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Abstract. We show the existence of a first-order phase transition in the
v-dimensional Potts model for v ̂  2, when the number of states of a single spin
is big enough. Low-temperature pure phases are proved to survive up to the
critical temperature. Also the existence of a first-order transition in the
v-dimensional Potts gauge model, v ̂  3, is obtained if the underlying gauge
group is finite but large.

1. Introduction

In [1], Potts introduced a generalization of the Ising model by enlarging the
number of values taken by spins residing on lattice sites from 2 to an arbitrary q,
and considering a nearest neighbour interaction that is, up to a factor, — 1 when
the neighbouring spins are alike and 0 when they differ. The problem of the
description of the phase structure of the Potts model was later studied by many
authors using different methods. We refer the reader to the recent review by Wu
[2] for a description of present knowledge about the Potts model. Existent
rigorous results are confined mostly to the Potts model on a two-dimensional
lattice and are based on its equivalence to an ice-rule vertex model. In particular it
seems to have been proven [3, 4] that the two-dimensional Potts model exhibits a
first-order transition in temperature for q>4. Essentially nothing was proved for
three and higher dimensional lattices though it is believed that the phase transition
is first order for q^4 (or even 3) in three dimensions and q^3 in higher
dimensions. The conjecture that for large q, the Potts model undergoes a first-
order transition is also supported by Pearce and Griffiths [5] who prove that for a
lattice of any dimension the mean field approximation of a free energy of the
model is exact in the limit g->oo. At the same time, the suitably rescaled limiting
mean field free energy can be easily computed and it turns out that its behaviour is
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consistent with a first-order transition. One aim of the present paper is to
understand and prove rigorously the existence of that first-order transition.

Another model we will be interested in is the Potts lattice gauge model. It was
introduced by Kogut [6] as a generalization of the Ising lattice gauge model [7, 8].
The gauge version of the Potts model seems to be even more susceptible to
developing a first-order transition than its conventional counterpart.

The phase transition is indicated by Monte Carlo simulations that show clearly
a first-order transition even for the Ising gauge model on a four dimensional lattice
[9], by the large q expansions investigated in both Hamiltonian (continuous time)
[6] as well as Lagrangian [10] forms of the model, and by the fact that the mean
field approximation (in its fixed gauge version) suggests a first-order transition
while being exact in the limit q-+co [11].

The present paper is the result of our attempts to understand the nature of the
conjectured first-order transitions. In this, a recent article of Dobrushin and
Shlosman [12] was very instructive for us. We found that for large q, in both the

.Potts and Potts gauge models, the existence of a first-order transition can be
physically understood and rigorously proved by approximately the same ideas as
in [12] where the phase transition was studied in terms of energy-entropy fighting.
The critical temperature at which the transition occurs coincides with the point at
which energy and entropy factors become equal.

It is easy to see by the usual Peierls arguments that for low temperatures there
are q different translation invariant states in Potts model. Our technique implies
that those q pure states survive up to critical temperature Tc. At this temperature
Tc yet another additional state arises (the state of complete chaos), so there are at
least (g + 1) different states at Tc. For T>TC it seems that only one state (the
chaotic one) survives. The fact that our estimates can be used to prove that the q
states persist up to the critical temperature was originally pointed out to us by
S. Pirogov.

Our main tool is the method based on the use of reflection-positivity (RP) and
related "multiple reflections" or "chessboard" estimates. It was introduced in [13]
and has been systematically studied and applied to phase transition problems in
[14-16]. One can also consult [12] where the setting is exactly what we need.

The paper is organized as follows. In Sect. 2 we formulate our main results and
indicate the strategy of the proofs. Section 3 contains a simple entropy model
which is not covered by [12] (it lacks an energy barrier). This model seems to be of
independent interest. After being able to prove first order transition in it, we
became convinced that Potts models can be treated in a similar way. Our theorems
about the Potts model are proved in Sect. 4. In particular it includes our definition
of contours in the Potts model that seems to be new. Namely, we consider
contours separating regions with different elementary contributions to energy
(there are only two possible values of interaction energy of two neighbouring spins
in the Potts model) since we are looking for a phase transition that exhibits itself in
a jump of a mean internal energy. This is to be compared with the Peierls
argument for the Ising model, where to prove a jump in magnetization, one
introduces contours between regions with different elementary magnetizations
(+1 and — 1). The remarkable fact is that our contours, unlike the customary
Peierls ones, have small probabilities for all temperatures. Section 4 contains all
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the central ideas of this work. Finally Sect. 5 is devoted to the proofs for the gauge
Potts model. The general technique is approximately the same. A specific feature
of our technique in a gauge model case is its inapplicability in two dimensions, as
should be true for any method that deals with phase transitions in gauge theories.

2. Statement of the Results and General Strategy of the Proofs

To introduce the g-state Potts model we attach to every lattice site i of a
v-dimensional lattice Zv a spin variable σ(i) that takes values in the set {1, ...,#}
and define the (formal) Hamiltonian by

H(σ)=- Σ<W ) (2-1)
(ί,j)

Here the sum is over pairs of nearest neighbour sites (zj) and δa>β is a Kronecker
delta. We refer to a pair (ij) of nearest neighbour sites as a bond f = (ij) and
denote by L the set of all bonds on the underlying lattice TD '. On the set of all
configurations σ = {σ(i\ ieZv} we introduce for each bond ^ = (ij) the indicator
PJ(σ) of the event {σ\ σ(0 = σ(/)} and the indicator P*(σ) of the complementary
event P* = 1-P;\

Theorem 1. A v-dimensional q-state Potts model undergoes a first-order phase
transition in temperature whenever v^2 and q is large enough. Namely, for each
v^2 there is a number q(v) such that whenever q^q(v) there exist an inverse
temperature βc = βc(q, v) and two different translation invariant Gibbs states < )£
< > ĉ of the q-state Potts model at the inverse temperature βc such that <PJ >£ > \
ana <P/ >£ > \ for every <

Even more is true. For q large enough the state <( }£ from the above Theorem
can be decomposed into at least q pure components. We shall distinguish them
using the indicators P*(σ) of the events {σ|σ(ί) = α} which are defined for each i^TΠ
and αe {1, . . ., q}. It was Professor Pirogov who called our attention to the fact that
the technique we used to prove Theorem 1 also proves the following.

