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Abstract. Given a one-parameter family fλ(x) of maps of the interval [0, 1], we
consider the set of parameter values λ for which fλ has an invariant measure
absolutely continuous with respect to Lebesgue measure. We show that this set
has positive measure, for two classes of maps: i) fλ(x) = λf(x) where 0 < λ ̂  4
and f(x) is a function C3-near the quadratic map x(l — x), and ii) fλ(x) = λf{x)
(mod 1) where / is C3, /(0) = /(I) = 0 and / has a unique nondegenerate critical
point in [0, 1].

0. Introduction

Dynamical systems generated by noninvertible maps of an interval into itself have
been intensely studied recently. The most widely considered was the family

It is well-known that if fλ has an attracting periodic orbit ά = (α1, ...,αM) then all
probabilisitic /^-invariant measures are singular with respect to a Lebesgue
measure dx, and the iterations f"%dx converge in the weak *-topology to the
discrete invariant measure supported by α.

It is probable (but not proved) that this situation is typical from the topological
point of view, i.e. for a general one-parameter family of smooth mappings / λ :/->/,
λeA, there is an open and dense subset Ao of A such that for λeΛ0, the set of limit
points for f^dx consists of a finite number of measures supported by periodic
attracting orbits.

We show in the present paper that this is not so from the metric point of view.
Namely we prove for a certain class of one-parameter families fλ that the set
A1 = {λ:fλ has an invariant finite measure μλ absolutely continuous with respect

to dx (μλ<dx)}

has a positive measure in A.
In the classical case x->4x(l—x) considered by Ulam and von Neumann in

[1], the invariant measure μ(dx) has density ρ(x)=— . In [2] Bunimovic
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constructed absolutely continuous measures for the piecewise smooth mappings
x^nsinπx(modl), neΈ. Ruelle in [3] considered fλ\x-+λx(\—x) and proved that
an invariant measure μλ < dx exists for λ = 3,678... - chosen in such a way that the

third iterate of the critical point, //(!), falls m t o t n e unstable fixed point x = 1 — -.

Bowen in [4] found sufficient conditions for the existence of an invariant measure
μλ<dx for fλ(x) = λx(l — x\ when \ is a preimage of a periodic unstable point. In
[5] it was shown that the cardinality of {λ:fλ has an invariant measure μλ<dx} is
that of the continuum for the family x-+λx(l — x) and any C2-family fλ sufficiently
close to λx(l — x). Similar results were obtained by Misiurewicz [6] and Szlenk [7]
for a class of mappings with negative Schwarzian derivative. Ognev in [8] proved
for x->/bc(l — x) that if \ is a preimage of a periodic unstable point, then the density
of the invariant measure is analytic. Ito, Tanaka, Nakada in [9] studied the space
of parameters of unimodal linear transformations and found explicitly the
densities of the invariant measures.

Collet and Eckmann in [10] proved for a particular family fδ(x) that fδ has
sensitive dependence with respect to initial conditions in the sense of
Guckenheimer [11] for a set of δ of positive measure. The mappings fγ obtained
with our construction are also sensitive dependent. It is unknown whether
sensitive dependence implies existence of absolutely continuous invariant measure.

We shall consider two kinds of one-parameter families fλ(x).
1. Piecewise smooth families χ\->λf(x) (modi), where /(x):[0, l]-»[0,1] is a

C3-map with a single nondegenerate critical point, /(0) = /(l) = 0, and λ is a big
parameter.

2. Smooth families x\-^λx(l—x)0^λ^4, and λ f(x) with f(x) sufficiently close
tox( l-x) in C3([0,l], [0,1]).

We formulate now our main results.

Theorem A. Let fλ:x-*λf{x) (modi) be a piecewise smooth family. There exists
To > 0, such that for any ε > 0 there is an L(ε), so that if L ̂  L(ε) then the interval [L,
L + To] on the λ-axis contains a set Jί satisfying

0

ii) ΊλeJifλ admits an invariant measure μλ<dx.

Theorem B. Let fλ(x) be one of the smooth families mentioned above. Then there is a
set of positive measure Λι so that for λeAx fλ admits an invariant measure μλ<dx.

Remark. The parameter values λγ such that the critical point of fλι is contained in
the preimage of an unstable periodic orbit (e.g. λx=A for λ x(i— x), or in the
preimage of a certain invariant unstable Cantor set (see [5])) turn out to be one-
sided Lebesgue points of Λv i.e. Vε>0ϊl<5>0, such that

In Sects. 1-12 we prove Theorem A for the family x->/bc(l — x) (mod 1). In Sect.
13 we point out modifications concerning the case of an arbitrary family x-+λ f(x)
(mod 1) and show how to reduce the proof of Theorem B to the proof of Theorem
A.
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1. Idea of Proof

The number To for the family fλ :x->/bc(l — x) (mod 1) equals 4: as λ varies from L

to L + 4, the image of the critical point /λ(*t)= -r (modi) passes over the entire

interval [0,1]). In order to prove Theorem A we must find for a given ε > 0 an L(ε)
such that, if L ^ L(ε) then the interval [L, L -f 4] contains a set ^ so that mesJί > 4
— ε and for any λeJίfλ has an invariant measure μλ<dx. Without loss of
generality we can assume that λ varies from N0 = 4k0 to iV0 + 4, koeZ+. For a

smooth map g(λ,x) we shall use the notation DgDD2g for '
dx ' dx2

The central part of the proof of Theorem A is the construction for λeJi of a
special partition ξλ of [0, 1]. The elements of ξλ are intervals A.(λ), ieΈ+, which
satisfy the following conditions:

i) intAί(λ)nintAj(λ)) = 0.
ii) \/i3nieZ+ such that /Λ

ni maps zl.(λ) diffeomorphically onto [0, 1].

iii) inf min \Df?ι(x)\ > λc° for some c0 > 0 (λ is a big parameter here, so

iv) sup max 1 < 1 + / T ί l , for some ί x > 0 .

Let %(λ) be the union of all elements At{λ) of ξλ. Then %(λ) = [0,1] (mod 0).
The set Ji and the sets 3£(λ) for λeJί are constructed by induction. Jί is

00

obtained as an intersection Jί = f] Jίn, where
n = 0

(n+1

ί2>0.

At the nth induction step, we define for any λeJίn_γ a set ^π(/l)C[0,1] which
is the union of a countable number of intervals Af\X), fe= 1, ...,n. The intervals
constructed at step fc do not change at the next steps. The sets 3Cn(λ) satisfy the
following properties:

l-λ-*", t3>0.

00

Finally we set 2£(λ)= (J 2Cn(λ). Any element J.(A) of ξλ coincides with one of

Af\λ).
Let us define the map Tλ:«*(λ)->[0,l] by TJzl.(yl)-/A

nι. The results of Adler
[12] and Walters [13] imply the existence and the uniqueness of a 7^-invariant
measure vλ<dx. The endomorphism ([0,1], Tλ, vλ) is exact, and its natural
extension is a Bernoulli shift. The /^-invariant measure μλ is constructed from vλ.

2. First Steps of the Inductive Construction

The graph of the map fλ consists of a lot of monotone branches which we denote
by f(λ, x) and the middle parabola denoted by h(λ, x). The domains of f(λ, x) and
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h(λ,x) depend continuously on λ. When λ = 4k0, a new middle branch is born,
which exists for λ^4(ko + l) and then breaks up into two monotone branches.

We shall denote by Af(λ,x) the domain of f{λ,x), by xmin{λ) the endpoint
nearest to \ of the interval Af(λ9 x), and by xmax(λ) the other endpoint of Af(λ, x).
We shall distinguish [α, 6] from [b9 α] according to its position relative to \ and
not according to its orientation.

We fix a positive number s<γ^.

Step 1

Pick the branch f'(λ,x) of fλ whose domain Af'(λ,x) = A'(λ) = [x'min(λ), xf

maxW] is
contained in [0, | ] and is closest to \, subject to the condition

\xf

min{λ)—\\>λ~s for all λeJί0.

Denote by A"(λ) = Af"(λ,x) the analogous interval in [f, 1]. Define δι{λ) = [x'min(λ),
xminW]' noting that δ^λ) has the form

(2.1)

and let
iμ). Thus,

Both ^ ( 2 ) and δ^λ) are the union of several domains of branches, Af(λ,x),
varying continuously with λ.

Since

we have

and

dλ

df(λ,x)/dλ

df(λ,x)/dx i l-s

This implies

1 1
(2.1a)

In order to construct the set Jtγ we consider the domains /d/(A,x)

ax(^)] satisfying

We obtain as above that for any such domain

dλ
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The top of the graph, h(λ, | ) , moves with velocity

^§Γ = i ( l l b )

A comparison of velocities shows that to each branch ft{λ, x) with domain At(l)
there corresponds a uniquely defined interval /i = /(A^ of λ-values such that, as λ
ranges over / . , the top h(λ,^) ranges over At(λ) and its image /f(2, h(λ, |)) ranges
over [0,1].

So we define Jίx as the union of these /"•:

It follows from the estimates (2.1), (2.1a) and (2.1b) that

m e s ^ ^ f l - max mQsSCΛλ)] >4-N - ^ ΐ l ^ l , (2.2)
1 [ NoύλίNo + 4- 1V 7J [ N g 2 J

where

Step 2. Construction of ΘC2{X)

Let us denote by fγ the branches f(λ,x) such that AfcW^λ) and by gf the branches
with AgCδ^λ). Let us consider compositions f1

og. Any domain Ag can be
represented in the form

Ag = \jA(f1°g)\j\Jg~ι(δι). (2.3)

Choose an interval

C 2 1 l , C 2 2

which is a union of domains Δ(Ji °g) and g ίδ1. We shall use gγ to denote gf|<5j\<52

and f2ί to denote / i ^ ! . Then (2.3) implies

uUβΓ^Ά. (2.4)

For any particular branch ^ 1 we have

where the large unions are over all f21 and gι respectively. Denote the branches
/ 2i°0i by / 2 2 . Since A(f21°g1) = gJ1(Af21), we can rewrite (2.4) as

δί = {jΔf2lvj{jΔf22yj{Jg-1\δί)vj{}g-\δ2)vδ2, (2.5)

where gfj"2 denotes any composition of the form g± x °g^1. Proceeding in the same
way we obtain the representation
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where

Any branch gt satisfies

|Z)g,|>2/l 1- 2 s

, (2-7)

\D2

dl\ = 2λ

from which it follows (see for example [11]) that

jIimmes[UflfΓk(51)]=0.

Therefore, we can write

00 00

where modO means we neglect sets with zero Lebesgue measure. (Hereafter, in
analogous equalities, "mod 0" will be understood.) Using the notation f2 for all the
f2k, fc = l,2,..., we obtain

[0,1] = \jΔfxu[JΔf2κj j j g;k(δ2)κjδ2 (2.9)

or

[o, l]=ar2(λ)u 0 9^2)^2, (2.10)
fc=l

where by construction 8F2(λ) is partitioned by the various domains Ajx and Δf2

constructed in steps 1 and 2. These domains will be elements of the partition ξλ.
Now (2.3) and (2.8) induce an analogous structure inside δ2:

Notice that one of the g's in (2.11) stands for h. Suppose h(^)eΔfv Then for any
other branch ^ Φ / j either fχoh has two monotone branches or none; similarly
h~1 on δ2 has two or no monotone branches. The only branch of parabolic type in
(2.11)isΛoΛ.

We see from (2.10) that 9£2(X) is the complement (modO) of the preimages of δ2

under the various branches g^k^O). At the end of the next section, we will see that
Jί2 is the set of those λtJlx for which the appropriate branch fx takes the critical
value h(λ,j) into the complement of the g\ -preimages of an interval δ2 which is
also small but much larger than δ2.

3. Step if+ 1. Geometrical Part

We assume after step n that the set Jίn has been defined and for every λeJίn the set
3Pn(λ) has been constructed. Every 9En(X) is a countable union of domains Δfk{λ,x),
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k = 1,2,..., n, where we use fk to denote a branch constructed at step k. The interval
[0,1] can be represented (modO) in the following form:

[0,1] =
k=l m = l

(3.1)

Here the interval

1 \ α

Λ "τo
and δ~m are various diffeomorphic preimages of δn. We shall denote by
Gn:δ~m-+δn the corresponding diffeomorphisms without pointing out their de-
pendence on m if m = 0, Gn = Id.

