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Abstract. If the action functional is determined uniquely by its symmetry
properties, we say that this functional is perfect. We study the perfect
functionals in the framework in which the space and field variables are on
equal footing. This study leads to the natural multidimensional generalizations
of supergravity.

1. Introduction

The formulation of quantum field theory in which field and space variables are on
an equal footing is suggested in [1]. In this formulation the action functional is
considered as a functional on the space of (m, n)-dimensional submanifolds of
(M, JV)-dimensional superspace it is assumed that this functional can be represent-
ed in the form

(
p\γB

[We denote byX β the coordinates in (M,ΛO-dimensional superspace $M'N and by
YR the coordinates in (m,π)-dimensional superspace. The function A in (1.1) must
satisfy the conditions ensuring independence of (1.1) on the choice of the
parameter equation X=X( Y) of the submanifold Γ. We suppose that the function
A depends on the first and second derivatives ofX( Y) only in this case we say that
the function A is a (m, rc)-density of rank2.] It is shown in [1] that the Lagrangian
of supergravity arises naturally in the framework of field-space democracy.
Namely, the action functional of supergravity can be characterized as the
functional of the form (1.1), defined on the space of (4,4)-dimensional sub-
manifolds of complex (4,2)-dimensional superspace, which is invariant with
respect to supervolume preserving analytic transformations.

In the present paper we show how the Lagrangian of the supergravity in the
Ogievetsky-Sokatchev form [2] can be obtained by means of this characterization
and describe natural multidimensional generalizations of this Lagrangian. These
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generalizations are based on the notion of a perfect action functional we believe
that this notion deserves a closer study.

The action functional will be called perfect if the symmetry properties
determine this functional uniquely. In other words, we consider the symmetry
group GA for every Lagrangian A and say that the Lagrangian A is perfect if all
other Lagrangians invariant with respect to the group GA are equivalent to A.

The definition above is not rigorous. One must restrict the class of Lagrangians
under consideration (for instance one can suppose that the derivatives entering
into the Lagrangian have order ^k). One must say which symmetry transfor-
mations are permitted (for example, we can require the invariance of the
Lagrangian or impose a weaker condition of invariance of equations of motion).
Finally one must define the equivalence of Lagrangians (one can say that the
Lagrangians are equivalent if they lead to equivalent equations of motion;
however, it is convenient to use this term only in the case when the Lagrangian can
be obtained from another one by means of multiplication onto a constant
multiplier). The rigorous definition of the perfect action functional, determined by
means of (m, n)-density in (M, ΛΓ)-dimensional superspace, will be given in Sect. 2.

One can believe that the action functional in elementary particle theory must
be perfect in a certain sense. It follows from [1] that the action functional in
supergravity is perfect in the sense of Sect. 2 the Lagrangian describing the
interaction of massless fermions with gauge fields is perfect too (in another sense,
however). It is reasonable to search the Lagrangian of the unified theory of all
interactions among perfect Lagrangians. To find new perfect Lagrangians we can
fix a group (or a supergroup) G acting in (M, iV)-dimensional superspace and
search (m, rc)-densities which are invariant with respect to G. If the invariant
density is unique (up to a constant multiplier), then it is perfect we will say that
this density is perfect with respect to the group G.

In the present paper we study (m, 2π)-densities in the superspace $M>N assuming
that $M'N is provided with complex structure, i.e. one can consider $M'N as
complex superspace (gMi2>Ήi2

 of complex dimension (M/2,JV/2), and G as a
supergroup of analytic supervolume preserving transformations. We will assume
that m — M/2, n = JV/2. If n > 3 we prove under these conditions that (m, 2n)-density,
which is perfect with respect to the supergroup under consideration, exists only in
the cases m = n2, m = n2 — 1, m = 1. (If n = 3 there exists such a density in the cases
m = 9, 8, 7, 2, 1 only, if n = 2 then m = 2,4.) The proof of this assertion is given in
Sect. 2. The perfect densities described in Sect. 2 will be analyzed in the case m = n2

in Sect. 3. In this case the corresponding action functional can be considered as
multidimensional generalizations of the action functional of supergravity. After
dimensional reduction these multidimensional action functionals give four-
dimensional theories which are invariant with respect to extended Golfand-
Likhtman supergroup. The readers interested in supergravity can omit the second
half of Sect. 2.

The complete description of densities which are perfect with respect to the
supergroup of analytic supervolume preserving transformations will be published
later. Forthcoming papers by Gayduk, Khudaverdian, Schwarz, and Tyupkin will
describe the densities which are perfect with respect to the superanalogs of Cartan
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primitive infinite-dimensional groups (the groups of canonical, contact and
supervolume preserving transformations).

The m-dimensional linear space will be denoted by <fm, the complex linear
space having complex dimension m will be denoted c€m. For (m, rc)-dimensional
superspace we use the notation $m'n\ for complex superspace we use the notation
cβm'n. The (m, 7?)-dimensional superspace Sm>n can be considered as a direct sum of
m-dimensional linear space Sζ^ and rc-dimensional linear space i^. Let us denote
the basis of Sζ^ by eί,...,em and the basis of g^ά by fv->fn- The formal
expression

m n

χ= x α A + Σ bj/j,

where a x are even elements and bj are odd elements of an arbitrary Grassmann
algebra, will be called a point of superspace £m'n. The set of points of $m'n can be
considered as infinite dimensional linear space1. If the superspace Sm>n is provided
with the structure of Lie superalgebra, then the set of points of $m'n can be
considered as infinite-dimensional Lie algebra in the usual sense. The elements of
the corresponding infinite-dimensional Lie group will be considered as the points
of the Lie supergroup corresponding to the Lie superalgebra. (The language of
points in the theory of superspaces and supergroups is described in more detail in
[3, 4].) Sometimes for the sake of brevity we will use the terms space and group
instead of the terms superspace, supergroup, etc. The Berezinian (superde-
terminant) of matrix K will be denoted by BerX.

Let us formulate some assertions which are useful for the study of perfect
action functionals. All these assertions can be derived easily from well-known
theorems.

