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Abstract. We give a general bosonic construction of oscillator-like unitary
irreducible representations (UIR) of non-compact groups whose coset spaces
with respect to their maximal compact subgroups are Hermitian symmetric.
With the exception of E, 5, they include all the non-compact invariance groups
of extended supergravity theories in four dimensions. These representations
have the remarkable property that each UIR is uniquely determined by an
irreducible representation of the maximal compact subgroup. We study the
connection between our construction, the Hermitian symmetric spaces and the
Tits—Koecher construction of the Lie algebras of corresponding groups. We
then give the bosonic construction of the Lie algebra of E, ;, in SU(8), SO(8) and
U(7) bases and study its properties. Application of our method to E, -, leads to
reducible unitary representations.

1. Introduction

Recently, Cremmer and Julia [1] have discovered a set of non-compact invariance
groups in the bosonic sectors of N =5, 6,8 extended supergravity theories in four
dimensions, thereby generalizing the non-compact invariance group of the N =4
theory found by Cremmer, Ferrara and Scherk [2]. The vector field strengths in
these theories and their duals get transformed into each other under the action of the
non-compact group G and form a linear representation, whereas the scalar fields
transform non-linearly as the coset space G/H where H is the maximal compact
subgroup of G. The full invariance has the form Gyg,, ® Hyo @ in the two-
dimensional generalized ¢ models [3].
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Julia and Cremmer conjectured that the composite gauge fields associated with
H,,., may become dynamical at the quantum level just as in the two-dimensional
CPY models [1]. Ellis, Gaillard Maiani and Zumino (EGMZ) have extended this
idea and postulated thatin N = 8 supergravity in addition to the vector bound states
other bound states (fermionic as well as bosonic) form whose effective interactions at
low energies correspond to a spontaneously broken grand unified theory based on
SU(5) with three families of quarks and leptons [4,5]. Again in analogy with CP"
models [ 6] it was suggested that the bound states in extended supergravity theories
may fall into linear representations of G oy [7]. Since the global invariance for
N =4, 5, 6, 8 supergravity theories are all non-compact, their unitary repre-
sentations are infinite dimensional. In fact, an infinite set of bound states seems to be
needed for giving superheavy masses to the unwanted helicity states in the EGMZ
program [5] or the extensions thereof [&].

In a previous publication we have given a construction of a class of oscillator-like
unitary representations of some non-compact groups including those appearing in
extended supergravity theories [9]. Our purpose in this paper is to present an
extension of our method for constructing unitary irreducible representations (UIR)
and point out its connection to other mathematical structures; in particular to
Jordan triple systems [10] and Hermitian symmetric spaces [11]. The plan of the
paper is as follows: in Sect. 2 we give the bosonic construction of the Lie algebras of
Ref. [9] in a generalized form which allows one to construct larger classes of UIRs.
Specifically this section contains a construction of the Lie algebras of SP(2n, R),
SO@2n)*, SU(m,n) and SO(m,n) in terms of boson annihilation and creation
operators, some of which are well known in the literature [12, 137]. We then present,
in a generalized form, the extension of the standard construction which yields only
the Lie algebras of the non-compact groups of supergravity. This extension uses
boson operators transforming exactly like the vector fields in the corresponding
supergravity theories. (The construction of E, - is deferred to Sect. 5.) In Sect. 3 we
point out that with the exception of SO(m, n)(m # 2 and n # 2) all the Lie algebras of
Sect.2 decompose as L=L* ® L°® L™, where L° is the Lie algebra of the maximal
compact subgroup H that contains an Abelian U(1) factor, L* and L~ space are
conjugate to each other and carry opposite U(1) charges. This decomposition shows
that the coset space G/H is a Hermitian symmetric space and the Lie algebra L can
be constructed from a so-called Hermitian Jordan triple system. This Jordan
structure is discussed and the Tits—Koecher construction of Lie algebras from
Jordan triple systems is given. In Sect. 4 we formulate our general method for
constructing UIRs for non-compact groups with a Jordan structure in the Fock
space of the corresponding boson operators. Section 5 contains the construction
of the Lie algebra of E,,, which does not have a Jordan structure with respect to
its maximal compact subgroup SU(8). Rewriting the Lie algebra of E,, in the
SO(8) basis we show its triality properties. We then give the U(7) basis of E, 5, and
indicate its connection to the Kantor construction of the Lie algebras of the E series
in terms of antisymmetric tensors of rank three [ 14, 15]. This suggests a possible link
between their emergence in N =8 extended supergravity theories in various
dimensions and the Kantor construction.