In order to describe the representation of δn analogous to (3.1) we need some
additional notation. Let Fn_1 be a composition of maps fk constructed at the
previous steps:

Γ*-i=ftn-ι°h-1°-°ftJ°fιi> ' W . i 2 e [ l , 2 ] , . . . , i ) 1 _ 1 e [ l , n - l ] .

We shall distinguish two kinds of branches for various powers of / with domains
inside δn: the first have the form Fn_ ί °g(λ, x) (Fn_ί °h(λ,x) for the central branch)
where g denotes the initial map x->λx(l—x): and the second kind are all the
remaining branches, mapping their domains diffeomorphically onto [0,1], and
denoted by fn(λ, x). So we assume δn has the following representation after Step n:

u (3.2)

Now for any λeJin we describe the construction of 3£n+ί(λ). The estimates
which allow us to realize this construction are adduced in subsequent sections.

a) We consider the compositions fk°Fn_ί°g and fk°fn for all /fc(fce[l,n]),
Fn_1°g, and fn. Then the domains AFn_x°g and Δfn have the following
representations

^og= h j
k=l

^g) u [)

Δfn=\{J({jAfkofn)
k=\

U

(3.3)

Notice that the representation (3.3) for AFn_1°h contains only the members
corresponding to Δfk and δ~m which lie in the image of Fn_1 °h.

b) In (3.3) some new preimages of δn arose, namely (Fn_1°g)~1δ~m and
f~1δ~m. We still denote them <5~m, but the corresponding diffeomorphisms
Gn°Fn_1og and Gn°fn will be denoted by G'n. Let us rewrite (3.3) in the form

(3.4)
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Now we choose an interval δn + 1(λ) composed of whole elements of the
partition generated in (3.2) and (3.4):

c) We shall distinguish the maps with domains in δn\δn+ί, thus we use some
additional notation.

Let gn = λx(l—x) (mod l)\δn\δn+v We shall use fn+ίί to denote the branches
fk°Fn_ί °gn and fk°fn\δn\δn + ί. Finally, we shall use Gn to denote the Gn or G'n with
domain inside δn\δn+v Using (3.2) and (3.4) we obtain the following representation

0 K")vδn+1. (3.6)

Let us define recurrently the branches fn+1 k, fc = 2,3,.... If Δfn+1 k_1Cδn\δn+ί

and Gn:δ;m-±δn, then fn+1 k=fn+1 k-^Gn. Any branch fn + lk maps
Gn

 1{Afn + lk_1) onto [0, 1]. For any given NeZ+ we can rewrite (3.6) proceeding
as in Sect. 2:

U *Γ+"iM U K
ι = mn j \m = N mn

The preimages δ~+x and δ~m in (3.7) have the form (Gni°Gn2°...°Gn )~~ιδn

(respectively δn) and the branches fn+ίk have the form

If n>I, there is an infinite number of Gπ, and there is no uniform estimate \D2Gn\
< const. However using a generalization of one result of [14] (see Lemma 1 below)
we obtain

lim mes I) δ~m = 0 . (3.8)

This implies

[0 l [ 0 (U«)l^n + 1 (3-9)
J

0
k = 1

Apart from ^ C ^ V ^ we have ^" m C[0, l ]\^ n and ό~mC(5w + 1 (domains of Gn

and G; from (3.1), (3.2), (3.4)). Then (3.9) induces in any such domain δ~m=G~ ιδn

the corresponding decomposition

where δ^ = G~*.G,;1 » . . .»G;,^ + i
We shall use fn+ίk to denote fn+lk-1°Gn for any Gn with domain

δ-mC[O,l']\δn'9 fn±1 to denote fβ + lk for any fc; F^to denote fk°Fn_i; fn + 1 to
denote /fc°/n for /„ such that AfnCδn+v and also /n + 1 to denote fn+1°Gn and
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n + 1

°G'n with ΔGn (respectively ΔG'^)Cδn + 1; Gn + 1 to denote any composition of
the form ( V G ^ o . ^ G J ^ , or G^.^G^GJό;^ or GB lo...oG ί l poG;|ί;; 1 .

With these notations we have:

n+l[
U

k=l

and

(3.Π)

δn+1=([jΛF^g)yj([JΔfn^)J (J {{jδ^)]. (3.12)

(3.11) and (3.12) correspond to (3.1) and (3.2) with n replaced by n +1. So we have
described Step n + l on the x-axis for any λeJίn.

d) According to the induction hypothesis Jin is the union of a countable set of
closed intervals with disjoint interiors and some set ̂ n consisting of limit points of
such intervals.

We assume inductively that 3FnC.Jί, and define Jίn+λc^fn for all fn. We fix
some positive a^s/4. As λ varies over βn, the top of the central branch Fn_ t °h(λ, j)
varies over some ΔfkQ and fko°Fn_ί°h(λ^) varies over [0,1]. Moreover when λ
varies in βn all the maps F, G, /, / constructed at previous steps vary continuously.
Let β'n be one of these components of Mn. In order to construct the set Jin + 1 <^fn

we shall point out the admissible positions for the top fkQ°Fn^γ°h{λ,\). Let f'n
= [α«>frJ When constructing δn+1(λ\ we shall choose it varying continuously
when λefn and still satisfying (3.5). Then we shall expand δn + 1(λ) almost
homothetically and obtain an interval δn+ι(λ) varying continuously with λefn,
composed of whole domains Δfk and δ^ and satisfying for λe/'n the following

/ / 1 \\

n + ί(λ)\ (3.13)

For any preimage δn^
n

1 = G n +

1

1 δn+1 C [0, l]\(3n+ x the corresponding domain δn^
n

1

= G~+

1

1JΠ + 1 turns out to be defined and the lengths of δ~^ and δ~™x are still
related by (3.13). Then we define

The condition fko°Fn_ 1 oh(λ,^eδ'^ defines an interval in βn. Thus Jin+1r^#n

is the complement of the union of these intervals. J ^ ^ n / ^ consists of intervals
f'nk = [X :fko°Fn_1°h(λ9^)eΔfk(λ)} and of a limit set ̂ n+ !(/„). As λ varies over fnk,
fk

ofk0°Fn_1°h(λ,iϊ) varies over [0,1].
So we have

( U ^ 1 ( Λ ) (3.14)

and finally
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4. Estimates for Fluctuation of Derivative

Let f:Δ-+I be a C2-diffeomorphism of some closed interval. Then by differentiat-
ing log|D/(z)|, we see that

max
x,yeΔ

Df(χ)

Df(y)
5Ξ exp max

y

D2f(z)

Df(z)
(4.1)

We shall use the notation μ(f,Δ) = max
D2f{x\

Df(x)
•\Δ\ and when there is no doubt

about the domain of /, we shall often write μ(f). Let f1:Δ1 °nt° > /,

f2:Δ2

 on° > JDΛy be as above, Δ12 = f2~
1A1cΔ2. Then fiof2{Δι2) = I. Using the

mean value theorem and (4.1) we obtain

M/i%^12)=

Since by (4.1)

and

we obtain

Consequently

= max

< max

J 1 2 1

+ max
ί Df2(x)

max

max
Df2(x)

Df2(θ)

J 1 2 l

^ 2 i

max
x,θeAι2

D/2(»/2)

Df2(η12)\

Df2{x)

Df2(θ)

^μ(Λ)exp ,)expμ(/2)} -

J 1 2 l

(4.2)

(4.3)

-{μ(/2)expμ(/2)} (4.4)
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Using the notation v(f A) = μ(f A)cxp μ(f A), (4.4) is equivalent to

49

(4.5)

Let h(x) = ax2, and let A denote an interval in IR+ let H denote the distance from A
to 0, so that A=(H,H + \A\), and suppose f.Δ^l is a C 2 diffeomorphism.
Let <5 = [xm i n,xm a x]ClR+, be one of the two diffeomorphic preimages of
A \d = h~1{Δ)c\WL+. We obtain as above

x,yeδ

Dh(x)

Dh(y)
+ |zl|max

and thus

Since

This implies

or

• +

x,yeδ

Ml

D2h(x)

9 and αx^in = H9 we have

2H

μ(foh,δ)<μU)
2axL

2
min

5. Preliminary Lemma

We shall use the following several times

Lemma 1. Let IuJ = N be an interval, 1= (J Aφi9 where
i= 1

1) φ{ are C1 -diffeomorphisms from their domains onto N
2) mtAφinintAφj = 0, i+j

l
4) μ(φί)<c2;
5) m e s J > 0 ; mes/πJ = 0.

CO

Thenl= (J φ~kJ (mod0), where φ~kJ= (J ^ Γ ^ . .oφΓ1

fc=l i i . . . i k

Since φ. is onto, Aφ^φ^1 JuφΓ1/. Thus

(4.6)

(4.7)
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In a similar way we obtain for any N

1= U φ-kJuφ-NI. (5.1)

For any iv ...,iki

7 Φ ^ Φ Γ l
\

Suppose there were a constant θ>0 independent of k such that for any ι v ...,ik

Then it would follow from (5.2) that

thus lim mesφ~kI = 0, and in view of (5.1) this would prove Lemma 1. Note that
k—> oo

for fc=l, (5.3) follows from hypothesis (5).
Consider a C2 diffeomorphism φk = φik°...oφ^ φΓ1 o . . . o φ ^ N - t N . By the

mean value theorem and by (4.1), a proof of (5.3) would follow from a uniform
upper bound on the quantities μ(φn) independent of n. We will show

Σ V
We prove (5.4) by induction. From (4.5),

/ n\ / £ c2expc2\ / S 3c2ex
μ(φn) < Σ " V ^ exP Σ ~ V

i / i f i / 1 " - 1

v(φ)
\N\

According to hypotheses 3 and 4

v(φ)<c 2expc 2

and

Thus

μ(φn) £μ(φn' ') exp[v(φ)/c"Γ.'] + v(φ)/c"Γ'. (5.6)

Suppose for k^n—1 that

(Note that for fe= 1, the second factor above equals 1 and this becomes the obvious
inequality μ(φ)<v(φ).) Then, using (5.6),

and (5.4) is proved.
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6. Transition from n to n + 1,1. Hypotheses of Induction. Estimates of Derivatives

(3.1) and (3.2) give us the following representation of [0,1] after Step n:

00 1

U ([jδr)\u([JΔFn_rg)u([JΔfn) (6.1)[0,1]= \{J({jΔfk)\u

All domains in (6.1) depend on λ which varies in / „ , but throughout Sects. 6 and 7.
λ will be fixed. Any δ~m in (6.1) is a preimage of δn under some diffeomorphism

denoted by Gn. For given δ~m let p = max<k:δ~mC \\ - T^, \+ —^ \. Then we

shall use the notation Gn p for Gn.

p

Let 0 < 5 ^ γ 3 , l < α ^ 5 / 4 b e constants defined in Sects. 2 and 3, co = l— s, cx = 1
— 25, c2 = l— 5 + α, 7 = 1 — 35, ί = α/10, v= . Now we formulate the hy-

co
potheses of induction.

a) Hypotheses on derivatives:
a\n) \Dfk\>2k-λ^

alJ \Dfk\>2λ<° Γ 1 ' - ' "

3

a\n)
a\n)
b) Hypotheses on μ:

bj μ(Gn)<—.

We suppose flίπJ bin to be true and we have to prove ain+ί, bin+1.

Remark Vl/ί. At the beginning of Step n+1 we constructed some new preimages
δ~m with corresponding maps denoted by G'n (G'n:δ~m->δn, see Sect. 3). We have to
prove that G'n also satisfy the conditions α4 n, b4n which we denote in this case α'4ll,

Remark VI/2. Some additional induction hypotheses related to the variation of λ
will be formulated below. In particular the possibility of choice of intervals δn, δn

will be proved, and estimates of sizes of these intervals and their preimages will be
given in Sect. 10. Now we shall use (3.5) and (3.13) with n instead of n+1 (this is
assumed inductively) and with n + 1 (this will be proved in Sect. 10). One easily
checks there is no vicious circle here.
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00
ain+i) According to the construction of Sect. 3, {/π+1}= (J {fn+li} where

fn + \\=zfk°Fn-io9n with gn = λ-x2K|x|> (n + 1 } > in local coordinates near | , or

/« + i l =fh°fn> I n ^ e first c a s e αin' Λ2« a n < ^ ^ e ^ o r m °^ Qn above imply

In the second case aln, a3n imply

\Dfn+11\^2λC0-2n-λCin>2n+1'λcήn+1).

