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Abstract. The equation z = 2G (z) — exp G (z) + 1 (and similar ones obtained
from it by substitutions) appears in connection with a variety of problems
ranging from pure mathematics (combinatorics; some first order, nonlinear
differential equations) over statistical thermodynamics to renormalization
theory. It is therefore of interest to solve this equation for G (z) explicitly. It turns
out, after study of the complex structure of the z and G planes, that an explicit
integral representation of G (z) can be given, which may be directly used for
numerical calculations of high precision.

1. Introduction

The equation to be studied in this paper [called the "bootstrap equation" (BE)],
namely

z = 2G(z)-expG(z) + l (1.1)

can, by substitutions, be brought into various forms. Take, for instance, the
substitution

G(z) = A + B H(w), (1.2)

which yields

f(w) = 2B - H(w) - Cexp [B - H(w}] +D9

C: = eA'9 D: = 2A + 1. (1.3)
Substituting further H(w) = In /(w) or any other function which can be explicitly
inverted, one arrives at a large variety of equations which are equivalent to
Eq. (1.1). We discuss therefore, without loss of generality, the solution of Eq. (1.1)
as a representative of a whole class of equations.
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Equation (1 .1) is well over 100 years old. To our knowledge it first appeared in a
combinatorial problem formulated by Schroder [1]: how many different ways exist
of placing brackets in an algebraic expression consisting of n elements which may be
arbitrarily permuted to obtain all possible combinations? Schroder finds that the
number of possible ways of placing these brackets is

SH = n\cH9 (1.4)

where cn is the coefficient in the power series expansion of the solution of Eq. (1.1):

G(z)=Σcnz». (1.5)
« = 0

Schroder uses Eq.(l.l) as a generating equation for the unknown coefficients.
As far as we know, the equation was almost forgotten for about 100 years and

rediscovered by Yellin [2] in the context of the statistical bootstrap model [3]. There
Eq. (1.1) appears in the following way (for the sake of brevity we over-simplify
here): let ρ(E) be a density of states of a system of energy E, that is, ρ(E)dEis the
number of energy levels between E and E + dE. There are situations in physics
where the system with energy E may be considered as being composed of an
unspecified number of subsystems, which themselves have the same composite
structure - and so on until one arrives at a basic constituent. Examples are hadronic
clusters (nuclei, resonances) in strong interaction physics or droplets in a gas near
condensation. If clusters then consist of clusters, which consist of clusters, etc., the
density of states ρ (E) will obey an equation of the type

- £ E fl <?(*«• (1-6)

In words: the cluster, described by its level density ρ(E)9 is either an elementary
object of mass = energy ra0 or it is composed of any number ^ 2 of subclusters
having level densities Q(Et) and adding up to total energy E. Introducing the
Laplace transforms

βm0), (1.7)
0

and Laplace transforming Eq. (1.6) immediately gives

, (1.8)

which is of the type (1.3) with /(w) = φ(β) = e-Pm°. The solution of Eq. (1.8) is
equivalent to having solved the "bootstrap equation" (1.6). Assume, for instance,
that the power series expansion (1.5) is known, then
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whence
00

(1.10)
n = 0

For E^> m0 the sum may be replaced by an integral; then

Q(E) => ±-cWmΛ. (1.11)
£>m0

 mO

Thus the coefficients cn are themselves close to the solution of the bootstrap
equation.

In realistic models, Eq. (1.6) is replaced by a more complicated one, where the
energy becomes a four momentum and where, apart from four momentum, other
quantities (Abelian or non-Abelian charges) are conserved and where the input
term may consist of a more complicated function of several variables. Independent
of all this, we always obtain Eq. (1.8) with the (here irrelevant) difference that a
number of variables (chemical potentials) equal to the number of conserved
quantities is added to β; the problem is always to solve Eq. (1.1). That one
invariably comes back to this equation, whether one starts from a Lorentz invariant
model or not and whether there are Abelian or non-Abelian symmetries or none at
all, clearly shows that the basic problem is Schroder's old combinatorial one, which
at his time must have appeared rather academic.