Let 0 be a group acting in the space S. The transformation corresponding to
ge$ will be denoted by Tg and the isotropy group at eeS will be denoted by 3^e

(remember that ge ffle if Tge = e). We will study the functions φ on $ satisfying

(1.2)

where ot(g) is a fixed function on ^. [Of course one must impose the condition
) = a(g1)(x{g2) on the function α.]

Lemma 1.1. // φ(e) + 0, geJ4?e then <x.{g) = l.

Lemma 1.2. Let us suppose that every point of $ can be obtained from the fixed
point eeS by means of transformation belonging to the group $ (i.e. the orbit of e
coincides with $). If a(g) = 1 for arbitrary ge^fe then there exists one and only one
(up to a constant multiplier) function φ satisfying (1.2). Conversely, if the function
satisfying (1.2) is unique (up to a constant multiplier) then the orbit of eeS coincides
with S.

Remark. If we impose certain conditions on the function φ Lemma 1.2 must be
modified. For example if we suppose that φ is an algebraic function, we must
require the existence of such a point eeS, that the orbit of this point is open in S.

1 To avoid set-theoretical paradoxes one can assume that at and bj belong to a fixed infinite-
dimensional Grassmann algebra S. Then the set of points can be considered as a free S-module



510 A. V. Gayduk, V. N. Romanov, and A. S. Schwarz

(Of course one must assume that $ is an algebraic manifold and ^ is an algebraic
group in this case.)

If <F is a subset of S we will denote by #" the set of points which can be
obtained from the points of <F by means of transformations of the group ^ :

The subset of ^ consisting of elements transforming the fixed point fe $F into the
point of ^ will be denoted by 2tff:

We assume that the group j f acting in #" and the function β on jtf* satisfy the
following conditions:

(I) if fe^9 ge&, Tgfe^ one can find such an element he34? that h
transforms / into Tgf and β(h) = cc(g)

(II) iϊheJ4f, feϊF one can find such an element geΉ that h and g transform /
into coinciding points of $F and β(h) = a{g).

Lemma 1.3. // every point of $ can be transformed into the points of !F by means of
the transformation belonging to & (i.e. & = $) and the conditions (I), (II) are
fulfilled, then assigning to the function φ on $ the restriction of this function on 3F
we obtain one-one correspondence between the functions on $ satisfying (1.2) for
every ge^ and the functions on 3F satisfying a similar equation with & replaced by
Jί? and α replaced by β.

Remarks. (I) Lemmas 1.1-1.3 can be applied to supergroups too because one can
interpret the action of the supergroup on points of superspace as the action of an
infinite-dimensional Lie group in infinite-dimensional space.

(II) The requirement #" = S permits us to restore the values of the function φ
on S if we know the values of this function on # \ Imposing certain conditions on
the function φ we can weaken this requirement. In particular, if we assume that φ
is an algebraic function, it is sufficient to suppose that the set <F contains interior
points (i.e. $\$F is not dense in $). Similar modifications of Lemma 1.3 can be
made in the case when $ is a superspace and ^ is a supergroup. We will use only
the simple assertion that in the case when the points of set $\F satisfy an algebraic
equation, the values of algebraic function on δ obeying (1.2) can be restored if we
know the values of this function on #\ (If the points S\§* satisfy an algebraic
equation we say that almost arbitrary point of $ can be transformed into 3F by
means of transformations belonging to ^.)

Let us suppose that the r-dimensional algebraic group ^ acts on the
m-dimensional algebraic manifold S. The dimension of the isotropy subgroup Jfe

will be denoted by te the minimal te will be denoted by t:

eeS

Lemma 1.4. Ifte = r — m then the orbit of the point eeS is open in S. Conversely, if
there exists an open orbit of the group & in $ then one can find such a point eoe$
that te =r — m and for other points te^r — m (in other words t = r — m).
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The following statement can be deduced from Lemma 1.4 and assertions
above.

Lemma 1.5. If t = teo = r — m and tχ(g) = l for every ge^eo, then there exists an
algebraic function φ on $ satisfying (1.2) and this function is defined uniquely (up to
a constant multiplier). Conversely, if there exists one and only one (up to a constant
multiplier) algebraic function satisfying (1.2), then one can find such a point eoeS
that t = teo = r — m.

2. Perfect Action Functionals

The (m, ft)-dimensional quadratic surface in the (M, iV)-dimensional superspace is
defined by a parametric equation

Y + T*SY
RYS, (2.1)

where Y runs over (m, n)-dimensional superspace. The linear reparametrization

YR-^KRYS (2.2)

transforms the quadratic surface (2.1) into the quadratic surface

XB = MB + L'R
BYR + ±TR

BYRYS, (2.3)

where

J ιB __ TBJSS ηπ'B _ rpβ jfP Ί^Q

^R — ^S^R •> λRS ~ i P Q J V R l v S *

The quadratic reparametrization

YR-+YR + ±UR

SY
QYS (2.4)

transforms (2.1) into the quadratic surface

XB = MB + LB

RYR + ±T£YRYS, (2.5)

where
γjQ
URS'

(We do not identify quadratic surfaces coinciding geometrically but having
different parametric equations.)

In such a way the supergroup 0t generated by linear and quadratic repara-
metrization acts on the superspace of (m, /t)-dimensional quadratic surfaces. The
supergroup 01 will be called the group of reparametrizations. The superspace of
(m,ft)-dimensional quadratic surfaces will be denoted by stfm'n or simply by s$.

The (m, rc)-density of rank 2 in (M, iV)-dimensional superspace can be con-
sidered as a function A defined on the superspace s$ of (m, ̂ -dimensional
quadratic surfaces and satisfying the following conditions:

(I). The value of the function A on the surface (1.1) coincides with the value of A
on the surface (2.5) (i.e. the function A is invariant by quadratic reparametrization).

