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Integrable Nonlinear Equations and Liouville's Theorem, II

L. A. Dickey
Leningradsky av. 28 fl. 59, 125040 Moscow, USSR

Abstract. A symplectic structure is constructed and the Liouville integration
carried out for a stationary Lax equation [L, P] = 0, where L is a scalar
differential operator of an arbitrary order. nth order operators are included
into the variety of first-order matrix operators, and properties of this inclusion
are studied.

This article is in fact the third part of the work ([1,2]) although the last two parts
are independent of the first. Here we deal with equations arising from an nth order li-
near differential operator. For simplicity we consider the scalar case only, this re-
striction is not of great importance. The integration of such equations was carried
out first by Kritchever ([3,4]) and his work relates to this article as our previous
paper relates to the work of Dubrovin ([5,6]). But this time the connection
is much weaker. Our method does not resemble Kritchever's, in particular since
we use different variables, it is even difficult to compare the results. We use the
reduction of an nth order differential operator to a first order matrix operator (in an
Appendix we discuss this reduction in more details than are needed for this article).
After this reduction, the further development is close to that of the previous article,
however with essential differences. We pay more attention to these differences,
as often as possible replacing detailed proofs by references to [2].

1. We start off with the equation

- β ' + [E/ + U , β ] = 0 (1)

where g, 17, A are n x n matrices, ζ = zn a complex parameter, A and U have the
form

- ( • • ) " - ( • • • • • • • •

V O/ \-uo,...,-un_2,0j
M0 >... ,un_2 will be taken as independent generators of a differential algebra si
(which consists of polynomials in uf] with complex coefficients). The matrix Q is
a solution we are looking for. We shall numerate rows and columns from 0 to n — 1.
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We give another form of the equation, in another basis. Letting Z be a matrix
tfδ.j) put P = Z~ ιQZ. For P we have

- P ' + [ F + z£,P] = 0, (2)
where

/0 1. \ /0 0 0 0

1 - . . 0

Only the last row of the matrix V is nonzero. Finally we can transform B to the

diagonal form. If ε is a primitive root of 1, εn = 1, let K be the matrix — (εij). Then
Jn

for C = K-ιBK,R = K~ιPK,W = K~ι VK we have

and

zC,Λ] = 0. (3)

By comparison with [2], we see that this form of the equation resembles the main
equation (1) of [2], because the matrix C is diagonal and nondegenerate. The
distinction (besides an insignificant difference in the sign) consists of the special
form of the matrix W which incorporates the spectral parameter z in negative
powers.

It is convenient to introduce a grading in the algebra si. Namely let us take
the number n — i + k as the weight of a factor uf\ The weight of a product will be
the sum of the weights of factors. The weight of the operator d = d/dx and the
weight of z will both be 1. In what follows all formulas are homogeneous with
respect to this weight.

GO

2. We seek the solutions as formal series R = YjRrz~r,(R)ijGsrf and corres-
o

00 00

ponding P = YuPrz~r, Q~ £ Qrz~r. We can formulate and prove some simple
0 r=-n+1

assertions similar to those in [2].

Proposition 1. The solutions form a ring.

Proposition 2. .Ro is a diagonal matrix with constant coefficients.

Proposition 3. A solution is uniquely determined by the constants in all (Rr)ij-

(Instead of R we could write P or Q here).

Further solutions Ra, a = 0,..., n — 1 will be constructed for which

°
\ • • < > /

(unity stands on the αth place) and without constants in other Rr, r > 0.
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Proposition 4.

RaRβ = δaβR\ ΣR* = L

α = 0

Proposition 5. The general form of a solution is ]Γ wa(z)Ra, where wa(z) are formal
α = 0

series in z~ι with constant coefficients. Matrices Ra are spectral projectors of an

arbitrary solution; all the solutions commute. The corresponding P, Q will be deno-

ted as Pα, Qa. (PD.J = -ε^-j) holds.

