows from the estimates

oo /n+ί \ l / 2 oo / e x p ( - N + n + l ) J \ l / 2

x p ( - i V + «) P

Σ β n ) ( β n + 1 - β n ) ] 1 / 2 , (2.133)
n = 0

since the series at the right-hand side converges. •
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The reader may wonder whether the proofs of Lemmas 2.5 and 2.6 could not
be simplified by using only one of the factorizations to prove both results.
However, the factorization in Lemma 2.5 cannot lead to a bound of the form
(2.102), even if ch 1 / 4 # is replaced by (l + \θ\1/2 + δ). The point is it would follow by
taking ε to 0 that

is O(ln 1/ί), which is easily seen to be false. Conversely, the method of proof of
Lemma 2.6 is not suitable to derive (2.83), since it is not true that ( 7 A ε + _
converges in norm to Uλ+ _ for ε->0. Indeed, we have seen above that Uλ ε + _ is in
J2 and hence compact, while Uλ+^ is not compact.

3. Fock Space Theory

A. Generalities

In this section we collect some general properties of the special class of quadratic
forms and operators on the charged fermion Fock space
&r

a(2tf?)~@r

a(3tf+)®@r

a(M?_) that will occur in the sequel. First, consider the
normal-ordered exponential

£(Z) = : exp(Z+ _α*b* + ( Z + + - l )α*α-(Z_ _ - l)bb*- Z_ +ba):. (3.1)

Here and below α(*)/έ>(*) are the partίcle/antiparticle creation and annihilation
operators, the expression Za*b* (e.g.) is shorthand for the Wick monomial
§dθίdθ2Z(θvθ2)a*{θ1)b*{θ2) and the kernels define bounded operators on
L2(dθ). Clearly, E(Z) is well defined as a quadratic form on the domain ^ a t of
algebraic tensors, and one readily verifies that

(3.2)

Here and henceforth we use the notation < ) to denote quadratic forms and the
superscript T to denote the transpose. Also, Γ(Z++) (e.g.) is shorthand for

We proceed to study the factors at the right-hand side of (3.2) in more detail.
As is well known and easily seen, the operator Γ(A) on the boson Fock space
3FI&?) is bounded if and only if \A\ ^ 1. On the fermion Fock space the situation is
different, as shown by the following theorem.

Theorem 3.1. Let Abe a bounded operator on Jf. Then the operator Γ(A) on #"f lpf)
is bounded if and only if the positive part of \A\ — 1 is trace class. Furthermore,

l|j%4)il= Γ R > N^^> (3 3)
i = 1

where λ1^λ2^i... are the eigenvalues of \A\ greater than one, counting multiplicity.
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Proof, If Mil S1 one has \\Γ(A)\\ = 1, so let us assume \\A\\ > 1. By the functorial
property of the Γ-operation, one has ||Γ(v4)|| = ||Γ(|^4|)||. First assume \A\ has some
continuous spectrum in (1, ||v4||). Going to a spectral representation for \A\, one
then easily constructs a sequence of unit vectors φn in #"α such that
(φn, Γ(\A\)φn)-+ co for n->oo. Thus in this case Γ(A) is unbounded. But if \A\ has
purely discrete spectrum in (1, ||,4||] it readily follows that (3.3) holds. To see this,
use e.g. the well-known relations Γ{Bι®B2)^Γ{Bί)®Γ{B2) and \\C®D\\
= ||C|| | |D||. Since the convergence of the product is equivalent to the trace class
condition, the theorem follows. •

We shall now study the form eΛa*b*. In the sequel we use the following
convention: If A is a quadratic form on ^ a t , the phrase "A is an operator" is
shorthand for "The form A is the form of an operator, also denoted by A".

Theorem 3.2. Let Abe a bounded operator on L2(dθ). Then eAa*b* is an operator on
@Άt if and only if A is Hilbert-Schmidt. Also, eΛa*b* is a bounded operator if and only
if A is trace class. The map A->eΛa*b* is continuous from J 1 to JS?(^). Moreover,

det(l +i\Λ\) £ IIeΛa*b*\\ ^det( l + \Λ\), (3.4)

and

\\eΛa*b*- 1|| ̂ det( l + \A\)- 1. (3.5)

Finally,

{eΛιa*b*Ω, eΛ2a*b*Ω) = det(l + A*Λ2), AvA2eJ2. (3.6)

Proof. First assume eΛa*b* is an operator on 3Λi. Consider t p e ^ a t describing one
particle and one antiparticle, so that ψ~ψ{θί,θ2). Since ΩeQ)^ there is a unique
vector φ~φ(θvθ2) such that <ψ, eΛa*b*Ω} = (ψ, φ). It follows that φ{θvθ2)
= A(ΘVΘ2), so A is in J2. The converse follows from Lemma 3.1 in [18].

Now assume eAa*b* is bounded. Then A is in JΊ, so we can write' 2'

Λa*b* = Σ λfi*(ftb*W, NSπ, (3.7)
/ = 1

where {f.}, {g.} are orthonormal and where λt are the singular values of A.
Consider the sequence of unit vectors

Ψ,,= Π 2 - 1 / 2 ( l + αf5f)Ω. (3.8)
ί = 1

One has

<φn9 e
Λa*b*φn} = L , exp f f λ^b*) φ)

\ \i=ί II

= Π i(
i = 1

(3-9)
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and boundedness implies the product converges for n-^oo. Hence, YJ^i<oo so
A is in J\. Conversely, if A is in J v one concludes from (3.7) that *

\\Λa*b*\\£ Σ Ai = Tr|yl| = M | | 1 , (3.10)
i= 1

so that Aa*b*, and hence eΛa*b* too, are bounded. Also,

ί=1 ί = 1

= det(l + |yl|), (3.11)

and
00 ϊ 00

g Σ - Σ V Λ J « «fA*ll
» = 1 Π ! i i , . . . , i n = l

00 OO

= Σ Σ K-K
μ | ) - l . (3.12)

The lower bound in (3.4) follows from (3.9).
Now let An-*A in J1 for n^oo. Using the bounds just proved, we then get

4)-l] (3.13)

Since the determinant is continuous on J v the right-hand side vanishes for n->oo,
implying the continuity claim. Finally, (3.6) follows by making obvious changes in
Eqs. (3.36)-(3.47) in [18]. •

In Sect. 4D we use an analyticity argument to conclude locality for |A| < 1/2
from locality for small coupling constant. A crucial ingredient of this argument is
the following theorem and the estimate (3.14) used to prove it.

Theorem 3.3. Let A(λ) be || || ̂ analytic in a region S c C Then exp(Λ(λ)α*fe*) is

|| \\-analytic in S.

Proof. By virtue of Theorem 3.2 one has

| | [exp(Λ(λ)α*b*)-exp(^^

S IIexp{Λ(λo)a*b*)|| || [exp(^l(A)- Λ(^))a*b*) - 1] (λ- λΌ)~1 - Λ'{λo)a*b* \\

S det(l + \Λ(λo)\) [\\ ί(A(λ) - Λ(λo))(λ - λo)~1 - Λ\λo)~\a*b* \\

A{λ0)\a*b*\\2 Σ \κΛ(λ)-Λ(λo)]a*b*\Γ2

n=2 n '

+ \λ-λo\-1\\Λ(λ)-Λ(λ())\\2

ieχp(\\Λ(λ)-Λ(λo)\\1)-]. (3.14)

From this the claim clearly follows. •
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B. Implementers and Cutoff Quantum Field Operators

We begin this section by quoting some results from [18] which we have occasion
to use. Let U be a unitary operator on Jf such that U_ _ has a bounded inverse,
and such that 17+ _ and U_ + are in J2. Then its conjugate Z defined by (2.24) is
bounded and Z+ _ and Z_ + are in J 2 . Moreover, the quadratic form £(Z) on ® a t

is the form of a bounded operator E(Z), which satisfies

(3.15)

where Φ is the antilinear field operator

(3.16)

On £$at this operator is given by (3.1), in the sense that the expansion of the
exponential strongly converges on 3ι&v The boundedness of E(Z) is a consequence
of the relation

_ * Z + _ ) 1 / 2 , (3.17)

where % is the unique unitary operator with positive vacuum expectation value
implementing the special kind of Bogoliubov transformation to which the field
operator transformation Φ(v)-^Φ(U*v) is equivalent. The adjoint of E(Z) is given

b y E(Z)* = E{qZ*q), (3.18)

which follows, e.g., from the readily verified fact that this holds for the quadratic
forms. Finally, if the Hilbert-Schmidt condition is dropped, (3.15) still holds in the
sense of forms on ̂ a t . Indeed, an inspection of the proof of Theorem 4.1 in [18]
shows that only the conjugacy relations (2.24) enter the domain and convergence
problems dealt with there do not arise in the form case.

