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Abstract. We show how to prove and to understand the formula for the
"Pontryagin" index P for SU(iV) gauge fields on the Hypertorus T4, seen as a
four-dimensional euclidean box with twisted boundary conditions. These
twists are defined as gauge invariant integers modulo N and labelled by nμv

(= —nvμ). In terms of these we can write (veZ)

Furthermore we settle the last link in the proof of the existence of zero action

solutions with all possible twists satisfying μv μv =κ(n) = 0(moάN) for arbit-
rary N.

1. Introduction

A long standing problem is proving quark confinement in QCD [1]. To simplify
the picture a first step in this direction would be to show confinement of static
quarks. In this way the problem reduces to an understanding of the behaviour of
electric flux strings in quarkless QCD, thus working in pure SU(N) gauge theories,
where up to present energies N = 3. Usually this boils down to studying the
behaviour of the vacuum expectation value of the Wilson loop operator [1, 2].

But some time ago't Hooft [3] introduced another elegant method for studying
flux strings. By putting the gauge fields on a four dimensional euclidean box, one
can imitate a quark source on one side and an antiquark source on the other side
of the box by introducing socalled twisted boundary conditions. These boundary
conditions force electric flux into the box, just as gauge invariance forces an
electric flux string in-between a quark and antiquark source. Similarly one can
introduce magnetic flux in the box, and the great strength of the method is its
electric-magnetic duality properties.

Essential is that all fields transform trivially under the centre ZN of SU(JV).
Effectively the gauge group is thus S\J(N)/ZN and the twists are labelled by six
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integers nμv=—nvμ ( μ = l , 2, 3 or 4) defined modulo N. Here nμv describes a
winding number in the (μ, v)-ρlane, as an element of the first homotopy group
π1(SU(AΓ)/Ziv)^ZiV. The gauge fields are in fact connections for a SU (N)/ZN -
principal fiber bundle on the hypertorus T4. This will be discussed in Sect. 2.

The topology of the gauge fields is not completely specified by the twist, but
there is also the "2nd Chern class' related to instanton type configurations and
given by (the coupling constant g is put equal to 1):

^ G μ v ) , (1.1)

Gμv=&μvaβGaβ (the dual of Gμv). (1.2)

In Sect. 3 we shall explain why P (or actually 2NP) should really be called the
1st Pontryagin index. 'tHooft [4] used invariance arguments to show the
following identity:

(^j (1.3)

Φ ) = 4«μv«μv = 8 W V μ v (1Λ)

This will be proved in Sect. 3, where we will resolve the interpretation of this
formula, especially what happens if we add a multiple of N to nμv.

For finding solutions to the euclidean equations of motion the importance of P
comes from the Schwarz-inequality for the action S{A):

S(A) = \ J Tr (GμvGμv)d*x ^ 8π 2 |P | . (1.5)

Recently 't Hooft [5] constructed a very special type of solutions with minimal
nontrivial action.

In Sect. 4 we complete his proof for the existence of orthogonal twist
(κ(ή) = 0(modN)) zero action configurations for arbitrary N.

In an appendix we prove a formula for the 1st Pontryagin (2nd Chern) index
for a general four dimensional compact(ifiable) manifold in terms of the transition
functions only.

Our primary aim in this paper is a precise understanding of the twist-
dependence for the Pontryagin number. For this we need an explicit realization of
the topological structure of the fiber bundles over T4, yielding at the same time a
classification oϊ SU (N)/ZN bundles over T4. Classification of fiber bundles is well
known to mathematicians, however even for this problem it is a non trivial
exercise, using X-theory, as demonstrated by C. Nash in his preprint entitled:
"Gauge potentials and bundles over the 4-torus" (St. Patrick's college, January
1982). We thank him for correspondence on this subject.

2. The Structure of the Gauge Fields on the Hypertorus

From the requirement of periodicity for gauge invariant quantities we have [5] :
(Aλ is the gauge potential in the fundamental representation)

(2.1)
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The euclidean box is defined by Orgxμ^αμ, μ — 1,2,3,4. When the argument of a
function on the box is put equal to xμ9 we mean that xμ is fixed and the other
coordinates are arbitrary. [Ωμ] is the action of a SU(iV) gauge transformation Ωμ,
independent of xμ. All other fields ψ satisfy the same formal periodic boundary
condition ψ(xμ = aμ) = [_Ωμ~\\p(xμ = 0).