In the last section we show how applying our methods to the case of £, leads to
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infinitely reducible unitary representations, which may still be of relevance to
supergravity [16]. We then mention a method due to Gell-Mann for constructing
UIRs of E; on certain coset spaces of its maximal compact subgroup SU(8)
[17,18]. We conclude with the suggestion that in addition to the unitary
representations constructed by using boson operators transforming like the vector
fields one can construct further classes of unitary representations using boson
operators transforming like the scalar fields in supergravity theories via the operator
methods developed by Gursey and his collaborators [19].

2. Bosonic Construction of the Lie Algebras of a Class of Non-Compact Groups

In this section we give a bosonic construction of the Lie algebras of the non-compact
groups Sp(2n, R), SO(2n)*, SU(n, m) and SO(n, m) in a more general form than the
one considered in Ref. [9]. This generalization is trivial on the Lie algebra level in the
sense that it corresponds to taking direct sums, but as we shall see later, it leads to the
construction of a much larger class of UIRs by our methods. The Lie algebras
SP(22n,R), SO(2n)*, SU(n,m) and SO(n,2) have a jordan structure with respect to
their maximal compact subalgebra as explained in the next section. The non-
compact groups that come up in extended super-gravity theories in four dimensions
all have a Jordan structure with respect to their maximal compact subgroups. The
only exception is the non-compact group E,;, of N = 8 supergravity [ 1] which does
not have a Jordan structure with respect to its maximal compact subgroup SU(8).
We treat the bosonic construction of E,,, separately in a later section.

Consider N pairs of boson annihilation and creation operators a,(K), b;(K) and
al(K), bI(K), where i=1,...,n denotes a U(n) index and K =1,...,N labels the
different pairs which can be infinitely many in certain cases of physical interest as is
shown in the Appendix. We shall denote the creation operators by upper indices;
thus a,(K)" = a'(K), b,(K)" = b'(K). They obey the canonical commutation relations

[a;(K), a’(L)] = /%",
[b(K), bI(L)] = &/5"*, 2.1)
[a(K), a{L)]=0=[by(K),b(L)].
The U(n) generators are then
I"=a"a,+b,b" (2.2)

where the dot product represents a sum over the generation index K, i.e.,

am™a, = i a™(K)a,(K).

K=1

The U(n) algebra can be extended to the Lie algebra of a non-compact group with a
maximal compact subgroup U(n):

a) U(n)— SP(2n, R):
The symmetric diboson operators

j=a;b;+a;b; SV =a"b/ +alb (2.3)
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together with the I obey the commutation relations

(S, S¥] = 04If + 6f1% + o414 + OI%,
[, 5,1 = = o7, — 7S, 24)
LIy, 8] = o78™ + 8)8™,
which corresponds to the Lie algebra of Sp(2n, R) in a so-called split basis.
b) U(n)— SO2n)*:
The antisymmetric diboson operators
A;j=a;b;—a;b, (2.5)
A =al-b —al b,
and the I} satisfy
[A;;, A] = 84T + 6§14 — o%1} — 8L1%,
LIy, A;;1= —0"A,;— 07 A, (2.6)
[I™, AY] = 8L A™ 4 8] A,
This is the Lie algebra of SO(2n)* with maximal compact subgroup U(n) in a split
basis.

Instead of considering the particular combination I one can also take the
operators

. . 1.
Pj=a'a;—5j(a"a,),

. 1L
Rj=b;b' —5i(b,b") 2.7)

Q=a"a,+b,b"

which generate the Lie algebra of S(U(n) x U(n)). These operators together with the
non-symmetrized diboson operators

U;=a:b, (2.8)
U'i=a'b,
give us the Lie algebra of SU(n,n).

If the indices of the boson operators @ and b run differently, i.e, fora,i=1,...,n
and b,,u=1,...,m, then the operators

; : 1.,
P; =a‘-aj—55}‘.(a"'-am),
1
RY =b, b — — 5t (b, b, 29)
m

1 1
N=-a™a, +—b, b
n m

Lj,..=1,...n; wv,A...=1,...,m,
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Together with the diboson operators

e 210
generate the Lie algebra of SU(m, n)

(U, U] =6IR; + 6, P + 6,6IN,

[P}, Uyl=—0U,, —|—%5}U,m,

[P, U] =okU — %5; Uk, (2.11)

[P, P}]=064P;— 6, P,

[R},U;l=—04U, + %55 Uiz,

[Re, U] =62U™ — %5‘; U™,

1 1
NU, 1= - <E+Z>U“" (2.12)

. 11\, .
SESENNS
m n
[RY, Ri] =0 R} — 8RS,
The following subset of the above operators
i(P;— Pj), iR} — R}), (U;, + U™),

generate the SO(n,m) subalgebra of SU(n,m). Of the non-compact groups
SO(n, m) only those for which n = 2 or m = 2 have a Jordan structure as explained in
the following section.