Now let Uί and U2 be two operators with the above properties and let E{Z1),
E(Z2), and °UV°U2 be the corresponding bounded and unitary operators, re-
spectively. Then we conclude from (3.18) and (3.6) that

(Ω,£(Z1)JS(Z2)O) = d e t ( l - Z 1 _ + Z 2 + _ ) . (3.19)

From now on we assume in addition that U1 and U2 commute. Then ύlί1

ύlί2 and
^ 2 ^ 1 both implement the field operator transformation generated by U1U2

= U2UV so that by uniqueness Jlίι

ύil2 = eiχύiί2°lίv Taking vacuum expectation
values and using (3.17) and (3.19) it follows that

d e t ( l - Z 1 _ + Z 2 + _ ) = e i χ d e t ( l - Z 2 _ + Z 1 + _) . (3.20)

Thus we have derived the important relation

Z 2 _ + Z 1 + _) = E ( Z 2 ) E ( Z 1 ) d e t ( l - Z 1 _ + Z 2 + _ ) . (3.21)

Let us now turn to concrete operators. First, consider the unphysical Dirac
representation U{a,Λ) [cf. (2.17)]. Clearly, it is unitarily implementable, and the
corresponding physical Poincare group representation is explicitly given by

δί; ...;θN9δN) = explia° Σ chθ.-ia1 £ shθ
\ i=ί i = l

•^-aA;...;^-^). (3.22)
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The energy-momentum operator P is defined by

eίaP = %{aΛ). (3.23)

Henceforth, we denote its zeroth component by H; clearly, H is the second-
quantized sum operator corresponding to multiplication by the function chθ on
Jf. For future reference we also note the relation

eix'pE{Z)e'ix'p = E(Zx) (3.24)

[recall our convention (2.19)]. This easily follows from (3.2).
We now introduce the cutoff quantum field operators. They are defined by

φλJx) = eίχ pE(ZλJe-ίχ-p, λ e ( - i ί ) , (3.25)

where Zλ E is the conjugate of the smeared-out kink Uλ ε (cf. Sect. 2C). We collect
their main properties in the following lemma.

Lemma 3.4. The field φλf&{x) is a bounded operator satisfying

| |φλ >.(x)| |2 = d e t ( l + Z A i β + _ Z A > e + _ ) , (3.26)

and implementing the transformation generated by φχ>εjCι(x) Furthermore,

<PxJx)* = Ψ-x.t(x), (3-27)

and

(O9φλiε(x)(pλ,fB0;)Ω) = d e t ( l - Z ί e _ + Z ^ E + _ ) . (3.28)

Finally, for x^yelR2 with x — y spacelike one has

i , ; > e _ + Z 5 % e + _ ) (3.29)

for s small enough.

Proof. For x = 0 the first assertion is clear from the above and Sect. 2C.1. To see it
holds for xφO, notice (3.24) implies

) , (3.30)

and recall (2.25) and (2.49). To prove (3.27), we note first it holds for φλtEnd{x).
Thus, if tyχj^x) denotes the corresponding unitary implementer with positive
vacuum expectation value, its inverse implements the transformation generated by
Ψλ ε cι(

χ)~1=(P-λ ε d(χ)> s o t n a t *ji {M* = * - n M by uniqueness. This implies
(3.27) by virtue of (3.17). Finally, (3'.28) follows'from (3.30) and (3.19), and (3.29)
from Lemma 2.3 and (3.21). •

It is understood the above statements hold for all λ for which φλ>ε{x) is defined,
i.e., λe(— 1/4,1/4). For coupling constants in (—7,7), where y is defined by (2.55),
we can obtain more information on two-point functions, which is needed in
Sect. 4D.

Lemma 3.5. For any λ,λ'e{ — 7,y) and x,yelR2 one has

Vε>0, Vί^O, (3.31)
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and

fi\C(λ')

| ( e - t H Φ _ A f β ( x ) Ω , β - ί H φ λ ' f t ω θ ) " Ί ^ T , Vεe(0,l], Vre(0,i].
W (3.32)

Moreover, for x,yelR2 with x — y spacelike one has

φ . t λ t J i x ) Ω y \ \/λ,λ'e{-y9y) (3.33)

for ε small enough.

Proof. We first observe that

(3.34)

where we used (3.6). We now recall the formula

det(l + T ) = Π (! + *«). ( 3 3 5 )

where λ{ are the eigenvalues of T. Thus the determinant cannot vanish if || T\\ < 1.
From (2.54) and (3.34) it therefore follows that (3.31) holds true. The relation (3.33)
is now obtained from (3.29) by division, which is allowed in view of (3.31). Finally,
if || T\\ < 1, it is easy to see that

|det(l + TT1 ^exp(| | T\\,(1 - || T\\)'') • (3.36)

Combining this with (3.34) and (2.102), (3.32) follows. •
The relation (3.33) is one of the cornerstones of the locality proofs below. Some

simplification would occur if the two vacuum expectation values would be equal
and hence could be omitted. Proving or disproving this would also be of interest,
since the cutoff fields can probably be used to study short-distance expansions. To
explain what is involved here, let us first return to the general situation discussed
at the beginning of this section [cf. (3.19)—(3.21)]. The conjugacy relations (2.24)
imply that

d e t ( l - Z 1 _ + Z 2 + _ ) = det((7 1 __- 1 (t/ 1 (7 2 )__C/ 2 __- 1 ) . (3.37)

This shows, first, that vanishing of the determinant implies (C/1t72)__ does not
have a bounded inverse using the Fredholm alternative one sees the converse is
true, too. Second, it shows that if V1 and U2 commute, so that (3.20) holds, and if
in addition the determinants are non-zero, the phase factor eiχ is a quotient of
det^jBC and detCBA, where A, B, and C are bounded operators with bounded
inverses, such that the products ABC and CBA equal the identity plus a trace class
operator (abbreviated: 1 + T). If one of A, B, C equals 1 -f T, it readily follows that
eiχ = 1. (Note that in our case the unitarity of Uί and U2 implies \A\, \B\, and \C\ are
1 + T, so the unitary operator in the polar decomposition must be 1 + T for this to
be true.) But if this condition is violated, there seems to be no reason why the two
determinants should be equal, though we do not know an explicit example where
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Returning now to the concrete operators Uλ>ε, we know from Sect. 2C.3 that
their off-diagonal parts are Hilbert-Schmidt. If the inverses of the diagonal parts
were 1 + T, this would hold for the diagonal parts as well. But then it would follow
that Uλε—1 is compact, which is clearly false. Thus in our case A and C (and
probably B as well) are not 1 + T, so that this avenue is closed. Let us make one
more remark on the problem, however. From the relation (2.27) and the definition
of ϋλt ε, it follows that Zλ ε commutes with C. But this is easily seen to imply
equality of the determinants is equivalent to their being real-valued. [Recall (2.23)
and the equality det(l — ,4£) = det(l — BA).] It is not hard to see that reality does
hold for x° = y°, and we have some indication this may be true for x — y spacelike
and ε small enough to guarantee commutativity, but we were unable to prove this
so far.