(II). The value of A on the surface (2.3) can be obtained from the value on the
surface (2.1) by means of the multiplication on σ(K)BQΐK. [Here
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σ(K) = sgndetK11 where KίX is the transformation of commuting variables
induced by K.~]

Really, a function A on the superspace of quadratic surfaces can be interpreted
as a function A(MB, L^, TRS) depending on the coefficients in (2.1). If the function A
entering into (1.1) is obtained in such a way from the function on the superspace of
quadratic surfaces satisfying the conditions above, then the integral (1.1) does not
depend on the choice of the parametrization of the submanifold Γ.

We will assume that the density is an algebraic function on the space si.
The supergroup 2f of all transformations of the superspace $M*N can be

considered as a supergroup acting in the superspace si: the map f:S>M'N~>S'M'N

transforms the surface (2.1) into the surface

where

L'B =
df

R ~ ΆVCdxc RS

M dx

2fB
d2f

M
T R S + dxcdxD

TCTD

M

The transformations of the space si generate as usual transformations of the
functions on si. In particular, the transformation of 2 generates the transfor-
mation of (m, ?z)-densities. The subgroup of 2 consisting of transformations leaving
invariant the density A will be denoted by <3)A. The density will be called perfect if
every density A' satisfying 3)AC@}A, has the form A' = λA where λ is a constant
factor. The action functional corresponding to the perfect density will be called
perfect too.

Let Jf be a subgroup of the supergroup Q). If there exists a unique (up to a
constant multiplier) 2tf-invariant density then this density is perfect. We say that
this density is perfect with respect to the group 2tf.

Let us consider the complex superspace ^ m ' " of complex dimension (m,n). The
commuting coordinates in <£ will be denoted by x1, ...,xm, and anticommuting
ones will be denoted by Θ1,...,θn. The supergroup consisting of supervolume
preserving analytic transformations of <$ will be denoted by if. In other words the
transformations belonging to JS? have the form

λμ«(χθθ) ( Z 6 )

[the right hand sides in (2.6) do not depend on 3c, 0]. The transformation (2.6) is
supervolume preserving if BerD = l where

ldλk dλk

\M „ . { 2 1 )

We will study the if-invariant (r, s)-densities in the case r = m, s = 2n, n > 1. The
if-in variant (r, s)-density can be characterized as a function on the space si of
(r, s)-dimensional quadratic surfaces satisfying (1.2), where & = J£x$ and for
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(/, r)e ^ the function α(/, r) is defined as σ(r) Ber r if r is a linear reparametrization
if r is a quadratic reparametrization than α(*f, r) = 1.

At first we will study the action of the group ££ x £% on the space j / .

Lemma 2.1. Almost arbitrary (m, 2n)-dimensional quadratic surface in the space
^ m > " can fee transformed in the quadratic surface having the form

by means of reparametrizations and transformations belonging to the group if.

In (2.8) ξ1, ...,ξm are real commuting coordinates and v1,...,vn are complex
anticommuting coordinates. The surface (2.8) will be called canonical.

To prove the lemma we consider the arbitrary (m, 2^)-dimensional quadratic
surface

x = x0 + Aξ -f Bv + Cv + quadratic terms

θ = θ0 + βξ + bv + cv + quadratic terms.

Without loss of generality we can assume that x0 = 0, 0O = 0 (if x 0 =j= 0, or θ0 φ 0 we
must perform the transformation x->x + x0, θ-^>θ + θ0 belonging to the group if).
First, making the linear reparametrization

( 2 9 )
v

we transform this surface into the surface

[χ = A^ + Bxv +C^vΛ-quadratic terms

θ = v + quadratic terms.

[This is possible only in the case when the reparametrization (2.9) is nonde-
generate. However this condition is fulfilled for almost arbitrary quadratic surface.]
If the matrix Ax is invertible we can make a linear transformation belonging to
the group

>λθ

and the reparametrization

\v-

Then the surface (2.10) will be transformed in the surface

fx = ξ + B2v + C2v + quadratic terms

) = v +quadratic terms.
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Now using the transformation

belonging to i f and the reparametrization

we obtain that almost every quadratic surface can be transformed in the surface
having the form

jx = ξ + quadratic terms (2. l la)

[ θ = v + quadratic terms. (2.11 b)

Further we use nonlinear transformations belonging to if. Let us consider the
transformation

jx-*x +quadratic terms-f ...

\ θ -• θ + quadratic terms + ...,

where the omitted terms have order ^ 3 with respect to x, θ. Of course the omitted
terms are inessential by the transformation of the quadratic surface (2.11) therefore
we can replace (2.12) by the quadratic transformation

x-^x-\-quadratic terms (2.13a)

θ -> θ + quadratic terms. (2.13b)

We say that the quadratic transformation (2.13) belongs to 5£. In other words we
say that the quadratic transformation belongs to i f if one can obtain an element of
^£ adding higher order terms to this transformation. It is evident that for the
quadratic transformation belonging to ^£

BerD=:Ber

dλ dλ\

dx dθl

= 1 + terms of order ^ 2. (2.14)

Conversely every quadratic transformation (2.13) satisfying (2.14) belongs to ^£. It
is important to note that the coefficients in (2.13a) are arbitrary in other words for
every coefficient in (2.13a), one can choose the coefficients in (2.13b) in such a way
that the requirement (2.14) is satisfied. Moreover, we can satisfy the requirement
(2.14) changing the coefficients by transformation of two variables only. Using the
quadratic transformations belonging to group if, in Eq. (2.11a) we can exclude all
terms which are analytic with respect to ξ, v. By means of quadratic repara-
metrization one can exclude in (2.11a) all real terms. These remarks permit to
exclude all terms except Ek

Λβv
βΨ. For example

Fvv + Gv v = (F + G)vv + (Gv v - Gvv), (2.15)

and we can exclude the first sum by means of quadratic transformations belonging
to ^£ and the second sum by means of reparametrization. The expression Ek

aβv
βΨ is

real if Ek

aβ = Ek

βa. Excluding the real part of Evv by means of reparametrization we
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obtain that the surface (2.11) can be transformed into the surface

= vα + quadratic terms,

where Γ*β = Γβa

 2. Using quadratic reparametrization

vα -»vα + quadratic terms,

we see that every quadratic surface having the form (2.16) can be transformed in
(2.8). This completes the proof of Lemma 2.1.

