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Abstract. Given a one-parameter family f;(x) of maps of the interval [0, 1], we
consider the set of parameter values A for which f, has an invariant measure
absolutely continuous with respect to Lebesgue measure. We show that this set
has positive measure, for two classes of maps: i) f,(x)=Af(x) where 0<1=4
and f(x) is a function C3-near the quadratic map x(1 —x), and ii) f,(x)=4f(x)
(mod 1) where f is C3, f(0)= f(1)=0 and f has a unique nondegenerate critical
point in [0, 17.

0. Introduction

Dynamical systems generated by noninvertible maps of an interval into itself have
been intensely studied recently. The most widely considered was the family
fiix—>Ax(1—x), xe[0,1], 014

It is well-known that if f, has an attracting periodic orbit & =(¢,, ...,,) then all
probabilisitic f;-invariant measures are singular with respect to a Lebesgue
measure dx, and the iterations f; dx converge in the weak *-topology to the
discrete invariant measure supported by .

It is probable (but not proved) that this situation is typical from the topological
point of view, i.e. for a general one-parameter family of smooth mappings f, : -1,
A€, there is an open and dense subset A, of A such that for A A, the set of limit
points for f} dx consists of a finite number of measures supported by periodic
attracting orbits.

We show in the present paper that this is not so from the metric point of view.
Namely we prove for a certain class of one-parameter families f, that the set
A, ={A:f; has an invariant finite measure p, absolutely continuous with respect

to dx (u; <dx)}

has a positive measure in A.
In the classical case x—4x(1 —x) considered by Ulam and von Neumann in

1
n}/ x(1—x)

[17, the invariant measure u(dx) has density g(x)= . In [2] Bunimovic
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constructed absolutely continuous measures for the piecewise smooth mappings
x—nsinnx(mod1), neZ. Ruelle in [3] considered f;:x—Ax(1—x) and proved that
an invariant measure u, <dx exists for 1=3,678... — chosen in such a way that the
third iterate of the critical point, f;(3), falls into the unstable fixed point x=1— %
Bowen in [4] found sufficient conditions for the existence of an invariant measure
u, <dx for f,(x)=Ax(1—x), when % is a preimage of a periodic unstable point. In
[5] it was shown that the cardinality of {1: f; has an invariant measure u, <dx} is
that of the continuum for the family x— Ax(1 — x) and any C?-family f; sufficiently
close to Ax(1 — x). Similar results were obtained by Misiurewicz [6] and Szlenk [7]
for a class of mappings with negative Schwarzian derivative. Ognev in [8] proved
for x— Ax(1 — x) that if } is a preimage of a periodic unstable point, then the density
of the invariant measure is analytic. Ito, Tanaka, Nakada in [9] studied the space
of parameters of unimodal linear transformations and found explicitly the
densities of the invariant measures.

Collet and Eckmann in [10] proved for a particular family fy(x) that f; has
sensitive dependence with respect to initial conditions in the sense of
Guckenheimer [11] for a set of 6 of positive measure. The mappings f, obtained
with our construction are also sensitive dependent. It is unknown whether
sensitive dependence implies existence of absolutely continuous invariant measure.

We shall consider two kinds of one-parameter families f)(x).

1. Piecewise smooth families x> Af(x) (mod 1), where f(x):[0,1]—-[0,1] is a
C3*-map with a single nondegenerate critical point, f(0)= f(1)=0, and 1 is a big
parameter.

2. Smooth families x> Ax(1 —x)0 =1 =<4, and - f(x) with f(x) sufficiently close
to x(1—x) in C3([0, 1], [0, 1]).

We formulate now our main results.

Theorem A. Let f,:x—Af(x) (mod 1) be a piecewise smooth family. There exists
T, >0, such that for any £>0 there is an L(g), so that if L= L(e) then the interval [L,
L+ T,] on the A-axis contains a set M satisfying

1) mes.# >T,—e;

il) VAe A f, admits an invariant measure y, <dx.

Theorem B. Let f,(x) be one of the smooth families mentioned above. Then there is a
set of positive measure A, so that for Ac A, f, admits an invariant measure p, <dx.

Remark. The parameter values A, such that the critical point of f; is contained in
the preimage of an unstable periodic orbit (e.g. A, =4 for A-x(1—x), or in the
preimage of a certain invariant unstable Cantor set (see [5])) turn out to be one-
sided Lebesgue points of 4, i.e. Ye>036>0, such that

mes{ieA A, ZA21, -5} >(1—¢).

In Sects. 1-12 we prove Theorem A for the family x— Ax(1 — x) (mod 1). In Sect.
13 we point out modifications concerning the case of an arbitrary family x— A f(x)
(mod 1) and show how to reduce the proof of Theorem B to the proof of Theorem
A.
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1. Idea of Proof

The number T;, for the family f} :x—Ax(1 —x) (mod 1) equals 4: as A varies from L
. . . A .

to L+4, the image of the critical point f,(3)= 1 (mod 1) passes over the entire

interval [0, 1]). In order to prove Theorem A we must find for a given ¢>0 an L(e)
such that, if L= L(e) then the interval [ L, L +4] contains a set .# so that mes.# >4
—e and for any Ae.#f, has an invariant measure u,<dx. Without loss of
generality we can assume that A varies from N,=4k, to Ny+4, k,eZ,. For a
0g(A,x) 9%g(4,x)

ox = ox*

The central part of the proof of Theorem A is the construction for Ae .# of a
special partition &, of [0, 1]. The elements of &, are intervals 4,(4), ieZ ., which
satisfy the following conditions:

i) int4,(A)nint4 (1)) =0.
il) Vidn,eZ, such that f}* maps 4,4) diffeomorphically onto [0, 1].

smooth map ¢(4, x) we shall use the notation Dg, D?*g for

i) Ainéf miAn [Df(x)| > A for some ¢, >0 (4 is a big parameter here, so 43> 0).
i€ca Xed,

. D*fi(x)
iv) sup ma

) Aisg xeA)i( D f}(x)
Let Z(4) be the union of all elements 4,(2) of &,. Then Z(4)=[0,1] (mod 0).
The set .# and the sets &(A) for Ae.# are constructed by induction. .# is

14 <14+A7", for some t, >0.

obtained as an intersection .# = () ./,, where
n=0
Mo=[No,No+4]1, M, CM,,
mes.#,, >(1—¢, )mesd,, Y e=001""2), t,>0.
n=1

At the nth induction step, we define for any le #,_, a set Z,(1) C[0,1] which
is the union of a countable number of intervals 4%(2), k=1, ...,n. The intervals
constructed at step k do not change at the next steps. The sets Z,(4) satisfy the
following properties:

ZACE,.(A); mesZ (AH)>1—-1""", ¢,>0.

Finally we set Z(A)= ) Z,(4). Any element A1) of &, coincides with one of
n=1

AM(A).

Let us define the map T,:Z(1)—[0,1] by T,|4,(4)= f;*. The results of Adler
[12] and Walters [13] imply the existence and the uniqueness of a T)-invariant
measure v, <dx. The endomorphism ([0,1], T}, v,) is exact, and its natural
extension is a Bernoulli shift. The f;-invariant measure y;, is constructed from v,.

2. First Steps of the Inductive Construction

The graph of the map f; consists of a lot of monotone branches which we denote
by f(4,x) and the middle parabola denoted by h(4, x). The domains of f(4,x) and
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h(4,x) depend continuously on 4. When A=4k,, a new middle branch is born,
which exists for A <4(k,+1) and then breaks up into two monotone branches.
We shall denote by Af(4,x) the domain of f(4,x), by x,,,(4) the endpoint
nearest to 3 of the interval 4£(2,x), and by x,,..(4) the other endpoint of 4f(4, x).
We shall distinguish [a,b] from [b, a] according to its position relative to 3 and
not according to its orientation.
We fix a positive number s <75.

Step 1

Pick the branch f'(4,x) of f, whose domam Af'(A,x)=A4"(2)=[x;n(A)s X0 A)] s
contained in [0, §] and is closest to 3, subject to the condition
[Xpin(A)—31>A7° for all Aes,.

min

Denote by 4"(2)=4f"(1, x) the analogous interval in [, 1]. Define &, (1) = [x.,;.(4),
A)], noting that é,(4) has the form

5 A==z +r ], r)>2"" 2.1
and let 2,(1)=[0,11\6,(A). Thus,
[0, 11=2,() s, (4).

Both %,(4) and 6,(4) are the union of several domains of branches, 4f(4, x),
varying continuously with A.

mm(

Since
IDf(4,x)|=2Ax—3],
we have
[A'(A)| <A~ 1S
and
(Xl D| _ 005 %)/02] _
| A |10 0))0x] oy 82T
This implies
1 1 1 1 1
/’?<r1()“)<?+F=F[”W}' (2.1a)

In order to construct the set .#; we consider the domains 4 f(4, x)=[x;.(4),
A)] satisfying

Xmaxl
Pomin() — 31> 1/2°72.
We obtain as above that for any such domain
14/ (4, x)| <3A™1Hs2
dx_. (1)

min

di

_1_ —1+s/2
<djmiesz,
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The top of the graph, h(4,3), moves with velocity

dh(2,%)
di

=1, (2.1b)

A comparison of velocities shows that to each branch f(4,x) with domain 4,(1)
there corresponds a uniquely defined interval ;= _#(4,) of A-values such that, as 2
ranges over 7, the top h(4,3) ranges over 4,(1) and its image f(4, h(4,3)) ranges
over [0,1].
So we define .#, as the union of these Z;:
My =\ ){ ;= I (ANVhe Mo)IX (1) — 3] > 1/ 272}

It follows from the estimates (2.1), (2.1a) and (2.1b) that

(2.2)

mes./#, >4[1 - max mes%l(l)] >4[1 —

No<AsNo+

2(1+7y,)
NG |

where

y <1/N}7s.

Step 2. Construction of Z,(4)

Let us denote by f; the branches f(4, x) such that 4 f C Z,(4) and by g the branches
with 4gCd,(4). Let us consider compositions f;°g. Any domain Ag can be
represented in the form

Ag=)A(f,q)0Jg~(,). (2.3)

Choose an interval

4 C
52(/‘{):[%_ /122i>%+ /lzzi}v 1<6213622<1+O(1/11~3s)

which is a union of domains A4(f, °g) and g ~'§,. We shall use g, to denote g|6,\5,
and f,, to denote f,-g,. Then (2.3) implies

51:UAf21UU91—151U52- (2.4

For any particular branch §, we have

§:'0)=Ugr (A f2)0Udy Tog1 16108, 19,
where the large unions are over all f,; and g, respectively. Denote the branches
f>1°9, by f5,. Since A(f,;°9,)=g7 (4f,,), we can rewrite (2.4) as

6,=U4f10U4f,0Ug1 (000 Ugy 10,)06,, 2.5)

where g} % denotes any composition of the form §; '=§; *. Proceeding in the same
way we obtain the representation

0, :UAfmUUAfzzU~~-UUAf2kUU91_(k_1)(52)

_ _ 2.6
0.l gy M0y ud,0l gk (2.6)
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where
f2t=f21°91i1°---°91i,_1
-r _ ,—1 -1
91 =91, °°Y1i, -

Any branch g, satisfies

Dg,|>221"2
[Dg,| 2.7)
[D%g,|=24
from which it follows (see for example [117]) that
139130 mes[ | Jg; “(6,)]=0.
Therefore, we can write
0= U (fo)v U 9776,)06,(mod0), (2.8)

where mod 0 means we neglect sets with zero Lebesgue measure. (Hereafter, in
analogous equalities, “mod 0” will be understood.) Using the notation f, for all the
fow k=1,2, ..., we obtain

[0, 11=4f,ulJ4f,u kgl LA (2.9)
or
[0, 1]=2,()u kgl LA (2.10)

where by construction &,(4) is partitioned by the various domains Af, and Af,
constructed in steps 1 and 2. These domains will be elements of the partition £,.
Now (2.3) and (2.8) induce an analogous structure inside J,:

6=Ualf o900 [ Ao ) 9700776, 1y

Notice that one of the g’s in (2.11) stands for h. Suppose h(3)e 4 fl. Then for any
other branch f, =+ fl either f,oh has two monotone branches or none; similarly
h~' on 6, has two or no monotone branches. The only branch of parabolic type in
(2.11) is f; oh.

We see from (2.10) that Z,(4) is the complement (mod 0) of the preimages of J,
under the various branches g%(k 2 0). At the end of the next section, we will see that
M, is the set of those Ae ./, for which the appropriate branch f; takes the critical
value h(4,2) into the complement of the g%-preimages of an interval 6, which is
also small but much larger than §,.

3. Step n+1. Geometrical Part

We assume after step n that the set ./, has been defined and for every Ae ., the set
Z,(4) has been constructed. Every Z,(4) is a countable union of domains 4f,(4, x),
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k=1,2,...,n, where we use f, to denote a branch constructed at step k. The interval
[0,1] can be represented (mod 0) in the following form:

[0,1]= kQI (4 ﬁc)] UL@I(U&:"’)} Ué, . 3.1)

Here the interval

o

1
8,=06,A)=1|5— ;’;,§+ F}, 1<cn1,cn231+0(2m), t=—16,

and J,™ are various diffeomorphic preimages of J,. We shall denote by
G,:0, "o, the corresponding difftomorphisms without pointing out their de-
pendence on m; if m=0, G,=1d.

In order to describe the representation of §, analogous to (3.1) we need some
additional notation. Let F,_, be a composition of maps f, constructed at the
previous steps:

=S oo fofs =1, ie[1,2] .0, e[Ln—1].