We conclude this chapter by introducing a cutoff free Dirac field ψ0 ε, and by
establishing its commutation relations. It is defined by

> ^ x ' P , (3.38)

where

[cf. (2.9) and (3.16)]. Here u/l denotes the upper/lower component and
jε(xί) = ε~ij(xί/ε) is an approximate identity. It is easily verified this implies

Ψo, εM = ίdy1jε(x1 - /)ψ o (x°, / ) (3.40)

Here, ψ0 is the free Dirac field of mass 1,

[ ^ (3.41)
where

p = (chθ,shθ). (3.42)

Lemma 3.6. The components of ψ0 ε(x) are bounded operators satisfying

I I V o . e . i M I I 2 ^ " 1 ^ 1 / ^ 1 ) 2 , i = u,l. (3.43)

For x ,yeR 2 with x — y spacelike one has

[Vo,.(*)>Vo,.(3')*]+=0, (3.44)

and

Ψo,ε(x)<Pλ, ε(y) = e x P DπWx1 ~ / ) ] Ψλ, s(y)Ψo, εW 9 (3.45)

for ε small enough.

Proof. The first statement follows by recalling W is unitary and noting that

||Φ(u)|| = N I , Vuejf, (3.46)

which readily follows from the commutation relation

+={u,v), Vu,υe3tf. (3.47)
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The relation (3.44) follows, e.g., from (3.38), (3.39), (3.47) and the finite propagation
speed of exp(zΉoί).

We shall now prove (3.45) for the upper component. First we note that the
implementing property of φA ε(y) implies

''ϋix,: .)

(3.48)

By virtue of the definitions of Uλtε and j ε and the finite propagation speed of
exp(ίiϊoί), it now follows that

U{y-x,l)Uλι*U{y-x,l)*PA=e*pί-h - y1y1)']
or

(3.49)

provided ε is small enough. From this, (3.45) follows for the upper component. The
proof for the lower component is the same. •

4. The Field φλ

A. Preliminaries

From Sects. 2A and 3A it follows that for λe(-l/2,1/2) the Bogoliubov
transformation generated by the classical field operator φλ>d{x) can be imple-
mented in ^a{ffl) in the form sense. In this chapter we study the implementing
quadratic form on the domain of algebraic tensors ^ a t , the quantum field

(4.1)

(4-2)

(4.3)

For convenience we repeat the definition of the kernels:

where

sinπ/l λθ

2π C

P

-i

I

ch^#
P

and

= {chθ,shθ). (4.4)
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The implementing property of φλ(x) is readily seen to imply the relations

φλ(χ)* = φ-x(χ), (4.5)
and

%{a, Λ)φλ(x)^{a, Λ)* = φλ(Λx + a), (4.6)

where %(a, Λ) is the Poincare group representation (3.22). Both relations hold in
the sense of forms on ® a t and can also be easily checked directly.

We proceed by noting the function

j Eλ,V l,V 2WΞ< tPi 3φ λWV2>> λe{-i±), ψι,ψ2e@at, (4.7)

is uniformly bounded and continuous on R 2. From Sect. 2A we also conclude it
has an analytic continuation to the strip S [defined by (2.30)] with the same
properties. It easily follows the quadratic form φλ(F) on £^at, defined by

<Ψvφλ(F)ψ2>=ίdxF(x)EλιψlιίP2(x)9 FeS(IR2), λeS, (4.8)

is continuous on S(IR2) and analytic in S. To study φλ(F) in more detail we
introduce the dense subspace

0» = 0 ^ (4-9)

N=l

where

(4.10)
and PN is the spectral projection of H on the interval [0, AT). Thus Θx consists of
multiples of Ω, and 3)Ή only contains wave functions describing fewer than N
charged fermions, whose rapidities can only vary over a bounded set (recall the
rest mass equals 1 by assumption).

Consider first the form PNGλ(x)PM on ΘΆi for \λ\ < 1/2, where Gλ(x) is a generic
term in the expansion of the exponential (4.1). We claim this form is the form of a
bounded operator that admits a norm-analytic extension in λ to C moreover, the
resulting operator is norm continuous in x and has an x-independent norm for
fixed λe<£. To see this, first observe that the kernels Zλδd,(Θ1 — θ2) define operators
on L2(( — C, C), dθ) with corresponding properties as long as C < o o ; note in
particular the off-diagonal parts are || || 2-entire in this case. Now recall the
properties of @N and Q)M and the relation ||yl®jB|| = ||y4|| \B\. Finally, note the
x-dependence is carried by the unitary group exp(zx P). As a consequence the
form PNφλ(x)PM is (the form of) a bounded operator with the same properties.
(Indeed, only a finite number of terms in the expansion contributes, viz., those with
fewer than N creators and M annihilators.) It follows from this that for fixed
FeS(lR2) PNφλ{F)PM is a bounded operator with a norm-analytic extension to (C.
Furthermore, the map F-*PNφλ(F)PM is continuous from S(IR2) to JS?(#"α).

We return to the generic term Gλ(x) in the expansion of φλ{x). If it has k
creators and / annihilators, its x-dependence is given by a factor of the form

k + l IX

P(θj)- Σ P(θj) (4-1 1)
j = l j = k+l \l

exp ix -
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Now fix FeS(lR2) whose Fourier transform F has compact support, and consider
the contribution of the generic term to the form φλ(F)PM. The second sum in (4.11)
then only varies over an M-dependent bounded region in 1R2. Since the difference
of the two sums varies over suppF, it follows that the first sum only varies over a
bounded region in 1R2 determined by M and suppF. Consequently, its zeroth
component is bounded above by some iV = iV(M,suppF)<oo, so that

φλ(F)PM = PNφλ(F)PM. (4.12)

From the previous paragraph we then conclude φλ(F)PM is a bounded operator
that is norm-entire in λ. It also readily follows from (4.12) that φλ(F) is a well-
defined operator on ^ 0 0 , which leaves <3> ̂  invariant. Furthermore, from (4.5) and
(4.6) one infers that

φλ(n* r ^ 0 0 = φ _ } ί ( f ) 9 (4 1 3 )

and

Φ(α, Λ)φλ{FW(a, Λ)* = φλ{Fa>A), (4.14)

where

Λ \x - a)). (4.15)

As another useful consequence of (4.12) we point out that iϊ Fn-+F in
follows that φλ{Fn)PM^>φλ(F)PM in norm. Finally, consider the expression

Y[i FteC-m, V<C, i=l,...,ΛΓ. (4.16)

Here and henceforth the order of the product is the natural order of the indices.
Clearly, it follows from the above that this expression has a well-defined meaning
as a vector in ^o0, which depends continuously on F^e^IR 2) and which is entire in
the coupling constants A .

B. The Results

With these preliminary observations out of the way, we are now in a position to
state the main results of this chapter.

Lemma 4.1 (A φ-bound). For any λe(- 1/2,1/2) and t,u>0 the form e~tHφλ{0)e~uIί

on ^ a t is the form of a bounded operator, satisfying

II1 \c{λ)\
\\e'tHφλ{0)e-uH\\=θ[{~\ , ί,M->0. (4.17)

\\tuj I

We shall prove this lemma in Sect. 4C. Here, we draw some conclusions and
prove in particular a corollary of the lemma. First, we note that the product of the
three bounded operators e~tίH(e~t2Hφλ(0)e~UlH)e~U2H equals the operator
e~itί + t2)Hφλ(0)e~{Uί + U2)H, since these operators are equal as forms on ^ a t . It follows
from this that the range of e~tHφλ(O)e~uH is contained in the domain of eaH for any
a<t. This in turn implies the operator (e~rHφλ{ϋ)e~sH){e~tHφλ,(G)~uH) is a function
of s + ί, and can therefore be written as e~rHφλ(O)e~(s+t)Hφλ,(O)e~uH without
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ambiguity. Also, if χ is in the domain of evH, the vector {e~tHφλ(O)e~uH)euHχ, where
u<v, is independent of u, and may therefore be denoted e~tHφλ{0)χ. Of course,
similar remarks apply to the bounded operator e~tHφλ(x)e~uH = eιx'p(e~tHφλ(0)
e~uH)e~ιxP note, moreover, it is strongly continuous in x and has an x-inde-
pendent norm. More generally, one may replace the factors e~tH by e~ψP,
where η is in the forward light cone note that

!. (4.18)

In the sequel we shall use the notation just introduced without comment, in
particular in the proof of the following lemma.