As long as all these fields transform trivially under the centre ZN of SU(iV) we
have from the consistency of writing xp{xμ = αμ, xv = αv) in two ways in terms of
ψ(xμ = 0, xv = 0) [through ψ(xμ = aμ, xv = 0) and ψ(xμ = 0, xv = α v)]:

Z μ v = Ωμ(xv = av)Ωv(xμ = 0)βμ" \xv = 0)Ω; \xμ = aμ), (2.2)

where Z μ v is an element of the centre ZN of SU(iV). We write ZμveZN in terms of
the twist integers nμveZ(moάN):

Z μ v = exp(2πmμv/iV). (2.3)

Clearly nμv = — nvμ, they are independent of the coordinates, and are gauge
invariant, since under an arbitrary gauge transformation Ω(x) (ψf = [_Ώ]ψ) we have:

Ω'μ = Ω(xμ = aμ)ΩμΩ-\xμ = 0). (2.4)

The gauge functions are really defined modulo the centre of the gauge group,
so the gauge group is actually SU (JV)/ZN. The multiple transition functions Ωμ

then take their values in SU (N)/ZN. In this representation we have (2.2) with
Z μ v = l [the identity in SU(JV)/ZN], which becomes a multiple cocycle condition.
We borrowed the terminology from the theory of fiber bundles [6] and we will
explain how the above structure defines a SU {N)/ZN principal fiber bundle on the
hyper tor us T 4 parametrized by: 0 ̂  xμ ̂  αμ, μ = 1,2,3,4 with xμ = 0 identified with
xμ = aμ.

We will first discuss the case of the two dimensional torus T . We need a
covering of T2 with open sets [/., however it is more advantageous to reduce the
overlapping regions to a minimum area. This is done by taking the closure of Ui

and reducing their size to a minimum, such that they still cover the manifold
completely. We will denote such a covering by {£/•}. For T" the minimal number
of such sets is 2" and in Fig. 1 we specify the situation for T2. We can take <5 = ε
(δ and ε are defined in Fig. 1) but it should always be understood in the limit <5 jε.

A fiber bundle is specified [6, 7] by the transition functions Ωtj = ΩJt

 λ on
UinUj (in our case C/JnC/p, such that:

Aμ\x) = [Q4 j(x)-]Λ^\x), xeUc

tn U). (2.5)

And consistency requires these transition functions to satisfy the cocycle
condition:

Ω;/x)ίyx) = Ωik(x), xeU'n Ucp U{. (2.6)

In Fig. 1 the relevant transition functions for T2 are indicated. Gauge transfor-
mations are specified by:

4 ° / = = M 4 ° (2 7)
So
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Fig. 1. The fiber bundle structure of T2

It is now easy to see that when we take the limit ε->0, δ->0:

IK^fK^O). (2.8)

So we have the following expression for the multiple transition functions Ωμ in

terms of the ordinary transition functions:

Ωμ = hQμg-μ\ (2.9)

Using the cocycle conditions (2.6) many times and the fact that /z13, h23, # 1 3 , g23

are independent of the coordinates in the limit £~*0, δ-^0, one derives the
consistency condition (2.2) with Zμv = l. On the other hand it is not difficult to
show that given Ωμ satisfying the consistency condition one can construct a fiber
bundle structure in the above sense.

The gauge freedom in (2.7) now reduces to go = Ω, gμ independent of xμ, such

that:

(2.10)

This gives with (2.9) the transformation property (2.4). Generalization of the above
to T 4 is obvious (also the validity for general Tn and gauge group G with centre ZG

is obvious). We thus proved that 't Hooft's method of introducing SΌ(N) gauge
fields on the hypertorus transforming trivially under the centre ZN defines a
SU {N)/ZN principal fiber bundle structure on the hypertorus with connection Aμ

(in local coordinates). This puts the theory in the right mathematical framework.
We would however like to stress that this framework is discussed for the sake of
completeness. The essential ingredient is the ansatz (2.9) and the accompanying
gauge freedom (2.10), which can be made for SU (N)/ZN as well as SU(iV) multiple
transition functions and without the assumption of an underlying bundle
structure.
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We can use the freedom in choosing either gOμ or hOμ to construct a closed loop
in SU (N)/ZN. With the aid of the consistency condition one easily checks that the
following choice does the job:

QoMv = 0) = 1, 9oμ(xv = av) = Ωv(xμ = 0), (μ^v). (2.11)

The loop along the boundary of T2 [the solid line in Fig. 1, where (1,2) is identified
with (μ, v)] is mapped into a closed loop in SU (N)/ZN. Its homotopy type as an
element of π1(SU(N)/ZN) is precisely nμv, since we can pull up the loop to SU(JV)
but then it jumps by an element of the centre ZN. Having the same definition for
gQμ and hOμ as SU(iV) functions this jump occurs at (aμ9av) and is exactly
Z μ v = exp(2πmμv/iV). (The correspondence of nμv with the homotopy type follows
most trivially from the construction of SU(JV) as the universal covering group of
SU(N)/ZN [8].)

3. The Pontryagin Number on Γ4

The formula (1.1) is the usual form for (minus) the 2nd Chern number for a SU(ΛΓ)
gauge theory1. However we saw that in general the gauge theory on T 4 does not
define a SU(JV)-principal fiber bundle structure and thus P need not be an integer.
It is nevertheless integer, when there is no twist, since in Sect. 2 we showed that in
that case we had a suitable fiber bundle structure. Note that this is consistent with
(1.3).