We shall distinguish two kinds of branches for various powers of f with domains
inside ¢, : the first have the form F,_, °g(4, x) (F,_, °h(4, x) for the central branch)
where g denotes the initial map x—Ax(1—x): and the second kind are all the
remaining branches, mapping their domains diffeomorphically onto [0, 1], and
denoted by f,(4,x). So we assume 8, has the following representation after Step n:

6,=(U4F, -9oUaiyo| U WUsm

Now for any ie.#, we describe the construction of Z,, ,(4). The estimates
which allow us to reahze this construction are adduced in subsequent sections.

a) We consider the compositions f,oF,_;og and fo f for all f(ke[1,n]),
F,_,°g, and f,. Then the domains AF,_ g and 4f, have the following
representations

(3.2)

aF,- o9 () UasieF,ioa) o] O (U, o6,

= [0 Uanen)] o] 0,70

(3.3)

Notice that the representation (3.3) for AF,_,-h contains only the members
corresponding to 4f, and 8, ™ which lie in the image of F,_ <h.

b) In (3.3) some new preimages of §, arose, namely (F,_,°g)”'6,™ and
f7167™ We still denote them &, ™ but the corresponding dlffeomorphlsms
G oF,,_ 1og and G, f will be denoted by G.. Let us rewrite (3.3) in the form

AF,_ log (J4feoF,oog)o(UJ, ™ } (3.4)

=(Jdfefros;m
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Now we choose an interval §,, (1) composed of whole elements of the
partition generated in (3.2) and (3.4):

¢, 1 Gurs,n(A) 1
5n+1(/’{)= %_ l‘:(:lii—ll) ’%—I_ l-:(;lz’-l-zl) b4 1_‘cn+1 z=1+0 /'Jt(n+l) (35)

c) We shall distinguish the maps with domains in 6,\, ;, thus we use some
additional notation.

Let g,=Ax(1 —x) (mod 1)|6,\6, . ;- We shall use £, to denote the branches
fieF,_y°g,and f,f|5,\0,. ;. Finally, we shall use G, to denote the G, or G/, with
domain inside §,\0,, , ;. Using (3.2) and (3.4) we obtain the following representation
of §,:

5n=(UAfn+1 1)U( D 5;1_m) U0, g - (3.6)

Let us define recurrently the branches f, ., , k=23, ... [ 47, ,_1C6,\0,44
and G,:o7" then  f,. i o =Sfir1 a- .°G,. Any branch fur1x maps

G, (4 f,,+ Lk 1) onto [0, 1]. For any given NeZ_ we can rewrite (3.6) proceeding
as in Sect. 2:

N © ©
= [kul (UAfywu)} ( ! nt 1) ( =L1J~ 5n—m> UG, 4 (3.7)
The preimages d;7 and ;™ in (3.7) have the form (G, -G, o ...oan)* 10,11
(respectively 6,) and the branches f,, , , have the form
Jor1e=Jus1 1oén,°én2° oG

If n> I, there is an infinite number of G,, and there is no uniform estimate |[D*G,|
< const. However using a generalization of one result of [ 14] (see Lemma 1 below)
we obtain

lim mes( U) 5,;"') 0. (3.8)
N-w m=N-my,
This implies
= IkU1 (UAank)}U[ U (Js, }U5n+1' (3.9)

Apart from 9, ™ C9,\d,, ; we have 6, " C[0,1]\d, and 6, ™C4,,, (domains of G,
and G, from (3.1), (3.2), (3.4)). Then (3.9) induces in any such domain é, "= G, !5,
the corresponding decomposition

. =(UAfn+1k°Gn)U(U5n-4:n1)s (3.10)

where 6, ", =G, oG‘ 0...0Gy 18, -

We shall use ank to denote fos1k-1°G, for any G, with domain
0, "C[0,11\0,; f,., to denote f,,,, for any k; F, to denote fkoF 3 fovy toO
denote fiof, for f, such that Af Cd,44, and also f,,+1 to denote f,,HoG and



Absolutely Continuous Invariant Measures 47

S+ 1°G, with AG, (respectively 4G,)C6,,,; G,., to denote any composition of
the form G, <G,,°...°G, |6,[", or G, ...°G, °G,[d," or G, o G, 0G0,
With these notations we have:

n+1

[0, 1]= [U(UAfk} L@ (Uanﬂ} (3.11)

and

due s =(UaF, 0 Usleo| 0 Uit (312
(3.11) and (3.12) correspond to (3.1) and (3.2) with n replaced by n+ 1. So we have
described Step n+1 on the x-axis for any e .#,.
d) According to the induction hypothesis .#, is the union of a countable set of
closed intervals with disjoint interiors and some set &, consisting of limit points of
such intervals.

M= £)Z,.

We assume inductively that %, C.#, and define .4, , N ¢, for all g, We fix
some positive a< s/4. As A varies over _#,, the top of the central branch F, _ h(4, 2)
varies over some Af, and f, oF,_°h(1,3) varies over [0,1]. Moreover when 4
varies in #, all the maps F, G, f, f constructed at previous steps vary continuously.
Let 7, be one of these components of .#,. In order to construct the set .4, , N 7,
we shall point out the admissible positions for the top kaoF —1°h(4,%). Let ¢,
=[a,,b,]. When constructing 9, ,(4), we shall choose it varying continuously
when le #, and still satisfying (3.5). Then we shall expand 6, ,(4) almost
homothetically and obtain an interval 5n +1(4) varying continuously with Ae ¢,
composed of whole domains Af, and J,", and satisfying for ie ¢, the following

1
204015 (DIZ16, 4 A S 40D (1 +0 ()!(H 1)>> [0, +1(A) (3.13)

For any preimage 6,", =G, 6,,,C[0,1]\d,. , the corresponding domain oo
=G, 1,5,,, turns out to be defined and the lengths of 6,7 and 5, are Stlll
related by (3.13). Then we define

Mo O Fy= {2 fiooF oy 2h(2,De0, IJ\U U, m }

The condition f, oF,_oh(A,3)e 5. defines an interval in ¢#,. Thus ./, , N #,
is the complement of the union of these intervals. .#, , ;» #, consists of intervals
I =2 froo F - 1oh(A,5)e 4 fi(A)} and of a limit set ,,H(j) As J varies over ¢,
Sio feooF -1 °h(4,3) varies over [0, 1].

So we have

My O Iy = (Lk) fr:k) V7, 1(7,) (3.14)

and finally
(U( w105 ) (3.15)
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4. Estimates for Fluctuation of Derivative

Let f:4—1 be a C*-diffeomorphism of some closed interval. Then by differentiat-
ing log|Df(2)|, we see that

(4.1)

e

Df0) o )l 4 ')

X, yeA

We shall use the notation u(f, A)~

){
|4] and when there is no doubt
Df (x)

onto

about the domain of f, we shall often write u(f). Let f,:4,——1,

fo:4,—25J54, be as above, A,,=f; '4,CA,. Then f,f,(4,,)=1I. Using the
mean value theorem and (4.1) we obtain

DZ(f; o f2)(x)
Y2 AYSY 'AIZI
D(fy°f3) (x)

D2f1(f2(x)) [sz(x)]2+Df1 (f5(x)- lez X)}|A12|

f1e 2 A1) = max

= max

xediz D f(f3(x))- Df5(x)

2fl(yl } [ 141,
D1,0) 144 X[Df5()] - i,

DY) | 14l
+ max A,0-
xedis ’sz I 1l IAzl

Df,(x)
<ulf)- max [P

yeA;

44,
14,]

+u(f)- (4.2)

Since by (4.1)

x,0ed12

D fy(x )t

D£,0) [ Ua) ‘Alzq

[4,]
and

|4, |4,

W = [eXpﬂ(fz)] W

|4, _ ' Df(n,)
14, Df,(ny5)

we obtain

Df,(x)
Df,(0)

14,

<exp [u(fz) expulfy) W} @3)

x,0ed12

Consequently

HfyofyrAy,) Su(f,)exp {{u(fz)expﬂ(fz)} %}
144

+{u(fy) expu(f)} -~ IJ'

(4.4)
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Using the notation v(f, 4) = u(f, A)expu(f, A4), (4.4) is equivalent to

4 A
R A R A T AR SRR IAR @5

Let h(x)=ax?, and let 4 denote an interval in R ; let H denote the distance from 4
to 0, so that A=(H,H+|4|), and suppose f:4—I is a C? diffeomorphism.
Let 0=[XmXmax] (IR, be one of the two difffomorphic preimages of
A:d=h"Y4)nR,. We obtain as above

Dh(x) D*h(x)
(S oh, O) = p(f)-max | > |Dh(y) +|4| max DhO)TE
and thus
x |4]
oh §) S u(f)Tmax 171
pu(foh, 0) = u(f) o + 2axZ,
Since ax2, =H +|4], and ax?;,=H, we have
Xmax _ 4] |4]
Xoin 1+ﬁ 1+2H
This implies
41\ 4]
b o) <uth)(1+ S + 1 6)
or
4] |4]
h o) <ulh1+ 505+ 5.0 @)

5. Preliminary Lemma

We shall use the following several times

Lemma 1. Let IuJ =N be an interval, I= | | A, where
i1

1) @; are C*-diffeomorphisms from their domains onto N ;
2) intAdp;nintdp,; =0, i+,

3) [Do|>¢c,<1;

4) W) <ty

5) mesJ>0; mesInJ=0.

Then = U @ *J (mod 0), where ¢~ *J = U @i to.opp M.

11 lk

Proof. Since ¢, is onto, Ap,=@; *Ju; 'L Thus

I= UAgoi= U Tlue D= IJU[U o (U (plzlJU(p_ll)}

=0 YJue i Jue 2.



50 M. V. Jakobson

In a similar way we obtain for any N
I= ) o U I. (5.1)
kIN

For any i,,..., 0,

@i tenepp = [U wi‘llo-‘-w;‘ow?‘l}U[U @i oo o ML (5.2)

Suppose there were a constant § >0 independent of k suchthat for any i,, ..., i

mes ¢i_1 °© O (Plk J

0. 5.3
mesg; ‘o -'-°(01k11> -3

Then it would follow from (5.2) that
mesep ¥V <(1460) ' mese *I,
thus 11m mes¢@ ¥ =0, and in view of (5.1) this would prove Lemma 1. Note that

for k 1 (5.3) follows from hypothes1s 5).

Consider a C? diffeomorphism ¢*=¢, o...c¢, :¢; 'o...cp; "N—N. By the
mean value theorem and by (4.1), a proof of (5.3) would follow from a uniform
upper bound on the quantities y(¢") independent of n. We will show

o)< (5, 2B exp 3 255 (5.4
i=o €1 i=1 €1
We prove (5.4) by induction. From (4.5),
n—1 n—1
He") =pue" " e@) S e" ) exp v(qo)‘A(p I} +V(<p)M¢ 3 (5.5)
[N [N
According to hypotheses 3 and 4
v(p)<C,expc,
and
g™ | <INI/E

Thus

" = " Hexplv()/ei 1+ vp)/ei (5.6)

Suppose for k<n—1 that
k-1 k-1
W= 3 (0 Jexo( X (00|
i=0 i=1

(Note that for k=1, the second factor above equals 1 and this becomes the obvious
inequality u(p)<v(¢p).) Then, using (5.6),

15[ 5 ) 2

i=0 Cy i=1 Cy 1 Cy
"=2 v(p e We) (" (o)
é(;ﬁ“) (Z z )“LE";le"p(i; Ei)
" v ")
= (Eo 7»;;—) ex( 3, ?a‘)

and (5.4) is proved.
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6. Transition from n to n+1, I. Hypotheses of Induction. Estimates of Derivatives

(3.1) and (3.2) give us the following representation of [0, 1] after Step n:

[0.13=| J (Uas|o| U Us,m|oUaF,goUaly 6

All domains in (6.1) depend on A which varies in Z,, but throughout Sects. 6 and 7.
2 will be fixed. Any §, ™ in (6.1) is a preimage of J, under some diffecomorphism

1
}} Then we

2+ /18’(

denoted by G,. For given 5, ™ let p=max {k:én‘ "C|y - PEz

shall use the notation G, , for G,
Let0<s<35, 1<a <s/4 be constants defined in Sects. 2 and 3, c,=1—s,¢, =1

2As—a)

=25, cy=1—s540a, y=1-3s, t=0/10, v= . Now we formulate the hy-

potheses of induction.
a) Hypotheses on derivatives :
a) IDAI>252 )
ai,) D fil>25% } -
a,,) |DF,_ |>2""1jcot=1D
ay,) |Df,|>2" 0
a,) IDG, |> A =vr
az,) |DG,|>24/2.
b) Hypotheses on ,u

k k 1 k 1
b,,) H(fk)<( ) H <1+2i%yi>-exp(.z 2‘—/17)’ k=1,2,...n.

bZn) H’

by u(f)< (

ba,) WG)< 7

We suppose a,,, b;, to be true and we have to prove a;,, , b4 ;-
Remark VI/1. At the beginning of Step n+1 we constructed some new preimages
o, ™ with corresponding maps denoted by G, (G, :6, "—9,, see Sect. 3). We have to
prove that G, also satisfy the conditions a,,, b,, which we denote in this case Ay
by

Remark VI/2. Some additional induction hypotheses related to the variation of 4
will be formulated below. In particular the possibility of choice of intervals 8, J,
will be proved, and estimates of sizes of these intervals and their preimages will be
given in Sect. 10. Now we shall use (3.5) and (3.13) with n instead of n+1 (this is
assumed inductively) and with n+1 (this will be proved in Sect. 10). One easily
checks there is no vicious circle here.
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a;,4+,) According to the construction of Sect. 3, {f,,,}= .{:jl {f,+1:} where

. 1 . .
fov11=fioF, 1o, (w1th g,=A-x? {|x|> W} in local coordinates near %), or

fos11=fiof In the first case a,,, a,, and the form of g, above imply

1

IDfysq g Z240-207 1. Jee= 0.2, FECESY] >ontl. jakt ),

In the second case ay,, a5, imply

IDf;H_I1|;2100'2n'lcln>2n+1'/101("_'-1).