Lemma 4.2 (Temperedness). Let A e ( - 1/2,1/2) and Fte ^(IR2), i = 1,..., n. Then the
distribution in ̂ '(JR2n) defined by

# ( F 1 9 . . . , ίQ= (Ω, Π Ψλi(Ft)Ωj (4.19)

is the restriction of a distribution in S'(IR2").

Proof. By virtue of the first statement of Lemma 4.1 and the remarks made above,
the function

J P] φλβ)Ω) (4.20)

is well defined for ε>0, ε-independent and holomorphic in the tube. The bounds
(4.17) and (4.18), and standard lore on Laplace transforms [24] imply W is the
Laplace transform of a tempered distribution. Now consider the integral

ϊdxF(x)e-tHφλ(x)e-tH, Ae(-^), ί>0, (4.21)

where Fe^lR2). In view of the above this is a well-defined Riemann integral in the
strong topology, which defines a bounded operator on ^ ( J f ) . Assuming in
addition suppF is compact, this operator equals the operator e~tHφλ(F)e~tH on
Q)^ with φλ(F) defined in Sect. 4A (since the operators coincide as forms on ^ a t ) .
Thus we may write

# ( / V . . , F J = l i m ( β , φ ^

= \im^dxi...dxnF1(x1)...Fn{xn)W{x1-x2-itη,...,xn_ί-xn--itη),

(4.22)

where 77 Ξ (1,0). Using again well-known results on Laplace transforms [24], the
claim follows from this. D

Assume that Fn

ieC$(R2)-+FieS(1BL2) in S(1R2) for n->oo, ί = l , . . . , N . Then the
lemma just proved implies that the vectors

ί = l

form a Cauchy sequence and therefore have a strong limit for n^co. We denote
the subspace of finite linear combinations of such limits by D. Another application
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of temperedness shows that the bounded operator (4.21), where FeS(IR2), acting
on a vector ψeD gives rise to a vector ζt with a strong limit ζ for ί->0. Thus the
operator φλ{F) defined by putting φλ(F)ψ = ζ is well defined on D. A little reflection
also shows that:

i) φλ(F) leaves D invariant

JV

ii) the limit of (4.23) equals [ ] φλi(F^Ω\
i = 1

iii) φλ(F)*\D = φ_λ(F); (4.24)

iv) °U{a, A) leaves D invariant

v) <%{a9 A) φλ{F) <%{a, A)* = φλ{Fa'Λ) o n D. (4.25)

We can now state the next lemma, which will be proved in Sect. 4D.

Lemma 4.3 (Locality). Let F, GeS(IR2) with suppF and suppG spacelike separated.
Then

[φA(F),φA,(G)]_φ = 0, VφeD, VA,A'e(-^). (4.26)

Consider now the subspace of finite linear combinations of strong limits of
vectors of the form (4.23), where λt equals either λ or — λ, i= 1,..., JV. We denote
this subspace by Dλ and its closure by Dλ. Clearly, Dλ is a closed subspace of the
charge-zero sector in ^a(Jf). (We believe that Dλ is equal to this sector, but were
unable to prove this.) Thus, the restriction of °U{a, A) to Dλ, denoted <%λ(a, A), does
not exhibit isolated mass shells. Therefore the field φλ(x) in Dλ cannot describe
asymptotic particles, and hence the problem of asymptotic completeness does not
arise. But it is obvious from the above that all other Wightman axioms are
satisfied, a fact we regard as the main result of this chapter:

Theorem 4.4. The quadruple <5Λ, %(a, A\ φλ(x\ Dλ}, where λe{- 1/2,1/2), satisfies
all Wightman axioms with the exception of asymptotic completeness.

C. φ-Bounds

Noting that

] { H + 1 \ α>0,

(4.27)

one sees the inequality (4.17) implies (H+ iyC{λ)~εφλ(0)(H+ l ) " c ( λ ) ~ ε is bounded
for any ε>0. [Conversely, boundedness of (H +1)~c{λ)φλ{0){H +1)~C{λ) is easily
seen to imply (4.17).] Thus, for \λ\ small, (4.17) entails the inequality

IK^+^-^Cl^V^^cp^xOl^+^-^I^C^x1!/^1)!, (4.28)

which would be called a φ-bound in constructive field theory [42, 43]. We begin
this section by proving Lemma 4.1 and then add further comments pertaining to
φ-bounds in the sense of (4.17).
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Proof of Lemma 4.1. Using (4.1) and (3.2) it is readily seen that

• Γ(e~tHZτ

λ_ _e'uH)cxp(- Z\u_ +ba) (4.29)

as forms on ̂ a t , where the notation will be clear. To prove the first assertion of the
lemma, we therefore need only show the four factors at the right-hand side are
bounded operators for ί, u >0. For the first and the last factor we use Theorem 3.2
and (4.3) to conclude that

(4.30)

and that

+ _ | ) . (4.31)

Since Z\_ + is trace class for any 5>0 (as we have seen in Sect. 2B), boundedness of
these factors follows.

Now consider the second factors. From the pseudo-unitarity of Zλ for
λe(-l/2,l/2), we obtain

+*Zλ_Λe-«H)\\. (4.32)

Using the relation

0<Γ(A)^Γ(B), (4.33)

whose proof is easy, and noting Zλ_ + = — Zλ+ _ as operators on L2(dθ), we now
get

\\Γ(e-tHZλ+ +e-uH)\\ rg ||Γ(1 + e~mZλ+ _* Zλ+ _ e " u f ί ) | | 1 / 2

e"uHZλ+_*Zλ+_e~uH), (4.34)

where we used Theorem 3.1 in the last step. Likewise we obtain [using also

l + e-tHZλ+_*Zλ+_e-tH). (4.35)

But from Sect. 2B we know that e~sIίZλ+ _* Zλ+ _e~sίI is trace class for s>0, so
that these factors are bounded operators as well. This proves the first assertion.

To prove the bound (4.17) we use the inequality det(l + |T|)^exp(| | T\\ x) on the
four bounds just obtained. We may then use the trace norm bounds (2.42) and
(2.43) and the relation

limlC0(s)/ln(-) = l (4.36)

to conclude (4.17) holds true. D
Let us comment on the difficulties in extending the bound (4.17) to larger

and/or complex λ, and in proving similar φ-bounds in related models. Inspection
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of the estimates shows there is no difficulty in extending the bounds on the first
and last factor in (4.29) to the strip S. It is the Γ-factors that cause trouble: As
soon as ImAφO, Zλ fails to be pseudo-unitary, so that the last step in (4.32) is false.
Worse yet, for fixed ImλΦO it is likely that Γ(e~tHZλ++e~uίI) (e.g.) is unbounded
for ί, u small enough. Indeed, from Theorem 3.1 we know that boundedness is
equivalent to the positive part of \e~tHZλ++e~uH\ — 1 being trace class. However,
from (2.31) we see that \Zλ+ +(j/)|-»exp( + πImΛ) for y—> + oo, so it is plausible that
this is not the case. Of course, the condition is trivially satisfied for t, u large
enough. This leads to the Wightman functions being analytic in the strip S in a
subset of the extended tube that shrinks as llmAJ increases. More generally, a
similar situation is readily seen to obtain for l ^ C . But since we see no way of
making use of this, we have not pursued this further.

In the case of the fermionic Ising model the role of Zλ+ _(θ) is played by the
function Z+ _(θ) = (2πi)~ίthθ/2. The first statement of the lemma can be shown to
hold true, but the difficulty here is to prove the norm does not blow up faster than
a power. It can be seen this is true if det(l + \Z\ _ 1) has this property, but so far we
have only proved the determinant is 0((l/ί)c l n ( l n ( 1 / ί ) )). Of course, in this case
temperedness is known from [26, 28], but note these results do not imply the
validity of the analog of Lemma 4.1.

For the bosonic Federbush model the analog of Zλ is unitary, so that the
Γ-factors are trivially bounded. The first and last factors can be shown to be
bounded for ί, u large enough, using number operator estimates. But they are most
likely unbounded for t, u small. Of course, this does not preclude that the product
of the four factors may be bounded for any ί, u > 0 this is another open problem.

D. Locality

We begin this section by proving the locality lemma, and then add some comments
on the cutoff fields employed in the proof.