By putting N cubes next to each other in the μ-direction each twist in the (μ, v)-
plane vanishes. From this one can derive that PN3 is integer. Together with
invariance arguments concerning the dependence of P on nμv, the explicit
calculation of P for a sample of configurations led 't Hooft [9] to a formula like
(1.3).

Let us first put the terminology right. When nμvή=0 we have transition
functions in SU (N)/ZN but these are not elements of GL(/c, (C) for any k, necessary
[10] for using Chern classes. However the adjoint representation of SU(iV) is a
faithful representation of SU (N)/ZN. So provided we transform the gauge
potentials to the adjoint representation, we can chose transition functions in
SO(iV2- 1)CGL(]V2- 1,R) and P a ? [equals (1.1) but with the gauge fields in the
adjoint reprexentation] is just the integer 1st Pontryagin number.

If V{ i = l , ..,AΓ 2-1 are the generators of SU(iV), Tr(^F / ) = 2^ j, and L. the
y

generators of the adjoint representation, we can write ad (Aμ) = - iAa

μLa \ϊAμ = Aa

μ —"
from this one easily finds [11]:

With (1.3) this would imply that P a d misses the odd integers. This missing is
obvious since the adjoint representation does not cover the whole of
GL(iV2-l,IR).

1 See the appendix for a proper definition
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We will work alternatively in SU(iV) or its adjoint representation, whichever is
the most suitable. Translation from one to the other is straightforward.

The Pontryagin index is determined by the topology of the fiber bundle only,
which is specified by the transition functions [6]. Therefore it should be a function
of these transition functions only, which is generally proved by construction in the
appendix. For T 4 we have:

Lemma (3.1).

^ Σ ί <*3<vw Tr((ΩΛΩ;') (ΩAΩ; X) ( Ω A Ω ; '))

L Σ ί d2Sμjμmβ Tr((β; %ΩXμ=aμ(ΩμδβΩ; X = 0)+ oL
on

with a3

id
3
σ

t
 = ̂  dx

2
 J dx

3
 J dx

4
, \d

2
S
ί2
 = \ dx

3
 j dx

4
0 0 0 0 0

etc.

Proof. In the appendix it is shown how to extract this formula from the general
case. Here we show it by a direct calculation.

1

16π μ

K = 2εμvaβ Tr lAvdaAβ - ^ AvAaΛβ). (3.2)

with

Inserting the boundary condition (2.1) we find:

1 ίΣKvwft

+ av Tr ^ (Ω;»dβμ)Aβ{xμ=0))J. (3.3)

We use the consistency condition (2.2) to calculate

Ω ; \Xμ=o) ( Ω ; ^ . Ω ^ = β v Ω v ( x μ = 0 ) ,

which can be used together with the boundary condition (2.1) to show that:

- I>-v] =Tr((Ω; 'dJiX^JiΩ.

Inserting this in (3.3) completes the proof. •
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From this lemma one can easily compute P when the multiple transition
functions are mutually commuting. By a suitable global gauge transformation they
can be simultaneously diagonalized. Here P is gauge invariant so it is certainly
invariant under a global transformation. The above configuration, which will be
called abelian, can be chosen in H=U(l)N~ί the maximal abelian (Cartan)
subalgebra of SU(JV) generated by:

(The first N — a entries are 1)

Tr(TflH0, Tr(TaTb) = (N-a+l)(N-a)δab. (3.4)

Write

(^4 (3 5)

then the topology is specified by n{

μ] fl=l,2..JV-l, r$eΈ9 r$eNZ9 α + 1, and
nμv = n(£}(modN). Note that now n{

μ] are genuine integers and one cannot
transform or deform within H configurations with different nμ

a] but equal nμv into
each other. The winding numbers are given by:

Lemma (3.2). For an abelian configuration as above with winding numbers n{a\
a=l,2 ...N— 1 we find:

Proof Insert (3.5) into the formula of Lemma (3.1) to find:

. „ , a , Λ , a , * Tr(Γ T*)

μ > v

 α Xv 2N

_
^(N-a+l)(N-a) , (fl),

-Cμvaβ 2 2 2JV2 ^ N

Together with r$ = δalnμv + Nf$, l^eΈ we find

Σ (N-a+l)(N-aWa))

Φ)+z. α

We would like to stress that one cannot reach all possible values of F, with an
abelian set of multiple transition functions. For example, for nμv = 0{modN) we
have PelΈ.

We will now make use of the gauge in variance of P by making suitable choices
of gOμ and hOμ, as defined in Sect. 2. This enables us to comprehend the topological
structure of the fiber bundle and in the general case to compute P in terms of
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topological invariants. (An application of this principle was the interpretation of
nμv as winding numbers in Sect. 2.)

