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Abstract. If the action functional is determined uniquely by its symmetry
properties, we say that this functional is perfect. We study the perfect
functionals in the framework in which the space and field variables are on
equal footing. This study leads to the natural multidimensional generalizations
of supergravity.

1. Introduction

The formulation of quantum field theory in which field and space variables are on
an equal footing is suggested in [1]. In this formulation the action functional is
considered as a functional on the space of (m, n)-dimensional submanifolds of
(M, N)-dimensional superspace ; it is assumed that this functional can be represent-
ed in the form

ox®  o*x*®

[We denote by X2 the coordinates in (M, N)-dimensional superspace &N and by
YR the coordinates in (m,n)-dimensional superspace. The function A in (1.1) must
satisfy the conditions ensuring independence of (1.1) on the choice of the
parameter equation X =X(Y) of the submanifold I". We suppose that the function
A depends on the first and second derivatives of X(Y) only ; in this case we say that
the function A is a (m, n)-density of rank2.] It is shown in [1] that the Lagrangian
of supergravity arises naturally in the framework of field-space democracy.
Namely, the action functional of supergravity can be characterized as the
functional of the form (1.1), defined on the space of (4,4)-dimensional sub-
manifolds of complex (4,2)-dimensional superspace, which is invariant with
respect to supervolume preserving analytic transformations.

In the present paper we show how the Lagrangian of the supergravity in the
Ogievetsky-Sokatchev form [2] can be obtained by means of this characterization
and describe natural multidimensional generalizations of this Lagrangian. These
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generalizations are based on the notion of a perfect action functional ; we believe
that this notion deserves a closer study.

The action functional will be called perfect if the symmetry properties
determine this functional uniquely. In other words, we consider the symmetry
group G, for every Lagrangian 4 and say that the Lagrangian A is perfect if all
other Lagrangians invariant with respect to the group G, are equivalent to 4.

The definition above is not rigorous. One must restrict the class of Lagrangians
under consideration (for instance one can suppose that the derivatives entering
into the Lagrangian have order <k). One must say which symmetry transfor-
mations are permitted (for example, we can require the invariance of the
Lagrangian or impose a weaker condition of invariance of equations of motion).
Finally one must define the equivalence of Lagrangians (one can say that the
Lagrangians are equivalent if they lead to equivalent equations of motion;
however, it is convenient to use this term only in the case when the Lagrangian can
be obtained from another one by means of multiplication onto a constant
multiplier). The rigorous definition of the perfect action functional, determined by
means of (m, n)-density in (M, N)-dimensional superspace, will be given in Sect. 2.

One can believe that the action functional in elementary particle theory must
be perfect in a certain sense. It follows from [1] that the action functional in
supergravity is perfect in the sense of Sect.2; the Lagrangian describing the
interaction of massless fermions with gauge fields is perfect too (in another sense,
however). It is reasonable to search the Lagrangian of the unified theory of all
interactions among perfect Lagrangians. To find new perfect Lagrangians we can
fix a group (or a supergroup) G acting in (M, N)-dimensional superspace and
search (m,n)-densities which are invariant with respect to G. If the invariant
density is unique (up to a constant multiplier), then it is perfect; we will say that
this density is perfect with respect to the group G.

In the present paper we study (m, 2n)-densities in the superspace &MY assuming
that &MV is provided with complex structure, ie. one can consider &'V as
complex superspace €™/%N2 of complex dimension (M/2,N/2), and G as a
supergroup of analytic supervolume preserving transformations. We will assume
that m=M/2,n=N/2. If n>3 we prove under these conditions that (m, 2n)-density,
which is perfect with respect to the supergroup under consideration, exists only in
the cases m=n?, m=n?—1, m=1. (If n=3 there exists such a density in the cases
m=9, 8,7, 2,1 only, if n=2 then m=2,4.) The proof of this assertion is given in
Sect. 2. The perfect densities described in Sect. 2 will be analyzed in the case m=n?
in Sect. 3. In this case the corresponding action functionals can be considered as
multidimensional generalizations of the action functional of supergravity. After
dimensional reduction these multidimensional action functionals give four-
dimensional theories which are invariant with respect to extended Golfand-
Likhtman supergroup. The readers interested in supergravity can omit the second
half of Sect. 2.