Another context in which Schroder's equation appears is in renormalization
theory. Here the Gell-Mann-Low function β(g) appearing* in the renormalization
group equations plays the central role. Pursuing a particular aspect, Khuri and
McBryan [4] are led to consider the differential equation

for a function G(g). This equation has the implicit solution

where f(g, a) is a known function of g and a. Putting

H(8}:=ln(^)+b) (U4)

gives

f(g,a) = bH(g)-e"to, (1.15)

which is of type (1.3). Solving Eq. (1.1) for G(z) is then equivalent to an explicit
solution of the nonlinear differential equation (1.12) and of a specific problem of
renormalization theory.

The interest of obtaining and understanding the solution of Eq. (1 .1) is obvious.
While the inverse function z (G) as defined by Eq. (1 . 1) is relatively simple, it will be
seen in the following sections that understanding the analytical structure as well as
constructing an explicit solution of Eq. (1.1) is a nontrivial task.
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In the next section we shall study the power series solutions on the principal
Riemann sheet; in Sect. 3 we explore the analytic properties of the map z <-» G and in
Sect. 4 the integral representations of the solution G (z) are worked out.

2. Simple Real Solutions of Equation (1.1)

2.1. Graphical Solution

The function z(G) can be easily drawn (Fig. la) and by interchanging z<->(j a
graphical solution G(z) is found (Fig. Ib).

For later use we note that z (G) has a maximum at z0 with value G0:

z0 = 21n2- 1-0.3863 . . . = j c 0 ,

G0= In 2 =0.6931 ... (2.1)

and that the second derivative d2z/dG2 φ 0; the function G(z) has at z0 a square
root singularity. For x > XQ no real G exists.

2.2 Power Series Expansion

By differentiating Eq. (1.1) and using (1.1) to eliminate exp G, we obtain

with the ansatz

G(z)=

(2.2)

(2.3)

1.5-

-0.51-

( α ) ( b )

Fig. 1. a Equation (1.1) along the real G axis, b Graphical solution of Eq. (1.1) for real x ^ x0
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and comparing coefficients we obtain the following recursion relation [5]

n— 1 n~1

cn=-——cn_ι+ Σ ckcn_k. (2.4)
n k=l

A closed formula (less convenient however than the recursion relation), and an
asymptotic formula for large n has been given earlier [6]: starting from the slightly
generalized BE

-αec + α, (2.5)

one now obtains α dependent coefficients

α1-' £ 1 / αfc Y^"1 / α£

For α = 1 this expansion was already known to Schroder [1].

2πlϊT^Γ (17)

The coefficients cl (α) obey a recursive differential equation [7]

Λ
cO'-ViW]- (2.8)

(X,̂  WUt

Our cz are obtained with α = 1.
The coefficients q are most easily calculated using the recursion relation (2.4).

One finds

cl = 1 c2 = 0.5

c
3
 = 0.6666 ... c

4
= 1.0833 ...

c
5
 = 1.9666 ... c

6
-3.8222 ...

c10 = 11.75 and cf$m?t = 75

c40= 2.33 x l O 1 3 and c\Tpi = 2.31 x 1013. (2.9)

The cz grow very fast [see (2.7)] and therefore the power series is useful only for very
small \z\; indeed one sees immediately from Eq. (2.7) that z0 is the convergence
radius [2] (d'Alembert's criterion) as we know already from Fig. 1 b.

2.3. Expansion at the singularity

Knowing that the singularity at z0 is of the square root type, we can make another
ansatz:

G(Z) = GO- Σ^V^'z". (2.ιo)
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Using again the method of Sect. 2.2 we obtain

Sn= - ~ n+l-k

The first few coefficients are

GO = ln2=: 0.6931 . . .

sί = ί J2 = 0.1666...

^3 = 0.2777 ... x l O " 1 s4 = 0.3704 ... x 10~2

j «= 0.2315 . . . x l O " 3 jfi = 0.5870 . . . x 10"4.