Theorem 2. There is q^(v)^q(v) such that, for each v^2, q^q^(v\ and β^βc(v,q\
there is a collection of q translation invariant Gibbs states <( >Jj, α = l, ...,g, of the
q-state Potts model at the inverse temperature β, such that for each ιeZv, /eL, and
αe{l,...,4) we have <P?>J^f^"1, <Pγ

i>
a

β<q~1 whenever yΦα, <P;>?>i, and
>1 as β^π.

We should mention that the bounds ^(v) and q^v) we actually get are
ridiculously large and we did not make any attempt to optimize them. We don't
think they could be improved to the point that they say anything about the
controversy concerning the nature of the transition for v = 3, q = 3.

Now we turn our attention to the gauge Potts model. We generalize slightly the
setting of [6] and [10] by considering as the gauge group G any finite (not
necessarily abelian) group with q elements. By a configuration σ of the model we
mean a map σ : L-»G from the set of all oriented bonds (ordered pairs of nearest-
neighbour lattice sites) of TΓ into G such that σ(ij) = σ(j, ΐ)~ 1 for each bond (ιj)eL.
With each plaquette Π we associate a plaquette variable σG defined by σπ
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= σ(h,i2)σ(ί2,i3)σ(iι,i4)σ(i4,iι)> where *ι> *2> *3> *4 are the corners of the plaquette D
ordered along a path that goes around Π. Actually σπ is not well defined - it
depends on the orientation and the choice of the starting point of the path around
Π But what does not depend on this is whether σD = e (e being the unity element
of G) (respectively σ D φe) - i.e., whether the plaquette Π is nonfrustrated
(respectively frustrated) in the configuration σ. Thus the indicator Pg(cr) of the set
{σ| σπ = e} is well defined for each plaquette Π PQ is defined by P^ = 1 — P^. The
Hamiltonian (or one should rather say euclidean action as we are in the realm of
field theory here) of the gauge Potts model is formally

Theorem 3. A v-dimensional Potts gauge model with a q-element gauge group G
undergoes a first-order phase transition in temperature whenever v ̂  3 and q is large
enough. Namely, for each v ̂  3 there is q(v) < oo such that whenever q ̂  q(v) there is
an inverse temperature βc = βc(q, v) for which there are translation invariant Gibbs
states < >£ and < > ĉ corresponding to the Hamiltonian (2.2) such that <Pπ>/Γc> 2
and {Pπ)^c

> 2 for eacn plaquette Π

The idea of the proofs is based on a general scheme that was used in [12] to
deal with first-order transitions in temperature. Let us recall it briefly. Let H be a
Hamiltonian and for each β let < yβ be a Gibbs state that results by thermody-
namic limit from finite volume Gibbs states with Hamiltonian H, inverse
temperature β and periodic boundary conditions. Let P1, P2 be the indicators of
two disjoint local events (Pr(σ) = 1 or 0, r= 1, 2, P1(σ)P2(σ) = 0). The validity of the
following conditions (to be referred to as Hypotheses 1.-3. in the sequel) is
sufficient for the occurrence of a first-order transition.

/I 1 /I — A\2

Theorem 4. [12] Let 46 [̂ ,1], Be [0,1] be such that £< -- / - , and let

[βι>βιιl 0<^ι<j8π<00' be an interval of inverse temperatures such that

2. (PlP^y^B for each βεlβtβπ),
Here Pί(σ} = P(T_iσ\ where Tt denotes a lattice translation (so Pr

Q =

3- <Pl>h>±,<P2>β>±
Then there exist βce [βI? βn~] such that there are at least two different Gibbs states

< >J3c, < >"c at the temperature βc and corresponding to the Hamiltonian H;
moreover one may choose them in such a way that

/ p l \ I ^1 j / n 2 \ I I ^ l //} o\
\r '$c 2 ana \r /βc

> 2" \2"3)

Proof. The proof of this statement is essentially contained in Propositions 3.1-3.3
of [12]. For the convenience of the reader we present here an outline of it.

First of all one defines (non-local) observables

Π1 = lim Λ Σ Pi ,"
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these limits exist in L1« yβ) for each β according to the Birkhoff ergodic theorem.
Using Hypotheses 1. and 2. one is able to show the existence of two positive
numbers a and b such that

(i) The probability Prob{σ\Π1(σ) + Π2(σ)^a,Π1(σ)Π2(σ)^b} computed in
the state < >jβ is larger than some positive ε for each /Je[j8l5j8π].

(ii) The following inclusion holds

{0 ̂  x, y ̂  1, x + y g; α, xy ̂  b, x ̂  y} C {x, j; : x > \ + (5} for some small (5 .

Indeed, one has

and

— -
1-α

for each αe[0, A], fee [5, 1]. The conditions (i), (ii) hold once

and

To fulfill (2.4) and (2.5) we take e.g.

