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Abstract. Shock waves in gas dynamics can be described by the Euler Navier-
Stokes, or Boltzmann equations. We prove the existence of shock profile
solutions of the Boltzmann equation for shocks which are weak. The shock is
written as a truncated expansion in powers of the shock strength, the first two
terms of which come exactly from the Taylor tanh (x) profile for the Navier-
Stokes solution. The full solution is found by a projection method like the
Lyapunov-Schmidt method as a bifurcation from the constant state in which the
bifurcation parameter is the difference between the speed of sound c0 and the
shock speed s.

1. Introduction

Shock waves are one of the most important features of gas dynamics. They can
be understood from several different theories, and for steady plane shock waves
the different descriptions have been well developed mathematically. By the Euler
equations, and the resulting Rankine-Hugoniot conditions, a shock is described
as a jump discontinuity in density, velocity, and temperature from (p_,u_,T_) on
the left to (p + 9u + 9T+) on the right, which translates steadily at speed 5 [4]. If
viscosity and heat conduction are included through the compressible Navier-
Stokes equations, the shock wave is found to be a smooth profile which translates
uniformly at speed s and smoothly interpolates between the asymptotic values
(p_,u_,T_) at x= - oo and(ρ + ,u+,T + ) at x = + oo [9,21].

For a weak shock this provides shock profiles very close to those observed
experimentally. But for strong shock waves more realistic results are obtained
from the Boltzmann equation of kinetic theory, which includes a statistical
description of the molecular interactions within the gas. The Boltzmann shock
profile translates uniformly at speed s and interpolates between two velocity
distribution functions F_(ξ) at x = — oo and F+(ξ) at x = + oo which are uniform
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Maxwellians given by

F±(ξ) = p±(2πT±)^2

 Qχp{-\ξ-u±\2/2T±}, (1.1)

and in which (p_,u_,Γ_), (p + ,u + ,Γ+), and s satisfy the Rankine-Hugoniot
conditions. The distributions F + and F _ are independent of x and t and are
equilibrium solutions of the Boltzmann equation. The resulting profiles, determined
either numerically [19] or by analytic approximation [13,20], agree very well with
experiments. The excellent review article by Fiszdon, Herczynski, and Walenta
[7] contains detailed comparisons of the Navier-Stokes and Boltzmann solutions
with experimental results.

In this paper we prove the existence of shock profile solutions of the Boltzmann
equation for weak shocks and demonstrate the agreement of these solutions with
the Navier-Stokes profiles for such shocks. The solution is found as a truncated
expansion in powers of the shock strength. The first term is the uniform Maxwellian
state; the next has spatial variation given by the tanh(x) profile of a weak
Navier-Stokes shock. The higher order terms approach constant values at x = ± oo,
but at the rate e~ ε | x | + e'^β with 0 <β < 1, which depends on the intermolecular
force law. By contrast the tanh profile decays like e~ε'xl

The intermolecular forces considered here are those which derive from hard
cut-off potentials as defined by Grad [11]. They are related to power law forces

5 — 5

^(r) = r~s; the decay exponent is then given by β = 2(3 — y)" 1 with y = .
s — 1

Nicolaenko and Thurber [15] already proved an analogous result for the hard
sphere potential with s = oo and β = ί. The slower decay rate β < 1 for other
potentials was previously indicated by several authors [17,24,25]. It is caused by
the long mean free paths of molecules of high velocity. Their collision frequency
is given by the function v(ξ)&(l + \ξ\)y (cf. (2.8)) and their mean free path by
ξv(ξ)~ \ For s < oo, γ < 1 and the mean free path f oo as \ξ\| oo. Thus fact particles
travel a long distance before equilibrating, i.e. before becoming part of the
Maxwellian distributions at x = ± oo. This slow equilibration is balanced against
the small number of large velocity particles in the distribution (1.1) to obtain the
overall decay rate e " '*(/3. There is a similar phenomenon in the initial value problem
for soft potentials investigated by Caflisch [2] and Ukai and Asano [22].

Shock profiles for a model Boltzmann equation with discrete velocities were
constructed by Gatignol [8] and Caflisch [1]. The agreement between the
Boltzmann equation and the Euler or Navier-Stokes equations away from shocks
was shown by Nishida [16], Kawashima, Matsumura, and Nishida [12], and
Caflisch [3]. The projection method used here is compared with the Chapman-
Enskog expansion in [23].

The nonlinear Boltzmann equation is described in Sect. 2 and Appendix A and
is specialized to Eq. (2.13) and (2.14) for the steady plane shock profile. The main
result on the existence of shock profiles is stated in Theorem 2.1. The equations
are analyzed by a projection method, like the Lyapunov-Schmidt method, in
Sect. 3 to find the weak shock profile as a bifurcation from the constant state, in
which the perturbation parameter ε is the difference between the sound speed c0

and the shock speed s. This is the same as the method introduced in [14] and
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[15] by Nicolaenko and Thurber. In this problem we are unable to find an exact
eigenfunction for the projection method; instead an approximate eigenfunction is
used. After a partial expansion of the solution and a modification to eliminate the
null space in the second Lyapunov-Schmidt equation, the equations are written
as (3.52)—(3.55). The first two are solved explicitly; the third is a simple near-linear
scalar equation.

The analysis of Eq. (3.55) occupies Sect. 4, 5, and 6. Basic estimates on the
linear collision operator are derived in Sect. 4. These use new estimates on the
collision kernel and a new result, Proposition 4.4, showing compactness in the sup
norm for the collision operator (a more limited result was proved by Grad [11]).
In Sect. 5 these estimates are used to construct a semi-group to solve the linearized
equation. Decay of the linearized solution is demonstrated in Sect. 6. Using this
decay, the full nonlinear equations are solved in Sect. 7.

We use italics for a vector ξeR3 and non-italics for its magnitude ξ = \ξ\. We
also write ξί for the first component of ξ.

2. The Boltzmann Equation for a Shock Profile

The nonlinear Boltzmann equation of kinetic theory is

(11)

in which F = F(ξ9 x, ί) is the distribution function for gas particles with velocity
ξeR3 at position xeR3 and time teR + . The collision operator Q is a quadratic
integral operator over ξ and is described in detail in Appendix A. In the collision
process mass, momentum, and energy are conserved, i.e. for any distributions F
and G

<l,β(F,G)>=0,

<ξi9Q(F9G)} = 0, i = 1,2,3, (2.2)

in which </,#> = J f(ξ)g(ξ)dξ. The local equilibrium distributions for the scatter-

ing are distributions F with β(F,F) = 0; the only solutions are the Maxwellians

F(ζ) = p(2πTΓ 3 ' 2 exp {- ({ - u)2/2T}.

Since x and t are mere parameters in Q, the constants p, u, T may depend arbitrarily
on x and t. For any distribution F, symmetry and positivity properties of F imply
that

Slog(F(ξ))Q(F,F)(ξ)dζ<0. (2.3)

A plane steady shock profile is a continuous solution F(ξ, x, t) = F(ξ, x — st)
which depends on only one space variable x = xx and translates at uniform speed
5. Its values at x = ± oo are Maxwellians F± given by (1.1) with p±9u±9 T+ each
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constant. By shifting and reseating ξ, F, and s we can replace them by

F(ξ, - oo) = ω _ (ξ) = (2π)" 3'2e ~ « 2 , (2.4)

F(ξ, oo) = ω + (ξ) = p + ( 2 π T + ) 3 / 2 e x p { - ( ( ξ , - u + ) 2

and ask that F solve

( ^ i ~ s ) έ F = β ( f ' j F ) - (2 5)

Next we linearize F about ω_ by setting F = ω_ + ω i / 2 / so that / solves

(ξ1-s)~f=-Lf+vΓ(fJ), (2.6)

/(ί,-oo) = 0,

/«,-oo)=/S)«) = (ω+ -ω_)ω-J'2. (2.7)

The operators L / = - 2 ω : 1 / 2 β ( ω _ , ω i / 2 / ) and vΓ(f,g)=ωZll2Q(ω1J2f,ωiJ2g)
and the function v(£) are described in detail in Appendix A and in [10]. Several
important properties are that

= v{ξ)f(ξ)-Kf(ξ),

(2.8)

Kf(ξ)= I k(ξ,η)f(η)dη,
R 3

with O ^ y ^ l , 0 < v l 5 and 0 < v 2 each constant. The function v(ξ) is locally
uniformly continuous and the operator L is self-adjoint and non-negative with
N(L) = RiL^ spanned by the orthonormal sequence {χ0,..., χ4} defined by

χA = 6-^2(ξ2-3)ω1J2. (2.9)

The operator K is compact in L2(ξ).
The spatially uniform distributions / = 0 and / = / 0 0 are both solutions of (2.6).