Thus a\n+ίis true for fn+ίV The choice of 5 implies 2c 1 >c09 hence a\n implies a\n

for n ^ 2 . All fn+lk> k ^ 2 are compositions of the form fn+ιk = fn+ίk-ioGn or
f« + ik = fn + ik-i°G'n with zIG;c^\(5M + 1. According to a2

4n, \DGn\>l. (a2jf proved
below is much stronger than \DG'n\ > 1, and G'n under consideration satisfies \DG'n\
>2n-λcin. Indeed, Gf

n = GnoFn_1ogn or G;= Gnofπ. In both cases a2n and α 3 π imply
as above \DG'n\>2n'λCin. Π

Fn=fk°Fn-V *2n+V

α^) We consider Gn:δ;m->δH, G'^GyF^^g or G'n = Gnofn and their do-
mains δfΓ

JV = (ί1

π-1°0f)"1 (<5~m) or <5;M = j;-1((5π-m). The most complicated is the
case of central branch Fn_ί°h. We omit indices and use δ to denote δ~m (if m=0,
δ = δn), G to denote Gn (if m = 0, G = id), / to denote ( F ^ ^ ^ - ^ . We estimate
|Z>(G?ojFn_ j_ °Λ)|. Let H = dist((5, ^ - i 0 ^ ) ) - τ h e induction construction of Step w
implies that the top Fn_ x o/ι(|) lies outside an interval δ corresponding to δ. Thus
(see (3.13) with n instead of n+1)

Let H1 =dist(FΛ"_1

1δ, ft®). It follows from (4.1) and b2n that

( - H τ r i ) > where ε6.2 = O(λ-") (6.2)

Remark VI/3. Several constants 0^ε ί>fc <λ~* are indexed according to the numbers
of inequalities in which they occur.

Let ^ = [xmin,xmaχ] We have, using the local coordinate,

Kxmin)-λ x2

min = H x , x m i n J A M " 1 , IDfcH ^2A|xm i n | = 2 / I ^ .

In consequence of \δ\ = \F~}ίδ\'\DFn_1(θ% for some θeF"}^, we obtain

(63)

Since |D(ί'B_1o/j)| = | D F π _ 1 | |D/j|, we have, using (4.1) and b2n, for any xeΔFn_1

\D(Fn_ t oΛ)|,|^ ]/2-A»+1-|Z>FB_1(3e)|-|5|(l - e 6 . J (6.4)
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If 3 = (5B,then (6.4), \δn\>2>λ~sn and a2n imply

| Z ) ( F π _ 1 o / 2 ) y ^ ( ] / 2 . A ^ + α ) r . l / Ϊ F . ( l - ε 6 . 5 ) . (6.5)

If ^ = ̂ ~m = G~1^n we obtain, using α 4 n

( 6 6 )

(6.5) and (6.6) imply (alJ for G'n = Gn°Fn_ t °n. In the case G; = GnoFn_1 °# we have

in (6.2) # ! >^ |zlFn_ J expI ^F^l> which leads to better estimates. In the case

G'n = Gn°fn (alJ is obvious because of a3n and a\n. •

α4«+i) Follows from α^, (alJ and the definition:

„ fl3»+i)Λ

If / n + i = / n + i o < V o C V β 3n + i f o l l °ws from flllI+1, α^n and (alJ. If
fn+i=fk°L a3n+i follows from α l π and α3 n. D

Remark VI/4. The inequalities (6.5), (6.6) show that the derivatives of G'n grow
exponentially with n, but this is not sufficient to prove (α^)'. Indeed, let ni be so
that ^n i_i°^(^ ?i) may lie in the domain δv As δλ contains Af2 of arbitrary small
diameter, the interval Δ(f2^Fni_ 1oh) = Δ{Fn^h) may also be arbitrarily small and
the corresponding δ~™ = (Fnioh)~1δrlί is contained in δN with arbitrarily large N.
However \DFni\ turns out to be very large in this case, which implies (αjj'.

aln) ^ e u s e the notation introduced in the proof of (alJ. According to the
definition, the domain ί = (Fn _ 1 ° h) ~x δ of G'n p is so that t C (% - λ ~sp, \ + λ " sp\ but
H{h-λ~s{P+X\ Hλ~s(P+1)l L e t ^C(i, | + ̂ " s ; ?). Then H ^ A x ^ ^ A 1 - 2 ^ It
follows from (6.2)

λ ζλ2s* 2 \DFn_1(θ1

(6.7) together with b2n imply for any xeΔFn_x

()| ^ β β β)- (6-8)

Thus we can rewrite (6.4) as

e6Λ). (6.9)

F r o m 1̂ 1= l n/ί/L V» a n d |5J>2-A-OT we obtain using 64n

, ί Fn_ 1o/ I)y^2.A» ^ - « ) ( l - ε 6 . 1 0 ) . (6.10)

Let us compare p and n. Let S>n-χ=^. — u\_ι, 2+««-i) be the domain of
Fn_1°h, and pj =max{ήf:M^_2<A~S9}. Then p^pv We have in the local coor-
dinate system, using α2 n,
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Thus

χ-s(pi + i)<u2_1<l(]/2)n-1λicon+s)1/2Y1. (6.11)

(6.11) implies n<2s(pί +^)/c0, which gives for v a somewhat worse estimate than
2(s — α)/c0. We prefer to improve it instead of taking a different v. It suffices to
make Fn_ί °h(λ,%) He outside ( | - λ ~ s / 2 , | + λ~sl2) for the first two steps. This gives
an extra factor λ~sl2 on the right side of (6.11). Hence

n<—px. (6.12)

Remark VI/5. For a given n0 we may introduce the additional condition

(above n0 = 2). This simplifies the estimates, but as follows from Sect. 11, it gives an
extra factor of (1 — 2Nos/2)n° in the estimate of Jί. However, this factor can be
made arbitrarily close to 1 by taking No sufficiently large.

As p^pl9 (6.10) and (6.12) imply

J λp«1-v) (6.13)

which finishes the proof of (aU for t? = (Fn__1°hy1δ.
If G'np = Gn°Fn_ίog, the estimate of Hί (see the proof of (α^JO implies that

(6.10) turns out into \DG'nJ>λsp(l - ε 6 1 0 ) . Finally when G'ntP = Gn°fn, notice that
any fn is a composition of the form φ°Gfe, k^n—l, where Gfc satisfies a\k, and |Dφ|
> 1 . D

a\n+ι) Follows from a\n, a\n, (μ\J, (alJ and the definition of Gn+ v Π

7. Transition from n to n + ί9 II. Estimates of

*>4» + i) Let G ^ G ^ o ^ ^ o / z : / ^ ^ , where

Gn:^GM = ̂ ^ , and ^

We estimate μ(G y) first.

According to (4.5)

We have

In consequence of b2n, v(Fn_1) = l + O(λ~y). Thus we obtain, using a2n,

2(1+Q(AQ) = l + ε 7 . 1



Absolutely Continuous Invariant Measures 55

Proceeding along the line of the proof of (6.2), and using (7.1) and (4.6) with
Δ=F;}1ΔGn9 H>±(l-O(λ-y))>λan'\Δ\ we obtain

l+«£><*ψ4. (7,,

The proof for Gf

n = Gn°Fn_1og and G'n = Gn°fn is similar and gives a better estimate

xi+ε^μ-™. (7.3)

Then we consider Gn+1 = Gni°...<>Gnv:δ-M-+δtt, δ~MCδn\δn+v When estimating
μ ( G n + 1 , δ~M) we use the proof of Lemma 1 with φ. = GΠι, c 2 = (l + ε 7 3)λ~an,
according to (7.3) and b 4 n , and c1 = max(AC2/2, 2 s [ n ( 1 ~ v ) ~ 1 ] ) , according to α 4 π . Then
(5.4) gives

μ{Gn+l9δ;M)<(l+8ΊΛ)λ-m. (7.4)

The estimates (3.5) of \δn\ and |<5Λ + 1 | imply

<

\δΛ\ λ> "
Considering δ~£ί

ί = G~+1δn+ί and applying (7.4), (7.5) we obtain

\δn

which proves b 4 π + 1 for δ;^Cδn\δn+v

Any Gn+ί:δ-»1^δn+1 for ί ; + V[0, l ]\( ί B \ ί B + 1) is either a restriction of
Gn:δn

 N-+δn on δ π ^ Cδn

 N, or a composition of the form Gn+1°Gn or Gn + 1°G^,
where μ(Gn+1) satisfies (7.6), μ(Gn) satisfies bAn and μ(Gf

n) satisfies (7.2). The case of
restriction is treated along the lines of (7.5), (7.6). In the other cases, (4.5) together
with a\n imply

.+ 1Λ-Λ)* Π (ί+^)-^

which proves fc4n+1. D

00

bln+l) {fn+l}= U {fn+lkh W Π e Γ e fn+1 1 =fk°Fn-1 °fe ^ [ 1 , n], OΓ / w + 1 1fc=l

— fk°fn> a n < ^ Λ+ifc a r e obtained from / n + 1 x using consecutive compositions with
different sorts of Gn and Gn. Let us begin with fn + ί x =fk°Fn_1°gn. (4.5) implies:

1 4- P 1
We have v(Fn_ x) = — 7 8 (in consequence of b 2 w), \Δfk\ < k k (in consequence of

2, A 2 A

aίn)9 thus
/ U P _ \ l + ε 7 8
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Let A be the domain of fk°Fn_ί. Then (3.5) and (4.7) used with a = λ, imply

We have \Δ\<2~n λ~con, because of a\n and a2n, and thus

(7 9 )

In a similar way one verifies using a3n and b3n that μ(fn+ί 1 =fk°fn) a ^ s o satisfies
(7.8).

Using bln9 (7.8) and (7.9), we obtain

k i

/ίs 2" /l ( c o " 2 s ) ( " + 1 )

Since cx — 5 = c0 — 2s — y, we have

( l + ε 7 - 8 ) . 2 - ( f c + 1 ) α - C l f c - ^ ( l + ε 7 8 ) . 2 - ( / c + 1 ) A

and

Therefore

μifn+11} < e x p

1 \ Λ

2 1

Since /crgn, the factor in square brackets is less than 1, which implies bίn+ί for

^ n + 1 1'

W / n + i ^ / n + i i ^ n + ^ / n H i 0 ^ 0 - 0 ^ we have using (4.5), (3.5), (7.4) and

1 + ε 1 + ε

Substituting (7.10) in (7.12) we obtain bln+1 as above. The same reasoning proves
bίn+l f θ Γ fn+lk = fn+ll°Gn+loGn •

έ> 2 n + 1 ) The proof is similar to the above proof of bln+v Π

P fn+l=fk°fn w ί t h ^ / n ^ ^ + 1 a i l d f θ Γ fn+l=fn+l°Gn t h e P Γ O θ f i s

similar. For fn+ί=fn+1°G'n (7.2) is applied. •
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8. Measure of Holes After Step w + 1

00

For any λeJίnWQ estimate the measure of the union δn(λ)u (J (\Jδ~m(λ)\ where

Lemma 2. There exists an ε<λ~t so that for any keZ+\{0}

mesj^u
m = 1

Proof. We proceed by induction and assume that after Step n:
i) The estimate of Lemma 2 holds for k = n

ii) To any hole δ~m there corresponds a unique hole δ~HΊ Jδ~m and a set Kn

= κn, m(K m) C K-i > such that Kπ m C 3Cn and for some ε8 Λ = 0(1' ' )

Remark VHI/ί. The proof of Lemma 4 in Sect. 10 implies ii above. However we
prove ii here in order to separate the proof of Lemma 2.