Proof of Lemma 43. In the following, the symbol χ will be used to denote finite
N

linear combinations of vectors of the form Y[ φλ{F^)Ω, where iV^O,
ί = 1

Λ.fe(— 1/2,1/2) and F^CQ. Clearly, such vectors are dense in D. Thus we need only
show that the function

L(G,λ';F,λ)^(χvφλ,(G)φλ(F)χ2), ^ Έ ( - U ) , (4.37)

where F and G are C^-functions with suppF and suppG spacelike separated,
satisfies

';F,λ), ^λ,λ'e{-\^). (4.38)

We claim this is a consequence of the relation

{e~τHlvφλ(F)φλ{G)χ2)

= (e~τHXl9φAG)φλ{F)χ2)9 Vτ>0, V A, X e ( - <5, δ), (4.39)
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where δ is a positive number smaller than 1/2. We shall now prove this claim and
then prove (4.39).

First, from (4.39) it follows by taking τ-+0 that (4.38) holds for any
λ,λfe(— δ,δ). We now assert L has an analytic continuation in λ and in X to the
strip S. Clearly, from this (4.38) follows. To prove the assertion, it suffices to show
that a vector of the form

φλ(D)χ, A G ( - U ) , D E Q \ (4.40)

has a strongly holomorphic extension into S. [Indeed, if the extension is denoted
ψλ, then ψχ is an anti-holomorphic extension. Now combine this with (4.24).]
Denoting the projection on the vacuum by PΩ, it is clear PΩφλ(D)χ has a strongly
holomorphic extension to <C, so we need only prove the extension property for
(1 — PΩ) φλ(D)χ. Now recall that by Stone's theorem, covariance and temperedness
the polynomial domain consists of C°°(H)-vectors. In particular, H is well defined
on φλ{D)χ and we may use these three tools to trade H for time derivatives of D
and the test functions occurring in χ. Since we can write

{l-Pa)φλ(D)X = H-N(l-PΩ)HNφλ{D)χ9 (4.41)

this argument implies the right-hand side may be written as a finite linear
combination of vectors of the form

H-»(ί-PJφλ{E)χ, Ae(-U), EeC". (4.42)

(Recall our convention concerning the symbol χ.) Thus it is sufficient to show that
such vectors have a strongly analytic extension into the rectangle Rn with corners
— l/2+l/n±in, 1/2— ί/n±ίn for any integer n, provided N = Nn is chosen large
enough.

In order to prove this, consider the vector

ψ(λ,x,t)^(l-PΩ)e-tHφλ(x)χ, ί>0, Ae(-|,f). (4.43)

Using the factorization (4.29), we may write ψ as

etp.χe- i/2tH(1 _ P β ) exp(Z ί

λ+ _α*b*)£Γ il2tHζ{λ, x). (4.44)

Now from the fact that χ e ^ , it readily follows ζ has a strongly analytic
continuation into 5, which is moreover strongly continuous in x. Also, from
Sect. 2B we know that for fixed t >0 Zt

λ+ _ has a || || x-analytic continuation into
S. Thus, from Theorem 3.3 it follows that Qxp(Z\+_a*b*) has a norm-analytic
extension into S. Furthermore, combining the bound (3.14) with the bounds (2.43)-
(2.46) we infer that

, λ0) K0(ί)])

(4.45)
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where we used (4.36). (Also, recall our convention at the end of Chap. 1.)
Telescoping and estimating in the obvious way, it follows from the above that
ψ(λ, x, t) has a strongly analytic extension into S, which is strongly continuous in
(x, t) on 1R2 x IR+, and which satisfies the bounds

/1\C(λ)

^ ί-J , (4.46)

C{λ)

, (4.47)

x, ί ) - ψ(λ0, x, ί)] (A- λ o)~ 1 - φ'(λ0, x, ί)||

(4.48)

[Use (3.10) and (2.47) to see (4.47) holds true.] Since C{λ) is continuous on S, it is
bounded above by α n < cc on the rectangle Rn. Fixing iV>αn, we infer from (4.46)
and (4.47) that the strong Riemann integrals

00

Γ{N) -1 \dtf~1ldx E(x) xp{λ, x, t) (4.49)
o

and

00

Γ(N)~x f dttN~^dxE{x)ψ'(λ9 x, ί) (4.50)
o

converge for λeRn. Also, from (4.48) and dominated convergence, we conclude the
vector defined by (4.49) is strongly analytic and has (4.50) as its derivative. Since it
is equal to (4.42) for λe(— ί/2+ί/n, 1/2— 1/n), our assertion holds true.

We are now reduced to proving (4.39). To this end we shall make use of the
cutoff field operators φλ ε(x) introduced in Chap. 3. However, we shall also need
three relations involving the two-point function of the field φΛ(x),

wλιAχ-y)=lφ-λ{χ)Ω,φλ>(y)Ω']. (4.51)

(Henceforth, [ ] denotes tempered distributions.) We begin by deriving these
relations. First, we know already W is the boundary value of a function
holomorphic in the tube and invariant under real Lorentz transformations. It
follows from this by standard arguments [24] that W{x) is real-analytic in the
spacelike region and that

Wλ,Λ*)=Wλtλ.{-x)9 x 2 <0. (4.52)

We now claim that

Wλ,Λ*)=Wλ.tλ{x), V X E R 2 . (4.53)

By analyticity it suffices to show this for the Schwinger points. Rotational
invariance of the two-point Schwinger function in turn implies that (4.53) follows
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from

Wλtλ.{-it,0)=Wλ.J-it,0), Vt>0. (4.54)

But using (3.6) we see (4.54) can also be written

! . + _*Z'λ+_)9 Vί>0. (4.55)

Since Zt_λ+_* = Zt

λ+_ as operators on L2(dθ), (4.55) follows from the relation
det(l+.4jB) = det(l+£v4). Thus, (4.53) is proved. Combining (4.52) and (4.53) we
infer that

Vx,yeTR?, x-y spacelike, (4.56)

which is the first relation we need.
Also, using the complex Lorentz transformation iσv we have for x,j/elR2 with

x — y spacelike and x to the right of y (e.g.),

(e-tHφ_λ(x)Ω,e-tHφλ{y)Ω) = Wλtλ.(itf -x1),ι(y°-x°)-2t)

= dεt(l + Tλtλ.(x9y9t))9 Vί^O, (4.57)

where the argument of Wλ λ, is in the tube (since x is to the right of y\ and where
Tλ j λ, denotes a trace class operator. (This follows from arguments that will be
familiar by now.) Moreover, for λ,λ'e( — y,y) we have | |T λ j λ, | | < 1 by (2.54), so that

(e-tHφ_λ(x)Ω9e-tHφλ,(y)Ω)*O, Vί^O, Vλ,λ'e(-y,y),

VX,J;G1R2, x - y spacelike, (4.58)

which is the second relation. Finally, the Wightman function Wλiλ, in (4.57) is
analytic for {x,y,t) in the compact region suppFx suppGx [0,1/4]. Since it
cannot vanish there for |A|,|λΊ<y, it stays a finite distance away from zero, and
therefore we have the relation

F(x)G(y)(e-<Hφ_λ(x)Ω,e-<Hφλ,(y)ΩΓι j~?

F(x)G(y)lφ_λ(x)Ω,φλ,(y)Ωy1, λ,λ'e{-γ,y), (4.59)

which is the third one.
We are now prepared to embark on the proof of (4.39). In view of (4.56) and the

analyticity of the reciprocals for λ,λ'e( — y, y) we need only show there is a positive
δ^y such that

= 0, Vτ>0, Vλ,λ'e{-δ,δ). (4.60)

To prove this let us pick ε ^ 1 so small that (3.33) holds on suppF x suppG when
we take εe(0,ε). We can then telescope the difference at the left-hand side of (4.60)
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into eight terms, as follows (to unburden the notation we omit the coupling
constants and absorb the factor e'τH into χ1 henceforth):

\dxdyF{x)G{y)

Λ-Sdxdy-—^:

(e"'Hφ(x)χ1,e tHφ{y)χ2)λ

lφ(x)Ω,φ)£ϊ] (e-'Hφ(x)Ω,e-tHφ(y)Ω) \ (i)

(e'tHφ(x)Ω,e-mφ(y)Ω)'

- (e-'Hφ(x)etH

χi, e'tHφ(y)etHχ2n (ii)

+ Γ dx dyFix)Gίv)\(e~ tH^)e tHXve- tHφε(y)e tHχ2) _ (φε(x)χvφε(y)χ2)]
+ ]dxdy F{x) Giy) [ {e-tnφχχ)Q^ e-tHφJίy)Ω) ( f t ( χ ) f t φJίy)Ω) \ (w)

- ( x ^ y ) . (4.61)

We shall only estimate the first four terms, since the other four terms have the
same structure.