3. The construction of Ra is the same as in [2]. We seek the solution of a
vector equation

- φ*' + (W + zC)φ* = λφ*9 (4)

where φ* = (φ*\ i = 0,..., n — 1 is a row vector, λ is a scalar, in the form

<p*= !>?>"'» λ= Σ V + 1 (5)
r=0 r = 0

Note that the matrices W{. and C.. are formally defined for all ij and Wi + nj+n

= W.j, Ci+nj+n = C.j. Therefore it is convenient to consider φ* as defined for all
i and periodic: φf+n = φf.

We can take φ*0 = δ ί α φ* r = 0, r > 0 λQ = εα for arbitrary α and then find
all other φ*re<stf and λγes$, in the same way as in [2]. The insignificant distinction
is that now the matrix W depends on z. Its expansion includes, however, only
negative powers of z, which does not spoil the recurrence procedure. The obtained
solution will be denoted as φ*α, λa.

Proposition 1. The dependence of φf*, λ* on α is as follows

Proof. The matrices W and zC enjoy the property W.j{z) = Wi+1 j+1(ε"1 z\ zC{. =
ε~1zCi+ίj + 1. Therefore if {φ*(z)},λ(z) is a solution of (4) so is {φ^+1(ε'1z)}9

λ(ε~ ιz). Thus it is easy to see that {φ*^ ^ ε " xz)}, λa+ ^ε" xz) is the same as (φfα(z)},
λa{z). We have

Proposition 2. The weights ofφf* and λ* are r.

Proof. Equation (4) is homogeneous in weight if we consider λ as having the
weight 1. Hence the expansions of φ*α and λa in z~1 must be homogeneous. Taking
into account that φfl and λa

0 have the weight 0 and that z has the weight 1, we
obtain the required result. β

Let Φ* be a matrix (φfa) (we consider α as the number of a column, i that of
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a row) and Ψ* = Φ*~ 1 = {ψf} (a is the number of a row). The row vectors ψ* =
{ψ*1} satisfy the adjoint equation of (4):

ψ*' + ψ*(W + zQ = λψ*. (7)

The coefficients ψ*^ satisfy the same relations (6) as φf*. The projection opera-
tors Rα can be built as R*j = φ*aψ*j, that is Ra = φ*a'ψ*. The dependence of Ra

on α is as follows:

Now we return to the first basis. Letting φx be ZK φ*a and ψa be ψ*K~ XZ~1

we obtain Q" = φα ^ α where φa and ι/̂α satisfy equations

λφ, (9)

φ. (10)

The dependence of β". r on α is:

so the expansion of Qα has a form

δΰ= Σ QlΛfzT' (12)

Thus Qα as functions of C are branches of one ^-valued function Q(ζ).
The weight of the first coefficient Q°. ._. is zero, every next coefficient has the

weight of 1 more than the previous one, hence the weight of Q ?. r is r -f i — j .

4. Proposition 1. The identity

δ tr AQ« = - tr{δΌQ\) + 3 tr(S<pα ^ ζ - φα

ζ ^ α ) (13)

holds where the subscript ζ denotes the derivative with respect to ζ.
This proposition has the same proof as the similar proposition in [2].

Corollary.

Now let us take

i f = tr ΛQm+2n = βo,«-l;m + 2w

as a Lagrangian. We have omitted a in Qa

m+2n since it does not play any role on
account of (11). The number m is arbitrary.

The set of equations whose integration is our main object is

= 0, i = 0 , . . . , n - 2 , (14)

δUi

that is

β ; , π - 1 ; m + n = 0, i = 0 n-2. (15)
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Note the following distinction between this case and [2]. In that case we have had
to take as Lagrangians combinations of Ra

m with different nonzero coefficients to
obtain nondegenerate equations. Now we take Qa

m + 2n with only one (arbitrary)
α since all of them are proportional.

Let us rewrite (14) distinguishing linear terms of the highest weight

O - S - - - W < Γ - " " + + < M - . - .
* 0

υUn-2

Other terms contain derivatives of lower orders. The coefficients α.. are constants.

Proposition 2. Ifrn and n are mutually prime numbers then det (af.) Φ 0.