Let us consider the case m = n2. It is convenient to represent the variable x by
means of (n x ^-matrix xaβ. The variable ξ parametrizing quadratic surface will be
considered as a Hermitian (n x rc)-matrix ξaβ. Slight modification of considerations
used by the proof of Lemma 2.1 permits us to check that almost arbitrary
quadratic surface can be transformed into the surface

[ ' j

where Efδ = Eβ

δ

a

y by means of reparametrizations and transformations belonging to
«£?. It is easy to check that the transformation

* ( 2 1 8 a )

(2.18b)

where λn = (det£) \λ\2"2, transforms the surface (2.17) into the surface

(χ?β = ξ"β + iv«vβ

Here E is the operator in the space of matrices transforming faβ into Ea

y

β

δf
yδ. The

surface (2.19) will be denoted by Qo. We see that almost every quadratic surface
can be obtained from the surface (2.19) with the aid of elements of the supergroup
i f x f (i.e. by means of reparametrizations and transformations belonging to Sf).
It follows from this assertion that in the case under consideration the if-invariant
density is completely determined if the value of this density on the surface Qo is
known. In other words there exists at most one (up to a constant multiplier)
if-invariant density. To prove that a if-invariant density exists one must study
the isotropy subgroup Jf of i f x 0ί at the point of &0 defined by the surface Qo.

One can check that if the pair (/,r)e2tf and / is defined by the formula (2.6)
then

dλaβ

;iα/J(0,0) = 0, μα(0,0) = 0, = 0

dθy

 0

A$ = A%, (2.20)

ψδ=A%. (2.21)
2 One can explain the important role of the form Γ^βv

βΨ in our considerations noting that this form
can be interpreted as the Levi form of the surface (2.16). In a forthcoming paper we will show how the
complex geometry can be applied to the study of supergravity
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dλaβ

We use the notations Aaβ

δ = — ^
dθβ . As before, we consider AΛΛ as a

linear operator A transforming the matrix /α/? into the matrix faβ = Aa

y

β

δf
yδ. The

condition (2.20) means that this operator transforms the Hermitian matrix faβ to

the Hermitian: if faβ = fβ" then f«β = jβa] If £ is defined by (2.6) and (S, r)eJ4? then

the reparametrization r has the form

£""-><?"(& v,v)

where

oα*(O,O,O) = O, σα(0,0,0)-0;

dρaβ

dΨ
— 0

dλaβ

= 0, ^ T

δσa

dξ
ys

δμx

dxyδ

dx>δ

dvβ

dμ«

dθβ

(2.22)

(2.23)

(2.24)

It follows from (2.21) that

and from (2.14) that

Combining (2.26) with (2.25) we see that

(2.25)

(2.26)

|detb| = l . (2.27)

From (2.27) we obtain that the Berezinian of the linear part of the repara-
metrization (2.22) is equal to 1.

As we noted above the S£-invariant density can be characterized as a function
on si satisfying (1.2) for a particular choice of a function β. It follows from the
description of the group 2tf that β(/,r) = l for (£9r)eJ#?. Using Lemma 1.2 we
obtain that a jSf-invariant density exists in the case under consideration.

The perfect JS?-invariant density in the case m — n2 has a larger symmetry group
than jSf. Let us consider the supergroup 5£γ of analytic transformations of ^m'n

satisfying

BerD BerD = (2.28)

where D is defined by (2.7). Really, we can repeat for the group ££γ all the
arguments used for the group JS?. The only change is the following. We must
replace (2.26) by the weaker condition

which can be deduced from (2.28). However this condition is sufficient to check
(2.27). We obtain that a (n2,2n)-density exists which is perfect with respect to S£v

Of course this density coincides with the perfect S£-invariant density.
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Let us now study (m, 2rc)-densities in %>m'n in the general case using Lemmas 1.3
and 2.1. We can identify the set of canonical surfaces with the space J* of sequences
{JΓ1, ..., Γm} of Hermitian (n x rc)-matrices. In other words $ can be considered as
the space of linear operators Γ acting from m-dimensional space Sm into
ft2-dimensional space of Hermitian matrices Jί. If T is a linear operator in <&" we
define an operator f in Jί as an operator transforming the Hermitian matrix M
into T+MT. F o r every pair (A, T) consisting of nondegenerate operators acting in
Sm and <gn respectively, we define a transformation τ{A> T) of 3& by the formula

We obtain the group acting in g$ this group will be denoted by Jf\ The pairs
(A, T) where det^l = det T form a subgroup of Jf. This subgroup will be denoted by
Jfi The subgroup of JΓ consisting of pairs (A, T) where the operator T has a real
determinant will be denoted by JΓ0.

Lemma 2.2. 77zer£ exists one-one correspondence between J£-invariant (m,2n)-
densities in ^ m ' n αnJ ί/ze functions K(Γ) on έ$ satisfying

K(TΓA-') = K(Γ)\detA\ ~ *, (2.29)

for every pair (A, T)e$ίv

To prove this assertion we will use Lemma 1.3, taking $ = stf, fF = @8,
^ = ̂  x<%, Jtf? = Jfί. To check the conditions of Lemma 1.3 we must study the set
of pairs (/,r)eJS? x ^ transforming one canonical surface into another canonical
surface. If the pair (£,r)eJ? x<% consisting of transformation (2.6) and the
reparametrization

*V

transforms the quadratic surface (2.8) into the quadratic surface having the same
form then one can verify that

λ\0,0) = ρk(0,0,0) = 0, μα(0,0) = σα(0,0,0) = 0

dλk

= 0 ,
dσΛ

=o,

dxe
o dξ'

dμ«

δρ^_

: dβ"

= 0 ,

δσ*

dvβ

In other words

(2.30)

(2.31)

where the omitted terms have order ^ 2 with respect to x, θ, ξ, v. The matrix
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is real and the matrix

satisfies

[this follows from (2.14)].
The change of the coefficients in (2.8) by the transformations (2.30), (2.31) is

given by the formula

or briefly

Γ-+TΓA'1.