1 -

To verify (2.4) we used the condition B<\ --

Now, from (i) and (ii) we infer that for each /?e[/J l5/?n] at least one statement

holds true. Let Ar = (σ\Πr(σ)^. j + δ}, r=l,2, and define a mapping

r [ft, AJ -^{1,2} in such a way that Pτob(Ar(β)) ^ - whenever βe \_β{, 0,,]. For each

we define a new state < >^ by conditioning < >^ with respect to the
r(β)event A

whenever B is a cylinder set and with /( ) denoting the indicator function. The
state < )Γ is again a translation invariant Gibbs state with Hamiltonian H and at
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inverse temperature jδ[17]. From its definition it follows that <Pr(/*)>J >^ + δ for
each βe\βM Now let M1=r-1({l}) = {j8e|j8,,j8I!], r(β)=ί}9 M2 = [ft, /y\Mr

Both M1 and M2 are nonempty; hence there exist some βc belonging to the
intersection of the closures M^n M .̂ Finally one shows the existence of states
< yl

βc, < >"c with desired properties for the above βc by compactness arguments.
In Sects. 4 and 5 we shall actually consider complementary events P1, P2 : P1(σ)

+ P2(σ) = 1. Then Hypothesis 1 of course holds with A = 1 and in Hypothesis 2 we
can choose any B < .̂ When referring to Hypothesis 2 in Sects. 4 and 5 we shall

have in mind such a choice of B. Also we shall meet situations when Km (P1 >β > \
β^O

and lim {P2)^ > \. In such cases we choose βl = 0, βu = oo, having actually in mind

any βl small enough and βn large enough.
Moreover, when proving Theorem 2 we shall use the following refinement of

the above statement for complementary P1 and P2:

Theorem4'. Let P1+P2 = 1, and let Be[0,1], Ce&l), B<C-C2 such that
2'. <P/P2>^£ for each /?e(0, oo).
3'. lim<P1>/?>C, lim <P2>Jff>C.

Then there exist βce(0, oo) and two different Gibbs states < >^c, < >"c such

Proof. The proof goes along the lines of the proof above with a=l,b>B and (ii)
replaced by {0^x,j;^l, x + y=l, xy^b, x^y}c{x,y:x^C + δ}.

When verifying Hypotheses 1-3 for our models we shall use the fact that they
fulfill a property known as reflection positivity (RP). This allows us to use a
powerful technical tool - an estimate that is referred to as a "multiple reflection" or
"chessboard" estimate. The reader should consult [12-16] for a detailed account.
We shall mention only the simplest variant of it that may be stated as the following
correlation inequality:

Let A C 2ζv be a finite box and < > be a Gibbs state in Λ with periodic boundary
conditions and an interaction that is RP with respect to reflections in all planes
perpendicular to coordinate axes running mid-way between neighbouring points
of A. Let Fifo(i)\ ίeA be a collection of one point observables. Then

ieΛ ίeΛ \jeΛ

Actually there are situations where one disseminates a local variable F. over all A

using reflections with respect to other planes. Then the power — may be replaced

fc
by -—- with suitable constant k. We shall not go into further details about it here.

3. "As a Warmup,..." [16]

Our aim in this section is to construct and investigate a model that would keep
some features of the double well model studied in [12] while retaining qualit-
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atively some features of the Potts model. First of all, let us recall the results of [12]
concerning the Hamiltonian

:>*-*/, (3.1)

where σ elR", /c>0, the first sum is over lattice sites and the second sum is over
pairs of nearest neighbours U is a function of a shape shown in Fig. 1 (for n = 1).

U

Fig. 1

a b
Γ R~ ^barrier "•" R+

The main features of the potential U may summarized as follows:
I. At the point a the function U has a sharp global minimum (sharp means

here that "mass" or second derivative at a is very large).
II. At the point b the potential U has a mild local minimum (mild means that

the mass of it is much smaller).
III. Those two minima are separated by a barrier which is high and wide

enough.
IV. The minima are placed far enough from each other (the distance is of the

order /c"1).
Let PO = P+(σ) be the indicator of the set {σ|σ0eR+}, analogously PQ . The

main Theorem of [12] states that under conditions of the type I.-IV. there is βc

such that there are at least two different Gibbs states < >£ and < > ĉ with
Hamiltonian (3.1) and at inverse temperature βc\ moreover < P o > / > 2 >

<Po >βc>Ί
What conclusions can be drawn from it for the Potts model? If we try to find

some similarity with the Potts model, we cannot proceed too literally since there is
no chemical potential in the Potts model and one has to simulate it by blocks of
spins. Then one sees something like I. and II. also in the Potts model. Of course, a
local minimum [modelled by configurations of zero energy (2.1)] coincides now
with the global maximum. But this, after all, is not a contradiction. The more
serious difficulty concerns the barrier one cannot find anything like that in the
Potts model. So the question arises whether the theorem above can be proved also
in the situation without a barrier. We now address this problem.
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Let us consider a model described by the Hamiltonian

(3.2)

where /

U(x) =

-hoo x< -1,

0

1

+ 00 N<x,

with ΛΓ>0, and

V(x,y) =
o

Let P0 =P0 (σ) be the indicator of {σ|σ0 ̂ 0}, and let PQ =P^(σ) be the indicator
of {σ|

Theorem 5. There is N(v) > 0 such that for each N ̂  N(v) the model described by the
Hamiltonian (3.2) undergoes a first-order phase transition: there exists βc^l such
that there are at least two different Gibbs states < >£, < > ĉ, corresponding to the
Hamiltonian (3.2), and at inverse temperature βc. These states may be chosen such

Proof. We consider only the case v = 2, when a Gibbs state < >/?>yl corresponding
to the Hamiltonian (3.2) in a rectangle rotated by 45° is RP with respect to oblique
planes {z'eZ2, i1±i2 = n}, neZ1. As for the general case one has to use planes
perpendicular to the coordinate axes as we will do in Sect. 4. Denote by P£ = P£(σ)
the indicator of {σ|σ0e[0, 1]}, P^ = P+ - P£. We are going to verify
Hypotheses 1-3 of Theorem 4 with P1 =P+, P2 = Po , & = !, j8π= + oo, 4 = 31/32,
5 = 1/16, provided TV is large enough:

1. We shall prove that <Po>^0 uniformly in β as AΓ-^oo. By a chessboard
estimate

< O\ΪΛ\

with P^ an indicator of the event ), 1] whenever i1 + i2 is even}. Now

ML
2

where we integrated first over "free spins" σ;, il + i2 = odd, keeping the rest of them
fixed, and then over the rest of them. Estimating the partition function ZA(β) from
below by
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one has

and thus

<P°>/ί;yl^e-'ί(]Ve-'ϊ+J^)[l+(Ne-Tl]~W. (3.3)