Proof. The matrix a., can be found explicitly. We seek φ*α from (4). If we follow
only the terms linear in uk it can easily be found

ψTr = δtβ + I (Fi-/\lβίr-n + Aβ+r~n) + (nonlinear terms).

Thus

0 = 0

«- 2 £~J~Jr

ψ*j = δ . + V : M ( 0 + ' - Ό + (nonlinear terms).
/? = 0 v /

After some obvious calculations we obtain

n n—ί p(i+ ί)y pγ(i+l+m)

20 _ y y Ai+j + m-n + l)

i,n-ί;m + n~~ jL Li /gy _ j \ i + j+tn~n+ 2 Uj '

whence

a..= y : : f5j = 0, ,n — 2.
y = 1

The calculation of the determinant seems to be rather awkward but in fact it can be
carried out surprisingly readily. First of all we replace the matrix a., by a matrix

1 ΛΛ υ

with t h e s a m e d e t e r m i n a n t btj = Σ ( I ( — I ) 1 α α

α j

α = 0 Vα/

fcy="Σ t ί ^ - 1 ) ' " ' y'aY a yβ y ( 17+CΪ+ 2
y =

Let us construct a quadratic form with coefficients ft..:

n-2 n-1 py/i _ pym\ n-2 ί f n-ί

* 2Σ 7 y y j V"1 2
/W IΛm-n + 2 2^ / γ 1V+ "̂ ^

/,j=0 γ = l \8 ~ l ) i,j = 0 ^ " γ=l
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εy(l-εym)
n-n + 2">

n-2

-= Σ
The determinant of the last quadratic form is J~[ cy. Now we note that if m and n are

y

mutually simple, then all cγ do not vanish which proves our statement. Neverthe-
less we give the exact expression for det(a..):

/) = 11 T7y iyn+n-2* 11 ^β β ) = n •

(y>δ)

This proposition was first conjectured in [7] then proved by Veselov [8] who
used quite other technical means.

Corollary. There exists a sequence of nonvanishing determinants

ani

*ljo

αΛ.

α<.

where j Q , j ί , . . . Jn__2 is a permutation of the numbers 0,1, . . . , n — 2.

Proposition 3. 4̂/Z wj.p) can ί?£ expressed as polynomials in dk(δJ£/δui) and the
following uψ which will be called "phase variables':

u , p ^

Proof From the first of the Eqs. (16) we express u(™-n+J°+v as required. From the
set of two equations, the second, and the first equation differentiated we express
u(m-n+jo

Corollary. The order of the set of Eqs. (14) is {n - l)(m - 1).
Indeed, the equations make it possible to express all the derivatives u\p) as

polynomials in phase variables (since dk(δJίf/δui) = 0). The whole number of
phase variables is

( m - n + 1 + ; 0 ) + ( m - n + 2 + y 1 ) + ... + (m - n + n -I +jn_2) = {n- l)(m- 1).

From the nondegeneracy of Eqs. (14) it follows (see [7]) that this set of equations
represents a Hamiltonian system with a nondegenerate symplectic form. We shall
find this form.

Proposition 4. The symplectic form corresponding to the Hamiltonian system (14) is

ωi2) = trδφ Λδψ\m+n,

where the subscript m + n denotes the coefficient by z~m~n.
The proof is the same as in [2]. From this proposition it is clear that the
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1-form ω corresponding to the system can be taken as

ω = tiφδψ\m+n.

As in [2] we can transform this expression (on adding an exact differential) into

! ) j l \ m + n (16)

where j , I are arbitrary integers from 0 to n — 1.
5. Now we are going to find the first integrals of (14).