Theorem (3.1). Given arbitrary multiple transition functions Ωμ, we can choose hOμ

and gOμ as follows:

Kμ=U(xμ = aμ)ωμ, gOμ=U(xμ = 0), (3.7)

ω =exp — 2^——Tx , (3.8)

where U is a gauge function on the boundary of the four-dimensional box.

Proof First take any Ωμ, nμv and try to specify gOμ and hOμ on the skeleton of the
boundary of the four-dimensional box (the skeleton is defined to be the edges of
the 8 cubes specified by xμ = 0, and xμ = aμ, μ = l , 2, 3, and 4). Where ever more
than one gauge function is specified on this skeleton, we demand them to be equal

Let us first use the gauge freedom (2.4) to bring Ωμ in a suitable form. It is not
difficult to see [using that SU(N) is (simply) connected and π 2 (SU(JV)) = 0] that
one can choose a gauge transformation Ω(x), such that:

Ω(* = 0 ) = l

Ω(0)

This proves that we can restrict ourselves to:

Ω μ (0)=l, μ = l , 2 , 3 , 4 . (3.10)

Note that ωμ is already in this form.
With (2.9) the functions gOμ and hOμ on the skeleton are specified by giving gOμ

on the edges of the cube xμ = 0. Here we work for a moment in the adjoint
representation avoiding jumps with elements of ZN, now hidden in the homotopy
type of each square on the skeleton (compare Sect. 2).

If we want to specify U in terms of gOμ and hOμ we should have the conditions:

Kμ(Xv = av) = Kv(Xμ = aμ) >

Kμ(
xv = °)=::Qov(χ

μ = a

μ ) ^ (3.11)

If we demand the following condition to be met:

gOμ(
χv = av) = Ωv(xμ = 0)gOμ(xv - 0), (3.12)

the first two conditions in (3.11) are superficial and can be derived from (2.9), (2.2),
(3.12) and the last condition in (3.11). Choosing gOμ(xv = xλ = 0)=l now completely
fixes gOμ on the skeleton, which is indicated in Fig. 2. It is an easy but tedious
exercise to show that at the corners of the cube all definitions of gOμ represent the
same value. For this one uses the consistency condition and the gauge choice
(3.10).
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Fig. 2. The choice < , on the skeleto:
of the boundary of the four-dimensiona
box. It is understood that

We only display g0

convenience a.. = 1
and take for

We now choose hOμ and gOμ in terms of ωμ as above and introduce hOμ, gOμ, Ωμ

by "dividing out" the abelian twist carrying configuration

= 99

(3.13)

= "9

Here /zOμ and gOμ are defined in terms of Ωμ as above, but since the homotopy type
of each square in the (μ, v) plane for the Ωμ and ωμ configuration is equal to nμv, the
same homotopy type for the Ωμ configuration is cancelled exactly.

So hOμ9 gOμ are genuine SU(N) functions specifying U:

(3.14)

as a continuous function on the skeleton.
We can extend U(xμ = xv = 0) restricted to the edges of the cube xμ = 0

continuously to the square xμ = xv = 0, for all six possible combinations fixing U on
all sides of the cubes xμ = 0 [and xμ = aμ by using (3.12) and (2.9)]. Finally, since
π2(SU(Λ/r)) = 0, we can continuously extend U inside the cubes xμ = 0; (2.9) then
fixes U inside the cubes xμ = aμ.

Putting things together we have, restricted to the skeleton :

t = °)§oμ» Kμ=U(xμ = aμ)hOμ (3.15)

These cannot be extended to the whole of the cubes xμ = 0, respectively x = a ,
because of the nontrivial homotopies. However

Q, = i -f 1

makes the choice (3.7) possible.
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Fig. 3. The singularity structure of Λ(xμ = 0)

We can however make a maximal continuous extension A oϊg0μ and hOμ to the
cubes such that

μ = 0) = gOμ and Λ(xμ = aμ) = h0μ. (3.16)

We necessarily have line singularities restricted in their topology by (2.9), (3.11),
and (3.12). A possible choice is depicted in Fig. 3. We can do the same for gOμ and
hOμ defining A. If we choose the position of the line singularities the same as for A,
(3.15) tells us that AA~ι has a removable singular structure. •

U is a gauge function on the boundary of the four-dimensional hypercube
(which is homotopic to S3) so the homotopy type of U is an element of
π3(SU(JV)) = 2ζ specified by v(U). Given Ωμ we can have different choices of U
belonging to different continuous extensions of U from the skeleton to the
boundary of the four-dimensional box. But by construction they can be con-
tinuously deformed into each other. So v is a unique function of Ωμ, which
topology is thus completely specified by nμv and v. The gauge invariance of v is
obvious from the transformation property of U [using (2.4)]

Uf = ΩU. (3.17)

And it is easy to see that any two configurations of Ωμ with the same nμv and v are
gauge equivalent. Thus P should be a unique function of v and nμv.