Remark VI11/2. We shall use here that the intervals δn, δn+ί constructed in Sect. 10
are chosen so as to have δ'^ Cδn\δn + 1 for the holes δ~™x corresponding to holes
Kmcδn\δn+V

We began Step n +1 by taking compositions fk°(Fn_ x °gτ) or fk°fn and creating
new holes of the form ψn-i°gT1δ;m, f;'δ'n

m. Let δnH + 1=δH\δn + 1. There are
holes δn

 m of two kinds inside δnn+1: the old ones δn

 mCδn™1, and the new ones
K" = (Fn-i°gXlKm, or KM = ίn'Km for AfnCδnn^, m = 0,l,.... Let

Then (8.1) implies

Pn n + 1<l<5«n + 1 | ( l + s 8 . i ) ^ " s (8-2)

One obtains similarly to (7.9) μ(Fn_1°gn)<l+λ~y. Then i) implies

n n 1 ) l(l+ε8Λ).λ-Ύ. (8.3)

The construction of Sect. 3 implies the one-to-one correspondence between <5 " ^
and corresponding δ~m(δ~^n

ίCδ~mCδnn+1). We have, according to the con-
struction, m e s ( ( J ^ / n + i i ) ^ ( m e s δ n i l + 1 ) - R l π + 1 - p Π Λ + 1 . Now, we let Kn+1

— ̂ n+i,o = [j^fn+ii correspond to δn+1. In consequence of (8.2) and (8.3) we
have

The right part of (8.4) is less than (1 +εSΛ)λ~s for a suitable ε 8 Λ = 0(λ~~r\ s>r>t.
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We let Kn+Um = Gn+\(Kn+1) correspond to δn^ = i

"i mes<5π + 1

We have

mesKn + 1, m mesiC
(8.5)

Because of b 4 w + 1 , the right side of (8.4) with the additional factor expμ(Gn + 1) is
still less than {l+s8Λ)λ~s and (8.1) is proved for fc = n + l . Lemma 2 with ε = ε8Λ

follows now from

1+6 n+ί

The estimates of Sects. 6-8 prove the following

Proposition 1. Let λe[N0, iV0 + 4] be so that for any n = l,2, ...,Fn+1

\ oo

oh{λ, | ) e [0,1]\ (J ((J<5~m). Then a partition ξ} as in Sect. 1 exists.
\m = 0

Remark VI11/3. Notice that if λ is such that at step n Fn_1 °h(λ9^) falls into a limit
set 3Fn defined in Sect. 3 the condition of Proposition 1 will be satisfied. It is
certainly so at Step n, and at subsequent steps the holes δ~m lie either in δ~m, or in
the intervals Fn_1 °g, fn constructed at Step n (there is no middle branch Fp°h for
p ̂  ή). The estimates of Sects. 6-8 are even better in this case.

Remark VIII/4. If we suppose Fπ_x°fr(/l,f) is outside J1(A) = (^-A"(s-(X),
j+λ~{s~a)) for all n, the above condition of Proposition 1 will be satisfied. In
particular, if h(λ,j) falls into some fλ -invariant set (e.g. periodic orbit or invariant
Cantor set of [5]) lying outside δ^λ), λ satisfies this condition. Thus card{A
satisfying Proposition 1} equals the continuum. One can check however, using
estimates of Sect. 11, that mes{A:FfI_1°Λ(λ,^)6[05l]\δ1(λ)} = 0.

9. Velocities of Endpoints of Domains Λfn(λ)

Let fn be one of the maps constructed at step n, with domain Afn = [xln,x2n]. In
this section we prove the following

Lemma 3. There is an ε = ;)) such that for ί=ί,2

dxίn(λ)

dλ

λs"(l+ε)

8A '

Proof Any xik(λ) satisfies fk(λ,xik(λ)) = 0 or 1. Thus

dxik(λ)

dλ

efk(λ,xik(λ))/dλ
dfk(λ,xik(λ))/dx

We proceed by induction as in the main construction. Consider the maps fk(2 ^ k
^n), Gn\δ~m-^>δn, and fn. Assume inductively that the following estimates hold:

Clk)
dfk(λ,x)/dx Σ" 1+S

- v ) ί
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c2n) Let Hn denote either Gn or /„, and pick p so that, if p^n, then
ΔHnc[0ΛT\δp, while if p>n, then dist(AHn^)>λ-sp. Let iV = max(n,p). Then

dHn(λ,x)/dλ

dHn(λ,x)/dx

λ sN Γ n-ί 1+ε

For k = 1, these estimates are proven in Sect. 2. We will prove cln+ x in the various
cases that arise from the construction. c2n+1 is similar. In particular, cίn implies
Lemma 3.

Suppose φ.(λ,x), i = 1,...,n are C 1 functions, and define

F(λ, x) = φn{λ, φn_ι(λ,...,

One sees that

so that, at any point (λ0, x0) in the domain of F,

dF/δλ

dF/δx &= Σ \dφk/dxj [U dx

- 1

where the partials of φt are evaluated at (Ao, <j£>£_i(A0, ...,
To prove c l n + 1 , we first consider the case

Since

we have

\dgn/dλ\<i\dgn/dx\>2λ/λ*"+1K

Using (9.1), a\n and cίk(k = i1, ...,in), we obtain

dfn+l
dfn+ί

jdλ

Jdx

χs(n+l) Γ

" 2λ [*'

^ si r'

λ

+

1

s (l+c)

82

+ ε9 2

2 2 C O

/ 1

This proves q n + 1 in case / n + x 1 =fk°Fn_ ί °gn.
In case /„+ ί 1 =fk°fn, (9.1), clk and c2 n, and a3n imply

2 S < " ^
1 La i s ( l - v ) ι ' Tyn

ί = 1 A Λ

Similarly, if F n _ x =fin_1

o...ofίl and |x — f|>/i s p, then

δ(Fn_rg)/dx

C9.4
2/lCl

(9.1)

(9.2)

(9.3)

(9.4)
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Now let G ̂ G^F^og, where A{Fn_x°g)c\0,r^k-^;, i + ~ j , and

ΛGnC[0, l]\<5n. Using (9.1), c2n, a2n and a\n, we see that

dσjdλ

dG'Jdx

1+ε.9 . 4

2λc

λ S p

"ϊλ 2λc°
(9.5)

On the other hand, for G'n = Gnofn where J/ΛC[O, I'm- — , | + — 1 we obtain

an estimate similar to (9.3):

dG'Jdλ

dG'Jdx J τs(l -v)i
l Λ

(9.6)

Finally, let G ^ G ^ or G'n, ΔGnCδn\δn+1. Then in c2 n, (9.4) and (9.6), p = n + l .
Nowα} π implies |Z)GJ>Γ s ( 1 ~ v ) . Hence using (9.1), (9.2) or (9.3) and c2 n, (9.5) and
(9.6), we obtain for/n + l f c = / λ I + 1 1oGM io...oGΠ k_ i

A 1 4- V +

1 + L 3s(l-v)i81
ML

1

λ's(n+l)

Ayιl

(9.7)^ h l ^
for a suitable ε = O(λ~s{1~v)).

This proves c l w + 1 the proof of c2n+1 is similar.

1 0 . C o n s t r u c t i o n o f δ n + 1 ( λ ) a n d δ n + ί ( λ ) . S t r u c t u r e o f & n + ί i n a A ( s + 2 α t ) ( n + 1 ) -
N e i g h b o r h o o d o f δn+ x

a) Recall that at step n + 1 of the induction construction, we consider λ contained
in an interval fn = \_λOn, λ l M]. As λ varies in fn, all the maps under consideration
together with their domains vary continuously with λ.

The induction hypotheses ain in Sect., 6 imply the following estimates on the
diameters of the domains appearing at step n + 1 :

(10.1)
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In the second estimate of (10.1), we write δ~m as δ~p™, where p0 denotes the
minimum integer p such that

In the third estimate, recall that ΔFn_1og = [χmin, xm a x] with

l Snin 21 > A

For any Gn\δ~k-^δn we have, according to b4n of Sect. 6, that μ(Gn)<λ~an. But
actually for δ~kC [0, l]\(5n + 1 ? we can strongly enlarge δ~k and still have the maps
Gn defined with μ(Gn) small. Let us consider the homothetic transformation

It follows from the condition α ̂  s/4 that for n ̂  3 one can define

: ψn(λ)δn(λ) C δq(λ)} ^ 1.

Remark X/I. For n = l, the endpoints of ψ^Xjδ^λ) belong to [JAfv We define
δq{ί)(λ) for all λefn as the minimal interval containing ψ^Xjδ^λ) of the form

[•̂ imaxWX ^2maχW]' w h e Γ e ^ i m a x W ^ 0 ^ ] a n d ^ imaxW^i 1] a Γ e endpoΐntS of
domains Δfv We define δq(2)(λ) in an analogous way whenever xp2{λ)δ2{λ)<J_δ1{λ).

It follows from the construction of Sect. 3 that for every interval G~xδn (or
(G'ϊ^~1δr) which lies outside the domain ΔFq^n)oh, the corresponding preimage
G " 1 ^ ) is defined. Indeed, the maps Gn under consideration are those com-
positions of Gq{μ) and Fk°g or /fc, q{ή)^k^n, which map their domains onto [0,1].
Using Lemma 1 and following the proof of b4n9 we get for some ε l o . 2 < ^ ~ ί

)<(ί+ε10,2)λ-^"K (10.2)

From the definition of q(ή) for n §: 3 it follows that

q(n) ̂  max i ^ : ( l - 2 -
I S

Since 2 - ^ | , we get

- — 1 for n even

^ - i for n odd.

In particular, we always have

(10.3)

We shall show that for n > 3

(10.4)
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Let ΔFq{n)ch = [^-vln, ^ + v2n], vin>0. In a way analogous to (6.11) we get

ι?iB<l/[(V/2)«(ΛU(C0«(II> + 1 ) / 2 ] . (10.5)

From (10.3) and (10.5) we obtain that for (10.4) it is enough to have — (- - 1 ) + |

ίl — s \ s
>s{n+l), or taking into account that co = l— s, — s\n>-. This holds for

From the fact that for s^73 the domain of the central branch Ah cδ6, it follows
that for n^5 if G~1δncδn\δn+V then G " 1 ^ , 1] is defined.

In such a way, for all n ̂  1 and for all domains

the preimage

is defined.

b) Let us estimate the length of / „ . When λ varies in / „

varies in one of Δfin and fin

ofin_ί-..fίί

oh(λ,^) varies in [0,1]. We have

al
where the arguments of f{ (λ,x) are x = ft _1°/ί _2° -'ofil

oh(λ, ^). In consequence
P P P (1+ε )λs

of cίk and α\n, the sum in brackets is larger than \- Q

1.0-6 > i ( l - A~c°). We
o/t

shall use ί>n(λ) to denote the velocity of the top. We have

dλ
(10.7)

OA \ A-J

Thus

l - λ o - c o ) " 1 (2λo°J"B. (10.8)

We formulate the induction conditions on the choice of δn(λ).
i) The interval δn(λ) is of the form:

δn(λ) = {^cnl(λ)'λ-sn^ + cn2{λyλ-sn)9 iύcni(λ)<l+o(λ~tn). (10.9)

ii) If for some δ~k δφ}rλδn +0, then δ^} CδΠ.
iii) If αn is an endpoint of δn, then αΠ coincides with a common endpoint of two

intervals: some Afn exterior to δn and some AFn_1°g or Δfn interior to δn.
According to the construction of Sect. 3 we consider intervals Afk°Fn_1og9

Afkofn, (G'n)~^n, and have to choose an interval δn + 1(λ) satisfying the above
conditions and varying continuously with λe[_λOn,λln].
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Consider the point ξOn = \-(1 +λ~%{n+ 1])λQn

s{n+1}. For k = q(ή), (ii) implies that
if two intervals δ~$ intersect, then one of them contains the other. Let δ~^ be the
maximal interval containing ξOn. Then we replace ξOn by ξln which is the endpoint
of δ~^. If ξOn is not contained in any δ~^, but is inside some interval Afk°Fn_ι°g
or Δfk°fn, we let ξίn be the right endpoint of this interval. If ξOn is a limit point of
δ~m we obtain any of the previous cases with an arbitrary small perturbation of
ξOn. The estimates (10.1), c2n, (10.8), (10.9) show that when λ^λOn varies in fn

a
1 H i 1 έΓ \ 1 — s(n+1) (\ _ι_ o \ 1 — s f O Q c i \ — ( « + 1 ) ̂  μ / n \

2 —U + /tOn J ΛOΠ ~ U + ε i o . i o M o « v Z Λ o J < C i « W

^-[sq(n) + s(l -v)]n

(10.10)

We shall show that for n ̂  7 /Lo^ ( " } + s { 1 ~ v ) n ] < λ~}* +Tn+1\ For this it is enough

to have sq(ή) + s(l—v)n> \s+-) (w+1). Since

, v <
4 1—s 1—5

/ 2s \
we get the inequality n U-— y^ > ^ + ̂ 2, which holds for n^7, s^j^.

\ 1— s I

For n^β the check that for δ~^cδn\δn+v \δ~{^\< ( n + 1 ) is straightforward.