To conclude, we infer that if β is such that Ne~β^ .-, then the right hand side

2 \
of (3.3) ^e~β(2Ne-β)(Ne~β)-2=—, and on the other side if Ne~β^ -+—, then

the right hand side of (3.3) g - = , S1nce ^e [1,

2. To verify Hypothesis 2 we introduce contours of a configuration in the
usual manner as connected components Γ of the set of bonds (ij) such that σ > 1
and σ/<0 or σ . <0 and σ; > 1. (Compare e.g. with [12], Sect. 4 where the setting is
exactly the same as we need here.) By a standard chessboard estimate (see [14-16]
or [12], Sect. 4 for details) and Hypothesis 1, the validity of Hypothesis 2 is

1

ensured once we show that <P^ > '̂ is small enough, where P^ is the indicator
of the "universal contour" {σ|σ^0 for i1+i2 even and σ f > l for ί 1 + i2 odd}.

Actually
ML

V Λ )β>Λ= (\r*-β\\Λ\

Since V(x9y)^l if x^O, y^l. Hence

which is uniformly small for βe [j8I? ̂ π] as long as TV is big enough.
3. By a chessboard estimate

where P^ is the indicator of {σ|σ ^0 for il + i2 even}. At the same time

since F(x,j;)^0 and ZΛ(β)^L Hence <Pj> j J >^^(l+Nβ~ / ')(ΛΓe"0 J which goes to

y

{σ|σ f^0 for i1-\-ί2 even}.

zero as j8-»jβπ. Again by chessboard <PQ >/J>yl ̂  <P^ >ĵ |1 , P^ being the indicator of

ML



502 R. Kotecky and S. B. Shlosman

hence

which is as small as one needs once N is sufficiently large. This completes the proof
of Hypothesis 3 and hence of the Theorem.

Remark. Because all estimates were rather rough, there is enough room for
different generalizations of Theorem 5. For example, one may perturb slightly (in
C° sense) the chemical potential, or modify the interaction by introducing e.g.

λ(x-y)2

with λ small (of an order N~2). Unfortunately the result seems to fail in the
physically interesting case λ=l (though we have no proof). This makes the model
somehow artificial.

4. Proof of the Existence of a Phase Transition in the Potts Model

We shall handle in detail only the case v = 2 and then indicate how to extend the
argument to a general v ̂  2. Let L be the set of bonds of the lattice 2£2, and for each
/eL denote / l 5/ 2e2£ 2 the two endpoints of the bond /. As in Sect. 2 we define PJ
to be the indicator of {σ\σ(^1) = σ(^2)} and P* = 1 — PJ . If P*(σ)= 1 for some σ, we
shall call the bond / excited in the configuration σ. It will be convenient to picture
configurations using a graphical notation : a wavy line — for an excited bond and
a solid line — for a nonexcited bond. Now we apply the scheme of Theorem 4 with
P1 =PJ and P2 = P* where / is any fixed bond. Note that one slight change is
necessary in the proof of the statement that Hypotheses 1-3 imply the existence of
a phase transition. Namely, instead of defining Πr by

one defines

with LΛ denoting the set of bonds in the volume Λ. Since <P1+P2> = 1, we
proceed immediately to the Hypothesis 2.

We shall introduce certain contours and transform the necessary estimate into
an evaluation of the probability of contours. This will be further transformed by
chessboard estimates into the evaluation of the probability of a "universal
contour" that will be finally done "by hand." When referring to chessboard
estimates we shall use the obvious fact that the Potts Hamiltonian (2.1) is RP
under reflections with respect to the planes {ieZΓ; ίa = n}, α=l, ...,v, neZ1. The
Potts Hamiltonian is for v = 2 also RP under reflections in oblique lines {feZ2, iί

±ί2 = n},neZl for a suitable choice of periodic boundary conditions (namely, on a
rectangle rotated by 45°). This second RP leads to some improvements of our
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estimates, but because it cannot be generalized to higher v, we shall not present it
here (contrary to Sect. 3 where we were not very interested in generalizations to
v>2).

We shall define contours in two steps. First we introduce precontours - border
lines between excited and nonexcited regions. Given a precontour, the pattern of
excitation of the bonds in a close neighbourhood of it may be further specified -
defining thus a contour.

Let thus σ be a configuration. We define first an island Q (of a pure phase) of
the configuration σ as a set of vertices of Έ2 such that there is αe{l, ...,g} such
that Q is a connected component of σ~1({α}) = {i6Z2|σ(i) = α} containing more
than one lattice site. Here connected means that ϊjeβ may be joined by a path in
Q. Note that an island is maximal in the sense that iϊjεZ2

9jφQ, and dist(/, Q) = 1,
then σ(j)ή=σ(i) whenever zeβ. A bond / = (z,y) such that both iJeQ is called a
bond of the island Q and the set of them is denoted L(β). A boundary of an island Q
of the configuration σ is the set B(g) of all bonds / such that exactly one vertex of
each / belongs to Q. In particular, every bond zfeB(g) is excited in the
configuration σ. To introduce precontours we proceed in precisely the same way as
if introducing contours for the Ising model with the Ising configuration, say, +1
on all vertices of Q and — 1 outside. Namely, we consider a dual lattice (Z2)* and
for each /eB(0 we draw a dual bond [a dual (v — l)-dimensional hypercube in the
general v-dimensional case] perpendicular to / and crossing it in the middle. The
set of those dual bonds is denoted B(ζ))*. After smoothing corners in a specified
way whenever four dual links meet in a point, we get a family of nonintersecting
closed curves. Any such curve Γ* will be called a precontour.