Thus a} ., is true for £, , ;. The choice of s implies 2¢, > c,, hence aj, implies a3,
for nz2. All f . ,,, k=2 are compositions of the form fn+1k=fn+1k—1°Gn or
fov1x=Fos1xo1°G, with 4G, C8,\8, . ;. According to a3,, |DG,|>1. (a3,) proved
below is much stronger than |[DG,|> 1, and G, under consideration satisfies |DG,|
>2". 2" Indeed, G, =G,°F,_, g, or G,=G,of . 1Inboth cases a,, and a,, imply
as above |DG;,|>2”-A“". O

a2n+1) Fn=kaFn—1' Hence Ain and Aon lmply Aon+1- D

a2y We consider G,:5; ™4, G’ =G,oF,_,og or G,=G,of, and their do-
mains 8, ¥=(F,_,°9)"* (6,™) or 6 = f 1(6 ’") The most comphcated is the
case of central branch F,_, -h. We omit indices and use ¢ to denote §, ™ (if m=0,
8=34,), G to denote G, (if m=0, G=id), / to denote (F,_,h)~ 4. We estimate
ID(GoF,_ oh). Let H=dist(5, F,_,°h(3)). The induction construction of Step n
implies that the top F,_, oh(3) lies outside an interval $ corresponding to . Thus
(see (3.13) with n instead of n+1)

H=(A"—1)-10)/2.
Let H, =dist(F, %, 5, h(3)). It follows from (4.1) and b,, that

1+e,
207

H,>(*"—1)-|F; 2 6]-271 exp(—— ), where g5 ,=0(17")  (6.2)

Remark V1/3. Several constants 0=<¢; , <A™ * are indexed according to the numbers
of inequalities in which they occur.
Let /=[x, 1. We have, using the local coordinate,

WX =A-x20=H,, xp/H A", |Dhl 220Xl =2
In consequence of |6|=|F;*,8|-|DF,_,(0)], for some fe F; !, 8, we obtain

. /'Lan+115| !
o, @y e ¢

[Dh|| 2

Since |D(F,_, °h)|=|DF,_,|-|Dh|, we have, using (4.1) and b,,, for any xe AF,_,
ID(F, - oh)l|Z )/2- 2" *-IDF,_ 1 ()]-10] (1 &5 4) (6.4)
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If 6=4,, then (6.4), |6,|>2-A7"" and a,, imply

ID(F,_ ; oh)| | Z (/2 23+ 9Y" /235 (1 — g4 ). (6.5)
If 6=9,"=G"15, we obtain, using a,,
ID(GoF,_; oh)|,|Z(}/2- A2t oy |/ a1 g, ). (6.6)

(6.5) and (6.6) imply (a2,) for G,=G,F,_,°n. In the case G,=G,F,_,~g we have
in (6.2)H1>%-|AFn_1|exp(—

> ) which leads to better estimates. In the case

G, =G,f, (a2, is obvious because of a,, and a2,. [
aZ,.,) Follows from a3, (aZ,) and the definition:
G,s1=G,o...oG, . [

3,4 1) If o1 =fs1°G, 202Gy, a3, follows from ay,, ,, ai, and (a3,). If
Fosi=teofo a3, 4 follows from a, ‘and as, [

Remark VI/4. The inequalities (6.5), (6.6) show that the derivatives of G, grow
exponentially with n, but this is not sufficient to prove (a},). Indeed, let n, be so
that F, _,°h(4,3) may lie in the domain d,. As §, contains 4f, of arbitrary small
dlameter the interval A(f,oF, _ oh)= A(Fnloh) may also be arbitrarily small and
the corresponding 6, ™ =(F,, oh) 15, is contained in §, with arbitrarily large N.
However |DF, | turns out to "be very large in this case, Wthh implies (a},).

aj,) We use the notation introduced in the proof of (a3,). Accordlng to the
definition, the domain £ =(F,_, ch) ™15 of G’ ,issothat/C(z—A7%7, 3+ A7), but
£EE—A7S0* D 1) S0 D) Let £C(5 $4A47). Then H _xxmm <zt
follows from (6.2)

A2 |0l(1—¢&6 4)

73~ 2 IDF, (0, 67
(6.7) together with b,, imply for any xe4F,_,
Jan— 1 _/125;1
IDF, - (0)|> 5 =—+161(1 —26.5). (68)
Thus we can rewrite (6.4) as
[D(F,_ {oh) /= A7 A°P-16]-(1 — &4 o). (6.9)
16, - o
From |§|= ——"——, and |§,|>2-A7*" we obtain using b,,
16| DG, (603 10, g b,
IDG, |=ID(G,°F,_ )| =2 2" 25®~" (1 —g4 ;). (6.10)

Let us compare p and n. Let 9,_,=(%—ul_,, 3+u?_,) be the domain of
F,_,ch, and p, =max{q:u?_,<A"}. Then p=p,. We have in the local coor-
dinate system, using a,,,

gn—1, jcon—1)+1 .(u3_1)2<Fn_1°h(%)§1 .
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Thus
/{—s(p1+1)<u3_1 <[(l/§)n—1/1(con+s)1/2]—1_ (6.11)

(6.11) implies n<2s(p, +3)/cy, which gives for v a somewhat worse estimate than
2(s—a)/cy. We prefer to improve it instead of taking a different v. It suffices to
make F,_ oh(4,3) lie outside (3 — 472, 5+ A7) for the first two steps. This gives
an extra factor A7%2 on the right side of (6.11). Hence

2
n< C—Spl. (6.12)

0

Remark VI/5. For a given n, we may introduce the additional condition
F,_ oh(2,3)e[0,1N\[5—2""25+279%] n<n,

(above n,=2). This simplifies the estimates, but as follows from Sect. 11, it gives an
extra factor of (1—2N, %2y in the estimate of .#. However, this factor can be
made arbitrarily close to 1 by taking N, sufficiently large.
As p=p,, (6.10) and (6.12) imply
2(s—a)

DG’ |>1‘”(“ % )zl"“l‘”) (6.13)
n,p

which finishes the proof of (a},) for £=(F,_,°h)~'é.

If G, ,=G,°F,_,°g, the estimate of H, (see the proof of (a3, )) implies that
(6.10) turns out into DG, ,|>2F(1 =& 1) Fmally when G, =G, f", notice that
any f is a composition of the form ¢-G,, k<n—1, where Gk satlsfles a},;, and [Do|

>1. O

ai,.,) Follows from aj,, a3, (a},), (a,) and the definition of G,,,. [J

7. Transition from n to n+1, II. Estimates of u
by,+1) Let G,=G,°F,_,°h:1—-J,, where
G,:4G,=6,"-65,, and /=(F,_,°h)~'5, ™.
We estimate (G, ¢) first.
According to (4. 5)
WG, oF,_, F, 2, AG,) S i(G,) exp(v(F,_,)-|4G,|)+v(F,_,)-|4G,|.
We have
0,/ =14G,|-IDG,(0,)l,  10,]<2:27"(L+0(A™™),  |DG,[>242.

In consequence of b,,, v(F,_,)=1+0(4"?). Thus we obtain, using a,,, b,,:

2(14+0(A7)
DG, (@) 7= D or. 2=

214+0(A77) 14e,,
IDG”(GO)MCO(n— DFsn on=1 = jan

WG, °F,_,F, 1 AG,) <A™ exp

(7.1)
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Proceeding along the line of the proof of (6.2), and using (7.1) and (4.6) with
A=F; 1 4G, H>41—0(A77))-2*"-|4| we obtain

1+e,, (1 1+0(.~ y)) L0 2t )

ian /1“" )'an /'{an ‘ (7 2)

WG, oF, _ °h ()<

The proof for G, =G,-F,_,-g and G,=G,f, is similar and gives a better estimate
WG, <(L+e55)A7"". (7.3)

Then we consider G,,,=G, o...cG, :67-6,, 6;C5,\5,,,. When estimating
WG,y 1, 6, M) we use the proof of Lemma 1 with 0;=G,, t,=(14¢,4)A™",
according to (7.3) and b,,, and ¢, =max(1?¥2, 2" =~ according to a,,. Then
(5.4) gives

WG,y 10, M) <L+ )27 (7.4)

The estimates (3.5) of |6, and |9, , ;] imply

0, 1+e¢
I |6+|1| < 157.5 (75)
Considering 6; M =G, !, 5, , and applying (7.4), (7.5) we obtain
o, M oy 16044l
ﬂ(Gn+1’5n+1) :u(Gn+1’ ) '|5 +1v}| <lu’(Gn+ 1’5n M)' |5+|1
B T+e, )(1+e,5)(1+e,4)
-exp,u(Gn+ 1’5n M)< ( T4 Aan-:.;s e < Aa(n+ 1) (76)

which proves b,, ., for ;X C5,\6,, ;.

Any G,i1: 5"‘“—»(5,,“ for 6, C[0,11\(3,\,+,) is either a restriction of
G,:67 N5, on 6, N, C67, or a composition of the form G,, G, or G, , G,
where ,u(Gn + 1) satisfies (7. 6), w(G,) satisfies b,, and u(G,) satisfies (7.2). The case of
restriction is treated along the lines of (7.5), (7.6). In the other cases, (4.5) together
with a3, imply

6
1
/’L(Gn+1’5n_+N1)§ l_[ (1 +87.1)' /'Lan-#sexp

i=4

(1.7)

exp(3-A7\  exp(3-A7*
2lan+02/2 2 jan +c2/2

which proves b, ;. O

bint1) {fn+1}=k!1 {fus14)> Where f, oy =fioF,_°g, ke[l, n], or £,

=fiof,and f,,,, are obtained from f, ,,, using consecutive compositions with
different sorts of G, and G,. Let us begin with f, ;= fioF,_ g, (4.5) implies:

ﬂ(fk°Fn_ D= f) exp((F, ) 1ASD) +V(F, 1) 4]

We have W(F, _ 1)=

1
5 ﬂ 8 (in consequence of b,,), |4 £,] < Fjerk (in consequence of

a,,), thus
(7.8)

1+e 1+¢
u(ﬁan_1)§u<n)exp(2k+l, AZ;iﬂ) ST ek
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Let A be the domain of f,oF,_,. Then (3.5) and (4.7) used with a= 4, imply
W fieo Py yog) SufioFy o ) (L[4 220 DT 4] 2207 D7
We have [4|<27"- 1~ %" because of ai, and a,,, and thus

1 1
u(fkoF,,-logn)éu(ﬂan-l)(1+ ls'znwo_mmﬂ)) + e mwern e (19)

In a similar way one verifies using a,, and b, that u(f,,, , = f,°f,) also satisfies
(7.8).
Using b, (7.8) and (7.9), we obtain

en3 (3, s B (15 sk} oo 5 51

1+ 1+
~exp< €78 ) €78 ]
1

2k+1/101k+y 2k+1/’{c1k+y

1
’ (1 + ls'zn')b(cg——2s)(n+ 1)) + is-2”-A(C°“23)("+1) *

(7.10)

Since ¢, —s=c,—2s=7, we have
1 0 Y
ket 1), —clk~y= - (k+1) g—yk+1) 7-sk —(k+1), 7—ypk+1)
(145 4)-2 A (145 4)-2 A A% <2 A
and
A-S 2 n ). (co—28)(n+1) _ (2/1 ) 2—(n+1)_/’{—y(n+1)<2—(n+1)_/‘{—-)'(n+1).

Therefore

k 1 k+1 1 k+1 1
e <( 3, ) (0 2 (1 1+ )

1 (14, ) [14+(247%)- 270+ D j=r+ 1]
2k+1,/’{y(k+1) /ISk + /15‘2"_"71"("_") .

N (7.11)

Since k=<n, the factor in square brackets is less than 1, which implies b,,,, for

fn+11‘ ~ ~ ~
If fovik=fur11°6use1=Ju111°0G,,°...2G, we have using (4.5), (3.5), (7.4) and

a1n+1

1+¢ 1+e
H(fps 1) Sy 1 1) eXp (271+ i _As+2ﬁizy(n+ 1)) + 2n+1';bs+a’c]r;i-2y(n+ - (712)

Substituting (7.10) in (7.12) we obtain b, ; as above. The same reasoning proves
biyiifor foy ik =riv11°Gy11°G,. O

b,,. ) The proof is similar to the above proof of b,,,,. [

by,.,) For fosi=fiof, with Af,Cd,,, and for f,,,=f,.,°G, the proof is
similar. For f,,,=/f,.,°G, (7.2) is applied. O
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8. Measure of Holes After Step n+1

For any Ae ./, we estimate the measure of the union J,(4 O (), ™)), where
57 ™(A)CL0, 11\, (). "
Lemma 2. There exists an ¢ <A™ so that for any ke Z_\{0}

(1+e)

mes[ @ Uék"")}< g

Proof. We proceed by induction and assume that after Step n:
i) The estimate of Lemma 2 holds for k=n;
11) To any hole 5, ™ there corresponds a unique hole 6, ™ >J, ™ and a set K, ,,
R (s T such that K, ,.CZ, and for some &g —O( )

mesd, " - 1465,
mesK, ,, VA

(8.1)

Remark VIII/1. The proof of Lemma 4 in Sect. 10 implies ii above. However we
prove ii here in order to separate the proof of Lemma 2.

