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Abstract. Let (£2,23, λ) be a measure space with normalized measure,
f:Ω->Ω a nonsingular transformation. We prove: there exists an /-in-
variant normalized measure which is absolutely continuous with respect to
λ if and only if there exist δ>0, and α, 0 < α < l , such that λ(E)<δ implies
λ(f~k(E))<oc for all fe^0.

In this note we consider nonsingular maps of a finite measure space into itself
and give a necessary and sufficient condition for the existence of an invariant
measure which is absolutely continuous with respect to the given measure. The
condition says, intuitively, that the iterated inverse images of "small" sets must
not become too "large". The precise formulation is given in the theorem
below. The problem of existence of invariant, absolutely continuous measures
arises, for example, in the study of dynamical properties of interval maps; see
[1] and [2], where one finds also further references. In a different direction, we
note that the investigation of invariant measures, related to the given measure
in terms of their null sets, started after the discovery of the individual ergodic
theorem, since only zero values of the invariant measure enter into the con-
clusion of the theorem, compare [3].

A measure space (£2, 23, λ) is a triple such that 23 is a σ-algebra of subsets of
the set £2, and λ is a measure (positive) defined on 23. A measurable transfor-
mation / from Ω into itself is called nonsingular (with respect to λ) if

(1)

A set function v on 23 is called f-invariant if

We then have the following:

Theorem. Let (£2, 23, λ) be a measure space with normalized measure λ, f a
nonsingular transformation of Ω into itself Then
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(i) there exists an f-invariant normalized measure which is absolutely con-
tinuous with respect to λ

if and only if

(ii) there exist <5>0, and α, 0 < α < l , such that

λ(f~k(E))<a,

Proof of (i)=>(ϋ). Let v be / invariant, normalized and absolutely continuous
with respect to λ. Choose δ>0 such that λ(E)<δ implies v(£)<l/4. We claim
that δ and α: = l-<5/2 are as desired. Suppose the contrary. Then there exists
Eε% and an index k such that λ(E)<δ and λ(f~k(E))>l -δ. Thus
λ(Ω^f~k(E))<δ and, by our choice of δ,

v(£)<l/4 and

v(Ω\/~k(£))<l/4.

But Ω\f~k(E) is just/~ k(Ω\£); so the invariance of v yields

1/4.

Now we have v(£)<l/4 and v(Ω\£)<l/4, which contradicts v(Ω) = l.

Proof of (ii)=>(i). Define the measures

UE)'-=-"Σ HfΛE)), Ee%. (3)
n k=0

We have for all n:

λπ(Ω) = l, (4)

λn<λ [from(l)], (5)
and

^ ^ 0 . (6)

Taking averages in (3) has the effect that if for fixed E lim λ (E) exists for a

subsequence, it also exists for λnJ<f~
1(E)) and the two limits are equal. The

intuitive idea is now to try to define the measure we look for as a "suitable
limit" of the λn. (Hence the averages!) To make this notion more precise, we
imbed the λn in a dual space. By (4)-(6), the λn can be thought of as elements
of the unit ball of ^(λ)*, via hh->\h-dλn, htSejψ). This unit ball is weak-*

Ω

compact by Alaoglu's theorem [4, V.4.2]. Let z be a cluster point in the
weak-* topology of «Sf̂  of the sequence (λn)™=ί. We define a set function z on
93 by

z(E) . = z{χE), Ee®.

Here, χE denotes the characteristic function of the set E. Clearly, z is finitely
additive, bounded (i.e. 0^z(£)^z(Ω)=l) and it vanishes on sets of A-measure
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zero; compare [4]: IV 8.15-16, [5]: Sect. 2. Since evaluation at χE and χf-i{E)

are both continuous on j£f* in the weak-* topology, there is a subsequence
(λn)?= x such that

(8)
S-» 00

[Simply consider the intersections of inverse images of 1/s-neighbourhoods of
z(E) and z(f~1(E)) respectively.] From (7), (8) and the remark following (6) we
conclude that z is /-invariant. So z is a finitely additive set function vanishing
on sets of /ί-measure zero, invariant under /. Starting from z we will now
construct a countably additive function with these properties.

In accordance with [5, Definition 1.13], we call a finitely additive positive
set function u (on 95) purely finitely additive if every measure μ, such that
O^μ^w, is necessarily zero. (We wish to warn the reader that in contrast to
[5] we use the term "measure" only for countably additive set functions.) Then
z can be decomposed

z = zc + zp (9)

with zc countably additive, zp purely finitely additive, and both positive. More-
over, this decomposition is unique. That is the content of Theorems 1.23 and
1.24 in [5]. Now we claim that z is not purely finitely additive and that
therefore z cΦθ. Otherwise, there exists a decreasing sequence of sets Ene$β
such that

limλ(£n) = 0, (10)
n-* oo

and

[5, Theorem 1.2]. By (10), there is n0 such that for all n^n0 λ(En)<δ and, as
a consequence of (ii),

supA(/-*(£B))<α, (12)
/ceN

where δ and α are chosen according to (ii).
But (12) implies that λk(En)<a, fc = l, 2, 3, ... this in turn implies that

z(En)^(x. So we have for all n^n0 z ( £ w ) ^ α < l , which contradicts (11). This
proves that

z,Φ0. (13)

Next we use a fact which is not explicitly stated in [5], but which is
implicit: if u is a positive, finitely additive set function on 93, then uc is the
greatest measure among all measures μ with O^μ^u. This can be seen as
follows: μ^u implies (u — μ ) ^ 0 ; the same is true of (u — μ)c and (u — μ)p re-
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spectively, by [5]: Theorems 1.23, 1.24. Writing

we find, since μ + (u — μ)c is countably additive, that up = (u — μ)p and uc = μ + (u
— μ)c [Uniqueness of the decomposition (9).] But (u — μ)c is positive, therefore
μ^uc.

Applying this property of the countably additive part to the situation

p

ΐ ΐ '—W^
invariance of z (9)

and taking into consideration that E\-*zc(f~1(E)) is a countably additive set
function (i.e. a measure), we get

zc(f-\E))£zc(E), V£eS. (14)

Hence E\-+zc(E) — zc(f~1(E)) is a positive measure. Since f~ι(Ω) = Ω, it has
total weight zero. Therefore it is the zero measure! We have shown: the
countably additive part zc of z is also invariant.

Because z vanishes on sets of /Umeasure zero and in view of 0 ^ z c ^ z we
have zc<^λ. By (13), zc can be normalized

v(E): = zc(E)/zc(Ω) (15)

to yield a measure with all the required properties.
This concludes the proof of the theorem.
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