To get a hint how to define contours so that their probabilities can be
conveniently estimated, let us try naively to evaluate the probability of a
precontour Γ* attached to an island Q. Let V(Γ*) be the set of vertices contained in
B(Γ*) = KeB(β)KnΓ*Φ0} and denote VQ(Γ*) = V(Γ*)nβ. There are about
g|v(r*)| configurations on V(Γ*) with the property that all bonds in B(Γ*) are
excited, and among them only about glv(Γ*)\vQ(Γ*)l configurations are constant on
all VQ(Γ*). Now since |V(Γ*)| is about 2|Γ*| and |VQ(Γ*)| about |Γ*| (consider e.g. a
rectangular island β), the probability of contour is small whenever q as well as |Γ*|
is large. Note that the above reasoning is founded solely on entropy arguments no
energy loss along the contour was taken in account. This suggests that the
probability in question is small for all temperatures. Indeed, the bounds which we
shall eventually prove will be small for all β.

The wisdom of the above naive consideration is that the probability of a
precontour Γ* is small not only due to the fact that a certain amount of bonds
crossing it are excited, but also because a certain number of nearby bonds (those
belonging to the island) are not excited. We are not going to claim anything about
the probability of an excited bond "which is not attached to a nonexcited bond.

Actually, it goes to 1 as jβ^
V q.

To get some control on contributions to the probability from different pieces of
a precontour Γ* surrounding (or surrounded by) an island β, we classify
plaquettes from the set S(Γ*) of all plaquettes that intersect Γ*. Namely, we
introduce its subsets Sfl(Γ*) (a = acceptable) of those plaquettes from S(Γ*) that
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contain at least one bond from L(β) (graphically j j or Q up to rotations), and
Sb(Γ*) = S(Γ*)\Sfl(Γ*) (b-bond) the set of those plaquettes from S(Γ*) that
contain no bond from L(Q). The "bad" plaquettes are the ones we are going to
ignore in our estimates by bounding their number when compared with |S(Γ*)|.

Thus we finally define a contour Γ as a precontour Γ* together with an
excitation pattern on all bonds from Sα(Γ*). Since there are at most two ways to
complete an excitation pattern of plaquettes from Sfl(Γ*) (\ }-»f j or | j ) , it
follows that:

to a given Γ* and VQ(Γ*) (i.e., specifying which "side" of Γ* belongs
to an island Q) there correspond at most 2|Γ*' contours Γ. (4ml'

Before evaluating the probability of a contour Γ, we estimate the number of
bad plaquettes Nb = |Sb(Γ*)|. Note that each plaquette from Sb(Γ*) has at least one
neighbouring plaquette (common bond) from Sfl(Γ*). Indeed, let seS&(Γ*), then at
least one vertex of 5 is in Q with at least one bond /eL(β) attached to it. Shifting s
in the direction of / we get a neighbouring plaquette from Sfl(Γ*). From this and
the fact that each plaquette from Sα(Γ*) has exactly four neighbours, we get
Nb^4Na, where we have denoted Nfl = |Sα(Γ*)|. Taking into account that
2(Na + Nb) ^ |Γ*| (as each plaquette may contain at most two units of the length of
Γ*), we get

N > J^IΓ*I (42}^ a = 10 I1 I \*"*')

Let us now consider a Gibbs state < >j8 that is a limit point of a sequence of
< yβ)A of Gibbs states with Potts interaction, at inverse temperature β and in
squares A with periodic boundary conditions. According to (4.2) one has

Prob{σ|Γ is a contour of σ}^ I \\ P\
\seSα(Γ*) /β,Λ

g m i n < P ί 1 > , (4.3)
U = l , 2 , 3 J

where Ps is the indicator of the event

the excitation pattern of the plaquette s coincides]

with the excitation pattern of that plaquette in Γ } '

and P1

Λ are indicators of "universal contours" resulting from reflections of the
excitation pattern of the plaquette s. Namely, there are (up to rotations) three
possible excitation patterns of seSα(Γ*) resulting in three patterns of P1

Λ as shown
in Fig. 2.

To estimate the mean values <P^>/?,/i we list in Table 1: the energy; an upper
bound on the number of configurations for which P1

Λ = 1 and a lower bound on
the number of all configurations with the same energy (this will be used in the
lower bound of the partition function).

The last column of the Table 1 was computed as follows. The fact that energy
of a configuration σ is (k — 2)\A\ means that in σ there are k\A\ excited bonds.
Consider configurations with k\A\ excited bonds jammed into a square Ac A (i.e.
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ί-2 i-3

Fig. 2

Table 1

HΛ (σ) for σ ful-
filling P^ (σ) = 1

/ = 3 -Ml

The number of confi-
gurations σ with
I Λ \(J) =: 1

I/M!
M[ l/MΪ

Ml
<ί/ 4

The total number of
configurations with
the same energy

M
>tote-4)]4

3MI
> tote— 4)] s

Ml

l ly ϊ l^/cl/ l l) with all other bonds nonexcited. There are at least \_q(q — 4)] 2 such

configurations, since one may choose arbitrarily the spins on the even sublattice in
A9 with q — 4 possibilities remaining at each vertex of the odd sublattice to assure
that all four attached bonds are excited.

Using the above table in the Gibbs formula

Σ -βHΛ(σ).
PlΛ(σ)= 1
-

we eventually get in the limit |Λ|-> oo that

Prob{σ|Γ is a contour ofσ} ^ 80 ' uniformly in β. (4.4)

To conclude the proof of Hypothesis 2 we consider two arbitrary bonds
/(1),/(2)eL, and denoting P(Γ) = Prob{σ|Γ is a contour of σ}, we evaluate

Γ surrounds f
Σ (4.5)

Γsurrounds/ ( 2 ) Γ wrapped
around A

Here by saying that Γ surrounds t we mean that Γ* either surrounds or crosses
/. One estimates in the customary way the number of contours of the length 2k
surrounding a given bond / by k 32k~2 (this follows from the "three-way
argument" and the fact that each such contour crosses at least once a fixed
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abscissa of length k containing t\ Finally, combining this with (4.1), (4.4), and (4.5)
we get in the thermodynamic limit

k
40

(4.6)

[Here we used also the estimate fe 32fe 2 :g(3.12)2/c.] Hypothesis 2 follows since the
last estimate may be made less than \ — ε0 by taking q sufficiently large.