The worst estimates correspond to n = 6. Since ^(6) ̂  2 and £)^|56\57 > 221 ~ 7 s, we get

ΪOY ^TΪ

Taking into account (10.8) and the formula c1 = l— 2s ̂  11s, we obtain from
(10.10)

and we can make ζln the left endpoint oϊδn + ί(λ). The analogous choice of the right
endpoint gives us

^iW^iHi+^πjr^^l i+t i+^i j r^^^^^otr^^)) . (io.ii)

One easily checks that δn+ί(λ) also satisfies (ii) and (iii).
c) We then construct an enlarged interval δn+1(λ). We begin by expanding

δn+1(λOn) with a homothetic transformation

Then we proceed with the endpoints of φn+1δn+1(λOn) as above, i.e. using a small
perturbation we make the endpoints of φn+iδn+1(λOn) coincide with endpoints of
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some interval Afk9 k^n. One checks as above, that this can be done so that the
interval δn+ι(λ) satisfies for all λe/n = [λOn,λln] the inequalities:

As δn+ί(λ)cδqin + ί\λ\ for any δ~k

ί(λ) = G~+1δn+ί(λ) the corresponding interval
δ~+ί=G~+ίδn+ί(λ) is defined. Taking into account an additional factor
expμ(Gn + 1, £~+\)<(l +ε)A~ ( s"α ) (" + 1 ) we still have

λ * < » + 1 > | ^ + \ ^ (10.13)

d) When estimating mes^# n + 1 we shall use the following

Lemma 4. For any n there is a set LnC^n corresponding to δn, and for any
(5~*C[0, 1]\<5M there is a corresponding set L ^ C ^ such that

(a) ίfδ;kίΦδ;k>thenL-n

k>nL-k> = 0
and

(b) mes(L; f c)>(l-εoμ2 α nrnes(<5; f c), with ε 0 -O(A" 2 α ).

Proof. In addition to the estimate α^s/4, we will suppose that α has the form

α = s/2k0,

where k0 is an integer ^ 2. This assumption is not really necessary, but it simplifies
the notation.

If an interval δ with center x0 and a number c> 0 are given, we shall denote by
c δ the image of δ under the homothetic transformation x-^xo + (x — xo) c.
Further, we shall use ^ to denote the set λ2αr δn\λ 2 α ( r" 1 ) δn.

Let fil = 3 A - 2 α , φ 0 = 0 , Ψi = (2'λ-{s~2^\ / ^ l , c n = Π
i o

We prove Lemma 4 by induction. We assume that Ln9 LΓn

 k are constructed and
consist of Afr,r^ n, and that the following property holds: For any δ ~k, k = 0,1,...
there exists an increasing sequence of intervals (λ2ar-δn)~k

9 r = 0,1, . . . , R = J Λ

^ n, such that

<

We define L^+j corresponding to δ~™x and prove (10.14) for n +1. Then Lemma 4
follows with l—εo = c""1 ( l + ε 1 ) ~ 1 .

Consider λ2an-δncδq(n). Condition ii and the construction of δn+1 imply
δφ}Cδn\δn+1 for δ~mcδn\δn+1. Considering maximal elements δ~(% among
{δ~i™)Cδn\δn+1} and the corresponding diffeomorphisms G~w, we transmit the
structure from λlm δn into each δ~(% and obtain that corresponding to any
δ;mCδn\δn+1 one can pick L ; m C ^ C δ π \ ^ + i so that L-nnI7n

r = 09 iϊδ;m*δ;r

and (10.14) multiplied by an additional factor exp(A~α<?(n)) holds for L~m.
Let us consider the domain Vn+1=λ2an'δn\λ2ain+ί) δn+1. Taking into account

(10.9), (10.11), and s = 2koa, /co^2, we obtain
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Together with (10.14) this implies

Π ) (10.15)

(here and below χin+ί =o(λ~t(n+1))).
F o r δ'^Cδ'"1 Cδ'^ Cδn\δn+ λ the corresponding set V~™x is defined and

c n ( l + β J ( l + χ 2 n + 1 ) m e s ( L ; ™ Π K Γ / i ) > ^ ^ (10.16)

We define Ln+1 = \J(L~mf]Vn'+
m

ί) where the sum is taken over all
L~mCδn\δn+v For any r ^ l such that δnDλ2ar-δn+1 consider δ^Cδ{

n

r)

+1 and
corresponding (λ2φ+1)'δn+1)~m, V~^[Cδ~{^y Since the dimensions of δ~{% are
small compared to δ^+ ί (see the proof of 10.10 above) we obtain from (10.16) that

( .

1 cn ( l + β 1 ) ( l + χ 2 n ) '

A2«

Besides, for any δ~mcδn\δn+v

All L~m consist of domains zl/π and ^(F n _ x °gf). At Step n + 1 when constructing
Afn+11 we reproduce the structure from [0,1]\(5Π on each Δfn or A(Fn_1 °gn) using
respectively f~x or (Fn_ x °gn)~1. We denote by (δ~m)\ {δ~$)' the new preimages of

δn> δq{n) under Z^ 1 , O V i ^ Γ 1 . The estimate of mes
m = 0

f r o m S e c t 8

together with the estimate of μ(Gqin), [0,1]\<5Π+1) show that after excluding the set
00 _
U U(̂ <j(»!))' ^ r o m e a c n ^/« o r Δ(Fn_1ogn) the measures of Ln+1 and of any

^ m Π ^ 2 α ( " + 1 ) ^ + i ) " w a r e multiplied by a factor larger than l - ( 2 U " ( s " 2 α ) ) " .
This factor implies the passage from εn to εn+1 in estimates (10.14) for (λ2ar

'δn+1Γ
m. We let {L~n

m)'(\{λ2a{n+l)δn+ι)-m~\ correspond to (δ fj. Thus to each
δ~+v (δ~™JCδn\δn+1 uniquely corresponds its / I 2 α ( " + 1 ) —enlargement which does
not intersect Ln+ί\\J(δ~φ. We now set

= (Ln outside δn

n+1 U \ U ( W inside ^ » + i

Notice that Ln+1 Π^«\^H+ 1 consists ofAfn+11. (10.17) together with the estimate of
(J gives

m p Q n2α(μ-l ) ί \

*'""™' 1 " 1 ( l f t l8 )

and (10.14) follows for ^ n + x. The maps G~1, G'~x and their compositions transmit
(10.18) on (^ ri 1)"mCδπ"m\^"+wi w i t h a n additional factor Qx^λ~aq{n\ Joining it to
the above estimate of

finishes the proof of (10.14) and of Lemma 4.
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Remark X/2. The above construction is similar to one used in Sect. 8 in order to
estimate the measure of holes at Step n+\.

RemarkX/3. R which bounds r in (10.14), may be much larger than n. For example,
the construction implies that the consecutive Λ2αr-enlargements of δn are taken
until we obtain the whole interval [0, 1].

11. The Positivity of Measure

Remember that at step n + 1 we consider λefn = [_λOn,λln\. As λ varies in fn,
Fn_ 1°h(λ^)traverses some Δfn and fn°Fn_1 oh(λ,\) = Fn°h(λ,\) traverses [0,1]. The

n+ 1

set 3?n+1{λ)= (J Δfk is defined for all λefn, and all the domains Afk = (Afk) as
k=l ^ Λ

well as the holes δ'^iλ) and their enlargements δ'^iλ) vary continuously with
λe/n. We then define J π + 1 n / M as the set consisting of those λe/n for which

Fn°h(λ,t)ea;n+1(λ)\ 0 U f e W
\m = 0

We saw in Sect. 10 that the velocity of the top satisfies

(11.1)

At the same time the endpoints xk(λ) of Δfk(λ\ k^nΛ-1, move with velocities

dxh
v/c

dλ 8Λ

(11.1) and (11.2) imply that for any Afk, fe^n+1, the condition
Fnoh(λ,^)eAfk(λ) defines an interval f{Af^Cfn, as does the condition

A priori the condition

mes 0 U8;™1(λ)<i(i+ε)λ-{s-«)γ+1

m = 0

does not imply the predominance of

Λ 0 U«5nTiW

in fn, and we have to do some additional estimates. In consequence of Lemma 4
for fe = n + l , to any δ~+1=G~+1δn+1 there corresponds uniquely a set Ln

k

+1

= G;+\Ln+1cSrn+1[)S^+1) such that

We define Ϊ7n

k

+1=(Ln

k

+ι\δ~+]). Thus for any λefn the following estimate
holds:

$ *) (11.3)
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Let f = f{δ~{n + 1) = \_λ0,λ1~\ be an interval on the l-axis such that

Fn°h(λ9j)eδ~^+1) when λef. Because of the definition of q(n)9 |<5~(*+1)|

<( l + o(A~ί(π + 2))) A2 α ( n + 1 ) A2s |^"+1l
 τ h e n t h e comparison of velocities (11.1) and

(11.2) implies
λm ; 2 α ( n + l ) + 2s

\f\< ^ (1+ε ) \δ~+ (λ )|. (11.4)

When λ passes /, the measures of 5~+x and L~$γ vary in particular because of the
variation of d/dx(G~+1). We shall show this variation is small.

a)

Lemma 5. Let Γp denote δp if p^n, and (\-λ~sp, \ + λ~sp) if p>n. Let Fλ{x) be one
of the diffeomorphisms Gn(λ,x), fn(λ,x\ or fn(λ,x\ and suppose AFλ(x)C[09lJ\Γp.
Let Fl1(z) be the inverse diffeomorphism, and let N = N(F) be the number of
iterations of the initial map gλ:χ\->λx(l — x) modi corresponding to Fλ (i.e., Fλ

= gN

λ). Then

Σ λ'"- (11-5)
ί = 0

Proof. We proceed by induction. Assuming Lemma 5 holds for fcrgn, we need to

prove the corresponding estimates for n+1. We begin by estimating — — - — for a
0 A UZ

composition of maps. Let

d δF~ι

dλ dz
- N
" 8/1 dz

where our notation is similar to that in the calculations for (9.1). Several
applications of the chain rule give

δλ Ύ ' '

(11.6)

where as before the arguments of φi and its derivatives are λ and φ _ 1 c . . . o φ 1 ( χ )
while those of φ[1 are λ and φf+\°...°φ~ι(z), z = φ(λ9x) (for i = n, φ~1 = φ~ 1(λ9z),
and there is no second term in the brackets).

Let F1=fn_1°...of1og^ AFίC[09l']\Γp9 and let N( denote the number of
iterations corresponding to fv The expression d/dλ(φ[+\°...°φ~ι) in (11.6) equals
dxί+1/dλ, where xί+1(λ) satisfies

In our case φ1=g, φi+1=fi l^i^n—1 and the estimates of Sect. 9 give

For g = λx(l — x) we have

δ dg-1 1 -d2g/dx2

dλ δz 2A 2 (x- i) ' (δg/δx)2 2A(x- |) 2
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For /• we have by estimates b2n of Sect. 6 that

Thus, (11.5) and (11.6) give

d dF'1 dF'1

cλ dz dz 2λ2

)2s

+ n-A (H.7)

Let F2 = G°Fl9 where G = Gn:AG-+δn, ΔGC[0, l]\δn, and N G is the number

of iterates for G. The estimates of Sect. 9 imply ' " 1

\d2F Idx2\
Because 1

 2 < v(JF\, Δ(FJ) for xeΔFu we obtain using (4.7), a2n and fo2n

that

|3 2F 1/δx 2

+ •

Using (11.6) for F2 = GoF1 we have

dλ dz
< brr-

Substituting (11.7) in (11.8) we obtain (11.5) for Gf

n = Gn°Fn_ίog constructed at the
beginning of step n + 1 (we have besides an additional factor less than λ~co in the
right part of (11.5)). The proof for Gf

n = Gn°fn, 4fπC[O,l]\jΓp, is analogous.
Considering p = n + 1 in (11.7) we obtain the assertion of Lemma 5 for fn+ x v Then
we consider the compositions fn+ik = fn+ii°Gnk

o ~°Gnι. The induction hy-
potheses and the previous estimates give

d dG'

dλ dz

The estimates of Sect. 9 give

- 1

δz Σ

Taking into account

dλ

82Gn_ UdG. V

χs(n +l)

» ι I n ,

δx2 \ δx
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(11.6) implies

69

-Ik

dλ dz

k M2s(n+1)

This proves Lemma 5 for / n + 1 , and the sum in round brackets gives the desired
estimate for GM + 1. The proof for fn + 1 =fn + 1 °Gn is similar. Π

b) Consider /(5 g ( I I + 1 ) ) = {A:FBoft(A,i)e5e(lI+1)(A)} = [A0,A1]. (11.4) gives