Now we repeat the above extension procedure by considering annihilation and
creation operators transforming like the antisymmetric tensor representation of
U(n). This is of interest as one obtains exactly the Lie algebras of the non-compact
groups occurring as global symmetries in extended supergravity theories and
nothing else [9]. We now have

La;(K), a(L)] = 6%" (0} 8} — 9;0%),
[b;(K), b¥(L)] = 6%E(55 0} — 01d5), (213)
[aij(K)a auy(L)]=0= [bij(K), bu(L)],
where
aij(K) = - aji(K); bij(K) = - bji(K)
Lj...=1,...,.n K,L,..=1,...,N.
It is easy to see that the n =2 and n = 3 cases revert to the standard construction in
the form discussed under a) and b) above. New algebras are found only forn =4, 5, 6,
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7,8 and the diboson operators that extend the U(n) generatorsa™-a;, + b, -b™* to the
Lie algebra of a non-compact group all have the form

N
I

iy i3i
& axz.b34’

In—g...in i1iz...in

and

Ai"—""‘i":(gi‘iz'“i"a .
- ipia Vizig*

Thus for n =4 we have the dibosons
o :%8ijklaij.bkla
0 = T}Teijklaij‘bkzs (2.14)

which, together with Q° =Z1(a/-a;; + b, ;-b"/) representing the trace of U(4) generate
the SU(1, 1) algebra

(0.0 1=-290°
[0%Q%]=0", (2.15)
[0%071=-0".

With the remaining SU(4) generators T =a™a;, +b;,"b" — §:Q° the resulting
extension is U(4) - SU@4) x SU(1, 1).
For n =5 one has the first simple Lie algebra of a non-compact group. Again we
split the U(5) generators into the trace
0 =aa,+ by b, (2.16)
and the SU(5) part:
Ti=a%ay+b; b* 350, (2.17)

and use the diboson operators

A‘=£s

i 4 ijklm

Al = \/_Eeijklma

4 i blm’

k-, (2.18)

to arrive at the algebra of SU(5, 1):
[T}, 47] = o]A* — 36t A7,

[TH A= — A, +35i4;, (2.19)
[Q7 A;] =4Ai’
[0, A= — 44!

Under the action of the SU(5,1) group the boson operators a;;(K) and b¥(K)
transform into each other and form a 20-dimensional representation of SU(5, 1).

Finally, we treat n = 6: there are 15 diboson 0perators ¢ ,,,a" -b™ and their
conjugates. With the 36 generators of U(6) one thus has a total of 66 operators,
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suggesting SO(12)*. However, the algebra does not close, because unlike the U(5)
case, SO(12)* does not have a 30 dimensional representation corresponding to
a;;(K) @ b"(K). The simplest way to remedy the situation is to introduce two SU(6)
singlet boson operators v(K) and w'(K) in order to build up the 32 dimensional semi-
spinor of SO(12)*. Indeed this 32 dimensional representation of SO(12)* decom-
poses as 1 @ 15@® 15 @ 1 with respect to SU(6). The correct diboson generators now
are

1
1 kL, . .
A = T jrumn? b™" + (aij v+ bij w),

V2
A=y b @A W (220)
whereas the SU(6) and U(1) generators are given by
Ti=a"a;, +b"b, — @™ a,, +b"b,),
Q=a"a,, +b,, b™—6v-v—6ww. (2.21)
They satisfy the commutation relations of SO(12)*
[A;;, AT =3 T+ 8Tk — 61Tk — & T
— 15(0} % — 05010,

ijs
3

[T}: Akl] = - 5;;Ajl - 5liAkl + %5§Akla

[Q. 4,1 = — 44, (2.22)
[T}, A4 = ok A" + 81 4K — 614,
[Q, A1/ =441,

From the basis we have chosen for the Lie algebras above, it may not be obvious
what non-compact form of the respective groups we are dealing with. Since we are
interested in constructing unitary representations we assume implicitly that we are
working in a Hermitian basis, i.e., all the generators of our group are Hermitian
operators. In the above bases this is not the case. Therefore, we must take suitable
linear combinations of the operators above to go to the Hermitian basis in which all
the generators H; of the group are Hermitian and the structure constants f;;, defined
by [H,H;1=if;H, are all pure real. Then the operator U(g)= exp (iHw")
representing a general group element is unitary (w' are real group parameters). It is in
this basis that we calculate the Killing metric so as to determine the form of non-
compactness.