Since P is invariant under continuous deformations of the transition functions
we have:

(3.18)
(N-ί)

N
κ(n) + v,

where we used Lemma (3.2) and the fact that:

^ (3.19)

In the appendix we will prove that P(Ωμ) = v(U) as a simple application of the
general formula.

Now we also understand what happens if we add a multiple of N to nμv

(yielding n'μv). We will have different ω'μ in Theorem (3.1) in constructing U'.
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However by applying the theorem to ω'μ itself we have g'Oμ = V(xμ = 0)g0μ,
Kμ=V(χμ==aμ)Kμ [compare (3.15)] and consequently we can continuously de-
form l/Finto U\ so v(U') = v(U) + v(V). On the other hand applying (3.18) to ω'μ we

[N — i \ IN — l \

have ̂ — j κ(n') = ̂ — j φ ) + v(F).
So both expressions for P(Ωμ) are equal. However the abelian contribution

differs by an integer which is precisely the homotopy type of the gauge
transformation (defined on the boundary of the box only) transforming ωμ into ω'μ.
This is necessarily a nonabelian configuration.

4. Orthogonal Twist, Zero Action Configurations

Let us assume the existence of selfdual solutions for all possible topologies. This
then implies that there are solutions with different electric and magnetic fluxes but
equal action. The behaviour of κ(n) is responsible for this. It boils down to having
riμvή=nμv(modN) and κ(n) = κ(nf) (mod N).

A striking consequence is then the existence of zero action solutions with
nontrivial topology, discovered on the lattice by Groeneveld [16] a.o., and called
twist eating configurations by them.

Zero action implies P = 0 so these zero action configurations necessarily have
κ(n) = 0 (mod N). Since zero action implies Gμv — 0 there is a gauge such that Aμ = 0.
In this gauge the multiple transition functions Ωμ are constant. We call the twist
nμv satisfying κ{ή) = 0(modN) orthogonal, so we proved [5] :

Theorem (4.1). There exist zero action, orthogonal twist solutions iff there are
Ωμe SU(AΓ) such that 2 [Ωμ, Ωv] = exp(2πmμv/JV). D

With the remarks following Theorem 3.1 it is not hard to show uniqueness up
to constant gauge transformations! In the box we thus have leading perturbative
contributions to the ground state energies in a certain (e, m) sector.

Ambjorn and Flyvbjerg [14] first showed the existence of zero classical energy
solutions in the continuum with arbitrary magnetic flux (m) by constructing
[Ωk, Ωj] = Qxp(2πiεkjlmι/N), which is in fact in the form of the above theorem for
time independent configurations. From the mathematical point of view it is the
interplay between the multiconnectedness of the hypertorus and the topology of
SU(N)/ZN which causes this behaviour [14]. From this formal point of view zero
energy solutions on general three spaces and for general gauge groups are studied
in Ref. 15. This boils down to the search for zero action solutions in three
dimensional euclidean gauge theories.

Recently 't Hooft [5] proved the existence of Ωμ as in Theorem (5.1) for N not
divisible by a prime squared. We will combine his ideas and those of Ref. 14 to
complete the proof for general N. The essential part is proving the result for
N = pe, eeN (p will denote a prime). Let us first review the case where e=l.

Let P, ρeSU(JV) be such that [5, 14]:

lP,Q] = e2πi/N. (4.1)

2 [_ΩΩ~] = ΩUΩVΩ~λΩ;\ the group commutator
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Then defining

μ μ > μ > ^ )

[Ωμ, Ωv] = exp(2πj(sμίv - svtμ)/N),

the problem is reduced to finding sμ and ί such that

Kv= s^v ~ svίμ, nμv - nμv(modiV). (4.3)

This automatically demands orthogonal twist, because φ ) = 0. Now one can
transform by an SL(4,Z) transformation [here we do not need to restrict to
SL(4,ZiV)]nμv to the standard form:

n ' i 2 = = n ' i 3 = n ' 3 4 = 0. (4.4)

Let {Xμv} be an element of SL(4,Z) [or SLf^Z^)], then:

Sμ~*Xμμ'Sμ' » ^ μ~^X μμ>t μ> ' (4-5)

κ(n)->(detX>(n) = φ ) .

So κ:(n) = π/

14n
/

23 = 0(modiV), if iV is prime this implies either n'14 = 0(modN) or
w'23 = 0(modN) for which one can solve (4.3) easily [5].

It is not hard to see that in general a necessary condition for the solvability of
(4.3) is the condition (for convenience we uniquely label 0 g nμv < N if μ < v) that the
greatest common divisor (g.c.d.) of nμv and N [notation: g.c.d. (nμv,iV)] equals 1.
This is because (4.3) would imply the existence of ZμveZ such that κ(n + NΓ) = 0 or

solvability of h - nμvlμv + Nκ(ΐ) = 0. It is also sufficient because taking

h = n + lN we can solve for sμ and tμ by bringing h in the form (4.4) and using
κ(ή) = 0 as above (now as a genuine equation over Z, and not ZN).