The series (2.10) converges rapidly in the physically interesting region 0 g x rg x0

and has been used extensively in our numerical work [8].

3. The Analytic Structure of the Bootstrap Equation

In some applications the bootstrap equation (1.1) results from Laplace
transforming another (microcanonical) version [Eq. (1.6)] of it. To obtain the
solution of the original problem, one must do an inverse Laplace transform on
G(z). For this, the singularities and the Riemann sheet structure must be known.

In this section we discuss the analytic structure of the bootstrap equation. Its
knowledge will allow us to write down an integral representation for G (z) in Sect. 4.

3.1. Singularities

We already know [see (2.10)] that z0 = 2 In 2 — 1 is a square root branch point from
which a cut connecting two Riemann sheets must start; we take this cut along the
real z axis from z0 to oo.

This is not the only cut, because the substitution G-> G + 2πi in Eq. (1.1) leads
immediately to

G(z + 4πO = G(z) + 2πί, (3.1)

which implies that the square root cut along the real axis is repeated by parallel cuts
at distances ±n 4πz; n = 1,2, . . . , oo. Equation (3.1) implies further that the
mapping z++G has some strip structure which will be explored later.

The discontinuity along all cuts is the same as that along the real axis cut: from
Eq. (3.1) we read off

disc G (z + n - 4πi) = disc G (z), (3.2)

so that we need only calculate the discontinuity of the real cut: put

(3.3a)

, (3.3b)
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then Eq. (1.1) gives

Noting that

we now consider

= 2y — e9smy.

x = xQ + ξ xQ = 21n2 - 1,

We obtain from Eq. (3.4)

e9 = —.—- [ > 0 by definition].
smy

Inserting into Eq. (3.6) we find

_ , 2y — ε 2y — ε
x0 + ξ = 2 In -A --- ' - cos γ + 1 .

sin 7 smy

With x0 = 2 In 2 - 1 we obtain

> - ε/2 A y - ε/2; -+1 - . ' cosy
smy smy Jε-»0

569

(3.4a)

(3.4b)

(3.5)

(3.6a)

(3.6b)

(3.7a)

(3.7b)

(3.8)

At ξ = ε = 0 we must have y = 0, which fixes the solution of (3.8) to be chosen.
Letting y vary from 0 to π, ξ goes from 0 to oo along the entire cut. As Eq. (3.8) is
invariant under y-> — y, ±y correspond to the same position on the cut. To see
which sign of y corresponds to the upper lip of the cut, we use Eq. (3. 7 a) with y -> 0 +

to find y - ε/2 = yeβ/2 > 0, hence y > ε/2; thus (ε > 0) -> (y > 0).
The discontinuity (3.5) becomes

disc G (x) = g (x + h) — g(x — IB) + / [y (x + IB) — y(x — IB)]

(3.9)

Equation (3. 7 a) ensures that the real part of the discontinuity vanishes.
Recalling Eq. (3.2) we have finally for all cuts:

disc G(xQ±n- 4τπ + ξ) = 2iy (ξ) ,

L — h i —:— cos y
smy smy

I
, (3.10)
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Apart from the branch points x0±n 4πz no other singularities exist for
\z\ < oo. In fact from Eq. (1.1)

dG 1

which exists everywhere except at G = In2 ± 2πin.
We find for ReG-> ± oo

Re(?-»oo :G~ln(-

ReG-> - oo:G~z/2.

Hence z = oo is a logarithmic winding point.

zn\ = 21n2 — l±n 2πi (square root branch points)
and z = oo (logarithmic branch point) are the only
singularities of G (z).

(3.11)

(3.12a)

(3.12b)

(3.13)

5.2. The Map z<-*G and the Rίemann Sheet Structure

The image of the cut is already partly known from Eq. (3.8): for ξ-> oo we have
y - » ± π ; a t £ = 0 w e have γ = 0. The way y moves away from there, is found by
expanding Eqs. (3.4a) and (3.4b) near the branch point. Put

then Eqs. (3.4a) and (3.4b) become

ξ = 2[τ — eτcosy],

ε — 2 [y — eτsmy].