Using those assertions and Lemma 1.3 we obtain the statement of Lemma 2.2.
Let us denote by QΓo the isotropy subgroup of Jf0 at the point Γoe J*, i.e. the

group of pairs (A, T)eJf0 satisfying

T T ^ - ^ Γ o . (2.32)

The isotropy subgroup of Xγ at Γo will be denoted by Qλ

Γo

If (A, T)EQΓO then (\λ\2A,λT) belongs to QΓo too. If m + n/2 we can take

and obtain from (A, T)eQΓo a pair (Af,T' = (\λ\2A,λT)eQι

Γo. If K(Γ) satisfies (2.29)
and (A\ T)EQ1

ΓQ then|detA? | = l.Noting that

we obtain that for {A, T)eQΓo, mφrc/2 we have

| 2 m / π . (2.33)

Lemma 2.3. If Γo satisfies (2.32) for (A9T)eJfl9 K(Γo) + 0, and m + n/2 then
KerΓ 0 =0 (i.e. the equation Γo/ = 0 has only zero solution).

Let us suppose that KerΓoΦ0. Then there exists such an operator C that
ΓoC = 0, SpCφO. If {A, T)eβ^ o then (A + λC, T)eQΓp for every λ. It follows from
(2.33) that\det{A + λC)\ does not depend on λ. Taking A = ί9 T=ί we obtain a
contradiction.

If 2Γ is a linear subspace of M we denote by 0tg- the group of unimodular
linear operators in %>n leaving the subspace 2Γ invariant. In other words Ue$g- if
det U= 1 and for every matrix M e J we have UM= U+MUe^~. If F is an image
of Γ, Γ e J* then Ue&^ifdQtU = l and for every fe Sm one can find fe Sm in such a
way that UΓf=U + (Γf)U = Γf.
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If KerΓ = 0 then / is determined uniquely and one can consider a linear
operator Av in Sm transforming / into / We see that Ue&lmΓ if there exists a
linear operator A in Sm satisfying

UΓ = ΓAV.

If KerΓ = 0,mφn/2 we can consider for every Ue&XmΓ a pair (A, T)eQ\ where

A = \λ\2Av, T = λU, \λ\2mdetAv = λn.

It is easy to check that this correspondence between Q\ and ^ I m Γ is an
isomorphism. We obtain

Lemma 2.4. I/KerΓ = 0 and m + n/2 then &tλmT is isomorphίc to Q}τ.

We will say that the pair (m9ή) is perfect if there exists (m, 2n)-density in %?m'n

which is perfect with respect to the group if. Taking into account Lemma 2.2 we
see that the pair (m, n) is perfect if and only if there exists a unique (up to a constant
multiplier) function K(Γ) on J* satisfying (2.29) for every (A,T)eJΓv We apply
Lemma 1.5 to list the perfect pairs (m,ή). Using this lemma for i = ̂ ,(^ = Jfί and
noting that dim J* = mn2, dim Jf̂  = m2 + 2n2 — 2 we see that the pair (m, n) is perfect
if and only if

(m2 + 2n2 -2)-mn2 ^

and |detτl| = l for every (A, T)eQpo. By means of Lemma 2.4 we obtain.

Lemma 2.5. Ifm + n/2 then the pair (m, ή) is perfect if and only if

? (2.34)

and \άQtAυ\ — \for every Ue&^-0. (in (2.34) βΓ runs over all m-dimensional subspaces

ofJί.)

It follows from (2.34) and Lemma 2.3 that for a perfect pair (m,n)

2, (2.35)
(2.36)

(If m>n2, then KerΓ 0Φθ for every Γoeέ% and we can conclude from Lemmas 2.3
and 2.2 that an if-invariant density cannot exist.) It is easy to check that (2.35),
(2.36) can be satisfied for m = l , m = 2, m = n2 — 2, m = n2 — l, m = n2 only. It is
proved above that in the case m = n2, the pair (m, ή) is perfect. In the case m = 1 the
space ffl can be considered as the space of Hermitian (n x n)-matrices. For n φ 2 the
function

2 (2.37)

satisfies (2.29) for (A, T)eXv [This follows from relations

det(TΓ) - det(T+ΓT) = |det T\2 detΓ

and detΓ^4 = (yl)"detΓ where T is an (πxn)-matrix and A is a one-dimensional
matrix.]
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The arbitrary positive Hermitian matrix Γ can be represented in the form B+B,
d e t £ > 0 . Hence in the case n φ 2

Γ=fΓ0A-\ (2.38)

where (A,T)eJfv Γ0 = l. [To verify (2.38) we must define as a one-dimensional
matrix

1

and Tas (detJ5)2~"B.] We see that the group Jf̂  has open orbits in gβ (one of these
orbits is the set of positive matrices). We can conclude from Lemma 1.5 that all
algebraic functions on & satisfying (2.29) for (A, T)e3f1 coincide with (2.37) (up to
a constant multiplier) and therefore the pair (1, n) is perfect for nή=2. To study the
case m = n2 — 1 we use the following assertion.

Lemma 2.6. // the pair (m, n) is perfect and m φ n/2, mή=n2 — n/2 then the pair
(n2 — m, n) is perfect too.

To prove this assertion we note that if TJeffly then U+ e0lg-±_ (here ?ΓL denotes
the orthogonal complement of ?Γ in Ji. The scalar product in Jί is defined as
usual by the formula <£, E'} = Sp(EE'). We see that one-one correspondence exists
between M^- and tftg-^ hence

d i m ^ ^ - = d i m ^ <7-χ. (2.39)

Let us consider the operator \Je0lg- and the corresponding operator JJ in Jί. We
choose the orthonormal bases E1, . . . ,£" 2 in such a way that Eιe3~ for l ^ z ^ m
where m = dim^~ and £ m + 1 , . . . ,£" 2 is the basis of ^ r ' 1 . The subspace ^ΓdJί is
invariant with respect to (7. Therefore the matrix of operator U in the basis under
consideration has the form

Vn 0

v21 v22

where Vί λ is the matrix of the operator Avjicung in £Γ in the basis E1,..., £^\ The
subspace c^ 1 is invariant with respect to U+ and therefore the matrix of U+ has
the form

W
.1 K K 1 2

0 W

where W22 is the matrixjDf Au+ in the basis Em+1, ...,E"2. It is easy to check that
the operators U and U+ are adjoint and therefore Vίί = W^ί9 V22 = W2*2. We see
that

From the other side

U = (dQtUU+)n=l.