It remains to prove solvability of κ(n + Nl) = 0 for κ(n) = 0(modN) if g.c.d.
(nμv, iV) = 1 or more general:

Lemma (4.1). // g.c.d. (n μ v ,JV)=l w^ can /ίnd ί μ v GZ, and ^ E ^ 5 W C ^ that

, Vμ<v.

Proo/

φ + NO + N^ - φ ) = ±NnJμv + iN2/μvΓμv + Nq = 0.

Put m^ε^rijj,, a^SijJjto k = n^ bf = /i4; so to solve:

Transforming to the standard form (4.4) we have g.c.d. (nμv,N) = ί iff g.c.d.
( ^ 3 , ^ 4 , n ' 2 4 , N ) = l [since we use SL(4,Z) transformations only]. So to solve:

rri2b'2 + feΊαΊ + fcjflj + N(αΊ&Ί + α̂ fô  + α3fo3) + <? = 0,

choosing α3 = l, 6Ί=0, b'?) = b — a'2b
r

2 this boils down to solving:

bjm'j 4- αΊ /c\ + a'2k2
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for fixed m'2, kr

vk'2, N. The solvability follows from the elementary algebraic
relation (a consequence of Euler's remainder theorem):

. D (4.6)

We thus have the following simple corollary:

Corollary. When g.c.d. (nμv,N)=i{0^nμv<N,μ<v) and κ(ή) = 0(moάN) we can
find Ωμ as in (4.2), satisfying the condition in Theorem (4.1). •

Before proving the existence of Ωμ for the case N = pe we want to show that this
is sufficient to deal with the case of general N. We follow the method of Ref. 14,
splitting general N in its prime factors: N = Π P Γ w e n a v e (® *s t n e direct sum, (x)
is the tensor product): ι

zN^φzNi, N^PT,
(4'7)

We thus decompose nμv and correspondingly Ωμ as follows:

t n®eZKi,

0 ΩfeSU(Nt).
i

From the decomposition of Ωμ and the assumed existence of Ωf belonging to nμ%
we have:

[Ωμ, O J = f(X) Ωf, (g) Ω«| = (g) [fl« ί2»] = Π exp(2πin»/N()
Li i J i ,

ti(X Npr *>r

There is however one vital thing we forgot to prove. For the existence of
Ω®eSυ(Ni) we need φ $ ) = 0(modty). Let us write N = NιN2, g.c.d. {NVN2)=1
then we can uniquely decompose nμveZN into nμv = N2n

i

μv

) + Nίnμ

2

v\ nμ%eZNi, from
this we have

φ ) - J V | φ ( 1 ) ) + N\κ{n{2)) (modΛΓ) = O(modiV).

This necessarily implies φ ( ί ) ) = 0(modiV.), as one can easily deduce from the
general solution of φ ( / ) ) . Splitting the JV 's up further we can deduce the general
case.

We now finish the proof of the existence of zero action solutions for arbitrary
orthogonal twist and N by the following theorem:

Theorem (4.2). If N equals a prime to some positive power e(N = pe\ we can find
ΩμeSυ(N)such that

tΩμ,Ωv-]=exp(2πinμv/N)

for all nμveZN satisfying φ ) = 0(modiV).

Proof. We can write g.c.d. (nμv) = r pf, g.c.d. (r,p)= 1,/eN. Let us first reduce the
case 2f>e to 2/^e. We have both κ(n) = k-pe ( φ ) = 0(modiV)) and κ(n) = l p2f

(g.c.d. {nμy) = r-pf), so k contains p2f~e as a factor. Furthermore f<e so we can
define nf

μv = nμvp~(2f~e) and N' = Np'{2f~e) = p2{e~f\ and it is easy to deduce
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φ ' ) = 0(modiV') and g.c.d. (nf

μv) = r-pe~f. So / ' = <?-/and e' = 2(e-f). When we
can solve for Ω'μeSU(N') we choose Ωμ = ΩJi(®liV,)(iV~Λ/r/)/iV/ Thus we can assume
2/rge from now on.

There is a pair (μ0, v0) μ o

< v o such that nμoVoP~f is relative prime to p. We split
nμveZN in ^ e Z ^ (i = l,2) (with N\°=pe~f, N2 = pf) according to

M(l) _ „ n-f_kne-2f__ (1) (2) _
nμovo~

nμoVoP KP ~ UvQμo' nμovo ~

and

for the other pairs (μ, v). Now

κ{ή) e~2f

and we can choose k such that K^^^CHmodΛ^). We can apply the corollary to
find ί2j ι

1)eSU(N1). Furthermore sμ

2) = kδμμo, tμ

2) = δμVo gives Ωμ

2)eSU(N2) as in
(4.2). Putting things together Ωμ = Ωμ

1](g)Ωμ

2)eSlJ(N) yields the desired com-
mutation relations. •

The existence of Ωμ as in Theorem (4.1) for each N are not only important for
zero action solutions, 'tHooft [5] also used them extensively in constructing
solutions with general twist, and in particular self dual solutions with minimal
nontrivial action.