(3.14)

(3.15a)

(3.15b)

For ξ, ε, τ <^ 1 and expanding up to y3 one finds from the condition ε-»0

y= ± ] 6 τ , (3.16a)

(3.16b)

Therefore the image of the cut opens up to the right like a square root and
asymptotically approaches ± π. This is shown in Fig. 2 together with the image in z
of the imaginary axis Re G = 0. Shaded regions are mapped correspondingly and
the same pattern repeats itself in parallel strips of width 2π in the G plane and 4π in
the z plane. Indeed, as seen from Eq. (3.4b), the parallel straight lines y = ± nπ are
mapped onto straight lines y = ± 2nπ.

The interior of the cigar-shaped region (enclosed by the image of the cut) goes to
the second sheet of the z plane. This is seen by taking a vertical straight line in the G
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plane from the lower to the upper border of the cigar. Let g > 1. Then

Hence the image of this straight line is almost a complete circle of radius R = e9,
starting at the lower lip of the cut, going once around in the second sheet - without
meeting any singularity! - and coming up at the upper lip. In Fig. 3 we illustrate this
with a few numerically computed line mappings.

4τr.

3τr -

2ττ -

Fig. 2. The map z<-»G illustrated in a particular region. Shaded areas are mapped onto each other. The
curves enclosing the cigar-shaped areas of the G plane map onto the cuts in the z plane; the sinusoidal line
in z is the image of the imaginary axis in G

z -plane G-plane

Fig. 3. Mapping of a few selected curves. The broken straight line in the cigar (G plane) goes into a loop
in the next lower sheet of the z plane
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If the straight line is continued through the next cigar, the same happens except
that now we dive into a third sheet. And so it goes on: each cut connects the
principal sheet (the one on which all cuts lie) with exactly one of the other sheets, as
required by the fact that the points x0 + 4πin are square root branch points. There
are infinitely many other sheets connected to the principal one in this way, each of
them having exactly one cut in common with the principal sheet. Figure 4 shows
how a straight line extending through several cigars is mapped onto the consecutive
z sheets and Fig. 5 shows the topology of the Riemann z sheets in a perspective view.

As a last question illustrating the mapping G<->z we ask: which points G fc-»z
= 0? The principal solution is G = 0 «->z = 0 but for each z sheet another Gkφ0
goes to z = 0; we find them by putting [see Eqs. (3.4)]

(3.18a)

(3.18b)

Excluding the trivial solution g = y = 0, Gk must lie inside the kth cigar, hence g > g0

= lπ2. Furthermore, Eq. (3.18a) implies cosy^O, hence

(3.19)

If y is a solution of Eqs. (3.18), then —y is also a solution; we restrict the discussion
to y > 0. Inserting g from Eq. (3.18b) into (3.18a) we obtain

(21n2 + 1 -I-21ny - 21nsiny) siny = 2ycosy. (3.20)

As we know that γk jumps by steps of roughly 2π, we put

yk = y<°> + fc 2π, (3.21)
then

(3.22)

With (3.21) we obtain, using 21n2 + 1 = 21n(2 ]/e),

^Γ"'111 ς i n v W =COSy*0)' (3'23)

7k sm7k

Letting now fc-»oo, the left-hand side goes to 0+; hence

so that

, (3.25a)

gk -> In [π (1+4*)], (3.25b)

y fc j t-^exp(g fc/2). (3.25 c)
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Ύ
• —. z-plane

NN n= I

\\ cut

573

cut

cut

G-plane

-27Γ

Fig. 4. Mapping of a rectangle in the G plane onto the z plane. The broken parts within the cigars map
onto (almost) circular loops in different z sheets, from where they emerge at the corresponding cuts to
continue (fat full curves) in the principal sheet to the next cut, where they dive to another sheet for
another loop

// \

Principal
Sheet

/ // V

/ // Y J
y // // // // at/ w I)
/ \l\2τr\ \/87ri
/ ]ί i

V4τri X
i/

>

^ ^ L
/ -4τrι -87ΓI -I2ττi -I6ττi >

/, \ . \V

Fig. 5. Perspective view of the z plane cut open along a line parallel to the imaginary axis (Re z > x0)

Thus the points Gk -»(z = 0) lie on an exponential curve in the G plane, one in each
cigar. The exact solution of Eq. (3.23) requires numerical computation; it turns out
that the asymptotic expressions (3.25) are already good at k = 3.