The desired continuous solution connecting these two states must satisfy the
following conservation properties, which come from (2.2) and (2.6):

<Xt(ξi-s),f(ζ9x)>=0, for all x, (2.10)

and for ΐ = 0,...,4. For x = oo, these are just the Rankine-Hugoniot jump
conditions for the states (p + ,w + , T+) and (1,0,1) and the speed 5, viz.

-s(p+ -l) + p + u+ = 0 ,

T+-1=0, (2.11)
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Note however that the Rankine-Hugoniot condition (2.10) holds for all x.

From (2.3) it follows that — §(ξ1 - s)F\ogFdξ <0 and in particular

Jίίi — s)ωΛogω_dξ>\(ξ1 — s)ω+\ogω+dξ. This is the analogue of the Boltz-
mann //-Theorem for the shock problem. The integrals are calculated using (2.4)
to obtain the inequality

5 f ( l o g 2 π + l ) > p + ( W + - S ) ( - l o g p + + f l o g 2 π T + - | ) .

The entropy function for an ideal monotonic gas as considered here is S = §.
log(fp~2/3T). So this inequality can be rewritten using (2.11) as s(S_ — S + )>0,
the entropy inequality across a shock in which S+ and S_ are the entropies of
the fluid states (ρ + ,u+, T+) and (1,0,1) at x = + oo. This is equivalent to the usual
entropy condition

s ( l - p + ) > 0 . (2.12)

The relations (2.11) and (2.12) are conditions on the choice of ω + . We take
s ^ 0; then if s ̂  c0 = (5/3)1/2, the sound speed of an ideal monatomic gas, the only
choice is ω+ = ω_ and the solution of (2.6), (2.7) is / = 0. If 0 < s < c0, there is a
solution ω+ φ ω_ (cf. [4]).

We shall study only weak shocks with c0 — s = ε > 0 small; (2.11) then implies
that ω+ — ω_ = 0(ε) (cf. [4]). We shall also find that the spatial variation of / is
at the rate ε. Thus we replace x9 /, and /^ in (2.6) and (2.7) by x' = εx,f =
ε~1f>f'oo=ε~1fo0' Dropping the primes, the equations are rewritten as

(ξx -s)^f= --&Lf+vΓ{fJ\ (2.13)

/(ί,-oo) = 0,

f(ξ, oo) =fjξ) = ε~ 1(ω+ - ω_)ωZ1/2. (2.14)

The solution / of (2.13), (2.14) will be compared with the solution of the

Navier-Stokes (NS) equations, which in the original unsealed variables are

d δ
- s—p + -z-(pu) = 0,

ox dx

- s—pu + —(pu2 + p) - t ^ u , (2.15)
ox ox cxz

δ , < 2 , δ f , Λ ^ • , 2 δ Λ δ

δx δx1 ( , 2 , 4

p = pT = fpβ. (2.16)

The viscosity and heat conduction coefficients η and λ are determined by the
first term Fι in the Chapman-Enskog expansion [6] as
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^ ^=-^ξ2ω1J2,{ξι-s)Fiy (2.18)

For a weak shock s = co-ε and — = (CQ 1 + Φ))^- and the equations (2.15)

0X OX

can be combined to yield approximately

f c0u
2 - 2εcou = ±co(η + \λ)ux, (2.19)

with the right hand side given by

(Co^+K2,^-^). (2.20)

The solution of (2.18), after rescaling as above, is

uNS = |(tanh(- f fo + \λ)~ ιx) + 1). (2.21)

Denote the corresponding density and temperature profiles by pNS and TNS and

define

•exp {- ((ξ, - uNS)
2 +ξ2

2 + ξ2

3)/2Tm}. (2.22)

The results will be proved using weighted sup norms on ξ defined by

(2.23)

11/11, = ll/llo,r.

and function spaces

(2.24)

Decay in x will be measured by the function

A{x) = e-μ\χW+e-τiM9 (2.25)
in which μ,β, and τί will be chosen later.

Theorem 2.1. Let s, p + , u + , T+ satisfy conditions(2.11)and(2.12)with ε = c0 — s > 0
sufficiently small. Letf^s be the distribution defined by (2.22). Then there is a shock
profile solution f of the Boltzmann equation (2.13) and (2.14). It satisfies:

(2.26)

Moreover f is unique, up to translation in x, among those solutions satisfying (2.26).
It can actually be shown that / is unique, up to translation, among those

solutions which are bounded in Gar. This means that F is unique among solutions
of the form F = ω_ + O(ε).
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3. The Projection Method

We shall solve (2.13), (2.14) by a projection method similar to the Lyapunov-
Schmidt method, in which the principal part of / is found as an eigenfunction φε

of the linearized problem (2.13), and the bifurcation parameter is ε = c0 — s.
Decompose / as f{x,ξ) = z(x)φε(ξ) + εw(x,ξ). The equation for z ((3.32) or (3.52)
and (3.54)) will be fully nonlinear but easily solvable since z is a function only of
x. The equation for w ((3.31) or (3.53) and (3.55)) will be weakly nonlinear since
it makes only a small contribution to / The function φε is chosen to have the
following properties:

(i) f{x= oo, ξ)-f(x= - oo,ξ) = 2 ^ ( 5 ) + 0(ε2), for some constant z^, so
that φε contains the dominant variation of /

(ii) Lφε = ετ{ξ1 — s)φε, so that φε is a generalized eigenfunction for the linear
operator L in which the eigenvalue ετ can be thought of as the Laplace transform
variable for x.

(iii) φε satisfies the constraints (2.10).
This method was used by Nicolaenko and Thurber [15] in their study of a

shock in a gas composed of rigid spheres and further developed by Nicolaenko
[14]. A similar eigenvalue problem was solved in [5,26]. For other intermolecular
force laws, we are unable to solve the eigenvalue problem exactly. The difficulty is
that the (generalized) eigenvalue ετ is embedded in the (generalized) continuous
spectrum. Since L = v(ξ) + K with K compact, an easy extension of WeyΓs theorem
[18] implies that the (generalized) continuous spectrum for the problem in (ii) is the
set {τ:v(ξ) = ετ(ξ1 — s)} which is the whole real line if v(ξ) satisfies (2.8) with y < 1.
However it is sufficient in the projection method to use an approximate eigen-
function φε solving

Lφε = ετ0(ξ1-s)φε + ε2με. (3.1)

A. The Approximate Eigenfunction

We shall find φε as a sum of the form

φε = φ0 + εψε, (3.2)

Ψe = Φl+*θe. (3.3)

with φ0 and φγ independent of ε and satisfying

Lφo = O, (3.4)

Lφi=τ(ξi-co)Φo, (3-5)

0e bounded, (3.6)

«ξ1-s)χi,φε)=O, i = 0,...,4, (3.7)

<(ξ1-s)φt,φ.>=-ε. (3.8)

By including more terms in the expansion of φε we could make the error ε2μt as
small as desired, but we are unable to show that the resulting series converges to
an eigenfunction.
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Proposition 3.1. Let ε = c0 — s> 0 be sufficiently small Then there are ψ ε e G i _ 3 ,

μ εeGi _ 3 , and τ > 0 which solve (3.2)-(3.8) with

| | μ ε | | i _ 3 ^c independent of ε, (3.9)

<X i9μe> = 0. (3.10)
4

Proo/. From (3.4) and (3.5) it follows that φo= Σ a;X; a n d <ft>(£i -co)φoy = 0.
i = O

The solution, constructed in Appendix B, is

φ0 = α<^ = d(χ0 + c o X l + (2/3)1 / 2χ4), (3.11)

with c o = ( 5 / 3 ) 1 / 2 and α an undetermined scalar. Let φ1 = oclφ[+ Σ βύίi) m

which

£,0̂ ^ = ^ ς 1 — CQJΦQ, (J.lzJ

< χ . 5 (/) /

1 >=0, i = 0,..., 4. (3.13)

This determines φi uniquely. The scalars τ,α, and βt, and the function ^ε are now

found by the constraints (3.7) and (3.8), which can be written as

•jXj)=O, i = 0, . . . ,3 , (3.14)

- 0 , (3.15)

= - 1, (3.16)

= 0, i = 0,...,4, (3.17)

Ie.φ1+ε2θε),θεy = θ. (3.18)

First we can rewrite (3.15) and (3.16) as

τ=-(Lφ'1,φ'iy/(φ'o,φ'oy<0, (3.19)

(3.20)

The remaining equations can be solved for βt and θε as shown in Appendix B,

with β( independent of ε and θε bounded independently of ε. From (3.15) and (3.16)

the following useful relation is derived (which is not needed in this proof):

<Φo,Φo> = - <{ξi - co)Φo,Φi> = 1. (3.21)

The error term is με = τφ0 — τ(ξ1 — s)φε + Lθε which satisfies (3.9) and (3.10) due

to (3.7) and (3.5).