Proposition 1. The set of equations (14) is equivalent to

[ 4 , β m + π ] = 0. (17)

Proof This is evident in one direction: from (17) it follows in particular that
βj,w-i ;m+M = 0, ΐ = 0,...,n — 2. The inverse assertion follows from the fact proved
in the Appendix that g. n_ 1.m+n = 0, i = 0,..., n — 2 implies that the matrix Qm+n

is strictly triangular, Qij;m+n = 0 when i<^j •

We denote

si Γ™ _ 1 Ί

1. (18)

Proposition 2. Functions u.(x) satisfy (17) if and only ifQ satisfy (1) where M.(X) and
their derivatives are substituted for the letters u(.p) into the differential polynomials

^ij m — ns'

Proof Equation (1) is equivalent to the recurrence relation

Whence

- β ' + [ ^ β ] = - [ Λ Q m + J
The rest is plain •

The essential difference between expression (18) and the corresponding expres-
sion for P in Γ21 is that the latter includes all the coefficients P with r <m while
Q contains only a subsequence of Qr this is connected with the peculiarity of Eq.
(1) that it involves z in the form of ζ = zn and therefore the recurrence formula
relates Qr with Qr+n instead oϊ Qr+ί.

We write m = ns1 -μ,0<μ^n-l. Then Q = Q_ ζsι + Q_ + C51"1 + ... +

Proposition 3. The matrices Q_μ,Q_μ+n have such structure

column n — μ^

Q - ^ [ * : • • • Λ β - M + B = •-...•*. ( 2 0 )

column μ
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Proof. The expansion of P in z~ι begins with z°. Taking into account that Q =
ZPZ~ \ we see that the expansion of Qtj begins with zι~7. The power zμ can occur
in this expansion if i — j ;> μ, the power z~μ+n if i —j^>μ — n •

Proposition 4. The coefficients of the polynomials in ζ

tτQk

are first integrals of (14). There are (m — l)(n — l)/2 such nontrivial first integrals.
si

Proof Only the second assertion is not evident. Let us put β * = Σ δ w _ n s ζ s

S = ~ GO

This is a solution of (1) which can be expressed in terms of Qa:
γ n-l

Q*=-z

mY s~aμQa. (21)

The coefficients of trg* fc for every k are identically constant. The coefficients of
tr <2 coincide with corresponding coefficients of tr g*, therefore they are trivial
first integrals. Moreover for every k the coefficients of the expansion of tr Qk which
coincide with those of tr Q*k are trivial first integrals. We must find out how many
coefficients of tr Qk are different from those of tr <2*k.

Qk is formally a polynomial of degree ks1. However a few highest coefficients
may vanish since Q_μ is a nilpotent matrix (see (20)). It follows from (21) that

Q*k zmk y £-aμkQ<x

H α = 0

Putting k = \ — \n -h p we have

The highest power is zmk+p = z

mk+μk~^μk^n^n = ^ " ^ ^ " ^ / " ^ = ^"(sifc-t^/"]) = rsifc

s = oo

+ .... What is the highest power of ζ in tr Q^'^RΊ In Q*k~x the highest power is
ζsi(k-i)-[μ(k-i)/n] a s w e j ^ ^ s e e n j t s coefficient is a lower triangular matrix. The
second factor R has the highest term with ζ " 1 . Its coefficients is Qm+n which is a
strictly triangular matrix (see the proof of proposition 1). The product of these two
matrices is a strictly triangular matrix whose trace vanishes. Thus the highest

nonvanishing term in tr Qk is of degree s

We obtain the whole number of

[ μ(k — 1)Ί
— 2.

n J

nontrivial first integrals. To calculate this sum we remark that =

L n J
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ly simple). Now it is easy to finish up the calculation and to obtain the required
number of first integrals •

Note that the number of the known first integrals is half of the dimension of

the phase space.
The coefficients of the characteristic polynomial

n Zo(fc)

w/)= Σ Σ W (22)
fc = O 1 = 0

lo(k) = ksί — — I may be taken as first integrals, instead of the coefficients

of tr Qk. The heighest nontrivial coefficient Jkl with given k occurs for I =(k— l)s1

Γ M * i ) l

6. The equation /(C,w) = 0 specifies an algebraic function w(Q. Its Riemann
surface is n-sheeted. The branch points are those where fw = 0 and also the point
ζ= GO.