Now let us turn to Hypothesis 3. Denoting by P% the indicator of {σ\σi + σj;
whenever ίί=jί=even,j2 = ί2 + l}, we get by a chessboard estimate

V,? /β,Λ= \rΛ/β,Λ

Since ZΛ(β) ^ g > 1 for each /?, one has

and thus

The first half of Hypothesis 3 follows since <P^ >£-»! as β->oo.
As for the second half,

by chessboard estimates with PJ the indicator of {σ | σf = σ, whenever ί ί =j1 = even,
\ Λ \ { V \ Λ \

J2 = *2 + 1} The number of configurations σ with PJ(σ) = 1 is less than q 2 2 ,
hence

P

and

,_ . e2"

from which one concludes that

as long as β is small and q is large enough. This completes the proof of Theorem 1
for the case v = 2.

The proof may easily be extended to general v^2; Here we only briefly
mention a few points that need some care. Thus a precontour Γ* is generally a
surface made of (v— l)-dimensional cells of the dual lattice that cut the bonds from
B(Γ*). S(Γ*) is a set of elementary hypercubes. The estimate (4.2) is generalized as

N > - |Γ*|a == /o i i \ I 'v(2v+l)
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where again we used Nb ̂  2vNa and the fact that a hypercube may contain a piece
of Γ* with surface area at most v. The subtle point is the analogue of the table that
led to the estimate (4.4). There will again be a certain number of universal contours
corresponding to excitation patterns that are periodic in all directions with periods
at most two. Consider such a universal contour with indicator P1

Λ. The energy of a
configuration with Pί

Λ(σ) = l is (fe — v)\A\ with fc describing a fraction of excited
bonds in σ. The lower bound on the number of all configurations with this energy,
namely

[^-2v)FMI, (4.7)

is obtained again by considering the configurations with k\Λ\ excited bonds
k

jammed into a box of volume |Λ| = -|yl|. The upper bound on the number of
v

configurations that contribute to P1

A is

(4.8)

Indeed, let us consider the set V of vertices whose 2v attached bonds are all excited
(or in graphical description of the excitation pattern - the set of vertices that do

not lie on any solid line). To estimate the number |V|, let us divide A into — -

disjoint elementary hypercubes (with the same excitation pattern due to periodici-
ty) each of which contains T vertices and n vertices from V. The number | V| will be
estimated once we estimate the number n. To estimate this we observe that the

number of excited bonds k\A\ is at least (nv + 1)— otherwise all excited bonds

would connect only vertices from V and thus all bonds would be excited, the
situation that could not have been created by reflecting an acceptable hypercube
seSfl(Γ*). Thus

These vertices contribute the first factor in (4.8) since we are (almost) free to choose
values of spins in them. Moreover, the value of spin in the vertices lying on a solid
line should coincide all along the line, while the number of all solid lines is of order

\A\ v , contributing thus the unimportant second factor in (4.8) that is washed out

in the limit |Λ|->oo. Since the function

(q-2v)k

is growing in fc, the estimates (4.7) and (4.8) yield

Prob [σ\Γ is a contour ofσ}^ \~ - ̂ -—\ . (4.4')v
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This, together with usual estimates on the number of shapes of Γ*, suffices to
complete the proof analogously to the case v = 2.

Before going to the proof of Theorem 2 we would like to compare the Potts
model with the Ising model (which is the Potts model with q = 2) as far as the
behaviour of contours is concerned. We learned from (4.4) that contrary to the
usual Peierls contours of the Ising model our contours have small probabilities for
all temperatures. Exaggerating a bit we could say that the phase transition in
temperature in the Ising model takes place because contours become more and
more probable with increasing temperature. The role of contours in the Potts
model inverts when going from low to high temperatures: for low temperatures
the space is filled with some ordered phase with rare contours confining a disorder
inside of them, while for high temperatures there is overwhelming chaos every-
where with rare contours around islands of ordered phase ("inversion in con-
tours"). In any case, the fact that contours are improbable for all temperatures
prohibits certain observables (e.g. the "density of chaos") from reaching the values
in an intermediate region and forces them to jump.

We start the proof of Theorem 2 with several observations. First of all we note
that the critical inverse temperature βc from Theorem 1 is in fact unique. Indeed,
denoting G(β) the set of translation-invariant Gibbs states of the Potts model at
the inverse temperature β and Rφ(β) the set {<PΦ>|< >eG(/?)}, where f is an
arbitrary bond, there is a unique inverse temperature βc such that supRφ(/?)
> \ >infRφ(β). While the existence is by Theorem 1, the uniqueness follows when
noting that <P φ > is in fact a mean energy. Being thus a derivative of a concave
function, one infers that the set Rφ(β) is a one-point set except for at most a
countable set of jβ's, and moreover that βi >β2 implies supRφ(jS1)^infRφ(j82).

The next observation concerns a latent heat L(q):

βc) = max
< >ι ,< >2eG(/?c)

Lemma 4.1. limL(q) = l.
q-^co

Proof. Note first that the bound (4.6) can be made less than any 5>0 for q large
enough. The lemma then follows immediately using Theorem 4'.

Consider further any sequence βn approaching βc(q) from above. Let < > = >q be
any limit point of the sequence { )^n, where < yβn are in turn limit points of
sequences of Gibbs states at inverse temperatures βn in finite volumes with
periodic boundary conditions. The state < > = 'α fulfills the following:

1. It is a Gibbs state at inverse temperature βc(q).

2. <Pφ>-'^l-L(g) for each zfeL. (4.9)

3. iim<P^1)P^2)>
=='g-0. (4.10)

q—> oo

The first statement is standard (see [17]) the second one follows since the function
<PΦ>£ is decreasing in /?; finally, the third one is implied by a similar property for
the states < yβn that was shown to hold when proving Lemma 4.1.