B. The Projection-Operators and the Lyapunov-Schmidt Equations.

Next we define projections

Pf=-(ξ1-s)φt<φe,f>,
(3.22)

Πf=-ε-1φε«ξ1-s)φεjy,
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with the following properties, which are consequences of (2.9) and (3.1)—(3.10):

(i) Π2 = Π, P2=P; (3.23)

(ϋ)If<(ξ 1-s)χ i >/> = 0> 0 ^ ί ^ 4 ,

P(ξί-s)f = (ξ1-s)Πf; (3.24)

(iii) I f<(ί 1 -s)χ i ,/>=0, 0 ̂  r ̂ 4, or<χ ; )0>=O,Oί£i^4,

(3.25)

(iv) Lί = (/ - P)L{I - Π) is self-adjoint,
(v) (I-P)Lf = L1+εh1,

PLf = ετiξi - s)Πf+ εh2, (3.26)

K = - <(£i - s)φt, />(/ - P)με = εz(I - P)μE,

h2=-(ξ1-s)φε{μεjy. (3.27)

In other words 77 and P are adjoints of each other for functions satisfying (2.10),
for such functions P passes through (ξ1—s) to become 77, and P nearly passes
through L with errors h1 and h2. We have replaced φε by φε in P to eliminate the
factor ε" 1 . If <φ o ,/> = 0, this does not really change P.

Decompose / as

)9 (3.28)
with

zφ = Πf, w=ε-\I-Π)f. (3.29)

The Lyapunov-Schmidt equations are found by multiplying (2.13) once by P and
once by ε~ x(7 — P) and using (3.24) and (3.26) to obtain

(ξλ - s)j-zφε = - τ (^ - s)zφε -h2 + PvΓtf, /), (3.30)

If (3.30), is divided by (ξί - s)φε we find

—z=-τz+ yz2 + β/z3, (3.32)
ox

h3 = (με,zψε + w}- <ψβ,vΓ(2φεz + εw, w). (3.33)

C. Removal of the Null Space.

Next we modify (3.31) to remove the null space of Lv Define two more projections

Pof=-(ξi-co)Φo<ΦiJ>,
(3.34)

Π0f=-Φi<(ξi-c0)φ09f>,
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which are independent of ε, and denote

L2f=(I-P0)L(I-Π0)f. (3.35)

Then P-Po = O(ε) and L(Π - Πo) = O(ε) so that

LJ=L2f+sLJ, (3.36)

with
LJ=ε-1{-(P- P0)Lf- L(Π - 77O)/+ (PLΠ - P0LΠ0)f}, (3.37)

and L 3 is bounded. For convenience in notation define

X-i = Φi (3.38)

Proposition 3.2. N(L2) is spanned by {χi9 ί = — 1,..., 4}.

Proof. For a n y / a n d h, </,P0/ι> = <i70/,/z> and thus < / , L 2 / > = <(/ -Π0)f,
L(I - Π0)f). Since L ^ 0 then L 2 / = 0 if and only if L(I - ΠQ)f = 0 which means
that / solves Lf = cLφ1 with c= — ((ξx — c o )0 o ,/>. Other than multiplication
by a factor and addition of χ^i = 0,..., 4), this can have at most one solution; thus
dim N(L2) g 6. On the other hand Lχt = Π^ = 0 so that χ feN(L2) for i = 0,..., 4.
Also by (3.21), Lφ 1 =cLφl9 and φ1eN(L2), which concludes the proof.

Now define

£ - 0

2 / = Σ <(£i-co)Zί./>(£i-Co)Z,.

i = - 1

X 3 = ε - 1 ( X 1 - K 2 ) , (3.39)

M = L2 + K2,

The operators K 3 and M 3 are bounded. As in (2.8) the operator M, which is
independent of ε, can be represented as

= $k(ξ,η)f(η)dη.

U(ξ,η)=-k(ξ,η)+ Σ {ξ.-
ί = - 1

+ ( ^ - c^φJ^Lφ^η) + Lφί(ξ)(η1 - co)φo(η)

+ (ξi-c0)φ0(ξKφίiLφ1}(ηί -co)φo(η). (3.40)

The equation (3.31) will be replaced by the following equation:

/i4, (3.41)

= εz(I-P)με+(I-P)vΓ(f,f). (3.42)
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This is motivated and justified by the next proposition.

Proposition 3.3. (i) M is self-adjoint and strictly positive; (ii) Ifw solves (3.41) and

<(ξi -s)ψε,w} = ((ξx -s)χi9w} = 0 , Ϊ = 0 , . . . , 4 αί x = ± oo, then w solves (3.31).

Proof Since L 2 and K2 are self-adjoint, so is M. First note that K2 ^ 0 and L 2 ^ 0.
In Appendix B, it is shown that de t {<(ξ 1 -c o )χ i ,χ j >, i= - l,...,45 i/ =
— 1,...,4} ^=0. Now

4 4 \ 4 / 4 \ 2

Σ α, X/̂ 2 Σ «,•&) = Σ Σ a/(ίi-co)Xi,^>) > 0,
= - l i = - l / ί= - 1 \ j = - l /

(3.43)

since at least one of the squared terms must be nonzero. Thus K2 is strictly positive

on (ΣαiXi} = ^(^2) a n < ^ the combination M = L 2 + K2 is strictly positive.
To demonstrate (ii) we first rewrite the right hand side of (3.41) as

— ε~1(Lί + KJw + ε~1h4. For any g and h,

(ψε,(I - P)h} = <χ.,P/z> = <^vΓfe,/i)> = <χ ,με> = 0,

Therefore the inner product of (3.41) with ι/̂  and χt results in

with α, aj9 b9 bi} constants. The boundary conditions at x = ± oo in (ii) insure that

((ξί _ 5 ) χ . ? w > = {{ξ1 -s)ψε,w) = 0, so that K1w = 0 and (3.41) becomes exactly

(3.31).

D. Elimination of the Asymptotic Values

From (2.11), (2.14), and (3.11), it follows that

foo = ε-1ά-i(p+-l)φε + εg(X), (3.45)

with ε~1{ρ+ - 1) bounded. Therefore the asymptotic values of z and w are

z( - oo) = w(x = - oo) = 0, (3.46)

W ( x = oo) = wjξ) = ε~1(I- Π)fw = (I- 11)000' (3 4 8 )

Since {(ξ1 - s)φ0,go0} = 0, w^ is bounded; this justifies the scaling of w in (3.28).
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Relations between z^ and w^ are found by applying P and (/ — P) to the equation

- -Lf^ + vΓifn, U = 0 to obtain

<x>ψe + W c o > - ε<.ψε,vΓ(2φBzm + εw,,,, w j > = 0,

(3.49)

(3.50)

Define τ 0 and τ' by

τ 0 = *«>)> = τ - ε τ ' < 0 . (3.51)

We write z = z 0 + εzx and w = w0 + w^ The function z0 is chosen to be the dominant
part of z with its complete asymptotic values; w0 is artificially picked to assume
the asymptotic values of w. The equations for these functions are

(3-52)

w0 = | { t a n h ( - \τox) + 1}WQO, (3.53)

z i = - τz x + 27ZQZ! + a, (3.54)

^ + ^ , (3.55)

with

α = -τ'zo+εδzl + <Jαε,zιAε + w> - <ι/^ ε ?vΓ(2φ εz+ εw, w)>, (3.56)

Z? = — ε ( ^ — 5)—--w0 — M w 0 — εM 3 w 4- εz(I — P)με

0 x>

+ (/ - P)vΓ(zφε + εw, zφε + εw). (3.57)

The solution of (3.52) is

z 0 ( x ) = i { t a n h ( - i τ 0 x ) + l } z 0 0 , (3.58)

which is unique up to a shift in x. Comparison of (3.56) and (3.57) with (3.49) and

(3.50) shows that the asymptotic values of z1 and w1 are

z x ( - a)) = z^oo) = W l ( - ex)) = Wl(cx)) = 0, (3.59)

since α = 6 = 0 a t x = + o o with these values of z l 5 wx. The solution of (3.54) and
(3.55) occupies the remainder of this paper.