3. Lie Algebras with a Jordan Structure and Hermitian Symmetric Spaces

We define a simple Lie algebra with a Jordan structure as a Lie algebra L that has a
three-dimensional graded form, i.e.,

L=L" ®L°®L", 3.1)

where L° contains the generator Q of an Abelian U(1) factor such that L° = H® Q
and [Q,H]=0,[L*,L*]1=0,[Q,L*] = + L*. In addition we have a conjugation’
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such that (L*)" = L™, L°T = L°. Because of the grading and simplicity of the algebra
we have [L°,L* ]~ L",[L° L =L ,[L*,L")=L"

All simple Lie algebras L with a Jordan structure can be related to the so-called
Jordan triple systems by the following simple method [20,21]. Denote the elements
of L that lie in the L* subspace by U, and the elements of the L™~ space by U! wherea
belongs to some vector space V. Further denote the commutator of U, and U} as S,,,

S»=[U, Uil (3.2

Because of the grading [U,,U,]=0=[U}, U}]. Through the commutator of S,
with U, one defines a triple product (abc) in the vector space V':

[Sab7 Uc] = U(abc)' (3-3)

Then all the commutation relations can be expressed in terms of the triple product
(abc) by using the Jacobi identities.

[Sa UI] == U}Lbac)ﬂ

[Saps Scal = Satacty = Sccaan- (3.4)

Jacobi identities impose two conditions on the triple product:
(abc) = (cba), (3.5a)
(ab(cdx)) — (cd(abx)) — (a(dcb)x) + ((cda)bx) = 0. (3.5b)

These conditions define a Jordan triple system [10]. Therefore, given any Jordan
triple system one can construct a Lie algebra with a Jordan structure as above. This
construction of a Lie algebra with a Jordan structure is known as the Tits—Koecher
construction [20, 217. It has also been extended to Lie superalgebras with a Jordan
structure [22,23].

A Jordan algebra with a symmetric product ab = 3(ab + ba) defines a Jordan
triple system with the triple product

(abc)zw(b'c)-b'(a'é)+(a~b)'c (3.6)

that satisfies the conditions (3.5a) and (3.5b).
Below we list the Lie algebras L and their respective subalgebras L° that can be
constructed from various Jordan algebras using the Jordan triple product (3.6).

Jordan Algebra L° L
Iy U(n) Sp(2n)
JE SU(n) x SU(n) x U(1) SU(2n)
Jy U(2n) SO(4n)
73 E, x U(1) E,
rd) SO+ 1)xSOQ2) SO+ 3)
where J® JC JU denote the Jordan algebras of n xn real symmetric, complex

Hermitian and quaternionic Hermitian matrices respectively. Here J3 is the
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exceptional Jordan algebra of 3 x 3 Hermitian octonionic matrices. I'(d) denotes the
Jordan algebra of y matrices in d dimensions

V=3 =0 s wy=1,...d

Rectangular n x m matrices over the real numbers R, complex numbers C and
quaternions H define a Jordan triple system under the triple product [22]

(abc)=abc+cb'a, (3.7

where the bar denotes conjugation over the underlying division algebra R, C or H
and T is transposition. The corresponding Lie algebras L and L° are

Jordan Triple

System L° L
KE SU(n) x SU(m) x U(1) SU(n + m)
KE SU(n) x SU(n) x SU(m) x SU(m) SU(n + m)
x U(1) x SU(n + m)
K" SU(@2n) x SUQRm) x U(1) SU(2n + 2m)
K2 SO(10) x SO(2) E,

where K& 5" refers to the Jordan triple system of n x m matrices over R, C and .
In the case of (2 x 1) octonionic matrices K3, the triple product is modified to be
(abc) = {(ab")c + (ba")c — b(a@"c)} + {a<>c} due to the non-associativity of
octonions.

In the above we have denoted all the Lie algebras L° and L with the compact
form of the corresponding groups. In general they will be Lie algebras of the non-
compact form depending on the underlying Jordan triple system. All simple Lie
algebras with a Jordan structure can be constructed from a suitable triple system
[24].

Now if we denote the groups corresponding to the Lie algebras L and L° as G
and H, then the coset space G/H is a Hermitian symmetric space. Hermitian
symmetric spaces are all Kéhlerian and they can in general be represented in the
form of a tensor product [25].

MoxM; xM, xM,

where M, is the quotient of a complex Euclidean space by a discrete group of pure
translations and each M,(i > 0) is one of the following Riemannian symmetric
spaces:

SU(p + q)/S(U(p) x U(g)), SO@2n)/U(n),
SO + 2)/SO(n) x SO(2), E¢/SO(10) x SO(2),
Sp(2n)/U(n), E./Es x U(1).