Remark VI11/2. We shall use here that the intervals 6,, 0 1 constructed in Sect. 10
are chosen so as to have 6, ™ C6,\6,,, for the holes 6, corresponding to holes
5, C3,\00
We began Step n+ 1 by taking compositions fyo(F,_; °g) or f° f and creating
new holes of the form (F,_,g)~ 15, ™, f16.™ Let §,,,,=0,\0,,,. There are
holes 6, ™ of two kinds 1n51de Ounst! the old ones 6, ™Cd, ™, and the new ones
-(F Log,) 1o or 67 M =fo 16 '”forAfCén,,H,m 0,1,.... Let

Dans 1 =MeS[(( S, ™) 0pps 115 Ponss =mes[(U5;"’ ) V0uns11-
Then (8.1) implies
Punt1 <IOuniil-(L+eg,)-A7". (8.2)
One obtains similarly to (7.9) u(F,_,°g,)<1+A7". Then i) implies

Puns 1 <ISyns 1| Expu(F, _y°g,)-[(1 +e5,)-A7°]"
<|Opps 1l A+AT")[(1+eg 1)-A75]". (8.3)
The construction of Sect. 3 implies the one-to-one correspondence between 6, "
and corresponding J, (5,:+ L CO, ™ CO,p4+1)- We have, according to the con-
struction, mes UAf 1) 2(mesS, s )= Duns1—Duns1- Now, we let K,

=K, 1.0=Udfs14 correspond to J,.,. In consequence of (8.2) and (8.3) we
have

mesd, , - 2(1+o(A71 D)
mesK, , VA

L+o(A71"* D) 1+eg, ) 1+s81
L o L Sl ) LS

The right part of (8.4) is less than (1 +&4 )A™* for a suitable eg | =O0(47"), s>r>1.
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We let K, ,,=G, (K, ) correspond to 6, " =G, ,(J,, ). We have

mesd, ", mesd, ,
mesK, ., , meskK,

-expy(Gn+ 1)~ (8.5)

Because of b, ,, ,, the right side of (8.4) with the additional factor expu(G, ) is
still less than (1+é&g ;)47 * and (8.1) is proved for k=n+1. Lemma 2 with e=¢g4 ;
follows now from

mes(| o, ") <(1+e)i *-mes({ K, ,, (1+a)i‘8~mes(U5;'")<(1%>n

The estimates of Sects. 6-8 prove the following
Proposition 1. Let Ac[N,, N,+4] be so that for any n=1,2,..,F,
oh(A, He [0, 1]\ U (UJd, ™. Then a partition &, as in Sect. 1 exists.
m=0

Remark VIII/3. Notice that if A is such that at step n F,_, °h(4,3) falls into a limit
set #, defined in Sect. 3 the condition of Proposition 1 will be satisfied. It is
Certamly so at Step n, and at subsequent steps the holes 5‘"‘ lie either in 5 ™ orin
the intervals F,_ °g, f constructed at Step n (there is no mlddle branch F oh for
p=n). The estimates of Sects. 6-8 are even better in this case.

Remark VIII/4. If we suppose F,_,ch(4,1) is outside d,()=@E—A"¢"9,
1+247679) for all n, the above condition of Proposition 1 will be satisfied. In
particular, if h(4, ) falls into some f;-invariant set (e.g. periodic orbit or invariant
Cantor set of [5]) lying outside 51(/1), A satisfies this condition. Thus card{A
satisfying Proposition 1} equals the continuum. One can check however, using
estimates of Sect. 11, that mes{A:F,_, oh(4,%)e[0, 1]\51(1)} =0.

9. Velocities of Endpoints of Domains 4 £, ()

Let f, be one of the maps constructed at step n, with domain Af, =[x,,, x,,]. In
this section we prove the following

Lemma 3. There is an ¢=0(A~*" ~Y) such that for i=1,2
|dx;,(4) - A1 +¢)
| di 8
Proof. Any x;(4) satisfies f(4,x;,(4))=0 or 1. Thus
]dxlk A _ 0S4 xylA)/ 04
l l 0l A x3(A)/ ax‘
We proceed by induction as in the main construction. Consider the maps f,(2<k
<n), G,:6,"—=4,, and f Assume inductively that the following estimates hold:
014, x)/0; kol 1+4e
af;{(;b, x)/ax * igl /‘Ls(l—v)i ’

/«Lsk

i)
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¢,,) Let H, denote either G, or f, and pick p so that, if p<n, then
AH,C[0,1]\6,, while if p>n, then dist(4H, 1)> 2752, Let N=max(n, p). Then

OH (A, x)[04| 7N N "il 1+e

OH (A, x)/ox| ~ 82 oy AT

For k=1, these estimates are proven in Sect. 2. We will prove ¢, ,, ; in the various

cases that arise from the construction. c,, ., is similar. In particular, c,, implies

Lemma 3.
Suppose @1, x), i=1,...,n are C' functions, and define

F(.x)= 0,01 (s s 041 )...)

One sees that

so that, at any point (1,, x,) in the domain of F,

OF /02 [0, JoA\ (Mot dp,\ !
0F/ox k; Koq;:/ax) (Bl E) } ©.1)

where the partials of ¢, are evaluated at (g, @;_ (g, ..., @ (g, X0)--.)).
To prove ¢, 1, we first consider the case

Jus1 1=fi,.°fi,l_,°---°fi1°gn(l,x)'

6q0k " a(p,
0 ) i<+ 1 ox

Since
9,4 x)=Ax(1—Xx) Ix_%l > ) st 1)
we have
[0g,/04| <L,10g,/0x] > 24/25+ 1),
Using (9.1), a2, and ¢,,(k=1i,, ...,i,), we obtain

(001002 _ 200, A(L+e) i
|5f,,+11/3x|< 22 o 84 1+ls(l-v)—1

. 1+ ;Ls - /1s n—1
2;c0 2/

st 1) [1 N 1+39_2}

< ©.2)

82 2)%0

This proves ¢, in case f,.;=fioF,_;°g,
In case f,,,,=fof» (9.1), ¢, and c,,, and a;, imply

Iafn+1 (JOA] AtV ol o1+4e L
|(3f,,+11/8x1 84 1+ i;1 As =i + g

Similarly, if F,_,=f, _ °...of;, and [x—3/>A"*7, then

A(F,_°g)/0r AP 1+eég,
Ia(Fn_log)/ax =8 (1+ 270 | (9.4)

9.3)
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1
Now let G,=G,°F,_;og, where A(F,_,°g)C[0,1] ( T i+ iT")’ and
4G, [0, 1]\, Using (9.1), ¢,,, a,, and aj,, we see that
0G,J0A] AP [ 1+4eg, A"(1+¢) s =i
‘GG;,/ax' = —_( 2} ) * (82) (22) 0= D21 ~ ) lz A
_ AP 1+eg5
-1+ ). 0.9

. A 1
On the other hand, for G, =G, f, where 4f,C[0, 1]\(%— i+ lT")’ we obtain

an estimate similar to (9.3):
0G, /02
0G./0x

Finally, let G,=G, or G|, 4G,C3,\8,, ;. Then in c,,, (9.4) and (9.6), p=n+1.
Now ag,, implies |[DG,|> A" . Hence using (9.1), (9.2) or (9.3) and c,,, (9.5) and
(9.6), we obtain for f,,,,=f,,1,°G, °...°G, |

A I P C A & 1
107,01 4/0x| =82 1+i=21/1s“-vﬁ+m b =

Bt 14e 1
a IR | 9.
Y (1 2, gt ).v") - &)

+...

1
+ ls(l—v)(k-— 1)n]

JeOT nct g1 1
<7 |1+ X gwa=wr + || U e

82 i; }s(l—v)l /Vn As(l—v)n___
ls(n%—l) n 1+8
< g [1+ T = m} 9.7)

for a suitable e=0(1"51 V),
This proves ¢, ,; the proof of ¢, ; is similar.

10. Construction of d,, ,(4) and J,, ,(4). Structure of Z,,, in a A"s*T20@+ D,
Neighborhood of 5, , ,

a) Recall that at step n+ 1 of the induction construction, we consider A contained
in an interval £, =[2,,, 4;,)- As A varies in #,, all the maps under consideration
together with their domains vary continuously with A.

The induction hypotheses a;, in Sect. 6 imply the following estimates on the
diameters of the domains appearing at step n+1:

|4 o fil <275 @) 70" Y
16,7 <8, A5 "o (10.1)
|AfoF,_ ogl <(2A0 0+ 1)
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In the second estimate of (10.1), we write 6, ™ as J,,’, where p, denotes the
minimum integer p such that

S, mC[F—AT 54+ A7,
In the third estimate, recall that AF,_ | og =X Xmax] With
_%l >/l—s(n+ 1)‘

For any G,:5,¥—4, we have, according to b,, of Sect. 6, that u(G,)<A~*". But
actually for 6, *C[0, 1]\, ,, we can strongly enlarge J, ¥ and still have the maps
G, defined with u(G,) small. Let us consider the homothetic transformation

|x

min

YA x>+ (x—3) A%,
It follows from the condition « <s/4 that for n=3 one can define
q(n)=max{q:y, ()3, Co, )} =1.

Remark X /1. For n=1, the endpoints of y,(4)5,(4) belong to ( J4f,. We define
041)(4) for all Ae ¢, as the minimal interval containing wl(l)é (A) of the form
[X1 max(A)s X3 max(A)], Where xlmax(/l)e [0,3] and x, ., (A)e[3, 1] are endpoints of
domains 4f;. We define J,,/(1) in an analogous way whenever y,(4)d,(1) ¢6,(4).
It follows from the construction of Sect. 3 that for every interval G, '3, (or
(G’)“lé) which lies outside the domain AF, -h, the corresponding preimage
G, 5q(n) is defined. Indeed, the maps G, under consideration are those com-
positions of G, and Fog or fk, q(n) £k <n, which map their domains onto [0, 1].
Using Lemma 1 and followmg the proof of b,,, we get for some ¢,, , <A’

Gy 5:K) <(L 48,0 ) A", (10.2)

From the definition of g(n) for n=3 it follows that
q(n)gmax{q (1 -2 S)n> 1}

Since 2% $§, we get

—1 for neven
g(n) 2 max {q:—;— >q} =

1 for n odd.

NS IS

In particular, we always have

== —1. (10.3)

NS

We shall show that for n=3

1 1
AF yohC (%— a3t P(m)). (10.4)
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Let AF , ch=[3—0v,,, 3+0,,], v;,>0. In a way analogous to (6.11) we get
v, < 1/[( ]/i)“"%‘”"“"” v2], (10.5)

From (10.3) and (10.5) we obtain that for (10.4) it is enough to have %(ﬁ - 1) +3

2
>s(n+1), or taking into account that ¢y =1—s3, (1—4——S~ ——s) n> % This holds for
s<75, n=1.

From the fact that for s <5 the domain of the central branch 4hCd, it follows
that for n<5if G, '5,C6,\0,. ;, then G, [0,1] is defined.

In such a way, for all n=1 and for all domains

_ 1 1
Gn lénc[()’l]\(%_ /15("+ 1)’%+ ;Ls(n+1)>

the preimage
Gy 04 DGy H(1,(A)6,(2)

is defined.
b) Let us estimate the length of #,. When A varies in ¢,

,f["_lof;-n_zo,,,oﬁlgh()”%)
varies in one of Af, and f; - f; fi,°h(%, %) varies in [0,1]. We have

. of o 1 n n ’\ J
Wiy oochihe D) _ 1y Oy aj://gi ([Hi (Zf) ] (10.6)

oA o ox |*

where the arguments of f; (4, x) are x=/; ﬁp_z ...of; °h(4, 3). In consequence
(1+¢10.6)4

of ¢,, and a?,, the sum in brackets is larger than ;— 2 >H{1—27%). We
shall use «,(4) to denote the Velocity of the top. We have
|0(f™-. (%.2)| coyt 1 ( 1 )
2/ —. 10.7
o= LS s o 1- (10.7
Thus
L7 <4 (1= 20,1 (225) " (10.8)

We formulate the induction conditions on the choice of J,(4).
i) The interval ¢,() is of the form:

B D=0 D) A" d () A7, 1S ()<T+0(A™™.  (10.9)

i) If for some 6, % §,%N6,F0, then d5 Co,.

iii) If a, is an endpomt of §,, then g, coincides with a common endpoint of two
intervals: some 4 f, exterior to 5 and some AF,_,°g or 4 f interior to o,

According to the construction of Sect. 3 we consider intervals 4 fkan 1°G,
Afof, (G))15,, and have to choose an interval &, (%) satisfying the above
conditions and varying continuously with 1[4y, 4,1
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Consider the point &, =3 —(1+ 2, 1‘” )65 1, For k= q(n), (i) implies that
if two intervals J,, 1ntersect then one of them contains the other. Let 6, be the
maximal interval containing £,,. Then we replace &, by &,, which is the endpoint
of 5q(;')‘ If ¢y, is not contained in any J,,), but is inside some interval 4f,<F,_, og
or Afyof,, we let &, be the right endpoint of this interval. If &, is a limit point of
0, ™ we obtain any of the previous cases with an arbitrary small perturbation of

£on The estimates (10.1), ¢,,, (10.8), (10.9) show that when A= 4,, varies in #,

gt —s(n —s(n sc1)—(n
(1+/10n8 ) Ao Y —(1 4610 10)Aon (24G,) "7V <&, ,(A)
<l_ 8("“’ oS+ 1) 4 90q —[sq(n) +s(1 — v)]n
<2 (1+/10n )* Aon +2(1+&19.10)40,
+(L4e10.10)0n(2G) "1, (10.10)

We shall show that for n>7 4[4t *sd =« j ( H)(M :

§> (n+1). Since

. For this it is enough

to have sq(n)+s(1 —v)n> (s +

2(s—o) 2s
v= <

1—s 1—s

>

s
4
2s
we get the inequality n|$— 1—s —35| >2+45, which holds for n>7, s<{L.

For n<6 the check that for d,,;C6,\d, 1, [0, < is straightforward.

/15(" +1)
The worst estimates correspond to n=6. Since g(6) =2 and Dh|, ,, >21" "%, we get

1+¢ 1

|h_152I< Il—-'S-s <

F

for s<+5.
Taking into account (10.8) and the formula ¢, =1—2s>11s, we obtain from
(10.10)
@424 T s D g ()<L jmset D
and we can make &, , the left endpoint of §,, . ;(4). The analogous choice of the right
endpoint gives us

Spi1(D=G =14,y DAY 34 (T 4,y ) A7 D)e, gy =027 ). (10.11)

One easily checks that ¢, ;(4) also satisfies (ii) and (iii).
¢) We then construct an enlarged interval 5,, +1(4). We begin by expanding
0,4+ 1(4o,) With a homothetic transformation

(n+1)

).