We can see the necessity of the entropy condition (2.12) by considering a
solution with s(l — p) < 0. Then we would have 5 > c0, which would change the
sign of a number of terms in the previous section. The result would be that τ > 0
and the solution of (3.52) would not assume the required asymptotic values.

To check agreement with the Navier-Stokes profile we need only show that
the shock widths in (2.21) and (3.58) are identical, i.e. τ 0 = %{η + jλ)~1. One can
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show that Fί= —(τoco)~1φf

ίux; when substituted in (2.20) this shows that
jco(η + ±λ)= -(φ'o,(τoco)-1(ξ1-co)φ[y=(τocoy\φ'o,φ'o) which verifies that
identity.

4. Basis Estimates

In this section we prove basic estimates which will be used in Sect. 5-7 to analyze
Eqs. (3.54) and (3.55). First define the characteristic functions

(4.1)

Xs = ή\ξi-s\<δ)9

and the (generalized) resolvents

-s) + MΓ\ (4.2)

-sί + vίOΓ1, (4.3)

which act on Gar and

(4.4)

which acts on Gα>r(|ξ| < N). The following five propositions are the main results of
this section. In each of them we assume that

reR\ SER\ O ^ y ^ l , 0 ^ α ^ £ , O^θ^ 1. (4.5)

Constant factors are omitted from the following estimates. They are uniformly
bounded in any closed, bounded set of the parameters (r,s?y,α,0) satisfying (4.5)
and are inessential.

Proposition 4.1. Resolvent Estimates. Let |ReΛ,| <2|ImΛ,|, then

^ \ λ \ - θ \ \ h \ \ a , r _ γ { l _ θ ) , (4.7)

If |Reλ| < 2\lmλ\ or if \Reλ\ < jvx Ny~1, then the same estimates are true for RNλ.

Proposition 4.2. Estimates on Sλ. // |Re λ\ < 2|Im λ\ and 0 ̂  θ ̂  1, then

μ ^ i - s ) % l ^ ( i + O"7 ( 1"θ ), (4.8)

|(^-5)%|^(l+ξf^. (4.9)

// |ReA| <2|Im/l| or if \Reλ\ <yiV y ~ 1 , ί/zβn the same estimates are true for χNSλ.

Proposition 4.3. Estimates on H.

HHΛ| | α i Γ + 2 _^| |/ i | | β i r , (4.10)

, -sΓθh)\\atr+2-y^δ1-θ\\h\\atr. (4.11)



|Re λ\ < 2|Im λ\ or |Re λ\ < ̂

174 R. E. Caflisch and B. Nicolaenko

(4.12)

\\a,r+2-yS^+λy1/2\\h\\^. (4.13)

Proposition 4.4. Sup Compactness of H. (i) // | |/,J |α r:gl for all n, then Hfn

has a subsequence which converges in G α r + 2 - } ,- ε i , f
or any ε i > 0

(ii) The same is true for H(ξ1 — s)~°.

Proposition 4.5. Bounds on the Integral Kernel.
The integral kernel k from (3.40) satisfies

η^δ1-θ(l+ξ)-r-2 + ye-aξ2

9 (4.14)

ίl-^Kl^+Ki)}, (4.15)

for any 0 < βί < 1, in which v = ξ — η and ζ1 is the component of \{ξ + η) parallel
toξ-ηXl=^2ξ'^υ2)2υ-\

The properties are all still true if the modified operators M and H are replaced
by the original operators L and K after the null space L is removed. Grad [9]
proved the compactness of K as an operator on L2, which can be used to show
its compactness in sup norm; the refined bounds (4.14) and (4.15) enable us to
prove it in Gar even including factors of (ξ1 — s)~θ. This leads to the strong estimates
(4.6) and (4.7). In Propositions 4.1, 4.2, and 4.3, the factors 2 and 1/2 could be
replaced by numbers with magnitude > 1 and < 1 respectively. The proofs of these
propositions will be presented in five subsections.

A. The Integral Kernel

Proof of (4.15). This was already proved for k(ξ, η) in Proposition 5.1 of [2] (there
is a change of sign in the definition of γ). The functions χ ί ? φ 0 and φ1 are all in
G 1 / 4 _ 3 according to (2.9) and Lemma 3.1. T h e n L ^ = v(ξ)φ1 + KφίEG1/4._βu0 for
any βι > 0 by Proposition 6.1 of [2]. This shows that each term in the expression
(3.40) fork satisfies (4.15).

Next we state some auxiliary lemmas.

Lemma 4.6.

η2>0, (4.16)

^e-χ-2xydχ^— for y>0, (4.17)
o 2y
1

j (l-x2y1/2dxSc (4.18)
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Lemma 4.7. (ϊ) Let ξ'9v'9ξί,vίallbe ^ 0 . Denote g{x) = e x p { - κ(2xξ'υf + 2ξίvί +
2 2 7 2 2

1/2

j (1 - x 2 )- mg{x)dx ^ c{(vj + ι/2)1/2κΓ 1/2/(ξ V + 1) + 1}. (4.19)
-1/2

(ii) // max^i^ i/ 2 ,^} < |ξV,

j (1 - x2)"" 1/2g(x)dx ^ cexp {- \κ(ζ'υ')2 j(v\ + υ'2)}
||

^ c(l + ξ'v\υ\ - υ'2)-ί/2y K (4.20)

Proof. Omit (1 - x 2 ) ~ 1 / 2 and integrate over all x to get (4.19). To prove (4.20)
estimate \2xξ'υ' + 2ξίυί + v'2 + ι;2| > j\ξ'υ'\ for |x| > | .

Proof of (4.14). Denote ξ = (ξuξ'\ η = (ηuη'\ v = ξ -η = (υuv
f) in which ξ' =

(ξ2, £3), etc. Then

ξ' v ^ x ^ V with x = cos<(ξ/,v/), (4.21)

'. (4.22)

If α < i it follows from (4.15) and (4.16) that

k(ξ,η) = \ηi-sΓΘ(l+ηΓr(l+ξ)1 + r-Ve^2-

^ \η, - s\~Θv~xexp {- κ(v2 + 4C2)

^ \n1 - 5 |"V 2 + t;/2)~ 1 / 2exp { - κ(v2 + ϋ / 2

+ {2xξ'υ* + 2ξlVl+ v'2)(v2 + v'2Γ1)}, (4.23)

for any K < £ — α (there is a constant depending on K which has been omitted).
Using the notation of Lemma 4.7, we write

j k(ξ,η)dηί j dηjdυ'] dx\ηί-sΓβ{l-xψ>
\ηι-s\£δ \ηi~s\^δ 0 - 1

v\υ\ + ϋ'2)-1/2exp {- φ\ + v'2)}g{x). (4.24)

Now use Lemma 4.7 to estimate this
(1) Let Ωj = Ω 1 ( ξ ) = { i j : | ^ 1 - s | < δ and max {ϋ'2,ί;2} > i ξ V } . Then

j
111 —s|Sδ

g^- ίl+ξ)"1, (4.25)

by dropping the terms υ'(v\ + v'2)~1/2 < 1 and (2xξ'v' + v'2 + v\)2{v\ + v'2)~ι > 0
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in the first step and using (4.17) and the identity υί = ξι — η1 in the third step.
(2) Let Ω2 = {η\\η1— s\<δ and ξ1v1 >^ξ'v'}. In this set υ\ >^ξ'v' — ηιv1.