From the state { > = >q we are going to construct q different phases <( }α as was
promised. Recalling that by P? we denoted the indicators of {σ\σ(ι) = a} for each

α=l, ...,q and ze2£2, the existence of Πa = lim—~ £ P? in the sense of L1« > = )
Ml ieΛ
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limits follows from the Birkhoff ergodic theorem. When constructing the phases
< >α we shall use the following

Lemma 4.2. Whenever ε>0 there is a q(ε) such that for q^q(ε) it holds

Proof. The lemma follows once we know that (P](Σ ̂
i Φ / . But

^- whenever

(4.11)

where <f is an arbitrary bond, *f eL. We used here first the fact that whenever 71? 72

are indicators, then 1^12^12\ then the last inequality follows from (4.9) by
symmetry. In particular, take t to be a bond adjacent to the vertex L Consider the
island of phase y containing the bond £. This island does not contain the point; so
there must be a contour Γ defined by this island and separating the two vertices

z'JeZ2. The probability of this contour is estimated by - [the right hand side of

i q

(4.4) (respectively (4.4'))] the factor - arises since we know not only the location of
4

the contour, but also which phase (y-phase) defines its island. Thus the first term

on the right hand side of (4.11) is bounded by the right hand side of (4.6) times -.

This, together with Lemma 4.1, proves Lemma 4.2.
Now we can complete the proof of Theorem 2. From Lemma 4.2 it follows that

Π\σ)l £ Πa(σ)\ < —-\ > 1 - lOε as long as q^cin the state < >=•«, Prob^jσ
I

large enough. If ε < ̂ , then the probability of at least one event

1

s

Π\σ)

9 Π\σ)^ fl

, Π\σ}<

is larger than ^-5ε. If Prob(^1)>^-5ε, then since σ} = \, one has

Similarly if Prob(^l2)>|-5ε, then

Prob^σ
5q

Π1(σ)< — \> -- 5ε. But from this and (Π1y = 'q=- implied by sym-

metry one infers

Pro L
( ^>0.

(4.12)
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Hence (4.12) holds in both cases. Let 7λ be the indicator of the event

Π1(σ)> —t and consider the state < >1 defined by
2q\

whenever I(B) is an indicator of a cylinder set B. The state < >1 is again a Gibbs
state at inverse temperature βc. It fulfills

, α φ l . (4.13)
2q

(The second inequality follows by symmetry.) In the same manner one defines the
states < >α, αΦl, using 77α instead of 771. Thus, referring to (4.13), we see that the
state < y = 'q can be decomposed into at least q ergodic states. To conclude the
proof of Theorem 2 we note that similar states exist for each β>βc\ this may be
proven in precisely the same way since the function <PΦ>^ is decreasing in β.

It seems probable that for β < βc there is a unique Gibbs state. However, we do
not know a proof of this statement.

5. Proof of the Existence of a Phase Transition in the Gauge Potts Model

Again, we shall repeatedly rely on chessboard estimates, using reflections in planes
perpendicular to coordinate axes and passing through lattice sites. Observing that
reflections act naturally on the set L of oriented bonds and recalling that PJ5(σ)
does not depend on the choice of starting point and orientation of path around Π
used to define σD, one easily convinces oneself that the Hamiltonian (2.2) is RP.

To apply the strategy of Theorem 4 we take ft = 0, βu = oo, P^ = P*, P2

n = P=.
Again, one has to change the definition

Π«= lim^-£P«, α = l,2
Λ-+OO \Λ\ ieA

into

«= lim
-+OO V ( V - l ) Dol

I v(v-l) \
Here — - — \Λ\ is the number of plaquettes in A. We shall verify Hypotheses 1-3

explicitly only for the case v = 3 the generalization is straightforward though
cumbersome.

Since P^ +Pg = 1, we pass to Hypothesis 2 and define the contours. We call a
path every sequence {DJ"= i of plaquettes such that the intersection Π^ D ί+ 1 is a
bond for each i=l, . . . ,w— 1. By an island Q of the configuration σ we mean a
maximal path-connected set of nonfrustrated plaquettes in σ. A boundary of the
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island Q is then the set B(Q) of all unit cubes such that each of them contains both
a plaquette belonging to Q as well as a plaquette which does not belong to (λ
Finally, by a contour Γ of the configuration σ we mean a maximal connected
component of B(0 together with a prescription saying which of the plaquettes
belonging to cubes from Γ are frustrated in σ. Here a set of cubes is considered to
be connected if the set of their faces is path-connected.

Consider a fixed plaquette Π As usual we shall need an estimate on the
number of contours Γ containing n cubes and surrounding Π It is easy to show
that there is a constant K such that this number is less than Kn.

Indeed there are no more than (n +1) (2.18)" < 40" connected sets consisting of n
cubes and surrounding a fixed plaquette. This follows by observing that, given a
cube c l 5 there are 18 ways to choose a second cube c2 so that the set {c l5c2} is
connected, and by using the following elementary fact: on every connected graph
there is a path that passes through every edge at most twice.

Given a geometrical shape of Γ one estimates the number of possible locations
of frustrated plaquettes on Γ as follows. Each cube ceΓ may be endowed with one
to four nonfrustrated faces (if there were five of them, then all six would be
necessarily nonfrustrated, as it is easy to show, and thus the cube would not belong
to Γ). Denoting by K1 the number of ways of choosing from one to four faces from
a standard cube, we finally arrive at our estimate with K = 40K1.