5. Conclusions

We showed that 'tHooft's method for introducing gauge fields on the four-
dimensional box is equivalent to a principal fiber bundle onT4 = Sί x S1 x S1 x S1,
with structure group SU (N)/ZN. It is the in variance of the fields in the box under
ZN which gave us the rich topological structure we found. Equivalently we can
take as structure group the adjoint of SU(JV). Then the topological structure
associated with ZN is hidden in winding numbers.

One has a Pontryagin number expressible in the topological invariants of the
bundle. A new feature is that one can have configurations with equal Pontryagin
number but different topology. Intimately related with this is the existence of twist
eating configurations for arbitrary N and orthogonal twist as we proved in detail.
The explicit dependence of the Pontryagin number on the magnetic flux m is such
that one recovers the equivalent of Witten's result [4,13]; switching on the
^-parameter [12] gives a ^-dependent electric flux. When we can do dynamics in
the box it is possible to study things like oblique confinement, introduced by
'tHooft [13] in the continuum theory, in the box.

It is hoped that our complete understanding of the topology of gauge fields on
the hypertorus will be helpful in constructing explicit solutions of the euclidean
equations of motion. We would like to be able to restrict ourselves to (anti-)self
dual solutions. The solutions 't Hooft [5] constructed are only self dual if the ratio
of the aμ satisfy certain conditions. It is thus conjectured that if this is not the case
the solutions are unstable.
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Fig. 4. A generic choice of sets U\ satisfying the conditions in
the appendix. We suppressed two dimensions

Once we have the classical solutions one can do semiclassical computations of
e.g. the relevant free energies, and hope that the weak coupling results can be
pushed far enough to be relevant for QCD.

Appendix

Here we prove a general theorem for the 1st Pontryagin or 2nd Chern class of a
4-dimensional compact manifold without boundary (generalization to other
manifolds is obvious). We apply the result to a proof of Lemma (3.1) and
P(Ωμ) = v(t7) [compare (3.18) and (3.19)].

Notation. Let M be a compact manifold of real dimension 4 without a boundary
and {Ut} a covering of M with open sets.

We choose {U^} a set of closed sets with U^C Ui9 which still cover M, but satisfy
the following properties: Uc

inUc

j = dUc

indUc

j and

consequently these are 3 respectively 2-dimensional submanifolds. (See Fig. 4 for a
generic situation.) Furthermore our convention is such that [ [ / - n ί / ^ denotes
UlnJJ) with the orientation of dU\ and [ί/ nt/Jnt/jp; denotes U^nU'pUl with
the orientation of ^[i/fnC/j]^ A local section of the connection 1-form on Ui is
denoted by ωt ( = ίAfdxf\ and Ωi = dωi^ωiί\ωi is the curvature 2-form on £/..
Here Λ is the wedge product of p-forms. The wedge product for n equal p-forms is
written as (p-form)". Finally ω transforms under a change of coordinate patch,
with transition functions gtj defined on L^nl/ , according to

Lemma (A.I).

ϊ Σ ί
i,j,k [UfnUj

Σ ί T

+ Σ ί

=tΣ ί
i<j lVCi nU%

Proof.

) = Σ J Tr(ΩίΛΩi) = Σ ί dKι
i Uci i UΪ
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/ ( ι j k ) = - / ( j i k ) = ~ / ( k j i ) = = / ( k ί j )

[ U n u ' n U c

kn U k li

Fig. 5. Constructing the right sign in the expression for Lijk. We suppressed one dimension

where

and

A straightforward calculation gives, using

Kj -Kt = ± Tr ((gijdgr.

Combining these results we find:

-ίTr(ί2Λί3) = i Σ J

Σ ί L i Γ Σ c ί

tj = Tr (

Σ ί

= Σ τ\ ί iy+ J L,,+ J L t t+ J Lki+ j L,,+ f L
i,j,k {(ίjk) (jik) (ikj) (kίj) (kji) (jkί)

= Σ ϊ ί (Ly-Lj.-Ltt + La-Lw + I ^ i Σ ί iy*
ίJΛ (ijk) ij,k(ijk)

(See Fig. 5, for convenience we defined (ijk)=[Uc

inUc

jr\Uc

k]i.)
Expressing ω^ and ωk in ωt and using the cocycle condition g^g^ = gίk to show

that

one finds that the ωt dependence drops out and we are left with:

jk \dgjk) Λ ( d g ^ ' )

So

4 Σ ί Lm=i Σ { ί Lijk+ j 4 A
i,j,k(ijk) i,j,k{(ijk) (jki) J

The 1st Pontryagin Number is defined for a real vector bundle with transition
functions 0..eGL(ΛΓ,]R) by [10]:
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We have furthermore Ω= -Gμvdxμ Λdxv (in local coordinates) which puts (A.I) in

the form (1.3). Since we will always have an O(N) vector bundle [10], f}1 = — Ω and
Lemma (A.I) gives P^Ω) in terms of transition functions only.