As above estimate

]k(ξ,η)dηS J dηi]dv'\ηi-sΓθ

Ω2 \ηι~s\^δ 0

•exp { - \κ{v\ + v'2 + KV -

^ j e-^Όι-r'^\ηί-s\-θ

^δ'-^l + ξy1. (4.26)

(3) Let Ω3 = {η:\η1-s\<δ and mdix{ξίv1,v
f2,v2

ί} <^ξ'v'. Use (4.19) and
(4.20) to derive

\k(ξ,η)dη^ j dη^dvΊη^sr'υ'ivl+vΎ1'2

oo

S j \ηί-s\~θe-κvUη1 j (1 + ξ'yγe~κv>1 dv'
l»ίi-s|^δ 0

Sδ'-'e-i^il + ξT1

Sδ^^l + ξ)'1. (4.27)

Finally (4.14) follows from (4.25), (4.26), (4.27) and the definition (4.23) of £

B. Estimates on Sλ

Lemma 4.8. // a ̂  0, b > 0, 1 ̂  θ ̂  0, ί/zen

(α + ̂ Γ V ^ - 1 . (4.28)

If a^0,b^ (a/λ)\ Θ^O, then

{a + byιaθ^λ°bθly-\ (4.29)

Lemma 4.9. // |Imλ| > 2|Reλ| or if ξ <N and |Re A| <|v1iV y"1, ί/zeπ

μ ( ^ - 5 ) + v|> i( |A(ξ 1 -s) |+v). (4.30)

Proof of Proposition 4.2. It follows from (2.8), (4.28) and (4.30) that

P ( ^ -s)fSλ\ S mξi-s)\θ(\λ(ξ1-s)\+vΓ1

^8v21+θ(l+ξΓy{1~°\ (4.31)

which is exactly (4.8) (with constants omitted). Since for ξ large v(ξ) > vί\λ(ξ1 — s)/λ\y,
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(4.9) follows from (4.29) in the same way. The estimates on χNSλ are proved
analogously.

C. Estimates on H: Proof of Proposition 4.3

As in Propos/tion 6.1 of [2], (4.10) follows from (4.15). From (4.14), (4.11) easily
follows. We only need to prove (4.12) and (4.13) for large λ\ otherwise they follow
from (4.10) and (4.9) with 0 = 0. Denote χ1=χ(\ξ1-s\<\λ\~112) and χ 2 = l - χ 1 .
It follows from (4.14) and (4.9) that

= (4-32)

But if l ^ - s l ^ " 1 ' 2 , then μ ( ^ - s) + v| >i(|A(f1 - s)\ + v) > |μ | 1 / 2 by (4.30),
so that

llα,r + 2-y = | λ Γ ' l|Ί|lα,r> ( 4 ̂ 3)

using (4.10). This proves (4.12); (4.13) is proved the same way.

D. Compactness of H

The compactness of H comes from continuity properties of its kernel. First we
prove continuity for /c, then for k. The formula for k is given in (A.5)-(A.7), and
we use that notation in the following. We also abbreviate "locally uniformly
continuous" by LUC.

Lemma 4.10. I^ξ.η)^ jexp{ — y|w +ζ2\
2}q(v,w)dγί is LUC in ξ and η.

Proof The integrand is LUC in ξ,f/,w, but the domain of integration {wl(ξ — η)}
is infinite and changes continuously as ξ and η change. So the integral I2(ξ,η) over
M < N is LUC for any N.

Now fix ξ and η and let εx > 0. Pick N large enough that ξ <N, η <N, and

e~lm < ε i . Then ζ2 < N, v <2N and

I3(ξ,η)= J

\ (4.34)

using (A.9). Thus if \ξ — ξx\ < δ and \η —η1\<δ, with δ small enough,

\I1{ξl9ηi)-I1(ξ,η)\<\I3(ξl9η1)-h(ξ,η)\

+ \I2(ξi^1)-I2(ξ,η)\

<2εv (4.35)

Lemma 4.11. For any ε1 > 0, α <^, and any r

(4.36)

locally uniformly in ξ.
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Proof. Denote

). (4.37)

According to (4.15) for k instead of k,

(4.38)

j \h\dη^(l+Nyε\
η>N

which shows that large ξ and η can be ignored. Let ε2 > 0 and pick N large enough
that N~εi < ε 2 . According to (4.37), (A.7) and Lemma 4.10, h = g1 + v~2g2 in which
gγ and g2 are LUC and uniformly bounded. The integral in (4.36) is

l\h(lη)-h{ξ9η)\dηύ2N-<\ if ξ > N,

^2JV-£1+ j \h(lη)-h(ξ9η)\dη9 if ξ < N. (4.39)

Estimate

l & ) - gi(ξ,η)\ + \ξ - η\~2\g2&η) - g(ζ,η)\

(4.40)

By the fact that g1 and g2 are L U C and the integrability of \ξ -η\~2 in η <N,

the first two integrals go to 0 as ξ1-^>ξ. Furthermore j dη\\ξ —η\~2 —

\ξx — ί/Γ 2 | ^ c N ~ 3 , and g2 is uniformly bounded. Therefore the integral in (4.39)
can be made arbitrarily small by first taking N large, then \ξ — ξ1\ small, which
proves (4.36).

We say that h(ξ) is L U C in Gar if heG^r and

(1 + ξfe«2h{ξ) - (1 + ξ)e^2h(ξ) - 0, (4.41)

as ξ->ξ locally Uniformly in ξ.

Lemma 4.12. (i) Ifψ(ξ) is LUC in Gan then Lφ(ξ) is LUC in Gα > Γ + y; (ii) #>({)
is LUC m Gα r, and κ(ξ)eGa^+y with LK = ψ, then K is LUC in G^r+y.

Proof. Since v(ξ) in LUC, v(ξ)φ(ξ) is LUC in Gα>r + r By (4.36)

(1 + ξ)r<&2Kψ(ξ) - ( 1 + ξ ) r ^ 2 K ^ ( ί ) ^ ||ιAllα,J(l + ^)- f 'β-^ 2 |

•(l + ^ + 2 - ^ ε i β α | 2 / c ( | , ι y ) - ( l + ξ) r + 2- y" ε i^ 2/c(ξ,ι/) |(iι/^O, (4.42)

as f-• ξ locally uniformly. Since 2 > 7 + ε1? this shows that Lu = vu — Ku is LUC

in Ga>r+r

As in (4.42) we have KK LUC in Ga,r + r Thus /c(ί) = v(ξ)"1 (Kκ;(ξ) + φ(ξ)) is

L U C i n G Λ f Γ + r

Proposition 4.13. The kernel k(ξ,η) satisfies (436).

Proof. The functions χt (i = 0,...,4) and φ 0 are L U C in G 1 / 4 _ 2 By Lemma 4.12,
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φx is LUC in G 1 / 4 y _ 3. It follows from Lemma 4.12 that every term in the expression
(3.40) for k + k is LUC in Gα,r for any α < \ and any r. An easy estimate shows
that k +k satisfies (4.36) (for k replaced by k + k) and hence so does k.

Finally a use of the inequality (4.42) with k replaced by k shows

Lemma 4.14. Let | | / | | α . r < c , then Hf is LUC in G α r + 2 - y - ε i , wiίΛ a modulus of
continuity which depends on c.

To show compactness we shall employ the following version of Arzela-Ascoli
theorem.

Lemma 4.15. Arzela-Ascoli. Let hn(x), xeRm be a sequence of functions with
(i) \hn(x)\ ^g(\x\) with g(\x\)^>0 as |x|-^oo and g uniformly bounded; (ii) hn

uniformly (in n) equi-continuous, locally uniformly (in x), i.e. for each ε > 0, N > 0,
3 δ > 0 such that if \x\ < N, \x - y\ < δ, then \hn(x) - hn(y)\ < ε.

Then fn has a subsequence which converges uniformly (in x).

Proof of (i) in Proposition 4.4. Let \\fn\\a,r^c. By (4.10), hn = (l + ξ)r+2~y~ει

Ήfn(ξ) < c(\ + ξy^i2^ for any ε1>0. Thus hn satisfies the uniform bound required
by (i) of Lemma 4.15; by Lemma 4.14 it also satisfies the continuity requirements
of (ii). Therefore Hfn has a convergent subsequence in Gatr+2-y-εi

Proof of (ii) in Proposition 4.4. Denote χδ = χfl^ — s\ < δ) and χδ = 1 — χδ. Let ε > 0
and pick δ so small that

\\Hχδ(ξ1-syΘfJaίr+2_γ^δ1-θ^8, (4.43)

using (4.11). By part (i), Hχδ(u 4- ξ1)~ί} fn has a convergent subsequence with indices
nj so that if j >N,i> N, then WHχ^ξ, - syθ'(fn. - fj | | α , , + 2 _ y _ ε i g ε and so the
same is true of H(ξx —s)~θ(fnj— /„.). By a diagonalization procedure there is a
subsequence of H(ξ1 —s)~θfn which converges in G α > r + 2 - y - δ l .