Proposition 1. The behaviour ofw(ζ) at infinity is as follows

Proof We have Q = rΓ1zm £ ε " α μ β α + O(z~m) (see (21)). The eigenvalues of the
α = 0

first term are exactly n~ι ε~αμzm, i.e. they are branches of the multivalued function
n~ 1ζm/n. Note that w(ζ) are eigenvalues of Q(ζ) •

Proposition 2. The number of branch points in the finite part of the Riemann surface
is m(n — 1) (in general they are of the second order). The genus of the Riemann surface
is (n - l)(m - l)/2.

Proof The first assertion follows from the fact that the discriminant Δ = f ]

(w. — Wj) which is a polynomial in ζ behaves at infinity as ζm^n~~^ (since w. ^ ζm/n).
The genus p can be calculated according to the formula 2p = £(/ f e — 1) — In + 2
where j k is the degree of the branch point, and n is the number of sheets. We have
m(n — 1) branch points of the second order and one point of the nth order, 2p =
m(n - 1) + n - 1 - In + 2 = (m - l)(n - 1) •

Note that the genus is equal to half of the phase space dimension.
n

We now introduce spectral projection operators of Q. lίf(ζ9w)= Σ Jι(ζ)wι

ί = 0

then the projection operator attached to the point P = (ζ, w) of the Riemann surface
is

g(P) = (fj~ι Σ Jι(0 Σ ™kQι~ι~k- (23)
1=1 k = 0
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The spectral decomposition of Q is £ w(P)g(P), where the summation is over all the
sheets of the Riemann surface over given ζ. The matrix elements of g(P) are rational
functions of ζ, w, i.e. rational functions on the Riemann surface. The asymptotics of
g(P) coincides with the formal series Q(ζ). This is completely analogous with [2],
the only exception being that now we have the equality of two multivalued func-
tions and one must establish the correspondence between their branches.

Proposition 3. The number of zeros of gtj(P) in the finite part of the Riemann
surface is m(n — 1) + ί — j .

Proof It follows from the equality of the numbers of poles and zeros (see [2]) •

The divisor of zeros of gtj in the finite part of the Riemann surface can be
represented as di + dj. We have \d.\ + \dj\ = m{n — 1) + i — j = 2p + i + n — 1 — j .

Proposition 4.

Proof The situation here is essentially different from that in [2]. There we could
use the symmetry between rows and columns. Now the matrix U fails to have a
symmetrical structure. To overcome this difficulty the theory will be temporarily
extended. Namely, the matrix U in Eq. (1) will be replaced by a more general
matrix

/° 1

ue =
— V

n - 3

- un

1

(The superscript e denotes the extended theory, both here and below). The
algebra si will be extended correspondingly. We can repeat all the constructions,
including Qa which will now be called Qae. The old matrices Qa can be obtained
from Q*'e by the restriction to the submanifold {v\p) = 0}. Then we construct Qe

and projection operators ge(P). The behaviour of we at infinity remains the same as
that of w. This implies that ge

tj have the same number of poles (branch points) as
gtj and the same conduct at infinity. Hence | d\ \ + | dj'e \ = 2p + i -f- n — 1 — j . Using
the same reasons of continuity as in [2] we conclude that | de. \ and | dj'e \ do not
depend on the point of the phase space (extended) with the possible exception of a
submanifold where they can be less (if there is a root of g{. it cannot vanish for
sufficiently close values of parameters). Hence | d. | ^ | d\ |, | dj \ rg | dj'e |. Together with
\d.\ + l^'l = \de.\ + \dj>e\ this yields |d.| = \d*\, \dj\ = \dj>e\. Then we note that in the
extended theory there is an operation of conjugation with respect to the additional
diagonal: afj = an_ί_jn_ί_r This operation, like a usual conjugation, enjoys the
property (AB)* = B*A*. Therefore if Q(U(x)) is a solution of (1) then so is
Q*(C7*( —x)). Thus g.j is equal to gn_ί_jn_i_i in another point of the phase
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space and

\de.\ = \dn~l~^\ = (2p + f + n - 1 -(n - 1 - i))/2 = p + i

as stated •

A question arises whether the extension of the theory leads to a new class of
of integrable equations. We do not think so since for new equations the number of
known first integrals remains the same as before while the dimension of the phase
space has increased almost twice. Anyway this is an interesting point.