4. Integral Representation of G (z)

4.1. On the Principal Sheet

For convergence reasons we use a once subtracted Cauchy integral:



574 R. Hagedorn and J. Rafelski

]

I6ττ
A + iB

\

A-

12-τr

8τr

z
• 4ττ

.Z'

-4τr

-8ττ

-12-τr

B -16 7Γ

k y

A + i B

*

j

-

-

^
A- i

X

\

,
B

G- plane

Fig. 6. The integration path for Eqs. (4.1) and (4.2), shown in the G and z planes (principal z sheet). This
path is pushed to oo in all directions in the order first #->oo, then A-^ co. Apart from the cuts, the
vertical boundary lines give a finite contribution

where the path of integration is indicated in Fig. 6: a large rectangle contouring the
cuts, the sides of which we push to infinity. Thus

-A + ιB -A-iB A-iB A + iB A ίB

2πίΔG= j + j" + j + j +f £ disc <?(*)<&. (4.2)
A + iB -A + iB -A-iB A- iB x0 - iB

"boundary terms"

We shall sum over the discontinuities under the last integral, because the sum can,
for B-^ oo, be evaluated. This implies that in all other integrals the limits must be
taken in this same order: first B, then A to oo. All individual integrals indeed depend
on this order, but the final result of course does not. From (3.10)

With
1 ξ — z — 4πin

<43)

(4.4)
ξ + 4πw - z (ξ - z)2 + (4τm)2 '

we see that the imaginary part cancels in the sum. With ξ — z = t we obtain [9]

£ t ' "
(4.5)
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so that

1 °° ί
coth

1 ξ

575

(4.6)

Δ Gcut is not yet in an explicit form since γ (ξ) is the principal root of the transcendent
Eq. (3.10). We therefore introduce y as integration variable. From (3.10)

cosy y

sin y sin2 y
(4.7)

where y goes from 0 to π when ξ goes from 0 to oo. With this Δ Gcut and an additional
term (z — z1)/2, which comes from the boundaries of the integration and which will
be derived below, we obtain on the principal sheet the integral representation

G(τ\ (tr(Z) I
Z-Zί

r"' '{w-j^coth 4

Γ y
H In I 1- I AH . | i

|_ siny

Λ π

z ξ

cosy!

" s iny j

/ 2ycosy y2 \

Y sin 7 sin2 <yy

ω-^Ί
4 J'

valid on principal sheet.

(4.8)

For numerical calculations it is simplest to put zί = 0, since G (0) = 0. By numerical
inspection one finds that the integrand is a rather well-behaved function as long as z
does not come near to the branch points. The use of 51 points and Simpson
integration leads to results within drawing accuracy for real z, as one easily checks
by inserting the numerical result of the integration into Eq. (1.1).

4.1.1. The Contribution of the Boundaries. Consider first

(4.9)

Choose B -(2/7 + 1) 2π, then | y | = (2w + l) π while x = 2g + 1 + e9 so that |g | is
bounded of order A. With | g | bounded and | y |« B/2 the integrand vanishes like 1 /B
for B-»oo. As we are obliged to let first B^co, the integral is zero for all A and
remains zero for A -»oo (the limits taken in reverse order lead to a result φ 0).