From this classification it follows that all simple Lie algebras have a Jordan
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structure with respect to some suitable subalgebra except for the Lie algebras of G,,
F,and Eg. For the detailed study of the connection between symmetric spaces and
Jordan triple systems we refer the reader to Refs. [11] and [26].

All the Lie algebras of the non-compact groups [except for SO(m, n), where both
m and n are different from 27 considered in the previous section have a Jordan
structure with respect to the Lie algebra of their maximal compact subgroups. Of the
remaining Lie algebras of the non-compact groups with a Jordan structure with
respect to their maximal compact subgroup, the Lie algebras of E¢_ ;4 and E;_ 5,
can be similarly constructed from boson operators. In the next section we give a
general method for constructing certain classes of UIRs of non-compact groups with
a Jordan structure with respect to their maximal compact subgroup.

4. Oscillator-Like Unitary Irreducible Representations of Non-Compact Groups with
a Jordan Structure

The Lie algebras of the non-compact groups constructed above have a Jordan
structure with respect to the Lie algebra of their maximal compact subgroup:

L=L"®L°®L"; (LYY ~L", (IO'~I°

where the L™ and L* subspaces correspond to the non-compact generators
constructed in terms of diboson annihilation and creation operators. In Ref. [9], we
have given a construction of a certain class of UIRs of non-compact groups with a
Jordan structure in the case when L~ (and L*) generators were constructed in terms
of diboson annihilation (and creation) operators only. Here we give the same
construction in a more general form when we have an arbitrary number of pairs of
boson operators a(K), b(K), k =1,2,..., N instead of a single pair as was done in Ref.
[9]. On the Lie algebra level this extension is trivial in the sense that it gives us a
direct sum of N copies of the same Lie algebra. However, this simple extension
enables us to construct larger classes of UIRs of the respective groups [27].

Consider now the Fock space constructed from the tensor product of Fock
spaces of individual boson operators. The vacuum |0 in our Fock space will be a
tensor product of the individual vacua |0)

10> =10)]0)....]0). 4.1)
It is annihilated by all the annihilation operators.
a(K)|0)> =0=0b(K)|0), K=1,...,N. 4.2)

Choose a set of states |, > in our Fock space which is annihilated by all the diboson
operators in the L™ space and transform as a certain representation of the maximal
compact subgroup generated by L°:

L™y, =0. 43)

Then the infinite number of states generated by applying the operators L™ on |y, >
form the basis of a unitary representation of the non-compact group G:

Wa>, LW (L5 a0 (4.4)

Now if [/, are chosen such that they transform like an irreducible repre-
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sentation of the maximal compact subgroup generated by L°, then the correspond-
ing representation of the non-compact group is also irreducible. The proof of this
theorem, which was given in Ref. [9], is very simple and uses the Jordan structure of
the non-compact group in a crucial manner.

With the exception of the second construction of SO(12)* [see Eq. (2.20)] the L~
spaces of all the Lie algebras constructed in Sect. 2 involve diboson annihilation
operators only. The states in our Fock space that are annihilated by L™ involving
diboson annihilation operators only, are a linear combination of the states of the
form

La(WI™ [al()]™ - [+ 1[a(N)]™ [0, (4.5)
and of the form
/() I [b/(2)]". ... [BHIN)]™0). (4.6)

These states transform in general like a reducible representation of the maximal
compact subgroup H. However, using suitable projection operators one can project
out the irreducible components. The possible irreducible representations of H that
can be constructed this way depends on the number N pairs of boson operators a
and b. For example in the case when a(K) and b(K), (K = 1,..., N) transform like the
fundamental representation of SU(n), then the irreducible representations of SU(n)
that one can obtain by this method have Young tableaux with at most N rows. This
is simply due to the fact that the largest totally antisymmetric representation of
SU(n) that one can construct from N copies of boson operators is of rank N. Of
course, if N =n any representation of SU(n) can be constructed by repeated
application of the creation operators followed by a projection operator. In Young
tableaux notation we have