It follows from these equations that if I d e t ^ ^ l then I d e t ^ + ^ l . Using this
assertion, (2.39) and Lemmas 2.4, 2.5 we obtain the statement of the lemma.

It follows from Lemma 2.6 that the pair (n2 — l,rc) is perfect for
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Let us consider the case m = 2. The element Γe& can be identified in this case
with the pair ΓVΓ2 of Hermitian matrices. If the matrices Γi9Γ2 are diagonal then
the pair (A,B) where Λ = l and B is a diagonal matrix with elements bv ...,bn

satisfying |ί?.|2 = l5 b1b2 ...bn = l belongs to Q^. We see that

ίΓ = d i m β f ^ w - l . (2.40)

For almost every pair of Hermitian matrices ΓVΓ2 one can find such a matrix B
that the matrices Γ[ = B+ΓXB and Γ2' = B+Γ2B are diagonal. Using this assertion
and (2.40) we obtain

t = min tΓ ^ n — 1.

If the pair (2, ή) is perfect then one can conclude from (2.34) that ί = 2 and therefore
such a pair can be perfect only in the case n ^ 3 .

In the case n = 2, we consider the function E(λ,Γ) = det(λ1Γί+λ2Γ2). The
function E(λ,Γ) can be regarded as a quadratic form with respect to λl9λ2; the
determinant of this form will be denoted by £{Γ). The change of $(Γ) by the
transformation {A, Ύ)eX1 is given by the formula

£{f) = δ{TΓA ~1) = £{Γ) (det T) 4 (deUΓ 2 = δ{Γ) (deU) 2 .

We see that ®(Γ) = |<y(Γ)Γ1/2 satisfies (29) for (A9 T)eXv

Let us study the case n = 3. At first we construct the function satisfying (2.29)
for (A,T)eX'1. As follows from Lemma 2.2, such a function determines an
if-invariant density. The function

can be considered as a cubic form with respect to λvλ2. The Hessian H(λ,Γ) of
E(λ, Γ) is a quadratic form

d2E d2E

The change of the determinant D(Γ) of the quadratic form H(λ,Γ) by the
transformation (A, T)e CtiC1 is given by the formula

T)8(det,4) ~ 6 = D(Γ) (άetA)2.

We see that K(Γ) = \D(Γ)\~112 satisfies (2.29) for (A9T)eJίTv To prove that every
function satisfying (2.29) is proportional to \D(Γ)\~ί/2 we must check that
ί = mindim^^, where SΓ runs over two-dimensional subspaces oίJί, is equal to 2.
If Γx is a positive matrix and Γ2 is an arbitrary Hermitian matrix then one can find
such a matrix B that Γ[ = B + ΓXB = \ and Γ2 = B+Γ2B is a diagonal matrix. It
follows from this assertion that it is sufficient to study the case when 2Γ is spanned
on the matrices Γx = l and Γ2 = diag(A l 9λ2 Jλ3) where >11>A2>A3. [We use the
notation diag(Al5 ...,/ίn) for a diagonal matrix with elements λl9 ...,λM.] We will
prove that in this case divs\M3r = 2. Let us consider the operator TeM^. This
operator transforms the matrix Γx = \e3Γ into the matrix A = T+T, Λe3Γ. If the
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matrix A is not scalar then the space ZΓ is spanned on L 1 = 1 and A. The operator
Ttransforms Ae^ into the matrix T+AT=(T+)2T2e3T, hence

(T+)2T2 = aT+T+βΊ. (2.41)

Conversely, if Tsatisfies (2.41) and de tT= 1, then TeM^ where 2Γ is spanned on 1
and T+ T. The operator T is unimodular, therefore one can represent T in the
form T=US where S is a Hermitian matrix, U is a unitary matrix, det S = det U — 1.
Using this representation we obtain

U+S2U = (x + βS-2, (2.42)

where S2 = T+T = A. Noting that S2e&~ we obtain that S2 is a diagonal matrix,
and the diagonal elements σvσ2,σ3 of S2 can be represented in the form

Therefore σ1>σ2>σ3 or σ1<σ2<σ3. It follows from (2.42) that S2 is unitarily

equivalent to βS~2 + a. Hence for β<0

Uk+aι)=z+β{k+aι)-1

J (k+a2)=oc+β(k+n2) - x (2.43)

[
and for β > 0

• {k + /λ2) = oί + β{k + i?λ2y
1 (2.44)

{k + έλ3) = 0L + β(k + Sλίy
1.

Adding to (2.43) and (2.44) the equation

= \ (2.45)

which follows from detS 2 = l, we obtain two systems of equations for /c,/, α, j8.
These systems can have only a finite number of solutions therefore there exists
only a finite number of matrices S2. If the matrix S2 is known, then there exists at
most a two parameter family of matrices U satisfying (2.42). [The matrix U
transforms the vectors eί =(1,0,0), e2 = (0,1,0), e3 = (0,0,1) into the vectors uγe^
u2e2, u3e3 if f̂f<0 and into the vectors vxe3, v2e2, υ3e1 Ίϊβ>0. Noting that |t/ | = l,
\vt\ = 1, u1u2u3 = 1, v1v2v3 = 1 we obtain that the set of matrices U is at most two
dimensional.]

We have considered such matrices T e ^ - , that the matrix A = TΛT is not
scalar, and proved that the set of these matrices is two-dimensional. To complete
the calculation of d i m ^ we must study matrices TEM^ such that T+T is a
scalar matrix. Using that det T = 1 we obtain det T + T = 1 and therefore T + T = 1,
i.e. TeSU(3). The matrix T transforms the diagonal matrix

into the diagonal matrix T+Γ2T=T~1Γ2Te3Γ, hence Ttransforms eigenvectors
ei> e2> e3 °f ^2 m t ° uιeσ{\γ uie

σ{2γ U3 σ̂(3)5 a n ^ o" is an arbitrary permutation. We see
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that the set of matrices T under consideration is at most two-dimensional too. We
obtain d i m ^ ^ = 2 and therefore the pair (2,3) is perfect; by analogy one can
obtain that the pair (2,2) is perfect. The case m = n2 — 2 can be reduced to the case
m = 2 by means of Lemma 2.6.