Hypothesis 2 will be verified once we evaluate conveniently P(Γ)ΞProb{σ|Γ is
a contour of σ}. To do it, consider a finite volume Gibbs state < yβ Λ with periodic
boundary conditions. Applying our reliable chessboard estimate we get

(5.1)

Here for each cube ceΓ we are given a pattern of frustrations of the faces of c, and
Pc is a shorthand notation for the indicator of

frustrations of the faces of c in the configurations σ

coincide with the pattern prescribed for the cube c

PC

Λ is the indicator of the event defined by disseminating the pattern of frustrations
prescribed for the particular cube c by means of reflection all over Λ. So we are left
with estimating (Pc

ΛyβtΛ. There are seven generic patterns of frustrations (up to
rotations and symmetries) drawn in Fig. 3:

Fig. 3
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Here the nonfrustrated plaquettes are shown as opaque and frustrated as
transparent. These patterns classify at the same time different indicators PC

Λ and
thus different estimates of <P^> to be done.

Consider Case 1. The corresponding indicator P^1 is the indicator of the
following event Ai : the plaquettes in every other (say) horizontal plane are
nonfrustrated and the remaining ones are all frustrated. To estimate the probabili-
ty of this event, we keep in the partition function in the denominator only the sum
over the set A[ of configurations with the same number of frustrated (and
nonfrustrated) plaquettes (hence the same energy) but located in quite another
way. Namely, we pack all nonfrustrated plaquettes into a subcube of A located in

\A I
the corner of it. Now the probability of A1 is estimated by pJ-.

_ ' *' Ml
Why do we expect that \A±\ is much larger than \A±\1 There are — equations :

each of them assures the nonfrustration of one plaquette. (Of course, this gives
only an upper bound on \A±\ the system of equations also allows some additional
plaquettes outside every other horizontal plane to be nonfrustrated.) An impor-
tant fact is that these equations are actually independent : if one throws away one
of them, then the number of solutions of the remaining system will increase. This
follows by observing that on a two-dimensional plane there exist configurations
with exactly one frustrated plaquette, the rest being nonfrustrated. On the

contrary, when all — nonfrustrated plaquettes are packed into a corner of a cube,

one has again — - defining equations, but this time they are highly dependent. In

fact one may keep only those equations which correspond to vertical plaquettes
and to one layer of horizontal plaquettes without the set of their solutions being
changed. Thus ~A[ is effectively described by a much smaller set of equations than
A,.

To transform what was said above into an estimate, we evaluate first the
number of configurations in Av Denoting q the number of elements of the gauge
group G one has

ML ML
\ (5.2)

Indeed, up to spins on the boundary of A giving an irrelevant factor Co(|yl|)

(hereafter we denote all unimportant constants C though they differ in principle),
in each horizontal layer of nonfrustrated plaquettes one can choose arbitrarily the
spins on bonds of one horizontal direction while in the neighbouring horizontal
layer of frustrated plaquettes the spins in both directions are arbitrary. In addition
all vertical spins may be chosen arbitrarily. The remaining spins are then
determined from the above mentioned system of equations.

Now let us turn to Ai. The volume of the subcube into which — nonfrustraίed

plaquettes are packed is — . Hence
6

_ 5 MI Ml
MJ^fe-3)3) 6 q6 Co(μι|), (5.3)
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since to construct a configuration fully nonfrustrated in the subcube one is free in
choosing spins only in one direction (and also spins on one horizontal layer, which
yield the factor Co(|jd|)), while outside of this subcube the choice is almost
unconstrained (some care is needed not to create additional nonfrustrated
plaquettes this is the origin of the factor q — 3 instead of expected q). Combining
(5.2) and (5.3) we get

In fact, the frustration pattern No. 1 is the worst one. To convince the reader,
we shall only investigate No. 7 and then present a list of estimates for the other
cases.

The indicator PC2 corresponds to the event

all vertical plaquettes are nonfrustrated

and the rest of them are frustrated in σ

Then

since after fixing spins on vertical bonds, the configuration is determined up to
bottom level spins. The number of nonfrustrated plaquettes in a configuration

σeAΊ is 2\Λ\ hence they may be packed into a corner of the volume - . Thus the
bound for AΊ is

\

and we get

The list of remaining estimates (^omitting a factor C \Λ\ j is

-L. ,-,5/3

— a918

^=te-3)3'2'
i
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Thus, referring to (5.1), one has in all cases

/ q512 \ |Γ |

Prob{σ|Γ is a contour of σ]^I _^5/2 i / β l

and Hypothesis 2 is verified once q is large enough.
Before going to Hypothesis 3, a remark about the case v = 2. The proof should

fail in this case since in two dimensions any gauge model is equivalent to a product
of independent one-dimensional models which exhibit no phase transition. The
reason why it fails is that conditions for different plaquettes to be nonfrustrated
are independent in two dimensions. This leads to the conclusion that any
repacking of nonfrustrated plaquettes does not increase the number of con-
figurations with a fixed number of frustrations.

Consider finally Hypothesis 3. For the first half of it we show

a512

< P > as /^°

A handy chessboarding immediately yields

i
</p=\\Λ\

β,Λ = \rΛ/β,Λ>

with P~i the indicator of the set

A = {σ I the plaquettes in every horizontal layer are nonfrustrated} .

The bound on |y41| is actually also a bond for \A\ :

5\Λ\

To estimate the partition function ZΛ(β) from below we restrict ourselves to
completely frustrated configurations. The energy of each of them is precisely 3\Λ\,
while their number is certainly larger than (q — 3)31"4'. Thus

5\Λ\

i 2

and (5.4) follows.
To finish the proof of Theorem 3, we show

<P*>^0 as jS-»oo. (5.5)

Applying the chessboard estimate for the last time one has

where P% is the indicator of

A'= {σ\all plaquettes in every other horizontal layer are frustrated}.

The energy of every configuration σeA is not smaller than —, while \A'\ <
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Since the partition function ZΛ(β) ^ 1 (this follows from the fact that the energy of
ground state is 0), one has

which proves (5.5).
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