Term (i). Consider the functions

Kt(x9 y) = F(x) G(y)(e-
tHφ(x)Ω, e-tHφ(y)Ωy'. (4.62)

In view of the above, in particular (4.59), these functions are in S(IR4) and have
limit F(x) G(y) [φ(x)Ω, φiy)Ω~]"ιeS for ί->09 provided A, λ'e(- y, y). It follows they
form a bounded set in 5. Telescoping (i) into

0(x, y) - Kt{x, y))

> / / 3 ? (4.63)

it is clear that the first term vanishes for ί-»0. The distribution in brackets in the
second term converges to 0 in Sf for f-»0 by Laplace transform lore. Thus, by the
uniform boundedness principle, it converges to 0 uniformly on bounded sets in S.
Hence the second term vanishes too for ί-^0. It follows that term (i) vanishes for
f->0, provided |Λ,|,|Λ/|<y.

Term (ii). This term can be written

j dx dy Kt(x, y) ίietHll - etH^Xl, e-tHφix)e~2tHφiy)χ2)
H 2 H H

χ i , e t H ί l - e t H ^ χ 2 ) - ] . (4.64)

Consider the first inner product. Doing the integration leads to a right-hand side
vector that strongly converges to the vector

j dx dy Koix, y) φ(x) φiy)χ2 (4.65)

by the argument given for term (i). The left-hand side vector strongly converges to
0, implying the first term vanishes for ί->0. The additional factor e"τίI in χ1
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ensures the same argument can be applied to the second term as well, implying
term (ii) vanishes for ί->0, provided |A|,|A'|<y.

Term (iii). To handle this term and the next one we make use of the following
simple fact:

Assume F(zvz2) is antiholomorphic/holomorphic in zjz2 in the region

j>O,j= 1,2}. (4.66)

Then one has for t9t>0 and a^eOp

F(ax + it, a2 + it) = F(a1 + it, a2 + it) + i3 a i J ds F(a1 + is, α2 + if')

- ida21 ds' F(fl! + it', a2 + is') + daι dai j ds J ds' F(αx + /s, α2 + is'). (4.67)
ί ί t

[Indeed, by dominated convergence we may interchange the differentiations and
integrations. Using the Cauchy-Riemann equations and integrating by parts
it follows that (4.67) holds.]

To apply this to (iii) we note that, e.g.,

e-tHφ{x)etH = exp[_iH{x° + it)] <p(0, x1)exp[- iH{x° + it)"] (4.68)

on 3)^% From this and the relations (3.31) and (4.58) it is straightforward to
conclude that the assumptions are satisfied for the two terms inside the square
brackets, when (x,y) belongs to suppF xsuppG. Hence we may write (iii) as

1/4

§dxdyF{x)G{y)Dε(x,y,^,fy — i$dxdy{d0F){x)G(y) j dsDε(x,y,s,%)
t

1/4

+ i\dxdyF(x)(d0G)(y) j ds'Dε(x,y,l,s')
t

1/4 1/4

+ $dxdy(d0F)(x)(d0G)(y) j ds j ds!DB{x9y9s9J)9 (4.69)

where we have introduced the difference function

ε (e~sHφ{x)Ω, e~sHφ(y)Ω) ε

We now claim there exists a δx^y so that for λ,λfe( — δ^δj one has

\Dε(x9y,s,sf)\^c(—) , (4.71)

and

limD (x,y,s,s') = 0 (4.72)
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for any (x,j/)esuppFxsuppG and s,s'e(0,^] Taking this for granted, it follows
from (4.69) and dominated convergence that (iii) vanishes for ε->0, uniformly in t.
To prove (4.71) and (4.72) we first note that

^ \(^sHψMesHχve-s'Hφ(y)es'Hχ2)-(φ^φε)\

' εV ? / " " = \(e-sHφ(x)Ω,e-°'Hφ(y)Ω)\

\(e-sHφε(x)esHχve-s>Hφε(y)esfHχ2)\

\(e-sHφ(x)Ω,e-s>Hφ(y)Ω)(e-sHφε(x)Ω,e-s'Hφε(y)Ω)\

.\(e-sHφ(x)Ω,e-s'Hφ(y)Ω)-(φ^φε)\. ' (4.73)

Consider now the first term. We claim it satisfies a bound of the form (4.71) for λ, λ'
small enough and vanishes for ε->0. Since we know already the denominator stays
a finite distance away from 0 as (x, y) and s, s' vary over suppF x supp G and [0, J]
respectively, we need only prove this claim for the numerator. To this purpose we
use the Schwarz inequality to conclude that

\(e-sHφ(x)esHχve-s'Hφ(y)es'Hχ2)-(φ^φε)\

£ \\e-sH(φ(x)-φε(x))esH

χi\\ \\e-s'Hφ(y)es'Hχ2\\

+ \\e-sHφε(x)esH

χi\\ \\e-s'H(φ(y)-φε(y))es>Hχ2\\. (4.74)

But using Lemma 2.6 we conclude in a by now familiar fashion that

)
, Vίe(0,{], (4.75)

where p.c. denotes the pure creation part. Likewise, (2.43) entails

/1\ C ( A )

. , Vte(0,i]. (4.76)

Since C{λ) vanishes for A->0, it follows that the right-hand side of (4.74) is
O((ss')~1/4) for λ, λf small enough. Moreover, from Lemma 2.5 and Theorem 3.2 we
conclude that

l im| |^~ ί H [φ λ ε (x) p c - φ λ ( x ) p c ] | | = 0 , Vί>0. (4.77)

Using also (2.53) and the fact that χteΘ^, it then easily follows the right-hand side
of (4.74) vanishes for ε->0, proving the claim. The second term at the right-hand
side of (4.73) can be handled in a similar fashion, except that we now also need the
estimate (3.32) to control the denominator. Thus, term (iii) vanishes for ε->0,
uniformly in ί, provided \λ\,\λ'\<δ1.

Termiiy). Clearly, (3.31) implies the remainder function
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satisfies the assumptions on the function F occurring in (4.67) for any x, j/elR2. If
we smear Rε(x, y, ί, ί) with F(x) G(y) and then use (4.67) and integration by parts, we
see that t' may be taken to 0, which implies (iv) can be written

i J dx dy(d0F) (x) G(y) J ds Rε(x, y, s, 0) - i J dx dy F(x) (d0G) (y) j ds' Rε(x, y, 0, s')
0 0

+ j dx dy(d0F) (x) (30G) (y) J ds j ds' Rs(x, y, s, s'). (4.79)
0 0

Arguing now as for (iii) and using the bounds (3.32) and (4.75), it follows there
exists a δ2^y so that for λ,λ'e( — δ2,δ2) Rε satisfies

Λ ) 1 / 4 , (4.80)
ss)

(4.81)

, (4.82)

for any x,j/elR2 and s,s'e(09^]. Using this to bound (4.79), it follows term (iv)
vanishes for ί->Ό, uniformly in ε, provided |λ|, |A'|<<52.

Combining these results we finally conclude that for fixed \λ\, \λ'\<δ =
(y, δv δ2) we can make (4.61) arbitrarily small by taking t and ε small
enough. Therefore it follows (4.60) holds true, so that the proof of the lemma is
complete. •

The reader will have noted that we have made essential, but in a certain sense
minimal, use of the cutoff fields φλε in the above proof. This is due to our lack of
knowledge as regards their properties for |/l|^ J and more generally AeC, and as
regards the strongest topology in which their Wightman distributions converge to
the non-cutoff Wightman distributions. It is for instance clear from Sect. 2C and
our remarks in Sect. 4A that convergence takes place in & for any λe(— \, J), and
the above techniques can be used to show the cutoff two-point function
{Ω,φλε(x)φλ,ε(y)Ω) in fact converges to [Ω,φλ(x)φλ{y)Ω~\ in S", but they are
already not strong enough to conclude this for the three-point function.