We have proved the main statement of present section.

Theorem 2.1. The pair (m,n) is perfect only in the cases m = n2, n>l; m=l or
m = n2 — 1, n ^ 3 m = 2 or m = 7, n = 3; m = 2, n = 2.

The supergroup ££ is imbedded in the supergroup ££Λ of transformations
satisfying

BerD(BenD)α = l

[here D is defined by (2.7)]. We have considered this supergroup in the case α = 1
above. It is easy to check that <£a(LS£γ for αΦ — 1.

We have proved above that the (n2,2rc)-density which is perfect with respect to
S£ is J^-invariant. This assertion can be generalized in the following way.

Theorem 2.2. Every J£-invariant (rn,2n)-densίty in ^m>n is <£'^invariant

The proof of this theorem is based on the modification of Lemma 2.2.

Lemma 2.21 There exists one-one correspondence between 5£^-invariant (m,2n)-
densities in ^m>n and the functions K(Γ) of ^ satisfying

for every pair (A, T)eJΓ2. (We use here the notation Jf2f
or subgroup of'JΓ consisting

of elements satisfying |detA| = |detT|, A = A + .)

The proof of Lemma 2.2' is similar to the proof of Lemma 2.2.
If (A, T)eJf 2 Jhen det>l = exp(zφ)detT = detΓ' where T = exp{iφ/n)T. Noting

that TΓA~1 = tΓA~1 for every Γ G J * and (A,Γ)eX'ί, we obtain that every
function satisfying (2.29) for (A,T)£tfγ satisfies (2.29) for (A,T)eJf2. Using
Lemmas 2.2 and 2.2' we obtain that every JS?-invariant (m, 2π)-density is
Jδfj-invariant.

It follows from Theorem 2.2 that (m, 2τt)-densities in ^ m ' π which are perfect with
respect to the supergroup Jδfα for α Φ — 1 coincide with perfect i f -invariant
densities. One can check that the (m, 2n)-density which is perfect with respect to
££_ί cannot exist if n> 1.

3. Generalized Supergravity

In the present section we study the if-in variant (m, 2rc)-density A(Q) in ^ m ' n in the
case m = n2 (as was shown earlier, the case m = 4, n = 2 corresponds to the
supergravity). First of all we will give an explicit expression for the density A(Q).

Let us normalize the density under consideration by the condition A(QO) = 1.
Here Qo as in Sect. 2 denotes the quadratic surface defined by the equation



524 A. V. Gayduk, V. N. Romanov, and A. S. Schwarz

{xaβ and ξaβ are even variables, #α and vα are odd variables, ξaβ = ξβa). It is shown in
Sect. 2 that the density Λ(Q) is perfect, i.e. there exists a unique i?-invariant
(π2,2n)-density A(Q) satisfying the normalization condition A(QO)=1.

The quadratic surface QE

where E*β

δ=Eβ

δ* can be transformed into Qo with the aid of transformations (2.18).
Using Eq. (2.18), (2.29), and det(λ2E) = λ2n2detE we obtain

A(QE) = \detE\ίlil~2n). (3.2)

Let us consider now the quadratic surface Q defined by the equations

i(bkξ' + vyρk

y + σkψ + ek

δv
yδ + fk

δv
yvδ

+ v Vj yξ' + ψ)yΨξ< + d)Jf?) (3.3)

[The Greek indices run over the integers 1,2,..., n. Latin letters denote the pairs of
Latin indices; for example fc = (α,jδ).] If fc* = 0, ^ = 0, σk = 0 then the surface (3.3)
can be transformed into the surface QE with

by means of quadratic transformations belonging to i f and quadratic repara-
metrizations. (This follows from arguments used by the proof of Lemma 2.1.) We
obtain that in this case

A(Q) = A(QE) = |det & £ # + eftψ*1 ~ 2n). (3.4)

If b°Φ = bζ*9 ρf = σβcc then the surface (3.3) can be transformed into the quadratic
surface with b = 0, ρ = 0, σ = 0, with the aid of the linear transformation

and the linear reparametrization

-ίb)-i^β-ικ(ί+ibriτyvψ

(here (1 + ibfe = δ) + ttή, p = [det(l + ife)]1/n).
Using (3.5) and (3.6) we obtain that the value of the density A(Q) on the surface

(3.3) is given by the formula

2 " ) , (3.7)

where {l+b2$ = δ*e + bk

mb™,

Ψyδ, σ ~ iWγδ, σ + Ψδy, σ
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Similar considerations permit us to calculate A(Q) for more general quadratic
surfaces.

Using the results above we can write the action functional for every (n2, 2n)-
dimensional surface Γ in the space ^"2>". Without essential loss of generality we
suppose that the parametric equation of the surface Γ is represented in the form

( 3 ' 8 )

where Jf a β = jfcβa. At the point of Γ corresponding to parameters ξ0, v0 we can
construct the tangential quadratic surface to Γ; this surface can be defined by
Eq. (3.3) where

a-A- a-JL a-JL
^ " s v " ' >~dψ' e~dξ"

all derivatives are calculated at the point (ξ0, v0). The value of the density A(Q) on
the tangential quadratic surface can be calculated with the aid of (3.7). We obtain
that the value of the action functional on the surface (3.8) is given by

S(Γ) = J dξdvdv[det(ί + )]

• ΓJdet (ΔJβJίfk)n1/<2 " 4">[|det( V . j r * ) | ] 1 / ( 2 " 4 n ) , ( 3 ' 9 )

where

For m = 4, n = 2 the action functional (3.9) coincides with the action functional
in supergravity [2].