[a/(K)]™ 0> =(mk,0,0,...),i,j =1,2,...n (4.7a)
[ai(K)]mK [aj(L)]mL '0> :>(mK + mL’ 070 . ) + (n‘le mL, 07 .. ')9 (47b)
[a'()]™ [/(2)]".. . [a'(N)]™10D
=(my,0,...) ®@(m,,...) ®... ®(my,0,0,..), (4.7c)
where (m,,m,,...,m,) denotes a representation with a Young tableau which has m,

number of boxes in the i row. The maximal compact subgroups in our case have a
U(1) factor whose generator in most cases corresponds to the boson number
operator. Each one of the states constructed above has a definite U(1) charge.
The remarkable feature of the unitary representations above is that they are
uniquely determined by the initial state |/, ) that is annihilated by the L.~ space and
the irreducibility of the representation follows directly from the irreducibility of
[ . > under the maximal compact subgroup H. This is a general property of the
representations belonging to the discrete series [28]. Furthermore the condition
L™ |y, could be interpreted as an holomorphicity condition and thus we would
expect the above representations to belong to the holomorphic discrete series [297].
We should note that the use of boson operators for constructing UIRs of non-
compact groups is certainly not new in physics. They have been used from time to
time to construct representations of certain non-compact groups of physical
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interest, using most often one set of boson operators which leads to only two UIRs
[see Ref. [12] for a comprehensive list of references]. What our formulation does is
to give a unified treatment of the oscillator-like representations of all non-compact
groups with a Jordan structure in the most general form. The irreducibility of the
resulting representations that was proven in individual cases by the brute force
method of calculating all the Casimir operators follows simply from condition (4.3)
and the Jordan structure [9]. Furthermore, the use of an arbitrary number of pairs of
boson operators enables us to construct infinite classes of UIRs.

5. Bosonic Construction of the Lie Algebra of Non-Compact Group E, ,,

The Lie algebra of E,;, with a maximal compact subgroup SU(8) was constructed
in Ref. [9] in terms of a pair of boson annihilation and creation operators
transforming like the antisymmetric tensor representations of SU(8). Here we give
the same construction using an arbitrary number N pairs of boson operators. They
satisfy the commutation relations:

[a(K), a(L)] = 6*(57 8} — 00y),
) J J

[b(K), b*(L)] = 6% (8% 6!, — 6% 60),
[aij(K), a(L)] =0 =[b;(K), by(L)], (5.1)
Ly kil =1,2,...8; K, L,...=1..,N,
and

aij(K) = - aji(K); bij(K) == bji(K)~

The SU(8) generators are taken as
Ti=a"a, +b, b™—L6i(a" a, + b, b), (5.2)

where the dot product again denotes summation over the generation index
K =1,...,N. They satisfy the commutation relations

[T:, T{1=05T;— 6Tk, (5.3)
Now the 133 dimensional adjoint representation of E, decomposes under the
SU(8) subgroup as
133=63@170,

where 63 stands for the adjoint representation of SU(8) and 70 corresponds to the
totally antisymmetric rank four tensor representation. This suggests that as the 70
non-compact generators of E,,, we take

Vijkl = a[ij'bkz] + %Cijklmnpqamn‘bpq > (5.4)
where indices inside brackets [ ] are all antisymmetrized. The operator V, is
totally antisymmetric in its indices and satisfies

1 .
Via= a—!s”"’”’""‘l Vnpg = V7, (5.5

which reflects the fact that the representation 70 of SU(8) is self-conjugate. The
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operators V;;, do indeed close into the generators of SU(8):

abcdy __ 1 m abcdnpqr
Vi V] = — o8ijkimpgr I n & 07,
m 1 mpgr __1Sm
LT, Vin] = &jumpar V 200 Vijus (5.6)
m ijkly 1 .ijklmpgr 1 smyyijkl
[Tn’V ]__68J = Vnpqr+26nVJ >

ij,k,...=1,..8.
That the resulting Lie algebra is that of E, follows from the fact that it is the only
simple Lie algebra of dimension 133. To determine whether it is the Lie algebra of
non-compact E ,, with the maximal compact subgroup SU(8) one has to look at the
Killing form. The Killing metric turns out to be

Gry s = 360105 + 1002555,

IVt Vinpg = 368 j1mnpqs (5.7

gTJ', anpq = 0’
showing that in a Hermitian basis it gives us the Lie algebra of E,,,.

The Killing metric determines the quadratic Casimir operator C, up to an over-

all constant. For E,;, we choose this constant such that

G, = %‘(Tlaf Vijkl ik — T;( ch)- (5.8)
This construction of E,, from boson operators corresponds to an operator
formulation of a realization of E in a 56 dimensional space by H. Freudenthal [30].
Remarkably enough the Casimir operator C, is exactly the quartic symplectic
invariant on the 56 dimensional fundamental representation space given by
Freudenthal. In our case the operators a;; (b;;) and b"(a") get transformed into each
other under the action of E;, and form the 56 dimensional fundamental
representation.