As concerns large coupling constants, we have already noted in Sect. 2C.3 that
the analytic Fredholm theorem implies φλεcl(x)__ has for fixed ε a bounded
inverse for any ΛeRbut for a discrete set. Thus cutoff quantum fields φλfB(x) of the
form E(Z) do exist for non-exceptional AelR. (On the discrete set the implementer
has a more complicated form, cf. Theorem 5.1 in [18].) These fields are non-
periodic in λ, since φλ ε cl(x) is. Is it perhaps true that they converge in Θ' to the
non-periodic fields φλ{x), although φλt£iCl(x) strongly converges to the periodic
operator φλ cl(x)Ί If so, this would help resolve a puzzle in the literature we have
pointed out previously (cf. [20, pp. 358 and 359]).
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5. The Field ψλ

A. Preliminaries

The Federbush model describes two species of charged massive fermions.
Correspondingly, one can take the Fock space ^ ( J ^ ® JfLJ as its arena, where
J»fs, s= ± 1, are copies of the space 2tf = L2(dθ)2 of Chap. 2. The representation of
the Poincare group will be again denoted %(a, A) and is defined by

ψ{θί-a9sί9δί;...9θN-<x,9sN9δN)9 (5.1)

where

ps(θ) = nι(s)(chθ,shθ), m(s)>0. (5.2)

Thus, %(a,Λ) (as defined here) corresponds to %(m(l)a,Λ)®%(m(—l)a,Λ) (as
defined in Chap. 3) under the canonical isomorphism ^a(jtf'1ξB3tf?_1)~βΓ

a(jtf?

1)
® # α ( t # _ 1 ) . The energy-momentum operator and its zeroth component will
be denoted P and H, respectively, as before. We now introduce the Federbush
field. It is defined by

Jtχ)' ( 5 3 )
Here, ψ0 s is the free Dirac field of mass m(s),

I iekθ \ . 1

and φλ>s(x) equals the field φ_λs(m(s)x) of Chap. 4 on the factor ^ ( J ^ ) . Thus one
has, explicitly,

m{s)x _ \ \ r * r

(ym{s)x i\ r * ym(s)x \. (CO
~" V6 - λs- - ~ l)Cs, - ίCs, - 1 ~ ^ - λs- + Cs, - ίCs, V ' I 3 ' 3 /

where the kernels are given by (4.2).
The subspaces ^ a t , @N, and ^ ^ of ^a{^) have obvious counterparts in

&r

a{M?

1@M?_ι) that will be denoted by the same symbols. The field ψλtS{x) is a
quadratic form on ^ a t to which the same arguments apply as those in Sect. 4A
concerning φλ(x). In particular, for any λe<L and FeSOR2)2 with compactly
supported Fourier transform F one concludes that ψλ S(F) and its adjoint are well-
defined operators on 3)^ which leave <3 ̂  invariant and satisfy

and

%(a, A) xpλ>s(F) Φ(α, AY = ψλt8{Fa

a-
Λ). (5.7)

Here, ψ* s(x) is the (quadratic form) adjoint of ψλ s(x\

ψUχ) = Ψ*.Jίχ)<P-x.-fc)> ( 5 8 )
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and

,-iα 0

0 e^

[cf. (4.13)-(4.15)]. Also, the vector in 2^
N

Ylw^sJίF^Ω, F ^ q ί l R 2 ) 2 , ^ e C , i=l, . . . ,JV, (5.10)
ι = l

depends continuously on F e^(IR 2) 2 and is entire in λt in the strong topology.
Here, the notation (*). indicates that either the field or its adjoint (5.8) occurs,
depending on I

B. The Results

In this section we present the main results of this chapter along the same lines as in
Sect. 4B. The proofs can be found in the next section.

Lemma 5.1 (A ψ-bound). For any λ e ( - ^ ) and t>0 e~tHxpλsβ))e~tH is a
bounded operator, satisfying

2C(λ) + i\

, ί->0, (5.11)

where C(λ) is the same function as in (4.17) and i = u/l denotes the upper/lower
component of ψλs.

Using this result the discussion following Lemma 4.1 can be repeated with
obvious changes. In particular, it easily follows that the distribution in ^'(IR2")2"
defined by

/ n \

(5.12)

is the restriction of a tempered distribution. Also, if F ^ e C ^ I R 2 ) 2 ^ ^ ^ 2 ) 2 in
S(IR2)2 for ft->oo, then the vectors

UΨZ,(F")Ω, λ^i-i^), (5.13)
i = 1

strongly converge for n-^oo. Again, we denote the subspace of finite linear
combinations of such limits by D. As in Chap. 4, we can then define the operator
Ψ(P>S(F) on D for any λe(— \, j) and FeS(IR2)2. The properties i),..., v) have obvious
analogs for ψλ s and %(a, Λ), and therefore need not be spelled out again. We
continue with a lemma that details the commutation properties of the Federbush
fields.

Lemma 5.2 (Commutation relations). Let λ9λ
fe(-^) and F,Ge5(IR2)2 with

suppF and suppG spacelike separated and suppF to the right of suppG. Then the
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following relations hold on D :

(F)> (5 1 4 )

J t ι { F ) 9 (5.15)

-s(G) = - exp(iπ(λ' - λ)s) v>J, -S(G) ψλt8(F), (5.16)

-s(G) = ~ expfaμ - λ')s) ψλ,t _S(G) ψKs{F). (5.17)

We now define DλCD as the subspace of all finite linear combinations of strong
limits of vectors of the form (5.13), where all λt are equal to a fixed λe( — \,\). From
the above it readily follows the Haag-Ruelle theory [33] is valid for the fields
ψ(PtS(F) on Dλ. Thus the question of asymptotic completeness makes sense. We shall
presently answer this question affirmatively in fact, we shall prove that the closure
of the asymptotic spaces equals ^ ( J ^ Θ ^ - i ) . Thus we have the following
theorem, which we regard as the principal result of this paper.

Theorem5.3. For any λe(-%A)> t h e Quadruple ( ^ p ^ Θ ^ - i ) , <%(a,A\ ψλtS(x),
D;) satisfies all Wightman axioms including asymptotic completeness.

C. The Proofs

Proof of Lemma 5.1. We first recall that for feL2(dθ)c^δ(f) is a bounded

operator, satisfying

Using Lemma 4.1 we now conclude that e~tHψλ sβ))e~ t H is a bounded operator of
the form A®B on ^ f l ( ^ ) ( 8 ) ^ ( ^ - 1 ) for any ί > 0 . Noting that for α > 0

t->0, (5.19)

the bound (5.11) follows by also taking (4.17) into account. •

Proof of Lemma 5.2. The proof of this lemma proceeds along the same lines as
that of Lemma 4.3, and we shall therefore use the same symbols to denote
analogous objects. We shall first prove (5.14). We claim this relation will follow
once we show that

\\c?δ{f)\\ = 11/11.