7. Now we are in a position to succeed in our main object, to integrate the
1-form and obtain the angle variables corresponding to action variables Jkl.

Proposition. The 1 -form co can be written as

w(P)(δg-g)n

ω = n~ 1

where the subscript 1 denotes the coefficient in ζ~ι in the asymptotical expansion at
expansion at infinity.

Proof. This follows from (16) and proposition 1 Sect. 6, g is asymptotically equal

to β(ζ) •

The obtained expression can be interpreted as the residue of the differential
form nw(P)(δg g)β (g .j)~ 1dζ at the point ζ = oo of the Riemann surface. This can be
calculated in the same way as in [2], and we have

Theorem 1. The 1-form can be written as

Σ (24)

There is, however, an essential difference between this case and that in [2].
The points of the divisor d0 (but not of d., ί = 0) can be taken as independent
coordinates in the phase space (together with Jkl) if i > 0 then | d. \ > p, the amount
of Psd. is too great and these points must be dependent. (The points of the divisor
dn~ * could also be taken.)

Theorem 2. The angle variables θkl corresponding to the action variables Jkl are
given by the Abel mapping of the divisor d0

β«=ΣίM- d C (25)

Pedo J w

The proof is the same as in [2].
We restrict ourself to this theorem. It remains to establish relatively standard

things: to express, as in [2], the Hamiltonian in terms of Jkl and thus to find the
dependence of θkl on x, then using the Jacobi-Riemann method of Abel mapping
inversion to find g0 n_ί and from its asymptotics at infinity to obtain u..

Appendix. The connection between Eq. (1) and the resolvent of an nth order
differential operator.
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Equation (1) is a convenient tool of studying the resolvent of an nth order
differential operator. (The formal resolvents were introduced in [9-11].)

Here we need a construction of a ring of operators over sd (differential and
Volterra integral). This construction has been given many times: by Gelfand and
the author, Manin [12], and Adler [13]. Differential operators are as usual

m

YJa.dι(a.e^,d=d/dx). The commutation rule between d and any aesd is
ί = 0

δa = ad + a'. The differential operator is written here in the right-hand form, it
can be also written in the left-hand form £ 3 ^ . . The integral operator can be defined
in various ways: in terms of symbols of pseudo-differential operators, with the

00 00

help of formal kernels ([ 10]) or as formal series Σ ap~[~l and Σ d~ι~1 a. (right-
ί = 0 ί = 0

and left-hand form). The commutation rules are1

In more general form the coefficients a. of an integral or a differential operator
00

may belong to a ring ^ [ z " 1 ] of formal Laurent series Σ arz~r. The arbitrary

operator is a sum of a differential and an integral operator. Let R be the ring of
operators, R+ and R_ its subrings of differential and correspondingly integral

oc - 1

operators. If A = Σard~r~l(k < °) t h e n w e denote A+ = ^α f.δ~ r~1G JR+, A_ =

0

Let Rn_ beR_/d~nR_. The elements of this space are classes of integral operators
GO

Σaβ~r~ι with the same ar,r ^n— 1. Two such operators we call n — 1-equivalent.
o

Rn_ is a ^-dimensional module over sd(oτ sd\z~γ~\).
The coefficient in d~1 will be called the residue of the operator. The definition

does not depend on which form, right- or left-hand, the operator is written.
% 0

We can regard # + as the dual space of R _ with respect to a coupling: for A e R + ,
BeR_ put (A, B) = ResAB (the order of operators is here important, i.e.
Resaα 3~ 1 = α / ^ R e s δ ~ 1 δα = 0). The dual space of R"_ is Rn

+, the space of
differential operators of orders not higher than n — 1.