Then we proceed with the endpoints of ¢, 9, ;(4o,) as above, i.e. using a small
perturbation we make the endpoints of ¢, , (6, ;(4,,) coincide with endpoints of

Opy 1 X H (0= 20D+ 4, 8
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some intgrval Af,, k<n. One checks as above, that this can be done so that the
interval o, , ,(4) satisfies for all e #,=[4,,,4,,] the inequalities:

PO, <18 <D, (0G5, (10.12)
As 5n+1(/1)céq(n +1(A), for any 6, %,(1)=G, 1,9, (A the corresponding interval
57k =Gy J}lén +1(4) is defined. Taking into account an additional factor
expu(G, ., 1, 0.F) <(L+&) A~ 790+ D we still have

JO OISR (D <IS k(] <5 D (1 40T ) lsTE () (10.13)

d) When estimating mes.#,, ; we shall use the following

Lemma 4. For any n there is a set L,CZ, corresponding to J,, and for any
8,7 %c[0,1]\8, there is a corresponding set L,*C%,, such that

() if6, 1 6,% then L\ L, "> =0
and

(b) mes(L,¥)>(1—g,)A>*" mes(d, "), with ¢, =0(A™ ).

Proof. In addition to the estimate o <s/4, we will suppose that « has the form
o=s5/2k,,

where k,, is an integer = 2. This assumption is not really necessary, but it simplifies
the notation.

If an interval ¢ with center x, and a number ¢ >0 are given, we shall denote by
¢-d the image of & under the homothetic transformation x—x,+(x—x,)-c.

Further, we shall use 6" to denote the set A**-§,\A**" 1.5 .
n—1
Let &, =3-272% 1o =0, p;=(2-A7 72, i1, ¢,= [[ (1 +y)), c= lim ¢,
i=0 nme
We prove Lemma 4 by induction. We assume that L, L, * are constructed and
consist of A4 f,, r<n, and that the following property holds: For any §, ¥, k=0, 1, ...
there exists an increasing sequence of intervals (1**-6,)"%, r=0,1, ..., R=R(5, %)
=n, such that

mes(A24 1.5 )7k - c(1+¢,)
mes(L;¥ndY) 2%

(10.14)

We define L7, corresponding to 5,, " and prove (10.14) for n+ 1. Then Lemma 4
follows with 1 —go=c™'-(1+¢,)" "

Consider A**"-§ C(Sq(,,) Condition ii and the construction of J,,, imply
Oy CO\S, 4y for 6,mC0,\0,,,. Considering maximal elements &, among
{04 C0,\0,+ 1} and the corresponding diffeomorphisms G, ™ we transmit the
structure from A**"-§, into each 5q(’;‘ and obtain that corresponding to any
0, ™C0d,\0,,, one can ple L. Coym CO,\0,4 so that L"NL " =@, if 6, ™+, "
and (10.14) multiplied by an add1t10na1 factor exp(4~*4™) holds for L™

Let us consider the domain V,, ; =A%*"-5,\A**"* 1.5 _ . Taking into account
(10.9), (10.11), and s=2kya, k, =2, we obtain

mes(Vn+ . A(}Lz“”-én\lz"["_‘k“" 1)],5")):0(/1—@— 2a)(n+ 1))'
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Together with (10.14) this implies
c(L+e) (U414 1) -mes(L,(VV,,1)> A" mes(A>*** V.5, ) (10.15)

(here and below y;,.; =0(A" tn+13))
For 6, Cd, ™ Cdypm C3,\0,., the corresponding set V.7 is defined and

e(Lte) (L4 2,4 ) mes(L™(\V.om) > 2% mes(A20+ D5 )=, (10.16)
We define L,,,=(J(L,™(\V,;") where the sum is taken over all

L,"C4,\0,.,. For any r=1 such that §,>4%*-6,,, consider d,7CoY), and
correspondmg (AP bs )T Vnﬂcéq(,f;‘ Since the dimensions of . are

small compared to 6%} (see the proof of 10.10 above) we obtain from (10.16) that

2a(r—1), _ )7 241
mesA T onpn) 1 (=47 . (10.17)
mes(L,,;NoYy ) A 1_Cn'(1+81)(1+X2n)
A?.at

Besides, for any 6, ™ C6,\0,+ 1>
(L OLG28,) ™ B = (1" (Y0807,

All L™ consist of domains Af and A(F,_,~g). At Step n+ 1 when constructmg
Af, 11 WE reproduce the structure from [0, 1]\6,, on each A f or A(F,_,°g,) using
respectively f F,_,cg,)” . We denote by (5, ™), (5 q(n) " the new preimages of

S Oy under f1, (F,_ g,)". The estimate of mes[ U Js, ™| from Sect. 8
m=0

q(n

together with the estimate of u(G,,, [0, 1]\, ,) show that after excluding the set
U UGy from each Af, or A(F,_,eg,) the measures of L, , and of any

L"”ﬂ (A2 D)™™ are multiplied by a factor larger than 1—(2-4~¢729)"
This factor 1mp11es the passage from ¢, to ¢,,, in estimates (10.14) for (A**
8,01)”™ We let (L™ ([(A2*"* VY5, , 1)~™] correspond to (5,.",). Thus to each
8,4, (0,,) C,\,, uniquely corresponds its 2> * 1 —enlargement which does
not intersect L, , \( J(6.7). We now set

L..— {Ln ourside 0,
! L, 1\U(5q(n) " inside 6,\d,, 4 ;-
Notice that L, , ()3,\0, ; consists of Af,, ; . (10.17) together with the estimate of
U@,y gives
mes(22¢ .5, )
mes(L, 1 (10%,

and (10.14) follows for &, ;. The maps G, !, G,” ! and their compositions transmit
(10.18) on (8, \)™™C6, ™3, with an addltlonal factor expA~*™, Joining it to
the above estimate of

mes[ mﬂ(;{Za(n+ . 5n+1 m)\U(éq(n)
finishes the proof of (10.14) and of Lemma 4.

<1721 42.5-47 % (10.18)



66 M. V. Jakobson

Remark X /2. The above construction is similar to one used in Sect. 8 in order to
estimate the measure of holes at Step n+1.

Remark X /3. R which bounds r in (10.14), may be much larger than n. For example,
the construction implies that the consecutive A**-enlargements of J, are taken
until we obtain the whole interval [0, 1].

11. The Positivity of Measure

Remember that at step n+1 we consider le #, =[1g,, 4,,]. As A varies in 7,
_°h(4,3) traverses some A f, and f,F, _ °h(2,%)=F,ch(4,%) traverses [0, 1]. The

n+1
set Z,,,(H)= U Af, is defined for all Ae #,, and all the domains Asz(Afk)/I as
k=1

well as the holes d,",(4) and their enlargements §,", (1) vary continuously with
i€ Z,. We then define .#,, ;N ¢, as the set consisting of those Ae ¢, for which

Fooh(Y)ed, . x\ U Usn,

We saw in Sect. 10 that the velocity of the top satisfies

0 _
v (A)= aFnoh(/lé) > (22 [4(1+e,, )17 . (11.1)
At the same time the endpoints x,(A) of 4f(4), k=n+ 1, move with velocities
dx,|  (I+e;,) 1)
s(n 1 .
dA 8 K (11.2)

(11.1) and (11.2) imply that for any A4f,, k=n+1, the condition
F,oh( ,2)eA fi(1) defines an interval _#(4f,)C 7, as does the condition
oh(l, 2)6 5n+ ().

A priori the condition

es | U, <[A+rc7o!
does not imply the predominance of

{kfFWMHMﬂUU%I}

in #,, and we have to do some additional estimates. In consequence of Lemma 4
for k=n+1, to any 6, % =G,.',d,,, there corresponds uniquely a set L%,
=G, Ly 1 CZi 1 V9g0+ 1) such that

mesL % >(1—g) A2 D)5k |

We define %, =(L;% \6;%,). Thus for any Ac ¢, the following estimate
holds:

mesl K >(1—g,, )2 V5K | k=0,1,...6,, 3,=00"2) (11.3)
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Let #=7¢ (o"q‘(n +1)=[4p-4;] be an interval on the Z-axis such that
F,°h(,%)€d ., when ie #. Because of the definition of g(n), [,
<(L+o(A71*2)). A2 . 2515 "k | Then the comparison of velocities (11.1) and
(11.2) implies
4./12a(n+ 1)+ 2s
When 4 passes #, the measures of 5n+1 and L ¥, vary in particular because of the
variation of 0/0x(G,!;). We shall show this variation is small.

I71< (I+e1.4) 10,5, (Zo)l (11.4)

a)

Lemma 5. Let I, denote 3, if p<n, and (1—/1”5" 14+ 27%%)if p>n. Let F(x) be one
of the dzﬁ’eomorphzsms G (/1 X), f(/l x), or f(4,x), and suppose AF ,(x)C[0,1]\I,.
Let F; z) be the inverse dlﬁ”eomorphlsm and let N=N(F) be the number of
iterations of the initial map g;:x—ix(1 —x) mod 1 corresponding to F, (i.e., F,

=g¥). Th
gi). Then 0 oF;! OF
0\ 0z 0z

/12517
8/1

Z AT (11.5)

Proof. We proceed by induction. Assuming Lemma 5 holds for k<n, we need to
-1
fora

prove the corresponding estimates for n+ 1. We begin by estimating 3l os
composition of maps. Let

P X)=@, o0, 1°...o0,(4,X),
where our notation is similar to that in the calculations for (9.1). Several
applications of the chain rule give

0/0MO@; '[0z) P /ox? Apilie..op, )
6/1 (09"/02)=L0¢""/0z ],:Zl dp; oz (0p,ox)? a2 :

(11.6)

where as before the arguments of ¢, and its derivatives are A and @,_,<...c¢(x)
while those of @; ! are 2 and ¢, °...cp, 1(2), z=¢(L x) (for i=n, ¢, ' =@, (4,2),
and there is no second term in the brackets).

Let Fi=f,_yo...ofyeg, AF,;C[0,1]\],, and let N denote the number of
iterations correspondmg to f. The expression 9/0M(¢; Y o...op, ') in (11.6) equals
0x;, /04, where x; (/) satisfies

@0 Qi (A x4 (A))=
In our case ¢, =g, ¢;. =/ 1=i<n—1 and the estimates of Sect. 9 give
1 .
10/0Af oo £ (7)< v;r/iz
For g=Ax(1 —x) we have
00997 1 —0%g/0x* 1
0L 0z 2Hx—1)  (dg/ox)?  2Mx—-1)*°
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For f; we have by estimates b,, of Sect. 6 that
0% /ox?
@b @7 <l+e,.

Thus, (11.5) and (11.6) give

’) -1 -1 v.sp 2sp s 2s )
¢ oF, sl?LFL-K} L4 (1+s)l) (l N+ (1+81)(1+82))

0/ 0z 0z 2)2 8/ 81

2s(n—1)

84

(11.7)

iZs(n 2) /13(" 1)
+..+ (TN,,_ZJF T(l +e.)(1 +32)) +

Let F,=G-F,, where G=G,:4G—6,, AGC[0,1]\5,, and N is the number
10G™(z, /1)] AM(14¢)

of iterates for G. The estimates of Sect. 9 imply —a | %
Because % <W(F,, A(F,)) for xe AF |, we obtain using (4.7), a,, and b,,
that X -
) <t+007) 1+ )
i G +(1+e5).

+ 15/2(2)»60)'#1 - 25/2(2)»60)n+1
Using (11.6) for F,=G-F, we have

0 0F3Y, 7|0 OFT| OFTY| | ( 2P(1+ey)
DR [az 2z |/| oz | H gyt TtE)
(1 re) A oF; !
' (8/1 . 84 ’NG}' G (118)

Substituting (11.7) in (11.8) we obtain (11.5) for G, =G,-F,_ »g constructed at the
beginning of step n+ 1 (we have besides an additional factor less than A~ in the
right part of (11.5)). The proof for G,=G,Cf, Af,c[O0, LJ\I,, is analogous.
Considering p=n+1in (11.7) we obtain the assertion of Lemma 5 for fus11- Then
we consider the compositions f,, = =f1r11°G, ¢...oG,. The induction hy-
potheses and the previous estimates give

I SN o IR
0/ oz 81 ‘Nil oz ‘,-;,/1 '

The estimates of Sect. 9 give

0(G,, oGt e i )| _ A0
| ol | = 8.

G, |(0G, \?
0x? 0x

(1+e,).
Taking into account

<(L+ep)i ™,
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(11.6) implies

00f [ FEXCERY iy (14¢,) (1 4g)- 25+ DH
o7 oz | <&\ Zi 78 )
/123(n+1) af;l+1k
+ Y 'N(f"“l)}ba—z—'

This proves Lemma 5 for f,, ,, and the sum in round brackets gives the desired
estimate for G, , ;. The proof for f,,,=1f,,,°G, is similar. []
b) Consider #(5,4, 1) ={A:F,h(2,3)€d,,+ 1D} =[4g, 4,1 (11.4) gives

1+ 16-25%¢ . .
|7 Byns ) < ( . ‘Zlcifz i T Let 4(2) be any interval in L,, ([ )0,p+ ) The
0

comparison of velocities (11.1) and (11.2) shows that the time it takes for F,oh(4,3)
1A(2)|
vy(A)

We want to reduce all these moments (for different A(2)) to the same one, namely
to 1y, and then use the relation (11.3) for A,. This can be done for given 4(J) if for

any le j(éq(n+ )

to traverse A(4) equals -(1+0(A~ "), where / is any moment of passing by.

|4(2)]

[4(Z0)]

Let N=N(4f)=N(f). If N<A§""", Lemma 5 and the estimate of #(3,,, ,,)
imply

>(1=04y)s %y =0(Ag" " V).

n

iés(wl)'ks(w 1), 16-45""-(1+2;4.)