E. Resolvent Estimates

Proof of (4.7) in Proposition 4.1. Suppose to the contrary that there are λn satisfying
|ReΛJ < 2|Imλπ | and sn9 /„, gn such that sn are uniformly bounded and

\\9nL,r = Kβan, an^co. (4.44)

Denote κn = a~ι/„ and φn = λβ

na;1 gn so that

λHξ, - snfκn = (λMi ~sn) + v + H)φn. (4.45)

Multiply by Sλn, which is bounded according to (4.9), to get

λl(ξx - snfSλκn = ψn + Sλβψn. (4.46)
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From (4.8) and (4.44), it follows that

\\K(ξi-sfSλnκJa^\\κJa^n^θ)->0. (4.47)

Also, || φn ||α r = 1 so that by Proposition 4.4 there is a subsequence of φn (which
we again call φn) with Hφn->φ in G α r + 2 _ y _ ε and hence also in G α r Since Sλn is
bounded uniformly, φn + Sλnφ-+0 in G α r

Now by taking a subsequence we may assume that sn-^soo < oo. Also either
λn-^λO0 with [λ^l < oo or |ΛJ-> oo after possibly taking a subsequence.

1. Suppose λn-^λaoφ0. Then IReAJ < 2 | ImλJ and Sλnφ^Sλχφ =(λoo

•(ξ1 —s) + v)~1φ= — Ψ in Gα > r + y and so φn-+Ψ in G α r Since Hφn^φ, we must
have (/>=#¥>, i.e.

<). (4.48)

Moreover || *f||α>r = lim|| Ψn\\atr = 1. But this is impossible, since M = v + H is self-
n

adjoint and positive < Ψ*,(v + H)Ψ} > 0, and λ^ is complex, s ω is real, and < Ψ*9

is complex.
2. Suppose |ΛJ-»oo. We show that φn^0. Let ε t be small and write

Ψn = Ψ1

n+ΨΪ with ^ i = ^ J | 5 l - S n | < e i . Then since Sλn^0 on | ξ 1 - s j > ε 1 ,
II Φn llα.r-^0- F o r w l a r g e enough | | H ^ ||α,r < ε^ Also

I W ί H ^ ^ E i , (4.49)

by (4.45) and (4.11) with θ = 0. It follows that Hψn -> 0, φ = 0 and hence ||ψπ ||αiΓ -> 0,
which contradicts the fact that \\φn \\a r = 1.

3. Suppose that λn-+0. We show that

φn^-v-
1φ = Ψ, (4.50)

which implies that MΨ = HΨ + vΨ = 0. This is a contradiction since M is positive.
To show this we split φ = φ1 + φ2, φn = φ^ + φl with

Φl=Φ\\ξ\ϊA, Ψ^ΨJUIΪA- (4.51)

Then clearly ψ2

n^--φ2 in Gα>r. But WS^φ1 ||β>r ^ ^ " 2 + £ l since ψ 1 eG £ ( ) r + 2 _ y _ ε i

and |SΛ | < ( 1 + <J)"y. Similarly H v " 1 ^ 1 1 ύA~2+Ei. By choosing n and Λ. large
enough we can make

ll^-v-Vll^ll^-v-V'l+ll^-S^Ml. + ll^'-v-V1!!,, (4-52)
as small as we please which shows (4.50), and finishes the proof of (4.7).

The rest of Proposition 4.1 is proved in a similar way.

5. Solution of the Linearized Lyapunov-Schmidt Equation

We shall solve the linearized Lyapunov-Schmidt equation

^ h, (5.1)
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as aninitial value problem integrating forward in x over that part of h corresponding
to negative spectrum and backward in x over that part corresponding to positive
spectrum. Define contours

Γ+ ={λ = z±2iz,z^0},
(5.2)

Γ_ = {λ= -z±2ίz,z^0},

and operators

U+(x)= (2πί) ~ι j eλxRλ dλ, for x < 0,
r +

(5.3)
U _ (x) = (2πί) ~1 J eλxRλ dλ, for x > 0,

Γ-

X 00

W[h](x)= j U_(x - z)h(z)dz + J U+(x - z)h(z)dz. (5.4)
— oo x

Theorem 5.1. Let h be a continuous function of x with values in Gar_y with
0 ^ α <\. Then w(x) — W[)ι\(x) solves (5.1) and is continuous as a function of x
with values in Gar satisfying

This is proved with the aid of

Proposition 5.2.

ί -s)U_(x)= 1. (5.6)) + ( )

x|0

Proof of Proposition 5.2. We use the resolvent identity

Rλ = Sλ-RλHSλ. (5.7)
First estimate

^ - ^ n A i i . ^ , , (5.8)
for 0 5Ξ γ ̂  1, ε small. So this quantity is absolutely integrable along Γ+ and

ί (ξ, - s)RλHSλhdλ = ? (Si - s)RλHSλhdλ, (5-9)
Γ+ - Ϊ O O

by a shift of contour. Next evaluate

(2πi)~' ί (ίi - s ) ^ S λ d λ = (2πϊΓ' ί ^Ax(/l + (ίi - Φ ) " ̂ λ (5.10)

For x < 0, the exponential factor assures absolute convergence and the contour
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can be closed (with arbitrary accuracy). There is a singularity at λ = — (ξ1 — s) *v
if ξt — 5 < 0 , and no singularity if ξ1 — s > 0 . So the integral is e^~s)~^x

 O r 0
in these two cases and

4 - r i « . - * - ^ - j «:_;;;;: (5.11)

So

and similarly

1 j (ξί-s)RλHSλdλ, (5.12)

,-s)RλHSλdλ, (5.13)

with the minus sign coming from the orientation of Γ _ in the direction of decreasing
imaginary part. The result (5.6) comes from combining these.

Proof of Theorem 5.1. First we prove (5.5) to show that W is well defined. Using
(5.7) we rewrite

J U+(x ~ z)h(z)dz = ] d z j e«*-
x x Γ +

(i) By differentiating we see that

γχRλHSλ = - RM, - s)RλHSλ - RλHSλ(ξi ~ s)Sλ.

Use Proposition 4.1, 4.2, and 4.3 to estimate

- RλHSλ)h(z)dλ(2πr K (5.14)

(5.15)

- 1 / 2 I<λ

after choosing β = 1/2. Now use integration by parts to obtain

j dz j dλe-λ{χ-z)RλHSλh(z)
x+l Γ +

J dzix-z)-1 J ^e Λ ( χ - z ) {i? Λ (ξ 1 -s)i? Λ 7ϊS λ

C + l Γ +

+ i?λHSλ(ί1-s)SΛ}/ l(z)

^csup||/j(z)L> r_, f
Z X+l

(5.16)

(5.17)

(5.18)
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(ii) Estimate

So

183

\\RλHSλh\\«,rS\\HSλh\\«,r-y

J dx J dλeλ{x~z)RλHSλh(z)

x + 1 oo

x 0

sup \\h(z) \a<r_2

(iii) Finally by a contour integration

y-(ξ1-s)-iv(χ-z)

JO, ^ -
ί1-s<0,

and

So

J (<*! - s )e- ( ί l

dx I dλeλiχ-z)Sλh{z)

if (^ - s) < 0.

gcSUp||A(z)ll«,r-y

Combining (5.18), (5.20), and (5.23) using (5.14) yields

A similar inequality can be found for [/_ to deduce (5.5).

(iv) Next we show that w solves (5.1). We can differentiate to get

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(ξt - = lim (ξ, - s)U.(x - z)h(z) + lim {ξ, - s)U+(x - z)h(z)
z\x zix

+ J dz j dλλeλiχ-z\ξ1-s)Rλh(z)
- o o Γ -

00

4- j dx J dλλeλ{χ-z\ξ1-s)Rλh{z). (5.25)

By (5.6) and the continuity of h, the sum of the first two terms on the right is h(x).
A resolvent identity tells us that λ(ξx — s)Rλ = — MRλ + /. By deformation of
contours we easily see that

Γ-

X-Z>0,

x-z <0, (5.26)
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and so the sum of the last two terms on the right side of (5.25) is:

- J dz f dλeλiχ-z)MRλh(z)- \ dz \ dλeλ{x~z)MRλh(z) = - Mw. (5.27)
— oo Γ - x Γ +

Therefore

(ί i " s)4-Mx) = h(x) - Mw. (5.28)
ox

6. Decay of the Linearized Solution

Define the decay function A(x) as in (2.25).

Theorem 6.1. Suppose that h(x, ξ) is continuous in x as an element of Gr α and that

(6.1)

(6.2)

Then w defined as in Theorem 5.1 is continuous in x as an element of Gar and
satisfies

sup II w(x) | | α , r ^ c c 0 , (6.3)
x

\\w(x)\\r ^ φ o + c^Aiμx), (6.4)

The proof of this theorem depends on a proper choice of N, the cutoff used
in Sect. 5, as a function of x. Choose

N(x) = (μ/oc)1/2\xf2, β = 2 ( 3 - 7 ) - !