( 1 + ε i i . 4 ) ' 1 6 Λ -. Let Δ(λ) be any interval in Ln+1f]δq{n+1). The

comparison of velocities (11.1) and (11.2) shows that the time it takes for Fπ°ft(Λ.,̂ )

to traverse Δ(λ) equals ——~ (1 +o(/l~co")), where λ is any moment of passing by.
v-n\λ)

We want to reduce all these moments (for different A(λ)) to the same one, namely
to λ0, and then use the relation (11.3) for λ0. This can be done for given A(λ) if for
anyλe/(<5g ( n + 1 )),

MUO)I
Let N = N(Δfk) = N(fk). l(N<λs

0

(n+1\ Lemma 5 and the estimate oϊf(δq{n+1))
imply

(11.9)

Thus for such Δ, otn+1 = 0(4°- 2 ( s + α ) 1 ( π + 1 ) ) .
Lemma 7 of Sect. 12 gives the following relation between N(Δ) and | J | for

Thus N<λs

0

(n+1\ if— l/n+l | log A o | z l | |<^ 0

( " + 1 ) . Lemma 7 also gives the following
co

estimate for a domain A(Fn_ί°h) of the central branch Fn_ί°h(λix). If

1? and N = N(Fn^1 °h) = N(Fn+ί) + \, then

4s n

When constructing L π + 1 in Sect. 10, we had Ln+1f)(δn\δn+1)c{jΔfn+lv

Using this fact one can check inductively following the proofs of Lemmas 2 and 4
that the following construction gives a set ^ + 1 C ^ n + 1 with

for every δ~+v
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We begin by constructing at step 2 the maps fγ °g and the holes g ιδι. Then at
step n + i9 ft ^ 2 , we reproduce on each interval inside δn the structure obtained
after step n on [0,1]\<5Π, and on each hole δfk [l^i^n—1 and k^kQ(n) here,
contrary to i = n and 1 ̂  k < oo in the construction of Sect. 3] we reproduce the
structure oϊδi\δn obtained after step n. Ignoring N(Fn_ι oh) this construction gives
for N(^) = max{N(Δfk), Afke^} the upper estimate 2". Taking into account
N(Fn_1oh) estimated above, we obtain

N{Tn)<n 2n.

This implies the following

Lemma 6.

mes{Λ(Λ)εL,,+ 1(A):iV(/t)<» 2"}

mes<5B+1(Λ)
_P\)Φ+1)

Lemma 6 implies the predominance of A satisfying (11.9) in Ln+1. Thus (11.3)
implies

mQs{λe/(δq{n+1)),Fnoh(λ^)eLn+1(λ)} λ2φ
" ^v1 fcn.ioMo

fc (11.10)

c) Let S = « J
imply that for any λef

}. (11.4) and Lemma 5

z = l / 2 dz 2=1/2

< 5 G ;

dz
(11.11)

(11.11) and the estimate b4n+ι of μ(Gn+ι) give for any Δ(λ)C(Ln+1f]^ ) k

δz

— 1
n+lλ2

δz

UG;+\ λ2

dz

2=1/2

2=1/2

•exp(μ(Gn+1))> 1 -
dz

2λs

2(ί+εllΛ2)

0)<-M

As N(G)
dG

δz

mes

= o(l), we obtain from (11.12) and (11.3)

(11.12)

(11.13)

Using L;* !(A)Π^;ii(A) = 0, if <3;+

fc! Φ δ " / ! , we obtain from (11.10) and (11.13)
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Proposition 2. Let ^n = \_λOn,λln]CJin he any interval on the λ-axis constructed at
Step n. Then

oo Ί

λefn,Fnoh(λ^)e (J |J<5~+\Wf
k = 0 J

where ε l ί < λ \

We define

ίc=0

and obtain

1+ε,

and consequently

1 > l l ^ + β l

0

Remαr/c XJ/7. Any A such that Fnoh{λ,±)e[0, l]\ (J (J^ '+iW l i e s i n o n e o f t h e

intervals £/n+1(Ak) corresponding to the relation Fn°h(λ,^)eAk(λ), or is a limit
point of such intervals. One can apparently prove that

but there is no reason to avoid λ lying in the limit set. They are even better in some
sense (see Remark VIII/3).

12. Transition from I^-Invariant Measure to /^-Invariant Measure

The previous relations between mes^# n + 1 and mes^#n, and the choice of the
position of the top

within the first steps 1,2,...,w0, imply that there exists a set Jί= f] Jin on the

1-axis with measure

m e s ^ > 4 Π 1 - MSl2
L n = 1

2(1
Π

1+ε

such that for any λeJί the partition ξA of Sect. 1 exists.
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Conditions i-iv of Sect. 1 imply that for Tλ defined by Tλ\Ai(λ) = f%1 there exists
a unique Tλ - invariant probabilistic measure vλ<dx with a density ρλ(x)e C [ 0 ? 1]? ρλ

> c > 0 . The endomorphism Tλ of the Lebesgue space ([0,1], vλ) is exact and its
natural extension is isomorphic to a Bernouli shift (see [12, 13]).

In order to finish the proof of Theorem A for the family fλ:x-^λx(l—x)
(mod 1) we have to construct an invariant measure μλ<dx.

Let f~\A) be the full preimage of 4 c [ 0 , l ] under f\ f-kA = {x:fkxeA}.

Suppose Σ nivλ{Δ^j < oo. Then the measure defined for any dx-measurable set A

by

μλ(A)= Σ Σ vA(

is absolutely continuous with respect to dx, by a theorem on integrability of a
series of positive functions (see for example [15] Sect. 14).

We show μλ is /-invariant.
By definition

μλ(f"1Λ)= Σ Σ v XΓV-UfV,-). (1 2 2)

If j<ni-ί9 every term /~ J Ό/-Mp|zJ in (12.2) coincides with f~u+ί)Af]Λi in

(12.1). After excluding these terms, there remain in (12.1) terms with j = 0, which

give Σ vλ(^Π^i) = vλ(^λ a n ( i m (12.2) terms with j = ni — l, which give

Λteξ Aιeξ

Thus (12.1) equals (12.2) because of the TA-invariance of vλ.
Let j8 = f. The following proposition implies Σ ^ i ) M i l < °°

n312

Proposition 3. £ ^(zl.)|zί£| < ( 1 _ ^ .

Proo/. a) Consider step n of the induction construction of Sect. 3. If Φn is one of/„,/„,

Gπ, JFW_ J obtained with iV successive iterates of fA, we use an upper index so that

Φ? = Λo/λ°---% and Φ ; ^ = ( Φ ^ ) 1 ^

Lemma 7. \Dfi\>λ2V*

Let

\δ< if

' [ i λ - ^ λ - * ^ if ^r^

We prove Lemma 7 by induction and assume that for fc=l, ...,n Lemma 7
holds together with the following properties:

i) Let δn"
JV = G- J VδnC[0,l]\Γ^ and let r = max(l,n). Then ^

ii) Let J j ^ c [ θ , l ] \ i ; . Then \Dfn

N\>λΎW.
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Consider fc = n + l . Notice that if xe[0,l]\Γ 2, then |D/ λ |>λ 1 - 2 s >A"2 + 5 . If

c c c°
xeΓ2, then {, r ^ 3 in i), ii) and —±= +s<γ A s \Dfλ\>λΎ o n a n y hole δ;1 we
obtain i) for n=l. ii) for n—\ holds because of i) and \Df1\>λc°>λ^ + s.

Let Fn_ί°h(λ,x) be the central branch, Fn_1=finίo...of.^ l^ik^k, N(fik)
= Nk the number of iterations of ϊλ corresponding to fik, fce[l, n—1],<5 = G~Nnδn,

n

M = 1 + Σ Nk- τ h e n (Fn-1 o / z )~ 1δ = δ;M. (In the notation of Sect. 3, GM :δ;M^δn
k=l

is one of the G'n constructed at the beginning of step n.)
Let Dn_1 be the domain of F ^ ^ f t , and let p o

 = m m{pl ( 5n"MC[0, l]\Γp}. Then
(see (6.12))

po>—n. (12.3)

According to the construction of Sect. 3,

which implies (see (6.4)) that

n - l

|DG M |>

1/2

j/I |DG*1 Π
k=l (12.4)

where DGM is evaluated on <5n

 M and DGNn on (5. By the induction hypotheses we
have

Hence, on δ~M,

\DGM\>λ\

where

We have to prove

inΓΆίi \ θ[coM/2]/po] + s M 9 ^Q^

I n \
Now, M=\YJNΛ—1,

\ f = i /

1 — s + nα c π
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and co/2s > 4 imply

and (12.5a) follows from (12.5).
S o i) is p r o v e d for t h e h o l e s δ~M = (Fn_ίoh)~1δ~N. A n y b r a n c h fin_1

o.>.ofil

og
is some composition of the form fin_ί°...

 ofik

o(fik_1 ° . °fil °h), where fik_ t °... °/fl °Ί
is a central branch of some previous step. Thus the same arguments prove i) for
δ ~ M = (Fπ_1ogf)-1(5n"JV (the estimates are better in this case). If δ~M = J'~1δ~N

9 i)
follows from i) and ii) of Step n — 1.

Let G-Nδn = δ-NC[0,lΊ\δn+ί. Then we have max(S,ή) = n+l. Now i) follows
for G™+1:δ~™ι-+δn+1 with <5~^C[0,1]\<5Π+1 because they are compositions of
maps satisfying i) with r ^ w + 1 . Similarly for G^+1:δ~^I

ί-^δn+ί, δ~*[ C[0,1]\J},
/>w-hl. This proves in+v

L e t / π + i i = / i n

o / i n - 1

o o/i1

o^λl[°5

1]\δπ+i τ h e induction conditions on |D/J

imply that \Dfn+ίl\ = Y[ \Dfik\-2λ\x—\\ satisfies Lemma 7. The same is true for
fc= 1

fn+ιι=fik

ofn, because of ii). Taking into account in+v we obtain Lemma 7 for
fn + ik with fe>l. Finally ii) at Step n + 1 follows from i) and the assertion of
Lemma 7 for fn+ ί. Π

b) We shall use the following estimates for compositions of maps.

Let g:B->J be given by g(x) = αx2, where B = [xmin, xm a x] and J=[JA, where
mtΔ1f)mtΔ2 = fdiϊ A1 + A2. Let Δ = \hΔ, hΔ + \Δ\] and denote by n(Δ) the number
of iterations corresponding to zl. Then B = {Jg~1Δ, where

and

Hence

. (12.6)

Let us now consider {Δ\ f, n'}, where intzl^Pjintzl^ = 0, n' = ή{Δ') = ή(f).
Suppose every / ' maps its domain onto the same interval, f :A'->J9 and μ(f\ A')
<c. Let {A,f9n} be so that AcJ, mtΔίf]intΔ2=0, n = n(A) = n(f). Then

A, A' \J,t

,exp(c)

c) When estimating ]Γn(zl)|zl| after step n of the induction construction we shall
attribute to any preimage δ~N mapped onto δn by G^ the number of iterations N,
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ignoring the structure inside δn. But when considering δn itself, we take into
account this structure. This gives the estimate of £n(zl)|/d| on any domain inside
δn. Then according to the construction of Sect. 3 we introduce at step n + 1 the
structure from δn\δn+1 inside every domain (δn\δn+1)~N.

Before formulating the induction hypotheses of Proposition 3 we introduce a
new notation. Let Ao = Afc [0, l~]\δn be a domain of some /, constructed after Step
n. We define a "block" B(Δ0) as a maximal interval containing Ao, which doesn't
contain any hole δ~k. If B(A0) f]δn = 0, then B(A0)=\jAi, where any A. = [a., α. + 1 ],
ieZ, is a domain of some zl/Λ ί^n. If £(zlo)P)(5nφ0, then a part of the Ai are as
above and the others are Δ(Fn_ίog) or Afn.

After Step 2 we obtain two exceptional one-side blocks JBQ, which contains 0,
and B*, containing 1, and for any Bή-B$, £*, B = B1{jB2, where Bί =g~nB^ B2

=g~nB*.
The structure of B$ is: Bξ = \jBoi, i=l ,2, . . . , where ^ ^ I J z l ^ , fce[l, «0], ft0

= card{^1/1C[0, ^]}, Alk = Afv Aik = Af2i_1 for i^2, and the corresponding
number of iterations N(Aik) = ί. The structure of B^is similar.