84, 0 W

Thus for such 4, o, ; = O(Ake~ 26+l 1)
Lemma 7 of Sect. 12 gives the following relation between N(4) and |4| for
Ae[0,17\5,,:

14(2) — 1AM < 14(20)1 - (1L.9)

W-Zs
N< : llog, |4l|.

0

Thus N < 25+ 1, 1f |/n+ [log, || <ig"* V. Lemma 7 also gives the following
estimate for a domam A(F,_,°h) of the central branch F,_,°h(4,x). If
LOAF,_°h)DI,,, and N=N(F,_, °h)=N(F,,)+1, then

N<4—SW~p.
Co

When constructing L,,, in Sect. 10, we had L, ,()(6,\6,+1)CJA4S, 11
Using this fact one can check inductively following the proofs of Lemmas 2 and 4
that the following construction gives a set %, ; CZ, ., with

mes(L, % (20, 1)>(1—ep) A" " Pmess, f,

for every 4, ).
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We begin by constructing at step 2 the maps f; °g and the holes g ~'5,. Then at
step n+1, n=2, we reproduce on each interval inside J, the structure obtained
after step n on [0,1]\6,, and on each hole §; * [1<i<n—1 and k=<ky(n) here,
contrary to i=n and 1 <k< oo in the construction of Sect. 3] we reproduce the
structure of §,\d, obtained after step n. Ignoring N(F,_, h) this construction gives
for N(Z))=max{N(4f,), Af,eZ,} the upper estimate 2". Taking into account
N(F,_°h) estimated above, we obtain

N(Z)<n-2".
This implies the following
Lemma 6.

mes{A(f,)e L, (A):N(f,) <n-2"}

_ a(n+1)
mesd, - () >(1—¢)k .

Lemma 6 implies the predominance of 4 satisfying (11.9) in ]:,,+ ;- Thus (11.3)
implies .

mes{A€ F(0g+ 1) Fuch(23)e L, 1 1 (4)}

mes{/’{ej(éq(rﬁ’ 1))7 Fnoh(i )€5n+1())}

o) Let 7 =701 1) =LAy As]={A:F,oh(4,3)eb ¥, ,(4)}. (11.4) and Lemma 5
imply that for any le ¢

>(L—g;; o)A D, (11.10)

Gl 096G,
0z |,oip 0z |,-q4)2
G} ’ ;
<_@+ﬁl ) "N(G,y 1) 22514614 11)
A

(11.11)

(2)ch0 —(s+ Za))n +1

(11.11) and the estimate b,,,, of W(G,, ) give for any A(i)c(]:nﬂﬂﬁl’,iﬂ)
|6G;+11/1 _ aGn_+11 zzl

mes G,y , A7) | oz 2 lieap
n A _ 1__ z
mesG, ! ;,4(4,) > =ty ‘aG;+lllz
0z |21
oG, !
N(Gnﬂ)"a—;m 225(1+¢14 42)
exp(u(G, 4 1))> \1— (2/'Lc20—(s+2u))(n+1)
(=0, ) (1—0Q2A™ 1), (11.12)

oG!

As N(G)- ‘ =o0(1), we obtain from (11.12) and (11.3)

mes {1e #(5,.\, ), F,oh(1,3)e Lk
mes{ief(éq(w 1)): F,oh(4, 2)€5n+ 1

Using L;H l)ﬂL LL()=0,if 5n+1 =t=5n+l, we obtain from (11.10) and (11.13)

>(1—g,, 5) 2750 (11.13)
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Proposition 2. Let ¢, =[1,,, /,,]1C.4, be any interval on the J-axis constructed at
Step n. Then

o0

mes{/lef,,, F,oh(2,5)e ) Ug;h(ﬂ)}
k=0 14eyy

a(n+1)
mes _#, A

where g, <A™

We define
‘%n—f-lﬂjn {)'Foh ’2)6[0 IJ\U U }
and obtain
1+e¢
mes(A, . | ﬂf /106(" +111)
and consequently
mes. 4, , > (1 — %ﬁ%) mes.#, .

Remark XI/1. Any A such that F,h(4,3)e[0, 1]\ U (5, %,(2) lies in one of the
intervals #,, ,(4,) corresponding to the relation F Loh(4,5)e 4,(4), or is a limit
point of such intervals. One can apparently prove that

L+¢)
mes{A:F, oh(l,})e UAk()L)}>< ;t(n—ﬂj)mes -

but there is no reason to avoid A lying in the limit set. They are even better in some
sense (see Remark VIII/3).

12. Transition from T,-Invariant Measure to f,-Invariant Measure

The previous relations between mes.#,,, and mes.#,, and the choice of the
position of the top

1 1
Fn_IOh(/I,%)E[O, 1]—(%— W, %—F /IST)

0
within the first steps 1,2, ...,n,, imply that there exists a set .# = () .4, on the
1
A-axis with measure

mes/i>4[ﬁ (1—2(%:28))}[ ﬁ (1_—11%?”

n=1 n=np+1

such that for any e .# the partition ¢, of Sect. 1 exists.
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Conditions i-iv of Sect. 1 imply that for T, defined by T,|4,(1)= f;" there exists
a unique T, —invariant probabilistic measure v, <dx with a density ¢,(x)e C, ), 0,
>c¢>0. The endomorphism T, of the Lebesgue space ([0,1], v,) is exact and its
natural extension is isomorphic to a Bernouli shift (see [12, 13]).

In order to finish the proof of Theorem A for the family f;:x—Ax(1—x)
(mod 1) we have to construct an invariant measure u, <dx.

Let f~%A) be the full preimage of AC[0,1] under f* f~*A={x:f*xeA}.

Suppose Y. nv,(4;) < oo. Then the measure defined for any dx-measurable set 4
A;e&
by ’
pA)= 3 X v (fTAN4) (12.1)
4;€8,0=5j<n

is absolutely continuous with respect to dx, by a theorem on integrability of a
series of positive functions (see for example [15] Sect. 14).
We show p, is f-invariant.
By definition
w(fT A= Y T v AN4). (12.2)
4i€8, 0=j<n;
If j<n—1, every term f~/of7'A[)4; in (12.2) coincides with f~Y* Y4 (4, in
(12.1). After excluding these terms, there remain in (12.1) terms with j=0, which
give ) v,(A()4,)=v,(4), and in (12.2) terms with j=n,—1, which give
A, €&y
YT ANA)= Y vATT AN 4)=v, T A,
Aieé 4,eé
Thus (12.1) equals (12.2) because of the T;-invariance of v,.
Let f=2. The following proposition implies Y n(4,)|4;] < co.

3/2

Proposition 3. ) n(4,)4)< L

(1-p)
A4i€6,\0n -1 s

Proof. a) Consider step n of the induction construction of Sect. 3. If @, is one of £, f,,
G,, F,_, obtained with N successive iterates of f;, we use an upper index so that
QN =f,of,o...of;, and @ ¥ =(dY) " Im Y.

LN

Lemma 7. | DfY> )2V

Let

e {5 ; if /=n
CAB-ATEHATY] A fzntd

We prove Lemma 7 by induction and assume that for k=1, ...,n Lemma 7

holds together with the following properties:
CoN
i) Let 6, Y=G~75,C[0,1]\I}, and let r =max(1,n). Then [DG"| 5, ™| > J27 .
A ~ co N
ii) Let A7 C[0, 1]\I. Then |Df¥|> 1277,
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Consider k=n-+1. Notice that if xe[0,11\[}, then |Df}|>21"2>17 " If

xel}, then /, r23 in i), ii) and 2C°3 +5<%2 As IDf,> 75 on any hole 6; ! we

2

obtain i) for n=1. ii) for n=1 holds because of i) and |Df| >/1C°>/1C70+S
Let F,_ °h(4,x) be the central branch, F,_;=f,  o...of,, 1=<i, =k, N(f,)
=N, the number of iterations of f, corresponding to f; , ke[1,n—1],6=G" N"é

M=1+ Z N,. Then (F,_,°h)~*d=4, ™. (In the notation of Sect. 3, GM:5, M-,

is one of the G/, constructed at the beginning of step n.)
Let D,_, be the domain of F,_, °h, and let p,=min{p|5, ™ C[0,1]\I},}. Then

(see (6.12))

C
Po>52n. (12.3)

According to the construction of Sect. 3,
é
dist(5, F,_, °h(4, 1)) > 3 (1 —e),
which implies (see (6.4)) that

n—1 1/2
Vi [IDG”"I Tl IDfikI]

P : (12.4)

|DGM| >

where DGM is evaluated on §; ™ and DG™ on 6. By the induction hypotheses we
have

[D fyy| > AleoMd2VREs | < <p—1

|DGNn| > plcoNn/2Vnl+s
Hence, on §, M,
IDGM|> 20,

where

(s—a)

L s(n 1) !
=5+ (l; )W 5 - (12.5)

We have to prove
|DGM| > JleoM/2Vpol+s (12.5a)

1 —s+no Co
>
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and cy/2s >4 imply

2)/n<)/eon/2s<)/po

and (12.5a) follows from (12.5).

So i) is proved for the holes 6, ™ =(F,_,°h)~'6,". Any branch f; -...cf; °g
is some composition of the form f;  o...of, o(f, _ o...of; oh), where f;, _ o...cf, <h
is a central branch of some previous step. Thus the same arguments prove i) for
S M=(F,_,o9)" 16" (the estimates are better in this case). If 5, ™= 716", i)
follows from i) and ii) of Step n—1.

Let G™V§,=0,YC[0,1]\3, . ;- Then we have max(/,n)=n+ 1. Now i) follows
for GM |6, +1—>5n +1 with 6, C[0,1]\6,,, because they are compositions of
maps satisfying i) with r<n+1. Similarly for G™_ ,:6, % >3, ,, 6, C[0,1]\I},
¢>n+1. This proves i, ;.

Let fo.y =1 ofi, .o fi,°9,l[0,1]1\6, ,. The induction conditions on |Df, |

imply that [IDf,, /=[] |Dfik|-2/1|x—%[ satisfies Lemma 7. The same is true for
k=1

fov11=1i of,, because of ii). Taking into account i, ,, we obtain Lemma 7 for
fui1x with k>1. Finally ii) at Step n+1 follows from i) and the assertion of
Lemma 7 for f,,,. O

b) We shall use the following estimates for compositions of maps.

Let g:B—J be given by g(x)=ax?, where B=[x,,;,, X,.,] and J= UA where
intd,(\intd,=0if 4, +4,. Let A=[h,, h,+|4|] and denote by n(4) the number
of iterations corresponding to 4. Then B= Ug‘ 14, where

_ 1 4]
)= — (V14 = by =
oA 1/5( bt 14 Vb W(lezﬂﬂ/@)
and
n(g~1A)=1+n(4).
Hence
Sig~ a)g~ =y A

VaX Vi Vi,
SIS TR I I
Vo Virlal+ Vi | Va Vit Vi

Let us now consider {4', f’, '}, where intA|(\intd, =0, n'=n'(4")=n'(f").
Suppose every f' maps its domain onto the same interval, f":4'—J, and u(f", 4")
<c. Let {4, f,n} be so that ACJ, intd,(|int4,=0, n=n(4)=n(f). Then

(12.6)

IS A< (3 A s

exp(c)
I

=[Xnl) 4D+ En14D (X 14)]

¢) When estimating Y n(4)|4| after step n of the induction construction we shall
attribute to any preimage 6, ¥ mapped onto §, by GY the number of iterations N,
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ignoring the structure inside J,. But when considering ¢, itself, we take into
account this structure. This gives the estimate of ) n(4)|4] on any domain inside
0,. Then according to the construction of Sect. 3 we introduce at step n+1 the
structure from §,\6,, , inside every domain (5,\5,. )~ ™.

Before formulating the induction hypotheses of Proposition 3 we introduce a
new notation. Let 4, =41 C[0,1]\5, be a domain of some f, constructed after Step
n. We define a “block™ B(4,) as a maximal interval containing 4,, which doesn’t
contain any hole 6, ¥ If B(4,)( )6, =0, then B(4,)=| )4,, where any 4,=[aj, a;. ;],
ieZ, is a domain of some Af,, £ <n. If B(4,)( ), +0, then a part of the 4, are as
above and the others are A(F,_,-g) or 4 f

After Step 2 we obtain two except10nal one 51de blocks B, which contains 0,
and B¥, containing 1, and for any B+ B§, UBZ, where B, =g "B, B,
=g~ "B*

The structure of Bf is: Bf = UBO,, i=1,2,..., where By, =| )4, ke[1, ny], n,
=card{4f, C[0, 31}, 4,,= Afl, a=41i_1 for i=22, and the corresponding
number of iterations N(4,,)=i. The structure of B is similar.

Let B be some block of step n+ 1. Then either B=B UBZ, where B, C[a,,d],
B »Cla,a,], and [a,,a], [a,a,] are two adjacent 1ntervals constructed at step n,
B ﬂB =a, and both B, B are preimages of B¥ or B;", or B is some preimage of
such blocks constructed at previous steps.

When constructing d,,, ; we shall take the precaution to choose two adjacent
intervals 4’ C[0,1]\0,,, and 4”CJ,,, which are the preimages of 4;, with the
same i. This can be done by moving if necessary the point &,, of Sect. 10 a distance
less than (24°1)~®* 1 and still having (10.10) true.