The 2nd Chern number is defined for a complex vector bundle with transition
functions 0..eGL(JV,(C) by [10] :

C2(Ω) = -\ ί (Tr(Ω Λ Ω) - Tr(Ω) Λ Tr(Ω)). (A.2)
8π M

For SU(iV) vector bundles Tr(Ω) = 0 and we have C2(Ω) = - P, as defined in (1.3) in
terms of Gμv. Since we claimed a general formula for C2(Ω) in terms of the
transition functions only we have to deal with the last term in (A.2):

Lemma (A.2).

- j Tr(Ω)AΎτ(Ω)= £ ί ^{g^dg^ATriidg^gJ^i^Qig^.
M ί<j<k [U$nUjnUc

k]i

Proof. We can use the same technique as in Lemma (A.I), we now have
Ύr(Ω^ = dΎr(ω^ so

Tr (Ω, ) Λ Tr (Ωf) = dKt, Kt = Tr (ωf) Λ d Tr(ω f),

Kj - Kt = dLi}, L = Tr (ω ) Λ Tr ( ^ HQi),

where we used that d T r ^ ^ d g ^ . ^ O . Again define

^ijk ~ ̂ ij ~ Lfi — Lik + Lki — Lk + Ljk .

The cocycle condition this time implies

Tr(gf. HQi) + Ίv{gjkHgjk) - Tr{g~ Hgik) = 0

and also guarantees here absence of ωt dependence. We find:

= Lijk - Lm, Lijk = Tr (g ~ 1 dgtJ) A Tr (gjk

 1 dgjk).

So as in Lemma (A.I) we have:

-JTr(Ω)ΛTr(Ω) = i Σ ί Kj-K,
M i,j [t/fnl/Jli

=1% Σ f ί Lm+ ί LΛ. D
i,j,k\(ijk) (ikj) /

Theorem (A.I), (i) The first Pontryagin number for an O(N) vector bundle with
transition function gffj.Gθ(iV) on a four-dimensional manifold is given by: PX(Ω)
= P(gij), defined in Lemma (A.I).

(ii) The second Chern number for a complex vector bundle with transition
functions g 7 eGL(JV, (C) on a four-dimensional manifold is given by: C2{Ω) = Q(gij)
— P(0i<; ), Q defined as in Lemma (A.2). •

Let us now use this theorem for proving Lemma(3.1). For T 4 we take:
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and for μ = 1,2,3,4

Uc

μ = {\xμ\Sε,εύxvύav-ε; Vv + μ},

taking ε-*0, with transition functions hOμ and gOμ as defined in Sect. 2. We do not
need the explicit form of the other sets 17? since the relevant intersections can be
described by the above alone.

It is obvious that we can read off from Fig. 1 the different contributions to
P(Qi) (in the limit ε-*0, δ-+0. In this figure Uc

3 should be labelled different, but
there will be no confusion in the following). It is easy to see that we have for T 4 :

^ ^

L ί
The second term in P{gt) needs somewhat more discussion. We will treat the case
where xe U\r\UCj has fixed xx and x2 and we can read off the contributions from
Fig. 1:

Λ ( ^ 1 3 ^ Γ 3 1 ) , 2 ^ 2 + Tr(/i0-2

1rf/ι02 Λ ( ^ 3 ) ^ 3 % = o

1 ^ o i Λ (d9i3)Ql3%2 = o

dgQ2 Λ (dh23)hn%=aί - (1-2) . (A.4)

It is conjectured that in general one can eliminate h13i # 1 3 , /z23, ^23 ^
(modZN):

(A.5)

We will only specialize to the situations mentioned in the beginning. First we
compute P(Ωμ) as defined in Theorem 3.1, see (3.18). By a gauge transformation we
can choose gOμ= U(xμ = 0\ hOμ= U{xμ = aμ). Equation (A.5) implies thus hi3 = h23

= gί3=g23
 a n d (A.4) is identical zero. So P(Ωμ) equals the contribution in (A.3).

Comparing with (3.19) we find P(Ωμ) = v(U).
In proving Lemma (3.1) we choose gOμ = ί, hOμ = Ωμ. Using (A.5) we can

eliminate h13, gί3, h23, g23 in the following steps. Put into (A.4)
hl3 = h02(x1 =0)g23 and h23 = hol(x2 = 0)g13 to find for the second term in P{gt):

Furthermore we have gί3 = g23 and using the consistency condition (2.2) the
second term cancels the same term with 1 and 2 interchanged. Combining (A.3)
with the above result generalized from the (1,2) to the (μ, v) contribution, correctly
taking care of the orientations, we find the expression of Lemma (3.1).

While completing this work we found that M. Luscher [17] derived a formula
of the type in Lemma (3.1) in a completely different context.
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