Let B be some block of step n + 1. Then either 5 = 51(JJ52 5 where J51C[fl1,fl],
B2C[_cι,cι2]i and [α l 5 α], \_a,a2~\ are two adjacent intervals constructed at step n,

Jβ1 P)5 2 = a, and both 5 l 5 5 2 are preimages of B% or J5f, or B is some preimage of
such blocks constructed at previous steps.

When constructing δn+1 we shall take the precaution to choose two adjacent
intervals zΓc[0, l ]\δ w + 1 and A"cδn+1 which are the preimages of Aik with the
same i. This can be done by moving if necessary the point ξlnoϊ Sect. 10 a distance
less than (2λCl)~{n+1) and still having (10.10) true.

Let B + (Δ0)=[j(ΔiCB(ΔΌ)9 i>0), B_(Jo) = (J(zlicB(Joλ z'<°) τ h e n t h e P r e "
ceding implies

J 0 ) ) > ^ — M o | . (12.8)

(12.8) together with (4.6) imply the following

Property. Let zJ0 = zl/fcCJ5(zJ0)CImFπ_1o/z(/l,χ) be so that

Then

(12.9)

d) Let ^n = Δ{Fn_^h), Fn_,=fin ^...^fh, and let Δf = Δfin be so that
F

n-1 o / ? (^ i ) e ^ o ' τ h e n ^«+1 = Δ(fin°
F

n-i °h)- L e t B» = B{Δf) be the block of Δtf,
%n = (Fn _ i oh)~1 B{Δf). Notice that "@n+1 may be equal to 2>n (it is, if im Fn_ γ °h{λ,
x)CJ(0) - the first interval 4/j on [0,1] (or C^d(l) - the last one)), but always

We now formulate the induction hypotheses for the proof of Proposition 3. Let
R(n) = max{R:%_ίcΓR} where ΓR = (±-λ~sR, i + /l"SjR). Let Σn = ΣN(A)\A\ a f t e r

step n, where Δcδk\δk+ί if k<n, or A CΓk\Γk+1 if fe^n, are either intervals zl/J,
i^n, ΔF^^g, Δfn or holes δ;M. (N(δ;M) = M for holes.) Then for k^R(n)-l9

7.3/2 π - 1

^ Z^n < 15(1-0)* ^ Λ '
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Consider any x0, xv ^2

E^k-2\^k (respectively Γk_2\Γk\ so that x1e[x0,x2]
Then for k^R(n)

ii) Σ

Σ N(Δ)\Δ\/\xo-Xl\)lnΣ λ-A.
Δc[xo,xi] / \ i = 0 /

We have to prove (i) and (ii) for n +1 and k ̂  R{n +1) — 1 (respectively k g R(n +1)),
where K(n+l) = max{jR|ΦIIcΓΛ}.

We shall assume that the boundary points of δn, δn+1, Θn and °iίn lie in {λ~sm},
that is, δk = (^-λ~sk, ^ + λ~sk) for k = n, n + 1, and for some r,

C CJL
In addition we suppose — and - n to be integers. The reader can check there is no

2s s

loss of generality here.

Let Fn_ι°h(λ,^)eδq_ι\δq. According to the main construction q^lϊ \n.

Let N(fik) = Nk, fce[l5«—1]. Lemma 7 implies

As \ — λ ~sr is a root of the equation

F n _ 1 ° [Ax( l-x)]=i ; i

n - 1 ofcai) (modi)

we have

Hence

fe=l

n- 1

This implies that the number of iterations N(Fn_ί <>h) = \+ ]Γ Nk satisfies

4s , / - 2s , _α /^

Taking into account that r>con/2s, we obtain

/2sr\312 2s
NiF^ohXllf-) -ψ(n-:
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We shall denote Jg° by Δo and Bn by B below. As Fn_1oh(λ,^)eΔ0,
imFn_1oh(λ,x) contains either B + (Δ0), or B_(Δ0). Suppose the former. The
number of iterations N(Δt) are either increasing, or they decrease till some iVmin,
and then increase up to infinity. Let Sf = imFn_ί°h(λ,x)f)B. The properties of
blocks are so that in the second case |e$ |̂ = 2n0 |zlm i n | ( l+ε) J where zlmin is any
interval corresponding to iVmin, no = csird{Δf1Q[0,jJ\δί}<λ, &<λ"\ in the first
case more than 1— e of \S?\ consists of intervals with N{Δ^N(Δ0\ and N(At)
= N(Δ0)+ί (the distribution depends on the number of first Δ{ with N(At)
= N(Δ0)). In both cases we have

Σ N{A)\A\<{l+s).N(Sn.\Sr\ (12.11)
ACS?

and

1 ) | J (12.12)

where N(^) = Nmin in the second case, N(£f) = N(A0) + l in the first case. Taking

into account that Ao, Am[nQBQ[0, ίj\δί 1 - ~]n and thus / fc

Nmin:/lmin-+[0,1]

(correspondingly fj?{Ao)) satisfies Lemma 7 with 1 In, and proceeding as above

when deriving (12.10), we obtain for % = {Fn_1oh(λix))~1^f = Γr

2s

c0

\3/2

P) -
/

2s

c0

l ) 3 / 2 . (12.13)

e) As Γr = <3n = Δ(Fn_1°h) consists of a unique Δ, after step n we have Y^n

-N(jFn_1o/z) 2(/ί- s f c-/l- s ( k + 1 )) for k^r.

Let us estimate £n(^)MI after taking the first compositions ft °Fn_ι °/z on every
Γk\Γk+ idefϊk> r<>k<r + p.WG shall denote this sum by £ ί + i v

Let yo=Sf, and let ^ be the 22s/-enlargement of ^ 0 with center Fn_1oh{λ,\).
Then Γr + ^ ( F n _ l O / 2 ) - χ Γ . ^ - ^ ^ ^ o / i ) - 1 ^ . ^ - ! ) , i=l,2, . . . ,p. Applying
(12.7) to { z i g ^ V ^ } and zl/ = zίFn_ 1 we obtain using 62 n

Σ ^ J

^ Λ - i ) l ^ \ ^ - i l + Σ ^)MIV ( 1 2 1 4 )

Applying (12.6) to F " . 1 ^ ^ - ! ) w e h a v e /i J>/ί1 " 2 s ( r + p " ( I - 1 ) ) and consequently

M + l 1

(12.15)

We shall assume imFn_ίoh(λix)Q[0,^], and leave to the reader the modifi-
cations corresponding to another position of imFn_ίoh(λ,x) in [0,1]. Let



78 M. V. Jakobson

έ = ma.x{i:&'iQδq_2\δq}. Then for i^t we can apply (ii). Together with (12.11) this
gives

n(Δ)\Δ\<
ι - χ

Substituting this estimate in (12.15), we obtain

We have by definition &>y\#?

k-ι=Fn_1°h(fr + p_^ and using b2n, this implies

\ΔFn_1\.\yk\9?

k_1\ = λ 1 ~ 2 s { r + p-k)-(l + 0{λ-y))(l-λ-2s). (12.16)

Thus

Consequently, by (12.13) this implies

Σ <
n+1 1

^ S ' ^ χβ{s-Λ)n

_ _L—ς—ί— : (1217)
'0/ A A

Thus for l ^ i ^ / we have on fr+p_i the analogue of assumption (i) but with an
25

additional factor less than I we use n < — r \

λs+2β

X
sβ r + p-ί- 1--U hsβp-i + r

co /

In a general case we have /<p (this is not so only if Fn_1oh(λ,^)e[0, l]\53),
and we have also to estimate ΣnVi v ^=J<P~^- Let us consider

We h a v e ^ ^ . ^ C O , ^ ^ ] , where | - r 2 7 2 ^ α p _ i

2~

2 2 A

1

2
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By construction9Pf = \_a^Fn_1°h{λ,\)~] is the last enlargement of^0 which lies
in δq_2\δq. Hence either atfeδq_ί\δq, or cι^δq_2\δq_v For definiteness let

α,e<5β_iW Then q = 2(p-S)+l9 t = p- ^

Z + jV
?, + j-iQδ2{p_,_j)\δ2{p

where δ o = [0,i].

(i) for δk with k = 2(p-S-j), k + 3^q^(ί--\n implies

k fc+1 /c + 2

Σ+ Σ + Σ<
« « w

By construction

Hence using (12.7) we obtain similarly to (12.14) for j e [ ί , p —/]

Σ

Ί'-'-fil. (12.19)

By construction

l-λ~s

1

 B-r»^2;;^ ^-2)

This implies

λ i J

on i 7 ~ - 1

1 ( ^ + J \ ^ + J - 1 ) . Applying (12.6) we obtain from (12.19) that

r + p - 0? + j)

( l
( p - ^ + 3 / 2 ) . (12.20)

Now, (12.16) with k = ι?+j implies
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Substituting this into (12.20) we obtain

(12.21)

According to (12.10), N(Fn__ί)+l<2(2sr/c0)
312. Because

we can rewrite (12.21) as

r+p-t-j (2s\3

Σ < ( ! + C12.22) —
B + l l \CθJ

Thus for Oίg/c<p — ^ we have on Γr + fc an additional exponentially small factor
compared with the assumption (i), as well as for p — ί^k<p (see (12.18)).

f) In order to estimate the contribution of terms in {δn — δn+ί)~M we first do it

Step n + 1 on δn\δn+1 divides into subspteps { —1,2,... corresponding to the
construction of fn + 1j (see Sect. 3).

We use the following notation: A is any interval Δ¥n_x og? Afn, Afn+ί^ δis any
hole δ~M, δ~+λ Qδn\δn+1 n(Δ), n{δ) are corresponding numbers of iterations.

Let inS — Σ\A\ after substep / of step n + 1 and with the same meaning of indices
nj

We consider also the corresponding sums on [0, l]\<5n namely

after step n:

Then In + Hn + \δn\ = ί, i^ + hnί + \δn+1\=\δn\ for all ί. Besides, let <f=0 correspond
to i, h, x, y constructed after step n, and i = oo after step n +1, so that (», co) equals
(n + 1,0).

We may assume all the compositions to be linear (see Remark XII/1 below)
and thus using (12.7) we obtain

inl=in0(l-Hn-\δn\)

Xnl = = X
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The holes and intervals of subsequent substeps 1 = 2,3,... are obtained using
compositions of maps Gn:δ~M-^δw so that after substep / the remaining
preimages of δn are of the form G~ιo...oG~i

1δn and preimages of δn+1 are
G-1o...oG;ι

1δn+l9 i = 1 , 2 , . . . y - l β ( c o m p a r e with (3.6), (3.7)). Let hn, and yn,
correspond to preimages of δn and hn0 ynS to preimages of δn+ v With this notation
we have

and for i>2

h ~
\»n\

ynt-\'Kί-\

• (12.24)

According to Sect. 10, to any hole δn

M = Gn

 M(δn) there corresponds uniquely a
set L~M = G~M(L). As for any interval ΔQL~M, n{Δ)>n{δ~M)\ this implies

Using ]-^

ι
_ + o(λ~sin+1))λ-\ the recurrent formulas (12.24) give

l+o{λ-tn)

The induction hypotheses imply

Xn0<

By the above reasons

Yn<Xn-λ-2m.(\+ε).
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Using (12.23) we obtain

n n3/2

»+l

which proves in + 1 for δn\δn + 1. The proof is similar for δk\δk+1, x^r
Now we can estimate the contribution of Σ ^ ) M I i n every hole (δn\δn+1)~M

Though we cannot correspond the /I2αn-enlargement to any δ~M, we can
consider its Aα"/2-enlargement. The construction of Sect. 10 gives, as above,

Σ W<irΊί,2 ' Σ n(δ)\δ\<
δCΓr + ι

 A δcΓr+ί \Acfr + i

Using (12.7) with μ = O(λ~anl2) we obtain after step (n + 1)

2^ < 2^ + \ ZJ '\i~λ )\°n\'A + 2^ '"r+il'Λ Γ7~j
« + l n + 1 1 \ n + l l n + 1 / l^nl

r + i M3/2 is,

n+11
<(l+«ia.«) Σ + ^ 0 - 4 2 • ( 1 2 2 6 )

Thus we still have for Σ«+1 a n exponentially better estimate than that required by

This proves (in+ί) for /ce[r, K(n + 1) — 1]. NowΓΛ ke[R(n),r— 1] are contained
in the union of preimages {Fn_2°h)~1A(f~ι\ where A(f~l)CBn_1{Δ(^~1)). One
obtains {in+ι) for such Γfc in a similar way, using the construction of block Bn_ί (the
estimates are better in this case).