Let B, (4,)=|J(4;CB(4,), i>0), B_(4,)=|J(4;CB(4,), i<0). Then the pre-
ceding implies

min(mesB_ (4,), mesB_(4 0))>1 A [4o]. (12.8)

(12.8) together with (4.6) imply the following

Property. Let Ay=Af,CB(4,)CImF,_ h(4,x) be so that F,_,h(1,3)¢B(4,).
Then

u(F, _, oh(4,x), 4,)<3. (12.9)

d) Let 9,=A(F,_°h), F,_,=f _o..of;,, and let AP =Af, be so that
F,_ °h(3,3)e 4. Then @, = A(f; °F,_, °h). Let B,=B(4$") be the block of 4",
U,=(F,_,°h)~" B(4y"). Notice that &, , , may be equal to Z, (it is, if im F,_ , °h(4,

X)C 4(0) — the first interval Af; on [0,1] (or C4(1) — the last one)), but always
., U,
We now formulate the induction hypotheses for the proof of Proposition 3. Let
R(n)=max{R:%,_, CI;} where [=(3—2A"% 5+ A7K). Let Y k=Y N(4)|4| after
step n, where Acék\ékﬂ if k<n, or 4 CI’,(\F,(Jr1 if k>n are either intervals 4f;,
i<n, AF,_ g, Af, or holes 3, M (N(S, M)=M for holes.) Then for k<R(n)—1,
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Consider any x,, X;, X,€0,_,\0, (respectively I} ,\I}), so that x;e[xg,x,].
Then for k<R(n)

) Y NI xg—x,| < AP

AC[xo0, x2]

(.2 N(A)|A|/|xo—xll>(j§:a—ir).

4c[xo,x1]
We have to prove (i) and (i) for n+ 1 and k < R(n+ 1) —1 (respectively k< R(n+ 1)),
where R(n+1)=max{R|%,CIy}.
We shall assume that the boundary points of 6,, 0, ;» &, and %, lie in {A~"},
that is, 8, =(—A"% 1+ 17 for k=n, n+1, and for some r, peZ,
D, =F—-A""1+27)
%n___(%_A—s(r-l'p),%+A—s(r+p))'

In addition we suppose g—z and %n to be integers. The reader can check there is no
loss of generality here.

Let F,_,°h(A,3)€d,_\d,. According to the main construction ¢ = (1— %) n.
Let N(f,)=N,, ke[1,n—1]. Lemma 7 implies

Nxco

IDf, > 2%
As $—27% is a root of the equation
F,_,°[x(1—x)]=F,_,°h(4%) (mod1)
we have
1 1 n—1 N
D B S 112 <exp[—-§—<1+ > ( Ko -I—s))/nl}.
] =

41 10 2V

sr

Hence

n—1
sr>§[1+(n—1)s+f2£ 5 Nk/l/E]
k=1

¢ n—1
>i[1+(n—1)s+ ° N].
2 2/n—1 k§1 *
n—1
This implies that the number of iterations N(F, _,oh)=1+ Z N, satisfies
k=1

n—1

4 2
N(F,_ oh)< C—Sr]/n—l— C—S(n—1)3/2.
0

0o

Taking into account that r>c,n/2s, we obtain

251\ 2
%) — -1y, (12.10)
0

N(F,,,loh)<2(
(4]
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We shall denote 4§’ by 4, and B, by B below. As F,_,°h(}3)e4,,
im F,_,°h(4,x) contains either B, (4,), or B_(4,). Suppose the former. The
number of iterations N(4,) are either increasing, or they decrease till some N,
and then increase up to infinity. Let & =imF,_, <h(Z,x)( |B. The properties of
blocks are so that in the second case ||=2n,-|4,,;,|(1+¢), where 4 ., is any
interval corresponding to N, ., n,=card{4f, £[0,5]\6,} <4, e<A™". In the first
case more than 1—¢ of || consists of intervals with N(4,)=N(4,), and N(4,)
=N(4,)+1 (the distribution depends on the number of first 4, with N(4))
=N(4,)). In both cases we have

Y. N4 <(L+8)-N&)- |7 (12.11)
ACY

and
|7]<2-2-(1+8)|D fim V71, (12.12)

where N(&)=N_;, in the second case, N(¥)=N(4,)+1 in the first case. Taking
into account that 4,, 4., SBC[0,1]\0 (1 — %) n and thus fN¥==:4_. —[0,1]

(correspondingly fV4?)) satisfies Lemma 7 with (1 — g) n, and proceeding as above
s

when deriving (12.10), we obtain for %,=(F,_ °h(l,x))"'¥ =1,
2 3
N(Fnloh)+N(<7)<2(c—S~(r+p)) — C—S(n~1)3/2. (12.13)
0 0

1=9,=A(F,_ °h) consists of a unique 4, after step n we have )
=N(F,_,oh)-2(1~%—A~5&* D) for k>r.

Let us estimate ) n(4)|4| after taking the first compositions f;°F,__ , °h on every
LA, T, r<k<r+p. We shall denote this sum by Y%, ;.

Let ¥, =, and let &, be the A**-enlargement of ¥, with center F,_, oh(4,3).
Then I, ,=(F, ,°h) ‘%, I, ,_;=(F, °h)"N%\F_y), i=1,2,...,p. Applying

(12.7) to {4 ¥\, _,} and 4'=AF,_, we obtain using b,,

e) As T

2 (N(F,_)+nA)IF, A <(1+ 0@ )IAF, )|

ACSN\SF -1

<N(Fn_1)lyé\<%_ll+ > n(A)IAI). (12.14)

ACS\S -1
Applying (12.6) to F, ' (£\F,_,) we have h> At~ 2s¢+r=G=1) and consequently

Y= Y (N A+ DIF, R

n+11 (Fn-1°h)~ 14

<2_1l—1+s(r+p—(i—1n(1+0(,1“7))4an1
(P NE ) nA)4y). - (12.15)

ACS\S -1

We shall assume imF,_ <h(4,x)C[0,3], and leave to the reader the modifi-
cations corresponding to another position of imF,_ °h(4,x) in [0,1]. Let
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/=max{i:#,Cd,_,\0,}. Then for i</ we can apply (ii). Together with (12.11) this
gives

sﬁl—in .
n n < I N(Fy) | Lol - 225 (1 +-¢
> (DA< Y n)|4] <4 ( g NF) 1Sl A7 (1 +¢)

ACHNS 1 4,
zN(yO) l‘%\f%-— 1| -(1 ‘—ﬂszs)_ 1 (1 +8)./2ﬁ(8—a)n .
Substituting this estimate in (12.15), we obtain

el (140 AF, NS L+ N(F,_ )+ N(Fp) (1 +¢,)- Ao
Z < =S Fp—i-1) .

n+11
We have by definition %,\%,_, =F,_, (I, +p—1) and using b,,, this implies
|AF, _ | B \F | = A2 =R (1 O(A7 ) (1= 27 %), (12.16)
Thus

'+i"’< (1+8,)-2°-(1+ N(F,_ )+ NF) #4797

W 2/{3(r+p—i)

Consequently, by (12.13) this implies

2s L

(1+ 512.17)')~s’<c‘(7+l7)) AP
0

Z N Jstr+p—i)

sp (1—§>n+s+2ﬂ

2S>3/2 (r+p~i)3/2 )

JsA =P r+p=i) ’ JsBr+p=i) (12'17)

<(14 —
( 812.17)(60

Thus for 1<i</ we have on I

¥

+p—i the analogue of assumption (i) but with an

- S
additional factor less than (we use n< —r>
Co

st 28 Jst2B

< \
R e ]

In a general case we have Z <p (this is not so only if F,_, h(%,3)e[0,1]\5,),
and we have also to estimate ) /1% ;, 0<j<p—/. Let us consider

Py =IBCNG, P 20, —imF,_ oh(), X).
We have %\, _;=[0,a, ], where 5—A"*/2~a, ,€6,\05,

1
Sy Ny_y=la,_a, 51, - EYES ra, ,€0,\0s...,

‘EPZ+ 1\‘%’=[af+ 1,61[] s

1_13-2sp—¢—1
324 )zad"F1652(p~t’—1)\52(p-{’—1)+1’

_1ly-2s(p—4) ~
A

1
2 Ra€05, n\O2p—py+1-
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By construction &, =[a,, F,_,°h(/,3)] is the last enlargement of %, which lies
in §,_,\0,. Hence either a,€d,_,\6,, or a,€6,_,\0,_;. For definiteness let

—1
a,e6,_,\0, Then q=2(p—/)+1,/=p— q—z—,

‘%+j\*%’+j—1gaz(p—f—j)\éz(p—/_j)+3a jell,p—71,
where 6,=[0,3].
(i) for &, with k=2(p—/ —j), k+3<g< (1—%)n implies
k k+1 k+2 k3/2
YH Y+ X< ls(1-ﬁ)k(1+83)'
By construction

1—¢ e
5 4i—zs(p—f—1)<|%+j\%+j_l|<l 2s(p—=¢=J)

Hence using (12.7) we obtain similarly to (12.14) for je[1, p—7]

Y (N(F,_)+n)F, 24

ACEL e + \Fr+j-1
<(1+O(}*_y))|AFn—1|{N(Fn—z)“%’+j\€%+j—1|
+ [2(p_/_j)]3/2/1—su —ﬂ)Z(p—t’—j)}
<(l+ 812,19)|AF,,—1||<%+1'\%’+,'—1|

[IN(F,_ ) +2Q2(p—¢— j))>2a2sPe==07, (12.19)
By construction
2. di o ys LA
l 'dlSt(a,,Fn_lo ( ,E))> W

This implies
hy>(1— A 9|AF, |2~ C@=0+D
on F,"1(%,,\%)) and
(1—=A79)|4F,_ |
ha> iﬂ2@~f—ﬁ+3%_
on F, ' (%, \Y,,;_1). Applying (12.6) we obtain from (12.19) that

rEp=(¢+))

<(1+812A20)|AFn-llllzl‘%’+j\€%’+j—1|[N(Fn—1)+1
T Qp— = )220 )2 s (12,00)

Now, (12.16) with k=/+ j implies

A4S0 =001 45.)
|AFn—1||‘%’+j\f%’+j—1|< l/_ As(r+p_g_j) 2 .
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Substituting this into (12.20) we obtain

r+p=(£+)) , N(F"_ )+1_|_(2(p_/_j))3/2/1235(p—6’—j)
n§1 <(Ltey,,,)A%? : FEGTRrE :
(12.21)

According to (12.10), N(F,_,)+1<2(2sr/c,)*'*. Because
2
2Ap—1)< (1— z)n< (1— 5>ﬂ,
s s) ¢
we can rewrite (12.21) as

r+p—£¢—j 2s 3/2 7’3/2
) <(1+f>1z,22)<c—) SAPCF 0=
n+11 0

3s
242

. 25y~
Asﬂ(r+p—f—j)(l—(—§)

(12.22)

Thus for 0Zk<p—7/ we have on I, , an additional exponentially small factor
compared with the assumption (i), as well as for p—7 <k <p (see (12.18)).

f) In order to estimate the contribution of terms in (5,—6,, ) ™™ we first do it
in 5n\5n+ 1

Step n+1 on J,\3,, , divides into subspteps £=1,2, ... corresponding to the
construction of f, , ,, (see Sect. 3).

We use the following notation : 4 is any interval AF, _, og, Af,, Af, ., ,; 8 is any
hole 6, ™, 6, N, C6,\0,4 s n(4), n(d) are corresponding numbers of iterations.

Leti,, =) |4] after substep ¢ of step n+ 1 and with the same meaning of indices
n, ¢

hnz’:ZW; xnf:zn(A)lA‘; ynz=zn(5)l5l-
We consider also the corresponding sums on [0, 1]\d, namely
I,=X14], 4£[0,1]\,,
after step n:
H,=Ydl; X,=Yn)d]; Y,=)n)d.
Then I,+H,+d,|=1,i,+h,+10,, /=10, for all Z. Besides, let /=0 correspond
to i, h, x, y constructed after step n, and /= oo after step n+ 1, so that (n, c0) equals
(n+1,0).
We may assume all the compositions to be linear (see Remark XII/1 below)
and thus using (12.7) we obtain
1 = inO(]‘ _Hn - l(snl)
hnl = hnO + inO(Hn + lénl)
xnl :anIn +Xn inO
ynl =yn0 +an(Hn+15nl)+ Y;t'inO .

(12.23)
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The holes and intervals of subsequent substeps 1=2,3, ... are obtained using
composmons of maps G,:5; M~>5,,, so that after substep ¢ the remaining
preimages of J, are of the form G, te oG 15 and preimages of ¢,,, are
G lo...oG; 5n+1, i=1,2,...,/—1 (compare with (3.6), (3.7)). Let h, and 7,
correspond to preimages of 5 and hM, ¥, to preimages of J, , ,. With this notation
we have

f)nlzﬁnlzoi hn&’:ﬁné’+ﬁnf’ yné’zj)nt’_‘h;né”
and for /=22

by =lyg—1 T lhypy 'ﬁnz—flénr '
g =Py P 18,7
=f’n¢’—1 +Enf—1' ﬁn/_l 10wl
16,
Xne = Xng—1 +(J~}nt’—1'int’—1+xnf—1'ﬁnt’—1)"5n,~1
Ve =29ns—1 'ﬁnz—l"anl_l ;

V=7 +)~’nf—1'ﬁnz—1 “’fnf—1'hnf—1+3~’nf—1|5n+1[
n, né—1 .
10,

(12.24)

According to Sect. 10, to any hole 6, ¥ =G, M(8,) there corresponds uniquely a
set L;M=GM(L). As for any interval A4S L™, n(4)>n(5, ™); this implies

B <(8,)~18, ., D(1+e)-A~ 2,

Using 19,4, <(14+o(A7s* 1175 the recurrent formulas (12.24) give

16,
xnoo:xn+10<(xn1 +yn1)(1+0(l~2a"));
1+0(A7™)
ynoo:yn+10<yn0‘ _j's—~
The induction hypotheses imply
2 n k3/2 n—1 .
et 2§ A )t
n3/2 n—1

xno<mi;0 A7
i <2(L4+0(A75)-(1—=A7%- A7,
I,<1-=-2"";
H, +16,|<[A*-(14+¢,)]7".
By the above reasons

Voo <Xpo AT(14¢);  Y,<X, A7 (1+4¢).
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Using (12.23) we obtain
" 2 n3z .
Y =Xr10HVne10< (x,,o+ ~)<1 HOUT M) < gy X 47 (12.25)

n+1 15”
which proves i,,, for 6,\0, .. The proof is similar for §,\d,,,, ISk<n.
Now we can estimate the contribution of Y n(4)|4] in every hole (5,\5,, )™
onl,, ,=I, \;;,y i€[0,p—1].
Though we cannot correspond the A**"-enlargement to any &, ™, we can
consider its A*"2-enlargement. The construction of Sect. 10 gives, as above,

I, 1
Y |5|<|—‘7Li,2ﬂ; 2 n(5)|5l<( ) n(A)IAI)Za%-

0C T4, 0CTy 4+ ACTy i

Using (12.7) with u=0(A~*2) we obtain after step (n+1)
r+i r+i ( r+i

o< Y A Y A Y .Ifr+i|_/1-an,2>

nt1 n+11 n+11 n+1

1+0( ")
1,

r+i n3/2 isﬁn
<(+ei220) 2+ Sy mn - (12.26)
n+11 v

Thus we still have for Y 71 an exponentially better estimate than that required by
(i).