The non-compact group E,,, is the global invariance group of the bosonic
sector of the largest possible supergravity theory (N = 8) in four dimensions. The
natural SO(8) symmetry of N = 8 supergravity first gets extended to a global SU(8)
symmetry via a chiral-dual transformation, i.e., it acts on the spinor fields of the
theory as chiral transformations and on the spin one fields as duality rotations which
transform the electric and magnetic field strengths into each other [1]. Then this
compact SU(8) symmetry is enlarged to the non-compact E,,, which is realized
non-linearly over the 70 scalar fields of the theory corresponding to the coset space
E;(7/SU(8) [1]. Thus, it would be interesting to rewrite E,,, Lic algebra in an
SO(8) basis. Doing this turns out to be the same as going to the Hermitan basis:

Consider the following Hermitian linear combinations of E,, generators:

A =T} =T})=—A4,,; A,=A4

Son =T+ T =S8, Shn = Suns

Sijkl = Vijkl + Vijkl§ S}ijl = Sijkl’ (5.9)
Aijkl = i(Vijkl — Vi, AIjkl = Ajju.
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Note that since we are working in an SO(8) basis we are not making any distinction

between upper and lower indices. These operators satisfy the commutation
relations:

— 1 nuvp __
[Aijkl’ Aaﬁy&:l - 6(8ijklmuvp gaﬂyé ‘Sijklmuvp gaﬁyénuvp)A
-1
[SmmSijkl] - 68ijklmuvanuvanuvp uklnuvp muvp 5mnAukl’

—1
[Amnﬂ Sijkl] - 68ijklnuvamuvp 6811klmuvp Snuvp’

-1
[Smn’ Aijkl] - 68ijklnuvamuvp + 6gl]klmuvpsnuvp 5 Sukl’ (510)
—_1
[Amm Aijkl] - 6Eijkln/,¢vamuvp + 681]klmuvanuvp5
— _ (1 npvp 4 1
[Sijkl’Saﬂyé] - (6£ijklmuvp Eaﬂyé + 68ijklmuvp8aﬂyénuvp)Amn’

—(__1 npvp 4 1
[Sijklb Aaﬁyé] - ( 68ijklmuvp81ﬁ76 + 68ijklmpvp 8aﬂ76nuvp)Smn>
. mnpgq uvp/lmnpq
i,j, k o, pB,.. .8, Eijkl = 24811kluvp,18

The number of independent Ajj 18 35 and so is the number of independent ;.
8

Since ) S,,=0, there are also 35 independent S,,,. Therefore, under the SO(8)

n=1

subgroup generated by A,,, the adjoint representation of E, decomposes as
133=2835" @35 ®35%, (5.11)
which corresponds to the decomposition of the generators as
133=4,,,®8,,,® 4 ® Sij- (5.12)

These three 35 dimensional representations of SO(8) are all inequivalent and are
related by the principle of triality [31] which generalizes the well-known triality
among the three 8 dimensional representations 8", 8¢ and 8 ¥ of SO(8), namely the
vectors 8", left-handed spinors 8% and right-handed spinors 8 ®, respectively [32]. In
fact the exceptional group F, has the same structure with respect to its SO(8)
subgroup, i.e., its adjoint representation 52 decomposes as

52=2808"®8" D8~ (5.13)
From the following Kronecker products
§®8=1+28+35, i=V LR,
8'®8 =1+28+ 35, (5.14)
i,j,k =V, L,R taken in cyclic order.

it follows that the representations 35", 35 and 35® correspond to symmetric
traceless tensors in vector, left-handed spinor and right-handed spinor indices in
eight dimensions, respectively. The triality principle also implies that

35/ ®35 =28 + 35 +
35®35 =35+ (5.15)
i,j,k=V,L,R in cyclic order.
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A unitary operator representing an element of the group E,,, can now be written

as

U(g) — ei(w.jAlj + 0138, + Wiyt Aijri + v,Jk,Sijk,),

Ulg)U(g) =1, (5.16)
where w;;, v;;, Wy and vy, are real parameters with the same tensorial properties
as the respective operators, i.e.,

W= — Wy U =0y and v; =0,

Wit = = Wijn = = 32 jiimnpg Wrnpg> (5.17)

- =1
Vijki = Vijir = 248 j1amnpq Vmnpq -

Now if we define the boson number operator as N =a™a,,, + b™"b,, we find that
the SU(8) generators have zero boson number

[N, T7]1=0, (5.18)

and the non-compact generators V;;; do not have a well-defined boson number
since they involve disoson creation as well as annihilation operators. This is a
reflection of the exceptional feature of E,;), whose adjoint representation decom-
poses as the adjoint plus a real irreducible representation with respect to a maximal
compact unitary subgroup. [The only other group with this property is SO(6,1).]
The operator N which lies outside of E,, does however still generate an
automorphism of its Lie algebra.