In the same way the integral (A + iB) -> ( — A + iB) vanishes. Thus

[ A-IB -A + iB~\

ί + ί =°
.-A-iB A + iB J

Next comes the integral — ίB ^—A — i

(4.10)

.. (4.11)
-A-iB
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From Eq. (3.12b) we know that for Rez-> — oo, G«z/2, hence

-j -A + iB 7 _ 7 °° Jv 7—7
lim lim-f, J =-2--^- J --^— = ̂ λ. (4.12)

Λ-+OO *->oo 2τπ _/_.5 4π Λ) -,4 + zy 4

This is half of the boundary term included above in Eq. (4.8). (Note that the reverse
order of limits would have given zero.)

The last boundary integral, A — ΪB-+A + ίB, goes over the strips between the
cuts: in the G plane over the infinitely narrow intervals [containing the y values
(2n + l)π] between the cigars (see Fig. 2), where, for A very large

G(A + ίy)&lnA + (In + 1) zπ,

(4.13)

Therefore the nih contribution is, for A -* oo,

Z — ZΛ (2» + l)2π / 1 \2

/Λ = -—LΠn^ + /π (2/ iH-l) ]- J # — — . (4.14)
Zπ 2«2π V* + ZJ>/

To sum over n, we define the saw-teeth curve:

ε (y) = 2π (2 n + 1 ) - y [for 2n 2π ̂  y g 2π (2n + 2)] ,

β (4π«) = 0 and continued periodically for — oo < n < oo , (4.15)

which is an odd function of y. With its help the factor

(2/ι + l)π = ̂  + εOO) (4.16)

can be taken under the integral. The sum over n becomes then an integration over y
from — oo to oo :

I A + iB 2 — z °°
lim lim - — ί =— - — ̂ ln^4 ί dy

* J
^

B-.OO 2πi A*_iB 2π Λ J (A + iy)

These integrals can be evaluated by standard techniques with the result

\ A + iB 7 __ -
i 1 -1 Γ L Δ\lim lim — J =———,

Λ^OO 5-^00 2πι A_ίB 4

which gives the other half of the boundary term in Eq. (4.8).

4.2. On the nth Sheet

We call "wth sheet" the sheet connected to the principal sheet by the cut starting at
x0 + 4πin. Thus the sheet connected to the principal one by the cut along the real
axis is the 0th sheet.

The generalization being trivial, we consider first the 0th sheet. The path of
integration is indicated in Fig. 1. Note that the lower lip of the cut in the nih sheet is
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z - plane G - plane

Fig. 7. The integration path for Eq. (4.19) in the zeroth z sheet (below the principal one) and in the G
plane. The contribution of the circle vanishes when its radius goes to GO

connected to the upper lip of the nih cut of the principal sheet; hence

disc<7(*(II)) = -2iγ(x). (4.18)

In the present case we do not need to sum over infinitely many cuts because there is
only one. No problem of sequence of limits occurs. We now have (see Fig. 7):

(4.19)
_cut circle.

where the circle corresponds to the straight line A^B crossing the cigar in the G
plane. We then have from Eq. (4.1)

J Λ G ( f )
2™ circle y 2πί R

(4.20)
^ >

where we have used the fact that for Re G -> oo the circle mapped onto the straight
line has radius R ^exp [Re G] as shown in Sect. 3. For R-> oo the integral (4.20)
vanishes. The same is true for the nih sheet.

The cut contribution can be written down immediately for the nih sheet:

. (4.21)

Changing the integration variable as in Eq. (4.7) we obtain finally

[CW-o

f £ Λ\Λζ — C u )

( Z ι } ] ( n )

~zι Γ Λ (Λ 2^c(
1 /TV 1 1 —\ uγ \ i

π o A sιn

Γ y
Ή In I 1— z in . i i

3sy y2

- 11 . 2

pcosy~|
'

V i
)) (ξ + 4πin-z)(ξ + 4πin-zl)

valid on n t h sheet
with branche point
at x0 -f 4πin.

(4.22)
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Again a numerical check with 51 points and Simpson integration gives (for real x) a
precision ofAx/x < 10 ~4. This concludes the inversion problem posed by Eq. (1.1).
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