The complete description of densities which are perfect with respect to the
supergroup of analytic supervolume preserving transformations will be published
later. Forthcoming papers by Gayduk, Khudaverdian, Schwarz, and Tyupkin will
describe the densities which are perfect with respect to the superanalogs of Cartan
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primitive infinite-dimensional groups (the groups of canonical, contact and
supervolume preserving transformations).

The m-dimensional linear space will be denoted by &™, the complex linear
space having complex dimension m will be denoted €™. For (m, n)-dimensional
superspace we use the notation &™"; for complex superspace we use the notation
%™ ". The (m, n)-dimensional superspace ™" can be considered as a direct sum of
m-dimensional linear space &4, and n-dimensional linear space &, Let us denote
the basis of &, by e, ...,e, and the basis of &y by f,,...,f, The formal
expression

m n
x= ) ae+ ), bf;,
i=1 =1

where a; are even elements and b; are odd elements of an arbitrary Grassmann
algebra, will be called a point of superspace §™". The set of points of &™" can be
considered as infinite dimensional linear space’. If the superspace ™" is provided
with the structure of Lie superalgebra, then the set of points of §™" can be
considered as infinite-dimensional Lie algebra in the usual sense. The elements of
the corresponding infinite-dimensional Lie group will be considered as the points
of the Lie supergroup corresponding to the Lie superalgebra. (The language of
points in the theory of superspaces and supergroups is described in more detail in
[3, 4].) Sometimes for the sake of brevity we will use the terms space and group
instead of the terms superspace, supergroup, etc. The Berezinian (superde-
terminant) of matrix K will be denoted by BerK.

Let us formulate some assertions which are useful for the study of perfect
action functionals. All these assertions can be derived easily from well-known
theorems.

Let ¢ be a group acting in the space &. The transformation corresponding to
ge % will be denoted by 7T, and the isotropy group at ee & will be denoted by #,
(remember that ge #, if T.e=e). We will study the functions ¢ on & satisfying

o(T,e)=gle)ug), (1.2)

where o(g) is a fixed function on 4. [Of course one must impose the condition
o(g,9,)=0lg,)ug,) on the function a.]

Lemma 1.1. If ¢(e)=*0, ge #, then a(g)=1.

Lemma 1.2. Let us suppose that every point of & can be obtained from the fixed
point ee & by means of transformation belonging to the group % (i.e. the orbit of e
coincides with & ). If a(g)=1 for arbitrary ge #, then there exists one and only one
(up to a constant multiplier) function ¢ satisfying (1.2). Conversely, if the function
satisfying (1.2) is unique (up to a constant multiplier) then the orbit of e & coincides
with &.

Remark. If we impose certain conditions on the function ¢ Lemma 1.2 must be
modified. For example if we suppose that ¢ is an algebraic function, we must
require the existence of such a point ee &, that the orbit of this point is open in &.

1 To avoid set-theoretical paradoxes one can assume that a; and b; belong to a fixed infinite-
dimensional Grassmann algebra S. Then the set of points can be considered as a free S-module
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(Of course one must assume that & is an algebraic manifold and ¥ is an algebraic
group in this case.)

If # is a subset of & we will denote by % the set of points which can be
obtained from the points of & by means of transformations of the group %:

F={fIf=Te, ecF, ge%}.

The subset of ¢ consisting of elements transforming the fixed point fe # into the
point of # will be denoted by #:

H, =T, fe F}.