A maximal rank compact subgroup with respect to which the additional
generators in E, ,, splitinto complex representations is U(7). If we take as the SU(7)
generators Ty, where 4,B=1,...,7 and as the U(1) generator T§ = — T4, then
under this U(7) the Lie algebra of E,,, decomposes as

Ti=(T3@TH®T{®TE=(48+1)+7+7,
Vijkl =Viscp @ Vipcs =35@ 35, (5.19)
ij,k,1=1,..8; A,B,C,D=1,..7.

Denoting the generators Ve as A 4pc and V4% as A45€ we can write the E, ;) Lie
algebra in the U(7) basis as a direct sum

L=F, @A, ; ®(Ti®TE)@® A @ F4, (5.20)
L=L2@L '@Ll'@®L '®L"?,

where F  stands for T% and F* for T4. We see that with respect to the U(1) generator
T% the Lie algebra has a five dimensional graded structure. This is a more general
structure than the Jordan structure and all simple Lie algebras have a five
dimensional graded structure with respect to a suitable maximal subalgebra. We
shall call this type of a five dimensional graded structure a Kantor structure [ 14].
The construction of Lie (super) algebras from Jordan (super) triple systems has been
extended to this more general case [ 14,22]. The ternary algebra that gives us the Lie
algebra of E, in a U(7) basis in this more general construction corresponds to
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antisymmetric tensors of rank three in seven dimensions [14]. In fact, Kantor’s
construction yields the Lie algebra of the exceptional group E, when the underlying
ternary algebra is the antisymmetric tensors of rank three in d dimensions with a
suitable triple product [15]. This construction gives finite dimensional Lie algebras
E, for d <8 and leads to infinite dimensional Lie algebras [14] for d > 8. Now
the N = 8 extended supergravity theory in d dimensions has non-compact E ;4 as its
global invariance group [33], and all these theories are obtained from the 11
dimensional simple supergravity theory by dimensional reduction. The fundamen-
tal boson field that enters this latter theory is an antisymmetric tensor of rank three.
Thus the Kantor construction of E series suggests a possible link between the
emergence of these groups and the presence of antisymmetric rank three tensor fields
in N = 8 supergravity theories.

6. Unitary Representations of £,

If we apply the methods of Sect.4 to E,, for the construction of unitary
representations we find that the resulting representations are reducible. This can be
seen easily as follows. Consider a set of states |, > transforming as an irreducible
representation of the maximal compact subgroup SU(8) that is constructed by
acting on the vacuum state with the creation operators a” and b¥. By repeated
application of the non-compact generators V,;, on |}, ) we can generate an infinite
set of states:

Wa> VigalWads VigaVinpg a2 - (6.1)

which form the basis of a unitary representation of E;,,. The V};,, transform as the
self-conjugate representation 70 of SU(8) and the product

Vijkl anpq = %{Vijkb anpq} + %[Vijklﬁ anpq]

transforms as the reducible (1 + 720 + 1764),,,,, + 63,4, representation of SU(8).
The fact that the product contains a singlet of SU(8) means that every irreducible
representation of SU(8) that occurs in the infinite set of states (6.1) will reappear
again after two applications of the V’s. Thus the multiplicity of an irreducible
representation of SU(8) that occurs in the unitary representation defined over the set
of states (6.1) is infinite. This means that the resulting unitary representation is
infinitely reducible as a consequence of the well-known fact that the multiplicity of
an irreducible representation of the maximal compact subgroup inside an UIR of a
non-compact group is less than or equal to its dimension [34]. Though reducible,
these representations may still be of relevance for physical applications [5, 16].

Application of our method to the second construction of SO(12)* [see
Egs. (2.20)—(2.22)] gives reducible unitary representations as well. In this case even
though we have a Jordan structure there are no states transforming like an
irreducible representation of U(6) that is annihilated by the L™ space.

The fact that one gets infinitely reducible unitary representations in the case of
SO(12)* and E,,, suggests the use of coherent states to construct UIRs of these
groups. In fact there is a method due to Gell-Mann for constructing a class of UIRs
of some non-compact groups on certain coset spaces of their maximal compact
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subgroup [17, 18]. His method does apply to E,, and is particularly simple for
determining the multiplicities of the irreducible representations of the maximal
compact subgroup inside a UIR of the non-compact group. For example, one
possible coset space on which to realize UIRs of E; ;,