In order to obtain (iw + 1) for n+ί^k<R(ή)—l, we notice that at step m(k)
corresponding to the first consideration of Γk\Γk+v we have on Γk\Γk+ι an
exponential reserve by comparison with (im(fc)). (12.7) and Property (12.9) imply that
the nonlinearity at Step (m(/c)+ 1) gives an additional factor less than 3. Any of the
subsequent steps implies the diminishing of the maximal interval ACΓk\Γk+1 at
least 3λCo times (because of taking compositions), and we obtain the following:

Remark XH/ί. The total non-linear effect of steps m(k) + 1 , m(k) + 2,... on Γk\Γk+1

is less than
/ °°

exp 3 Σ λ '
\ ncO

In particular this shows that when proving (i) for Γk\Γk+ι it suffices to consider
only step m(fe).

g) In order to prove (π n + 1 ) of Proposition 3 we consider three points x0, x1 ?

x2£Γr + i_2\Γr + i and their images under Fn_1°h(λ,x). We may suppose x2 to be
closer to \ than x0, (otherwise hΛ for A C [x1 ? x 2 ] is larger than for A C [x0, x 1 ] and
an estimate for x0, x l 5 x2 is better than for their images).

Let Q1=Fn_1ok[xQ,x1~\, Q2 = Fn^1°h\_x0,x2]. Using (12.7) and (12.6) with hΔ

)^A 1 - 2 s ( r + i) we obtain

+ Σ n{Δ)\Δ\\
'-. (12.27)



Absolutely Continuous Invariant Measures 83

2 ' 4 * . Hence

{l-O(λ->))\ΔFn_1\((N(Fn_ι)+l)\Q1\+ Σ n{

Σ n{A)\Δ\> i-p ^ i. (12.28)
Λc[xo,xi]

Qi^δq-iΦq- τ h e n w e c a n u s e K ) f o r Fn-ioh(x0>
 xv xi)cί0' l]\^(i-α/s)π Applying

(12.27), (12.28), we obtain

Σ n(Δ)\Δ\
ΔC[xo,x2] < lA0 A2l (̂s-q)jgn+2s

X n(zJ)|zl| K-^i l
^lc[xo,xi]

If ^π_io^[-X0 '
x2] ^s n o t contained in δq_2\δq, we have Q2 = Qr2[JQ2 where

Q'2^δq_2\δq, Qf2^LOΛJ\δq-2' We estimate ^ n(^)Ml as above, and
ΔcQΊ ΔcQ'ί

using (ιM) similarly to (12.19)—(12.21), and obtain

Σ n(Δ)\Δ\

Σ n(Δ)\Δ\
Λc[xo,xύ

For large λ, \/n<ζλaβn. Comparing with the requirement (nn+1) for /c = r + i, we
obtain a sufficient condition on r

As r > — n, it suffices to have
2s

which holds for 5^73, /? = f, w^l .

U l | (12.30)

The account of zlC^n"M gives an additional factor (1 + O(/Γα"/2)) and one
finishes the proof of (iin+1) as above (in+1). D

Remark XII/2. One can check that for n ̂  n0, when

(ii) is satisfied with β = 0 [/l5^ on the right side of (ii) can be replaced by a constant].
From Remark VI/5 and (12.30) it follows that one can take β arbitrarily small. It
seems that more careful estimates should give Proposition 3 with β = 0 and k1 + ε

(ε>0 small) instead of k3/2.

Remark XI1/3. Lemma 7 implies that for any λeJt and for Λfkeξλ so that
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Collet and Eckmann [10] proved for a particular smooth family fδ that the
Liapunov exponent is positive on the trajectory of \ for a set of λ of positive
measure.

13. Theorem A for a General Family. The Reduction of Theorem B to Theorem A

a) Let f(x): [0,1] -* [0,1], /(0) = /(I) = 0, be a C3-map, c a single critical point of /
Consider a family fλ(x) :x-»λ /(x) (mod 1). We take λ sufficiently large and imitate
the construction used for λx(l — x).

We take T0 = (f(c))~1 so as to make λ-f(c) traverse [0,1] when λ crosses

Then we choose a small ε > 0 and consider an ε-neighbourhood U of the critical
point c. Using the Hadamard lemma we represent f(x) and its derivatives in the
form

/'(x)=-2α(x-c)(l+(x-c)02(x)) (13.1)

/"(x)=-2α(l+(x-c)03(x)),

where — 2a = f"(c) <0, \θi(x)\<cv Using (13.1), one can check that (4.6) with —Γ

Ml Ml Ml
instead of -—, and (4.7) with —~ instead of -—~ are still true m U.

2H ax 2ax

RemarkXIII/1. Notice that the condition /"(c)+0 is not necessary, /(w)(c)φ0 for
some n^2 will do as well.

Then we consider

n r ___ o -fu^Λ Jλ J \X/

df/dλ
δf/dx

1 fix)
λf'ixY

iDfλ)
2 λ(j

3 SfΓ1

dλ dz

8 A-1

fix))2 '

A iff
dz

Let

i , , I/"WI
"(x)|' ' {f(x)f

We take 5 from Sect. 2, and we take a 1 as a parameter. We choose λ so large that

ί 2
P > m a x ^ —

[εas

Then we choose δx «(c —(λα)~s, c + (Aα)~s) as in Sect. 2, and define fγ(λ,x) so
that ^ ^ £ [ 0 , l~]\δv One can check that the branches /x and their derivatives
satisfy the conditions of Step 1 with max f(x) instead of τ= max x(l — x). Then

xe[0, 1] xe[0, 1]
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for aλ>N0 of Sect. 2, the inductive construction may be used, and we obtain
Theorem A for the family λ f(x).

Remark XII1/2. Theorem A holds also in the case of a family Λ •/(*),/(0)=0=/(l),
Then the con-( 1 ) c{2\ c(k\/'(O)φO, when f(x) has several extremal points c{ \ d

struction can be generalized in the following manner. During step n we construct
intervals δ^^(ciι) — (λa^)~sn, όι) + {Xa^~sn), 1^/^/c, their preimages (δ^})~m, and
enlarged preimages (<S^)~m; the constants a{ are defined according to the map /
The condition

= l m = 0

defines on step n the set of admissible values of the parameter Ji^\ the set Jί is

defined as M= f] f] Mf.
i = 1 n = 1

b) We reduce the proof of Theorem B to the proof of Theorem A using the
induced map studied in [5]. Let fλ(x) = λx(l — x\ 0 < λ^4, and tλ = ί — 1/λ its fixed
point. We consider for Λe[4 — ε,4] the induced map TA on the interval 7λ = [l/λ,
1 — I/A]. Tλ has 2p monotone branches Tiλ,i=±l,..., ±p(p = p(λ)) and one middle
branch SA. Furthermore, Tiλ = fι

λ

+1 on Zl7̂ Λ and Sλ = / / + 2 on JS A . The interval
[4 —ε, 4] is divided into a countable number of intervals [Ap, Λ,p+1] such that for
λe \_λr λp+ι~] the number p(λ) defined above is constant and as λ passes λp9 the old
parabolic branch Sλ breaks up into two branches Tλ, a new branch Sλ is born, and
p(λ) grows from p to p+1.

For some constants c1 ? c2>0 we have

2 f c 2 < \ 3 T i / d x \ < 2 i c 1 l^i^

4p+
CΊ Λ "

(13.2)

Applying (9.1) to Tiλ we obtain

dTJdλ

dTJdx

dTjdλ

<2'c3

dS/dx

δS/dx

(13.3)

--il

The estimate for the velocity of the top is

(13.4)

We have

< c 4

(13.5)
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Using (11.6) we obtain for all i and z=Ti(λ,x), xeATt

<cΛi
1

(13.6)

Now we use the following property of T4 (see [5]). There exists d>l and a
positive integer q so that

\D1J\>d. (13.7)

Remark XIII/3. Apparently q = l but it is not essential for our purpose.
For any fixed i, T^λ, x) and its derivatives uniformly converge to 7](4, x) when

A->4. Thus for Ϊ S G [ 0 , Ϊ O ] and for A sufficiently close to 4 we still have

(13.8)

Choose a very large k and some p>/c, and consider λe[_λp9λp+1]. Let

+ 1 -
log2d

Let us consider consecutive compositions of the form

until we have on the domain of T,λτ

\DTλτ\>2k.

Because of (13.8), for any Tλτ , r^qn (really (13.2) implies r<ζqn for many Tλtr). Let

>k

Then we obtain the following partition of Jλ.

Jλ = (\jΛTλτ)v( U δϊm

(13.5), (13.8) and a modification of Lemma 1 imply

independent of k. Hence we obtain

mes\Jδ;m(λ)< 1 - ί l -

Using (13.8), (9.1), and (11.6) we obtain

JλdΊ

dTJdλ
δTJdx

τ λldz

(13.9)

(13.10)

(13.11)
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Although the estimates (13.11) grow with k, we can choose p so large that the time

that the top Sλ(ty spends inside the union of the enlarged domains \Jδ^m(λ) will
still be proportional to its measure.

Now we are able to begin the inductive construction, with branches Tλτ instead

of fγ and (J δ^m(λ) instead oϊδ^λ). In particular, the intervals δn have the form

δntt2~sk{n~1)δ1. The estimates (13.2)—(13.10) allow the induction to continue, and if
we denote by Jtp the set of λs\_λp, λp+ί] obtained by using an inductive
construction similar to that in Sect. 3, we obtain that the induced map Tλ:Iλ-+Iλ

has a measure μλ absolutely continuous with respect to dx. Besides, for some
constants c, α > 0 independent of k and p we have

The measure μλ induces an /λ-invariant measure on [0,1] supported on [//(|),
/ Λ 0 ] . Since the time of return to Iλ is finite for all xelλ, μλ is certainly finite.

Let Λ< = U Jίn. We take fc-* oo together with p, and obtain from (13.12) that
P = Po F

λ = 4 is a Lebesgue point (from one side) of Λv This proves Theorem B and the
Remark of the introduction for fλ(x) = λx(l—x)

Remark XIII/4. The measures μλ certainly are ergodic, because the vλ are. It
follows from the recent results by Ledrappier [16] that the natural extensions of
(/Λ, μλ) are Bernoulli.

Remark XIII/5. One may conjecture that the densities μλ converge in Lί to 04(x)

= (π j/x(l — x))~\ when A—>4. Notice that the construction always gives measures

supported on the maximal possible interval [//(i), Λ(i)] a n d t n u s avoids λ

corresponding to measures supported by pairwise disjoint intervals permuted by

u
c) Consider any /x):[0, l]->[0, l] , /(0) = /(l) = 0, f'(c) = 0, lying in a suf-

ficiently small C3-neighbourhood oϊx(l—x). Then for a family λ f(x) there exists
some λ0 close to 4 so that λof(c) = l. Considering for λe[λo — ε, λo~] the
corresponding induced map TfX\If)p , we obtain that Tfλ has on Ifλ a structure
similar to the one described above for Tλ = Tx(1_x)λ and (13.7) still holds for Tfλ.
This implies Theorem B for fλ = λ f(x).

Now, if for some λ0 φ 4, fλ = λox(l — x) or its iteration on some interval admits
the induced map described above, the construction still goes and we obtain
absolutely continuous measures invariant under / or under some iteration of / for
a set of λe [_λ0 — ε, λo~\ of positive measure.

One can check this is so for a countable set {λOn:fλOn(^) falls into a periodic
unstable orbit} and for a set Φ = {λ:fλ(^)eKλ = an invariant unstable Cantor set},
cardΦ = continuum (see [5-7]), thus all these λ are Lebesgue density points of Jίx.
RemarkXIII/5. As Misiurewicz pointed out, for a family fλ = λf(x) with unimodal
/(x):[0,1]->[(), 1], /(0) = /(l) = 0, having negative Schwarzian derivative, and for
λ0 such that fλo(c) falls into an unstable periodic orbit or an invariant unstable
Cantor set, the corresponding incuded map also satisfies (13.7). Thus the same



88 M. V. Jakobson

construction implies that for a set of λ of positive measure fλ admits an absolutely
continuous invariant measure and λ0 is a Lebesgue density point of this set.
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