In a similar way one can calculate the value of the action functional on the
surface defined by the parametric equation

xk = Fk(ξ, v, v) = G\ξ, v, v) + iHk(ξ, v, v),

where G + =G, H+ =H. We obtain

et(

- HkAαβG
{)\ίl(ί ~ 2n), (3.1

where
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It is proved in Sect. 2 that the density under consideration is invariant with
respect to analytic transformations satisfying (2.28). We have denoted the super-
group consisting of these transformations by JSf1. The transformations belonging
to 5£γ can be considered as local symmetry transformations.

The group j£? 1 acts in natural way in the superspace of all surfaces. The action
functional S(Γ) is J^-in variant; in other words if an element of S£γ transforms the
surface Γ into the surface Γ then the values of the action functional on Γ and Γ
coincide.

In the case of supergravity (m = 4, n = 2) the surface Qo can be considered as flat
space or as classical vacuum (see [2, 1]). In a more general case one can interpret
<20 in a similar way. The transformations belonging to S£γ and leaving invariant
the surface Qo can be interpreted as global symmetries the supergroup consisting
of these transformations will be denoted by 0>. (It is important to note that we do
not consider Qo as a quadratic surface here.) Let us list transformations belonging
to ^ . For every unimodular (n x n)-matrix aa

β we can construct the transformation

where baβ = bβcί, leaving invariant Qo. In the case of supergravity (n = 2) the
transformations (3.12) can be identified with Poincare transformations. Further,
the transformations

belong to 0> too. The supergroup 0> is generated by (3.12) and (3.13). In the case
n = 2 we obtain that 0> coincides with the Golfand-Likhtman supergroup.

The action functional defined on (r, s)-dimensional surfaces can be considered
as an action functional on the boson and fermion fields depending on the point of
r-dimensional space (see [1]). Therefore a (n2,2n)-density in ^™2'π determines a
field theory in n2-dimensional space. In such a way the densities under con-
sideration determine a field theory in physical four-dimensional space only in the
case n = 2 (the supergravity). However one can think in certain cases that multi-
dimensional theory can be equivalent to a four-dimensional theory for low
energies. (To construct a quantum theory we must study a functional integral over
the space of (r, s)-dimensional surfaces of the theory as described by a (r, s)-density.
Let us consider surfaces lying in a small neighborhood of a (4, s)-dimensional
surface; these surfaces can be interpreted as tubes having small size in (r — 4)
directions. It is possible that for low energies only such tubes are essential in the
functional integral then the multi-dimensional theory can be reduced to the four-
dimensional one. This reduction is similar to the spontaneous compactification
described in [5].) It is not easy to find cases when the multidimensional theory
admits dimensional reduction for low energies and to describe the reduced theory.
However we can use formal dimensional reduction as in [6]. Namely we fix a
subspace of the space of surfaces in such a way that the surfaces belonging to this
subspace can be characterized by means of functions depending on four even
variables. Then the action functional on this subspace generates a four-
dimensional field theory.
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Let us describe the dimensional reduction of J^-invariant (n2,2rc)-density A(Q)
in c€n2'n. We will assume that n = 2r and consider the (n2,2rc)-dimensional surfaces
having a parameter equation of the form

9v)
[ }

Here the symbol txξ denotes (2 x2)-matrix with matrix elements

where μ, v = 051.
It is convenient to represent the (2r x 2r)-matrix ξ as a (r x r)-matrix 51

consisting of (2 x 2)-matrices Ξτco (the matrix Ξτω has matrix elements ξ2τ+^2ω + v

where τ, ω = 1,..., r). Then tr ξ can be considered as the trace of Ξ:

trξ = S 1 1 + ...+Ξrr.

The surface (3.14) is invariant by the translation xaβ-+xaβ+ baβ where baβ = bβa,
trfr = O. One can replace the Eq. (3.14) by this invariance property.

The functions Jfα/?(tr ξ, v, v) depend on four even variables. Therefore one can
consider the (n2,2n)-density A(Q) on (3.14) as a Lagrangian Ln defined on the fields
in four-dimensional space. If the element of ifx transforms every surface of the
form (3.14) into the surface having the same form then this element can be
considered as a symmetry transformation of the Lagrangian Ln. The supergroup
consisting of these elements will be denoted by S£'. It is easy to check that the
transformation

λ(x,θ)

°-+μ°(x,θ) ( '

belongs to jSf' when the functions μα(x, θ),

satisfy

μ*{χ + b9θ) = μ*(x,θ)9

tr Re λ(x + b,θ) = tr Re λ(x, θ),

if baβ = bβa, tίb = O (in other words these functions must depend on tr Rex, Imx,
θ1,..., θn). The subgroup of <£' consisting of elements transforming every surface of
the form (3.14) into the same surface will be denoted by j£f". The group if'/if'' can
be considered as the group of local symmetries of the Lagrangian Ln. The surface
<20 has the form (3.14) one can consider this surface as the classical vacuum of the
Lagrangian Ln. The supergroup 0>c\££'IΘ>c\S£" can be interpreted as the group of
global symmetries of the Lagrangian Ln. The transformation (3.13) belongs to
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f'. The transformation (3.12) belongs to ^nJ2?' in the case when there exists
such a unitary (r xr)-matrix Aτ

ω and unimodular (2 x2)-matrix c^ that

Π2τ + μ _

for μ,v = 0,1; τ , ω = l , ...,r [in other words the matrix aa

β can be considered as
(r xr)-matrix consisting of (2 x 2)-matrices Aτ

ωc\. The group &CΛ&" consists of
transformations

where baβ = bβa, trb = O. It follows from this description of ^ n i ? ' and ^ n i ? " that
the Lie superalgebra of ^ n i f ' / ^ n J ^ 7 " is a directed sum of the extended Golfand-
Likhtman algebra and Lie algebra of the group U(r).

We see that the global symmetry group of Ln is similar to the global symmetry
group in extended supergravity. However the Lagrangian Ln describes many fields
having spin 2 and fields having higher spins.
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He was the first to realize that simultaneously with the usual analysis of functions which depend on
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variables. This led him naturally to the new notion of a Lie group with anticommuting parameters.
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