Matrices of the nth order, for example the matrix Q of Sect. 1 will be regarded
as matrices of linear transformations of Rn_ in the left basis δ~ l '~ 1,r = O,. . . ,n-l .

n - 1

The column vectors are the elements of Rn_ :Qj = Σ 3"i~1QίJ., row vectors are

1 To connect this definition of the integral operator with formal kernels, note that d x p corresponds

(ξ - x)k(η - x)1

to a kernel X{ξ,η) = X Xkl (see [10]) with Xkl = (- 1)' when k + / = p and Xkl = 0
kill

when k
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n- 1

the elements of Rn

+ : Q. = Σ Qrδ
j. The product of two matrices can be calculated

j=o

as

The matrix U + ζΛ = U from Sect. 1 has the following row vectors

— L + 3", i = n— 1 k = 0

One can give another expression for ϋ as a linear transformation of Rn_, in an
invariant, that is independent of the basis, form:

n_. (II)

Here U(Y) is well defined: the arbitrary representative of the n- 1-equivalency

class may be chosen as Y.

A mapping XeRn__ H-> Qχ e End Rn_ will be introduced:

Qχ(Y) = (X(LY)+ - (XL)_ Y)_. (Ill)

This mapping is also well defined.

Proposition 1. The row vectors of the transformation (III) are

(Qχ). = di(XL)+-(diX)+L (IV)

Column vectors of the transformation are given by the formula

(<2xy = [ - (XL)_d-'~ι + x(Ld->- \γ_. (v)

Proof Let us make sure that the transformation with row vectors (IV) coincides
with (III). The action of a transformation with row vectors Q. on a Y eRn_ can be
calculated via the formula

Q(Y)= Σ d-*-1 Res (Q.Y).
ί = 0

For (IV) this yields

Then we note that Res(<3ιX)+LY = Res(δ ιX)+(L7)_ = Res^X(L7)_ hence

ί = 0 ί = 0

)_]_ - - [(XL)_Y

The second formula can be checked in a similar way •

In particular the last column of the matrix Qx is X, the first row is (XL)+.
We denote as Q' the transformation with the matrix ((X.), in other words

Q' = δQ- Qd.
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Proposition 2. The relation

x χ + + (VI)

holds.

Proof. The formula can be verified directly, whether in the invariant form using
(II) and (III) or in the matrix form using (I), (IV) and (V) •

Corollary. Qχ satisfies (7) if and only ifX satisfies

{LX)+L- L(XL)+ = 0. (VIII)

Proposition 3. An arbitrary solution Q of equation (1) is Qxfor some XeRn_ which
satisfies (VIII).

Proof It is clear that for X we choose the last column vector of Q:X = Yβ~ι~1

Qin_v\t is easy to check that equation (1) is equivalent to the set of equations for
operators β. = £ f l d J '

where Qn is defined by

n

i = 0

whence
i - 1

In particular

In the left-hand side of the equation there is an operator of the n — 1th order.
The right-hand side can be such an operator if (Qo — XL)+ = 0, that is Qo = (XL)+.
Then (XI) yields

According to proposition 1 this means that Q = Qχ. •

The significance of these propositions is that Eq. (1) is completely equivalent
to Eq. (VIII) for the last column vector of the matrix Q. This equation is none other
than nth order differential equation resolvent equation. The form (VIII) for this
equation was suggested by Adler [13].

Now it is not difficult to make sure that "the variational theorem" (corollary
of proposition 1 in Sect. 4) coincides with the corresponding theorem in [7,10,11].
Thus the equations we have considered are in fact the stationary equations con-
nected with nth order differential operators.

We now prove a proposition that has been used in Sect. 5.
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Proposition 4. IfQ satisfies (I) ana for some m the coefficient Qm of the expansion
ofQ in powers ofz~1 is such that (Qn)ίn^l = 0/or i = 0, . . . ,n — 2 and Qm does not
contain constants then Qm is a strictly lower triangular matrix.
Proof Let X be the operator Σ δ ~ α ~ 1 Q α n _ 1 . Expanding it into a series in z~l

we get X\m = d~ΛQn_lιn_1.m. Then (IV) shows that Q.\m are operators of orders
no more than z, and coefficients in dl are equal to Qn_1 π _ι m The matrix Qm is
triangular with equal diagonal elements. It remains to note that tr Q = const
(it holds for all solutions of (1)) hence tr Qm = 0 since Qm does not contain constants
Qm is strictly triangular as required
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