μ = 0Liy-»Hy-*)(4/v1)
β, (6.5)

so that

aN2 = μ\x\β

^vίN
y-i = 2μ\x\β-1. (6.6)

We use two elementary lemmas

Lemma 6.2. // N is large enough and if ξ < N,

\(ξ1-s)~h(ξ)\>v1Ny-1. (6.7)

// also x > 1, ξί — s > 0,

(ξ1-sΓ1

Qχp{-(ξ1-sy1v(ξ)x}<N-1e-VίNγ-iχ. (6.8)

Lemma 6.3. If 0 ̂  β g 1,

\x\β-i\x-z\ + \z\'*\x\', (6.9)

|x|^-1 |x - z\ + ε|z| ^ min(|x|^,ε|x|), (6.10)
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Proof of Theorem 6.1. The bound (6.3) was proved in Theorem 5.1. To prove
(6.4), we split the velocity space into two parts: {\ξ\ <N} and {\ξ\ >N} and define

= χ(\ξ\>N),

-s) + v)-1- (6.12)

We define RNλ, SNλ and SNX on Gx r(ξeR3) in the natural way, i.e. RNλf = g means
that χN{λ{ξί -s) + v + H)g=f and suppg <= {\ξ\ < N}. Then

{λ{ξi - s) + v + χNHχN)- >=RNλ + SNλ,

Rλ = (RNλ + SNλ)(ί - (χNH + χNHχN)Rλ)

— RNX + $Nλ ~~ Tχ,

Integrate each of the three terms in (6.14):

(i) By contour integration

0, otherwise,

(2πiΓ1J ί
x Γ +

(6.13)

(6.14)

(6.15)

(6.16)

A similar estimate is proved for the integral over Γ_.

γλ

τ>.= - RNX(^! ~s)RNλχNHχNRλ -R

- SNλ(ξi ~ s)SNλχNHRλ -

HxNR^ -s)Rλ

^ - s)Rλ.

(6.17)

(6.18)

Now estimate using first (4.6) for RNλ and (4.8) for SNi with θ = 0, then the resolvent
identity Rλ = Sλ(I - HRλ), and finally (4.12), that

ί \\HSλχN(I - HRλ)h \\r_y + \\χNHSλ(I - HRλ)h \\r_y

S( + λΓme-aN2\\h\\a^2. (6.19)
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Similarly we find that

^-Tλh ύλ-^e-^WhW^.,. (6.20)

These are integrated as in the proof of Theorem 5.1. Employing (6.20) we get

j dz J dλeλ(x~z)Tλh(z)
x+ 1 Γ +

J dz(x-zYx \
x+ 1 Γ +

-<xN2

) 5

Using (6.19) we estimate

x+ 1

dx j o-αiV2

Therefore

(ii) Define new paths

(6.21)

(6.22)

(6.23)

± 4ix, x ̂  0 i,

:_ = {-^N >-1-x±Aix, x^o

(6.24)

By proposition 4.1 the contours Γ+ and Γ_ can be deformed to Σ + and Σ_
without passing through singularities of RNλ. Thus

e"RNidλ=
Ni

Next calculate

= - R N λ ( ξ i -s)RNλHSN

and estimate

(6.25)

(6.26)

^ - s ) S N λ , (6.27)

(6.28)

(6.29)



Shock Profile Solutions

Calculate the integral in three parts. By a contour integration,

]dz j dλeλ(x~z)SNλh(z)
x I±

00

187

(6.30)

using (6.2) and Lemmas 6.2 and 6.3. Next use (6.28) to obtain

ί dz j dλeMx

NVλ-1

λ*ω;

x (l/2)ι>iiVv-i

By integration by parts in A, (6.6), (6.9), and (6.10), we can estimate

dz j dλeλ{χ-z)RNλHSNλh(z)

J d z ( x - z ) - 1 j dλeλ(χ-z)—(RNλHSNλ)h(z)
+ 1 1 + " A

Sc, ϊ Λφc-zΓ1 J eMχ-z)(l+λy1/2A(εz)dλ

(6.31)

Combining (6.30), (6.31), and (6.32) and using (6.25) and (6.26) shows that

J dz f ^ cc1Λ(εx).

(6.32)

(6.33)

Estimates similar to (6.17), (6.23), and (6.33) can also be obtained for the integrals
over Γ_. Combining these and using (6.14) results in (6.4). By setting y = ε~1x we
can change Theorem 6.1 to:

Corollary 6.4. The solution of

(ξx-s)—w-ε ί

ox
with

satisfies

=

sup ||w(x)||αjr g c c0,

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)



188 R. E. Caflisch and B. Nicolaenko

Finally we also make estimates on the linearized version of equation (3.54)
with asymptotic conditions (3.59).

Lemma 6.5. (i) For any τ1 > 0,

X

$ i ) β β ί X + e-με~βχβ); (6.39)
o

(ii) There is an X > 0 and jτ0 >τί>0, such that

- τ + 2γzo(x) >2τί9 iϊx>X,

<-2τί9 iίx<-X. (6.40)

Theorem 6.6. //

\b(x)\Sc0A(x\ (6.41)

then the solution z1 of {3.54) and (3.59) satisfies

\Zi(x)\^c'C0A(x). (6.42)

7. Solution of the Nonlinear Equations

Using the preceding estimates on the linearized version of Eq. (3.55), we are
ready to solve the full nonlinear equations (3.54) and (3.55) with the asymptotic
conditions (3.59).

Theorem 7.1. There is a solution of (3.54), (3.55), and (3.59) with

\zι(x)\^cA(x\ (7.1)

IKWIL^c, (7.2)

(7.3)

for any r, 0 ̂  α < \ and for μ, β as in (6.5).
Once this is proved we have finished the construction of the shock profile and

the proof of Theorem 2.1. First we make estimates on the inhomogeneities a and
b in (3.54) and (3.55).

Lemma 7.2. Suppose that

\z (x)\ < c A(x), (7.4)

l l w i M L , , ^ , (7.5)

\\w1(x)\\rSc2A(x). (7.6)

// a and b are defined by (3,56) and (3.57) with z1=z1 and w1 =w1 then

ά(x)\ <Ξ c(l + εc0 + c2 + ε(c0 + c2)
2)A(x\ (7.7)

\\b(x)\\Λtr_y S c(l + ε(c0 + c x ) + ε2(c0 + c ^ 2 ) , (7.8)

Lemma 7.3. Suppose zγ and z2 both satisfy (7.4) and wx and w1 both satisfy (7.5)
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and (7.6). Let (a, b) and (a, b) be defined by (3.56) and (3.57) using (zlf wj and (zί9 w j
respectively. Suppose also that

o^x), (7.10)

!, (7.11)

tAix). (7.12)

Then
\(a - ά)(x)\ S {(εd0 + d2) + ε(c0 + c2){d0 + d2)}A(x), (7.13)

| | ( S - B)(x)««,,_, ύ ε(d0 -dx) + ε2(c0 + c ^ + dj, (7.14)

\\{b-b){x)||r_y ^ {e(d0 + d2) + 62(c0 + c2)(d0 + d 2)}^W ( 7 1 5 )

These will be proved using the following estimates on z0 and w0:

x | , x < 0 , (7.16)

)τolxl, x > 0 , (7.17)

i

j c | , * < 0 , (7.18)

||wo(x) - w00 ||α>r S e-
{1/2)τolxl, x > 0, (7.19)

and a nonlinear bound coming from Proposition 5.1 of [2].

Lemma 7.4. // 0 ^ α < ^

ιivrα0)iι.,r^c(iι^

Proo/ o/ Lemma 7.2. Denote

aγ = - τ'z0 + (με,zoψε + wo)> - (ψεfvΓ(2φεz0 + εw0, wo)>,

α2 - εyz? + <με, ez1φε 4 - ^ ) ,

2 3 = - (με9vΓ(2εφεzί +εwl9wo + w1) + vΓ(2φεzo + εwo,wί)y. (7.21)

By (7.16)-(7.19), (3.49), and (3.51), lα^x)! ^ ce~ ( 1 / 2 ) τ | x | . By (7.4) and (7.6), |52(x)| ^

(εc 2 +εc 0 + c2M(x). By (7.16)-(7.19), (7.4), (7.6), and (7.20), |α3<x)| ^ c(εc0 +

εc0c2 + εc2 + εc2)^4(x). These estimates imply (7.7) since a = aί -\- a2 + a3 and
τ i < 2τo Denote

&! = - ε(£i - s ) ^ w 0 - Mw0 - εM3w0 + εzo(/ - P)

- P)vΓ(zoφε + εw0, z o 0 ε + εw0),

b2 = - εM3w1 + ε2zx(/ - P)μB9

b3=(I - P) {2svΓ(zoφε + εw0, zλφε + wx) + ε 2vΓ(z 10 ε + w1? z ^ ,

+ «i)}. (7.22)

By (7.16)-(7.19) and (3.50), WB^x)^^ce-(1/2)τM. By (7.4)-(7.6),

(7.23)
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By (7.16M7.19), (7.4)-(7.6), and (7.20),

+ cx) + ε2(c0 + c^Aix). (7.24)

Combining these yields (7.9).