This proves (i, , ) for ke[r, R(n+1)—1]. Now I}, ke[R(n),r—1] are contained
in the union of preimages (F,_,oh)~'4" ™Y, where A" VCB,_,(48~Y). One
obtains (i, ,) for such fk in a similar way, using the construction of block B, _, (the
estimates are better in this case).

In order to obtain (i,, ;) for n+1<k<R(n)—1, we notice that at step m(k)
corresponding to the first consideration of L\I,,,, we have on L\I;,, an
exponential reserve by comparison with (i, ). (12.7) and Property (12.9) imply that
the nonlinearity at Step (m(k) + 1) gives an additional factor less than 3. Any of the
subsequent steps implies the diminishing of the maximal interval ACIL\[, | at
least 34 times (because of taking compositions), and we obtain the following:

Remark X11/1. The total non-linear effect of steps m(k)+1, m(k)+2, ... on L[\, .,
is less than
exp (3- Y i““)").
nc0
In particular this shows that when proving (i) for I,\I, ., it suffices to consider
only step m(k).

g) In order to prove (i, ;) of Proposition 3 we consider three points x,, x,,
x,€1l,,;_,\I,,; and their images under F,_,~h(4,x). We may suppose x, to be
closer to 3 than x,, (otherwise h, for 4C[x,,x,] is larger than for 4C[x,,x,] and
an estimate for x,, x;, x, is better than for their images).

Let O, =F,_ °h[xq,x,], O, =F,_ °h[x0,x,]. Using (12.7) and (12.6) with h,
> h(x,)= A~ 0+ we obtain

1+0(?FV))IAF,,-1I((N(Fn—1)+ DIQ,I+ X n(A)lAl)

4CQ> )
Ac[xzmxz]n(A)IA'< 21/ s+ . (12-27)
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For AC[xq,x,] hyS<h(x,) <A1 72004 Hence

(1 —O(TY))fAF,.;1|<(N(Fn-1)+ Digil+ X n(A)lAI)

ACQy

Y on(4)|4]> (12.28)

AC[xo, x1] 2]/1/17s(r+i)+23
Qo] Ixg—x,

Ih[xoa xz]l Ixo_le

—_— , we have —= <

Ih[xo,x1]| 'x0“x1I IQl' |XO—X1|
Q,C0,-,\0, Then we can use (ii,) for F,_ oh(xy, x;, X,) C[0, 1]1\6 4 _ - Applying

(12.27), (12.28), we obtain

(1+0(177). First let

Y n(4)|4]

4C [xo, X2] I Xo— 2'/1(3 a)pn+2s
Y4 xe—xyl

AC[x0,x1]

If F,_ioh[xy,x,] is not contained in 6,_,\d,, we have Q,=0,0Q’ where
0,Co,,\0,, 05 CL0, 11\, _,. We estimate )  n(4)|4] as above, and ) n(4)|4]

) ) ACQ) 4CQ5
using (i,) similarly to (12.19)~(12.21), and obtain
LM ey
AC [x0, X2] %o ™ Aal +
—_ A obnt 25 (12.29)
Y n(4))4] Ixo—x1 Vn
AC[xo0,x1]

For large 4, W< A% Comparing with the requirement (i, ) for k=r+i, we
obtain a sufficient condition on r

spn+2s<spr.
As r> %n, it suffices to have
2{Co !
n=z b -1 (12.30)

which holds for s<{, f=3%, n=1.

The account of ACJ, ™ gives an additional factor (1+0(4 *"?)) and one
finishes the proof of (ii,, ) as above (i,, ;). O

Remark XI1/2. One can check that for n<n,, when
F,_1oh(3,3)e[0, IN[F— 47", 3+ 47%],

(ii) is satisfied with =0 [1*** on the right side of (i1} can be replaced by a constant].
From Remark VI/5 and (12.30) it follows that one can take f arbitrarily small. It
seems that more careful estimates should give Proposition 3 with =0 and k***
(>0 small) instead of k32,

Remark X1I/3. Lemma 7 implies that for any Ae.# and for Af,e&, so that
f:Af~ 10,10, fi= 1Ak
[Df;| > AcoVNi2,
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Collet and Eckmann [10] proved for a particular smooth family f; that the
Liapunov exponent is positive on the trajectory of § for a set of 1 of positive
measure.

13. Theorem A for a General Family. The Reduction of Theorem B to Theorem A

a) Let f(x):[0,1]—-[0,17, f(0)= f(1)=0, be a C3>-map, c a single critical point of f.
Consider a family f,(x):x—4-f(x) (mod 1). We take A sufficiently large and imitate
the construction used for Ax(1—x).

We take Ty=(f(c))"! so as to make A-f(c) traverse [0,1] when A crosses
[L,L+T,]

Then we choose a small ¢ >0 and consider an e-neighbourhood U of the critical
point ¢. Using the Hadamard lemma we represent f(x) and its derivatives in the
form

fx)=fle)—alx—c)* (1 +(x—)0,(x))
(%)= —2a(x — ) (1 +(x — c)0,(x)) (13.1)
J(x)= = 2a(1 +(x —c)05(x)),

where —2a= f"(c)<0, |0/(x)|<c,. Using (13.1), one can check that (4.6) with — I ‘

4] 4 |
£l
instead o Tk and (4.7) w1th
Remark XI11/1. Notice that the condition f”(c)#0 is not necessary, f"(c)=0 for
some n=2 will do as well.
Then we consider

o Df, 1 fx)
PL=M®: (57 = 1
0 afxﬁl
s 1 g T :_1(1_f~.f)
offox —AfT ot AL )

0z
Let

_ { Lo ) }
weto i {701 ()
We take s from Sect. 2, and we take a 4 as a parameter. We choose A so large that
2 -
A*> max {—s, 244" S}.
ea
Then we choose 6, & (c—(4a)”%, ¢+(1a)”*) as in Sect. 2, and define f(4,x) so

that 4f, S[0,1]\6,. One can check that the branches f; and their derivatives
satisfy the conditions of Step 1 with n}gx)g}f(x) instead of = rr{l(z)l)i]x(l —Xx). Then
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for al> N, of Sect. 2, the inductive construction may be used, and we obtain
Theorem A for the family A-f(x).

Remark X111/2. Theorem A holds also in the case of a family 4-f(x), f(0)=0=/(1),
f(0)£0, when f(x) has several extremal points ¢*), ¢®,...,¢®. Then the con-
struction can be generalized in the following manner. During step n we construct
intervals 6% ~(c?” —(da;)~*", ¢+ (Aa,)~*"), 1<i<k, their preimages (6¥)™™, and
enlarged preimages (55,”)"”; the constants ¢; are defined according to the map f.
The condition

k o
P o eeo ) () 0 6
j=1m=0

defines on step n the set of admissible values of the parameter .4, the set ./ is

k ©
defined as .4 = () ) M.
i=1 n=1
b) We reduce the proof of Theorem B to the proof of Theorem A using the
induced map studied in [5]. Let f;(x)=Ax(1—x),0<A=<4,and ¢,=1—1/A1ts fixed
point. We consider for 1e[4—¢,4] the induced map T, on the interval I, =[1/4,
1—1/2]. T, has 2p monotone branches T;,,i= +1, ..., £ p (p=p(4)) and one middle
branch S,. Furthermore, T,,=f;*" on 4T, and S,=f*? on 4S,. The interval
[4—e¢, 4] is divided into a countable number of intervals [1,, 4,. ] such that for
A€[2,, A, ] the number p(4) defined above is constant and as 4 passes 4, the old
parabolic branch S, breaks up into two branches T,, a new branch S, is born, and
p(2) grows from p to p+ 1.
For some constants ¢, ¢, >0 we have

2ic, <|0T/ox| <2ic, 1<i<p—1

13.2
47+ e, |x — 3] <|0T,/0x],|0S/0x| <4"" e x —3]. (132

Applying (9.1) to T;; we obtain
'67}/81
0T, /ox
|0T,/0| |0S/0x| s
07, jox|"as/ox| = k=141

|<2ic3 1<igp-1,
(13.3)

The estimate for the velocity of the top is
v,(A)=—4/(1+0(177)). (13.4)

We have
ID>T|
IDT,|?

ID>T,,| |D?S,] ( 1
, 14+ —es|. 13.
IDY;,A’Z DS, <¢y +4P(x—%)2) (13.5)

<c, 1igp—1
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Using (11.6) we obtain for all i and z=T(4,x), xe AT,

0

—=0T;; oz

04

. 1

x—3)?
Now we use the following property of T, (see [5]). There exists d>1 and a

positive integer ¢ so that
IDT>d. (13.7)

Remark XI11/3. Apparently g=1 but it is not essential for our purpose.
For any fixed i, T)(4,x) and its derivatives uniformly converge to T(4, x) when
4—4. Thus for i,e[0,i,] and for A sufficiently close to 4 we still have

ID(Ty, o Ty, oo Ty )| > d. (13.8)

Choose a very large k and some p> k, and consider Ae[4,,4,,,]. Let

n= +1

log,d
Let us consider consecutive compositions of the form
=Ty o Ty ie[L]

o = i oL,

until we have on the domain of T},
DT, > 24,

Because of (13.8), for any T,.,» r=qn (really (13.2) implies r <gn for many T, ). Let

51()"):ASZU(_UkAT;1i>’ J,=1,\0,(4).
Then we obtain the following partition of J,.

JA=(UATM)u( U 5;'"(1)). (13.9)

m=qn
(13.5), (13.8) and a modification of Lemma 1 imply

|D*T,_|
DT, |7 =%

independent of k. Hence we obtain
o o\ ok
mes| o7 "(A) <1~ 1—2T <557 (13.10)

Using (13.8), (9.1), and (11.6) we obtain

0T,,/0)
0T, Jox

| <2*¢,

aA

T

9ot oz
<cpo(k+4¥). (13.11)
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Although the estimates (13.11) grow with k, we can choose p so large that the time
that the top S,(3) spends inside the union of the enlarged domains U51‘ "™(4) will
still be proportional to its measure.

Now we are able to begin the inductive construction, with branches T}, instead
of f; and mgckg L ™(4) instead of B 1(4). In particular, the intervals o, have the form

3,~2 =15  The estimates (13.2)-(13.10) allow the induction to continue, and if
we denote by .#, the set of Ae[4, 4,,,] obtained by using an inductive
construction similar to that in Sect. 3, we obtain that the induced map 7, :1,—1,
has a measure fi, absolutely continuous with respect to dx. Besides, for some
constants ¢, o >0 independent of k and p we have

mes. ./ k
m>1—c(7k?. (1312)

The measure [, induces an f;-invariant measure on [0, 1] supported on [ fZ(2),
£,(3)]. Since the time of return to I, is finite for all xel,, u, is certainly finite.

LetA, = @ M, We take k— oo together with p, and obtain from (13.12) that
pP=ro

A=4is a Lebesgue point (from one side) of A,. This proves Theorem B and the
Remark of the introduction for f,(x)=Ax(1—x) 0<i=4.

Remark X111/4. The measures yu, certainly are ergodic, because the v, are. It
follows from the recent results by Ledrappier [16] that the natural extensions of
(f;, p;) are Bernoulli.

Remark X1I1/5. One may conjecture that the densities u, converge in L, to g,(x)
=(n ]/x(l —x)) !, when 1—4. Notice that the construction always gives measures
supported on the maximal possible interval [f2(3), f3(3)] and thus avoids A
corresponding to measures supported by pairwise disjoint intervals permuted by
£

¢) Consider any f(x):[0,1]—[0,1], f(0)=f(1)=0, f"(c)=0, lying in a suf-
ficiently small C3-neighbourhood of x(1 —x). Then for a family 1 f(x) there exists
some 4, close to 4 so that 1,f(c)=1. Considering for Ae[1,—e, A,] the
corresponding induced map T, :1,,2 , we obtain that T, has on I, a structure
similar to the one described above for T,=T,, _ ), and (13.7) still holds for T},.
This implies Theorem B for f,=1-f(x).

Now, if for some A, +4, f, = Aox(1 —Xx) or its iteration on some interval admits
the induced map described above, the construction still goes and we obtain
absolutely continuous measures invariant under f or under some iteration of f for
a set of e[, —e¢, 4,] of positive measure.

One can check this is so for a countable set {4,,:f4,,(3) falls into a periodic
unstable orbit} and for a set @ = {4: f,(})e K, =an invariant unstable Cantor set},
card @ =continuum (see [5-7]), thus all these 1 are Lebesgue density points of .#,.

Remark XI11/5. As Misiurewicz pointed out, for a family f, = Af(x) with unimodal
f(x):[0,1]-[0,1], f(0)=f(1)=0, having negative Schwarzian derivative, and for
Ao such that f, (c) falls into an unstable periodic orbit or an invariant unstable
Cantor set, the corresponding incuded map also satisfies (13.7). Thus the same
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construction implies that for a set of 4 of positive measure f, admits an absolutely
continuous invariant measure and A, is a Lebesgue density point of this set.
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