+ r '*"λ"'"'^Γ =0, Vτ>0, \fλ,λ'e{-δ,δ), (5.20)

where δ is the same positive number as in the proof of Lemma 4.3 [cf. (4.60)]. [Of
course, the χt are now finite linear combinations of vectors of the form (5.10) with
λie( — |,^).] The proof of this claim follows from (4.56) and the arguments in the
proof of Lemma 4.3 leading to the validity of the analogous claim made below
(4.38); the presence of the extra free Dirac field only gives rise to an additional
factor (l/ί)1 / 2 in (4.46)-(4.48), so that one should take iY>αw + ̂ in (4.49) and (4.50).
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Notice this factor is only needed for the term containing the creation part of the
Dirac field: the form \dθcsδ{θ)e±^θe~ix'Ps defines a bounded operator on <&Ni

since the integral may then the restricted to a bounded region.
To prove the relation (5.20), we first observe it holds if the fields are replaced by

the corresponding cutoff fields, provided the cutoff is small enough. [To see this,
use (3.33) and (3.44).] Thus we can telescope the left-hand side into eight terms as
in the proof of Lemma 4.3. These terms can now be estimated in an analogous
way. Therefore we shall only point out the differences. Clearly, (i) and (ii) cause no
problem. To handle (iii), note that in the analogs of (4.71), (4.75), and (4.76) the
exponents should be increased by \ to take the Dirac field creation part into
account. To conclude that (4.72) holds true, one only needs the additional relation

l i m | | e - ί H [ φ O s ε W - φ O s ( x ) ] β - ί H | | - 0 , Vt>0, (5.21)
ε->0 ' ' '

which readily follows from (3.40) and (5.18). In (iv) a minor snag is encountered: Rε

now satisfies the bound

/1 \ 3 / 4

\Rε(x9 y, s9 s')\ S C ί —J , Vx, yeW.2, Vs, s'e (0, ft, (5.22)

instead of (4.80), which suffices for the third term in (4.79) to vanish as before, but
the exponents in the analogs of (4.81) and (4.82) are 5/4, which is not sufficient to
handle the first two terms. However, for ί '>0we may write

t

i j dx dy(δ0F) (x) G(y) f ds Rε(x, y, s, t')
t'

t 1/4

= f dx dy(80F) (x) (B0G) (y) J ds j ds' Rc(x, y, s, s')
t' t'

+ i\dxdy(δ0F)(x) G{y) \ ds Rε(x,y,s,|), (5.23)
t'

and if we now take t' to 0 we obtain an equation that enables us to replace the first
term in (4.79) by two terms that vanish for ί->0, uniformly in ε, by virtue of the
bound (5.22). The second term in (4.79) can be taken care of analogously. It follows
that (5.20) holds true, implying (5.14). The proof of (5.15) is similar.

To show that (5.16) holds, we need only prove that

J dx dy F{x) G(y) ( [ > ? > ) * " tHZi> V J , - s(y)x2]

+ exp(iπ(λ'-λ)s)lψλ,,_s(y)e-τHχvιpλ>s(x)χ2-])==0, Vτ>0, Vλ9λ'e(-δ,δ),

(5.24)

by virtue of the analyticity argument discussed above. A straightforward calcu-
lation using (3.45) and the fact that suppF is to the right of suppG shows that
(5.24) holds true for the cutoff fields, provided the cutoff is small enough. But then
we may proceed as before, except that now of course no two-point denominators
occur in the analog of (4.61). The eight terms can then be estimated in the same
fashion as sketched for (5.20), which results in the validity of (5.16). The proof of
(5.17) is similar. •
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Proof of Theorem 5.3. We need only prove asymptotic completeness and the
relation

β ^ Wi®^-!) (5-25)

(cyclicity of the vacuum), all other axioms being obvious from the above. To this
end we combine a result of Hepp [34] with a result of ours [21]: Define fields

(5.26)

where

(Sλψ)(θvsvδ1; ...;θN,sN,δN) = QXp\ — iπλ ^ ε(θί — θJ )(si — s^δfi}

•ψ(θ1,s1,δ1;...;θN,sN,δN). (5.27)

This notation is inspired by the following result (Theorem 4.2 in [21]): For any
smooth solution Fs(x) to the Dirac equation of mass m(s) one has

l i m I &X x c\^5 *^ 7 * \^P? V̂ /i <cv > •
t~> + oo '

(5.28)

Here, 2 denotes the subspace of algebraic tensors whose constituent functions are
in C (̂1R). Thus the fields (5.26) are the LSZ asymptotic fields for the quadratic
form ψλiS(x) on # α (^f 1 ©Jf_ 1 ) and Sλ is the LSZ S-matrix. These fields are
asymptotically complete by inspection, in the sense that the polynomial domain
generated by the fields and their adjoints is clearly dense in gFα. Therefore it only
remains to be shown that the asymptotic fields of the Haag-Ruelle theory (which
exist in Dλ, since all of its assumptions are satisfied) coincide with the fields (5.26).

At first glance this seems obvious from Hepp's work, since it is one of his
results that the assumptions of the Haag-Ruelle theory entail that the LSZ fields
exist and are equal to the Haag-Ruelle fields [34]. However, we do not yet know
that the states he uses are the same as those generated by the fields (5.26). Since the
LSZ limits of ψλ>s could α priori be different if a different set of states is employed,
the result just quoted cannot be used. Recall in this connection that the //-norm
of Fs(ί, ) diverges for |ί|—>oo, so that one cannot conclude equality of the limits
from a continuity argument.

However, by using another result of Hepp we can attain our goal, as follows:
First, the one-fermion states corresponding to the fields (5.26) and their adjoints
are clearly equal to those of the Haag-Ruelle fields. Now we make an induction
assumption: Denote the Haag-Ruelle creation operators by c*|x(#), ex = in, out,
and let

Π c* JCQΩ = Sΐiλ Π c*tιδl{f^Ω = φT, (5.29)
1=1 i-1
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where the /. are in C^ and supp/^ is disjoint from supp/ / + x and to the left of it,
i = 1,..., JV— 1. Now consider a negative energy solution of the form

. (530,

where UECQ and suppw is disjoint from suppj^ and to the left of it. From
Theorem 6.2 in [34] we then conclude on one hand that

s-limψλ s(H,.Fs,0<Pex = crΛ(")<P e x, (5-31)
Z->ίex

where

j i 1 1 μ - y ^ x 1 - y 1 ) . (5.32)

Here, H(y) is any function whose Fourier transform has the following properties:
(i) it is in C^(R 2);

(ii) it equals 1 on the set

(5.33)

(iii) its support is contained in the set

s ) ] 2 } . (5.34)

(Note that (i) implies (5.32) is well defined on φex in view of our remarks in
Sects. 4A and 5A; also use this to verify that (5.32) is of the form considered by
Hepp, cf. pp. 195 and 196 in [34].) We now claim that on the other hand

{ψWλ^^W {ψ+HlM)^λφl ψ(5.35)
> ± oo

To prove this claim, we first observe that the function <tp, ψλ s(x)φexy is
uniformly bounded for xeR 2 . By virtue of Fubini's theorem and covariance we
therefore may write

(ψ,ιpλJH,Fsj)φ*x) = \dyH(y)K(t,y), (5.36)

where

K{t9 y) = J dx1 Fs{t9 x
1) <^'pιp, Ψλβ, x V y V x> (5-37)

Now it is clear that eiy'pψe@, and one also has eiy'pφQXeΘ, since the operator Sτ±λ

in (5.29) acts as multiplication by a rapidity-independent phase factor due to the
restriction on the supports. Therefore our result (5.28) implies that

limK(t,y)=\dx1Fs(O,x1)'(ψ,ψ™(-y°,x1-y1)φQxy. (5.38)
ί-> ί e χ

It is also straightforward to conclude that K(t9y) is uniformly bounded on IR3.
[Expanding φ_λs(x) in (5.37) leads to a finite sum of terms that are finite products
of uniformly bounded functions and a smooth solution of the Klein-Gordon
equation due to the free Dirac field factor. Now use the well-known fact that such
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solutions have L^-fL1 -norms in x1 that are O(|ί| ~ 1/2)/O(|ί|1/2) for |t|->oo.] By
dominated convergence it therefore follows the limit t^fx of (5.36) exists, and the
ensuing integrals can easily be done. The result of this is the right-hand side of
(5.35), which proves our claim.

Combining (5.31) and (5.35) we infer that

^\ T , (5.39)

since 2 is dense in J^. Using a similar argument for the adjoint field it also follows
that (5.39) holds when the charge index — 1 is replaced by 1. Thus we have,
replacing s by s0 and u by f0 and using (5.29),

Π *£(fdΩ = S τ u Π ctMΩ. (5.40)
i = 0 i = 0

Hence, it follows by induction that (5.29) holds for any N. From this we finally
conclude that the fields (5.26) are the asymptotic fields of the Haag-Ruelle theory.
This completes the proof of the theorem. •
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