Proof of Lemma 7.3. In notation like that in the previous proof, άγ — άι =
bί —b1 = 0. This eliminates the term contributing the " 1 " on the right side of (7.7)-
(7.9). The remaining terms are estimated as above to find (7.13)—(7.14).

Proof of Theorem 7.1. We are now ready to solve Eq. (3.54), (3.55), and (3.59) by
iteration. Let z\ =vv? = 0 , define an and bn by (3.56) and (3.57) with zx and wn

replaced by z\ and wn

l9 and let z\+1 and w\+: solve (3.54), (3.55), and (3.59) with a and
b replaced by an and bn. Then z\ and w? satisfy (7.4)-(7.6) (for suitable c09 cu c2). The
estimate (7.7)-(7.9) for a0 and b° combine with Theorems 6.1 and 6.6 to find
estimates on z\ and w\. By iterating the procedure we obtain uniform estimates on z"
and w". Choose Co, Cί9 and C2 such that

c(l + εC0 + C 2 + ε(C0 + C2)
2) ^ Co,

c(l + β(C0 + C2) + ε2(C0 + C2)
2) ^ C 2 .

Then z\ and wj satisfy (7.1)-(7.3) with C = max(C0, C l 5 C3). Lemma 7.3 shows
that A{xyι\z\-^-z\l \\w\+\x)-K(x)h,r and A{xyι\\w\+\x)-w\{x)\\r

are decreasing algebraically fast. Therefore z" and w" converge to z1 and wt with
bounds (7.1)—(7.3). By a standard argument, they are seen to be solutions of (3.54),
(3.55), and (3.59).

To show the uniqueness of the solution we first write / as / = (z0 + εzjφ +
ε(w0 + w j as in Sect. 3. Then z1 and wx solve (3.54), (3.55), (3.59). Assuming (2.26),
we wish to show that ^4(x)~x |z1(x)[, IIwx(x) ||αjr, and A&y1 Ww^x)^ are bounded
independent of ε. From (2.26) and Lemma (7.2) we find that | |b(x)||α > r-y and
A(x)~1\\b(x)\\r_y are bounded. Then Corollary 6.4 implies bounds on llw^x)!^,.
and A(x)~1 Hw^x) | | r Using Lemma 7.2 again we find bounds on ̂ 4(x)~ ι |φc)|, and
again Theorem 6.6 implies bound on A(x)~1\z1(x)\.

Next we suppose that / and / are two such solutions with w1 — wx and zί — z1

bounded in the above norms by a constant c. By Lemma 7.3 we find that a — a,
b — b are bounded by εc. Then by Corollary 6.4 and Theorem 6.6 we find that
z1—z1 and wί—w1 are bounded by εc. Continuing this we find that wx = w l 5

zγ = zx and thus / = /.

Appendix A. The Collision Operator

The nonlinear collision operator is

δ(/, g) = ϊ ί T 7 {Aξ'Mξ') + /«Wi) - Mx)g(ξ)

-f(ξ)g(ξ1)}B(θ,V)dθdεdξ1, (A.1)
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in which

α = (cos #,sinθcosε,sin#sinε), (A.2)

and B(θ, V) is (the collision cross section)- V. For an inverse power force F(r) = κr~3

s-5
with 3 < 5 and r the intermolecular distance, B(θ,V) = Vγβ(θ) with γ= -.

5 — 1

In particular for inelastic collisions between spheres, B(θ, V) = Voosθsmθ. Define

v(ξ) = 2π j " f B(θ,η -ξ)ω(η)dθdη,

(2πy1/2e-ξ2/2. (A3)

We shall consider only hard potentials with an angular cutoff in the sense of
Grad [11], i.e. we assume that

B(θ,V)^cVγsinθcosθ\, (A.4)

in which vl5 v2 and c are positive constants and 0 ̂  γ ̂  1 and that B is continuous
in V. Power law forces do not satisfy these constraints; some modification is
required to eliminate grazing collisions with θ small.

The linearized collision operator is Lf = — 2ω~ 1 / 2 Q(ω,ω 1 / 2 /). Using (A.2) and
positivity and symmetry properties of B, one can show that L is self-adjoint and
non-negative, with N{L) = span{χi9i = 0,...,4} [11]. It can be represented as
L = v(ξ) - K with

Kf(ξ)= ί k(ζ,η)f(η)dη9

R3

k=-kί+k (A.5)

π$ B(θ,V)dθ9 (A.6)

}
(A.7)

in which

= V-α(α : V),

Ci. (A.8)
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Note that w is perpendicular to v and the integral in (A.7) is over the two-
dimensional plane with v held constant. Also we define

^(v,w)-(2|sin0Γ 1 [β(^V) + 5 ( f - θ , V ) } ) ^ c φ 2 + w 2 )- ( 1 - y ) / 2 . (A9)

The bounds (4.10) for H replaced by K and (4.15) for k replaced by k were
derived in [2] along with the bound

These can be used as in [11] to show the following:

Lemma A.I. If y ^ 1, H = eaξ2v(ξ)~1Ke~<xξ2 is compact as an operator on L2.

Lemma A.2. Let heGa>r with <χ i ?/i> = 0 , i = 0,. . . ,4, then Lf = h has a solution

with / e G α > r + r

Appendix B. The Summational Invariants

The summational invariants χ0,..., χ4 defined in (2.9) form an orthonormal
basis for the null space of L. The sound speed c0 is found as a root of

d e t « χ ί , ( ξ 1 - c o ) χ < / » = - c g ( c o - f ) , i.e. c0 = ^ 5 / 3 . One could also use co =

—-v/5/3; the roots co = 0 correspond to contact discontinuities rather than

shocks. The function φ'o = ΣOL^ is found through a null vector (af) of the matrix

<fo,(£i-co)Xj>> (U = 0,...,4) which is α0 = 1, αx = c0, α2 = α3 = 0, α4 = y/l/3
as in (3.11).

4 3

Next we solve (3.14), (3.17), and (3.18). Rewrite £ βiχ. = β'φf

0+ £ β'.χ..
i = 0 i = 0

Then (3.14) is

) - < & Φ ό > - < K i - c o t e , 0 l > , f = o,...,3.

(B.I)
Since φ1 is to be independent of ε, (3.18) implies that ζ(ξ1 — co)φί,φ1} =0.
This is just a linear equation for β' with coefficient 2<(£1 - c o ) φ o , φ [ } =

Also we calculate det(<(^ — co)χ ί,χJ >) (Ϊ, ./= — 1,...,4) with χ_x =φx. From
(3.21) and (3.14) we have <(ξx - c ^ χ ^ φ ^ = -(Xi,φo) This makes it possible
to calculate the determinant to be cloc2(— c* — 3c2, + fc 0 — f) Φ 0. Since
det (<χI , ^ 1 - c o ) χ J » ( i , ; = 0,...,3) = c 2 ( c 2 - l ) ^ 0 , (B.I) has a unique solution

3

β'0,...,β'3. Look for ^ε and θε = Σ JiXi + S will be choosen to satisfy <(ξt — s)χi9

i = 0

9>=0,.. . ,3. Then (3.17) for i = 0,...,3 becomes

7 = 0
i -s)xt, Σ y ^ / = - < x * Φ Ί > ' f = ° > ' 3

Since det ( ( ^ ^ ^ — s)χi)) is bounded uniformly in ε near 0, the y/s are determined
uniquely and are uniformly bounded. For the last equation of (3.17) we can replace
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χ4 by φ0. This and (3.18) give us two equations for β' and U:

<φ0,φ1) + ((ξι-c0)θo,d} + O(ε) = 0, (B.3)

2<Φ0,Φ1 > + < « i - c j φ ^ > + 2 < ( ^ -c0)</>0,9> + O(ε) = 0. (B.4)
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