We assume that the group # acting in & and the function f on # satisfy the
following conditions:

(0) if feZF, ge¥, T,feF one can find such an element he# that h
transforms f into T, f and f(h)=a(g);

(1) if he #, fe Z one can find such an element ge % that h and g transform f
into coinciding points of # and B(h)=a(g).

Lemma 1.3. If every point of & can be transformed into the points of F by means of
the transformation belonging to % (i.e. # =¢&) and the conditions (1), (II) are
fulfilled, then assigning to the function ¢ on & the restriction of this function on
we obtain one-one correspondence between the functions on & satisfying (1.2) for
every ge¥ and the functions on F satisfying a similar equation with 4 replaced by
S and o replaced by f.

Remarks. (I) Lemmas 1.1-1.3 can be applied to supergroups too because one can
interpret the action of the supergroup on points of superspace as the action of an
infinite-dimensional Lie group in infinite-dimensional space.

(IT) The requirement & =& permits us to restore the values of the function ¢
on & if we know the values of this function on %. Imposing certain conditions on
the function ¢ we can weaken this requirement. In particular, if we assume that ¢
is an algebraic function, it is sufficient to suppose that the set % contains interior
points (i.e. (5’\97* is not dense in &). Similar modifications of Lemma 1.3 can be
made in the case when & is a superspace and ¥ is a supergroup. We will use only
the simple assertion that in the case when the points of set &\ satisfy an algebraic
equation, the values of algebraic function on & obeying (1.2) can be restored if we
know the values of this function on . (If the points &\ satisfy an algebraic
equation we say that almost arbitrary point of & can be transformed into & by
means of transformations belonging to 4.)

Let us suppose that the r-dimensional algebraic group % acts on the
m-dimensional algebraic manifold &. The dimension of the isotropy subgroup #,
will be denoted by ¢,; the minimal ¢, will be denoted by ¢:

t= I?e]él»l t,.
Lemma 1.4. If t,=r—m then the orbit of the point e & is open in &. Conversely, if
there exists an open orbit of the group % in & then one can find such a point eye &
that t, =r—m and for other points t,2r—m (in other words t=r—m).
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The following statement can be deduced from Lemma 1.4 and assertions
above.
Lemma 1.5. If t=t, =r—m and a(g)=1 for every ge,, then there exists an

eg’
algebraic function ¢ on & satisfying (1.2) and this function is defined uniquely (up to
a constant multiplier ). Conversely, if there exists one and only one (up to a constant
multiplier) algebraic function satisfying (1.2), then one can find such a point e e &
that t=t, =r—m.
eo

2. Perfect Action Functionals

The (m, n)-dimensional quadratic surface in the (M, N)-dimensional superspace is
defined by a parametric equation

XB=MB+ LEYR+ITEYRYS, 2.1)
where Y runs over (m,n)-dimensional superspace. The linear reparametrization
YR KRYS (2.2)
transforms the quadratic surface (2.1) into the quadratic surface
XB=MB+ LEYR+ITEYRYS, (2.3)
where
LE=IIKS,  T{=THKEKS.
The quadratic reparametrization
YR YR+ JUSYOYS (2.4)
transforms (2.1) into the quadratic surface
XB=MB+ LEYR+ITEYRYS, (2.5)
where
Trs=Tas+LgU%s.
(We do not identify quadratic surfaces coinciding geometrically but having
different parametric equations.)

In such a way the supergroup £ generated by linear and quadratic repara-
metrization acts on the superspace of (m, n)-dimensional quadratic surfaces. The
supergroup # will be called the group of reparametrizations. The superspace of
(m, n)-dimensional quadratic surfaces will be denoted by /™" or simply by o/.

The (m,n)-density of rank 2 in (M, N)-dimensional superspace can be con-

sidered as a function A defined on the superspace &/ of (m,n)-dimensional
quadratic surfaces and satisfying the following conditions:

(I). The value of the function 4 on the surface (1.1) coincides with the value of A
on the surface (2.5) (i.e. the function A4 is invariant by quadratic reparametrization).

(I11). The value of 4 on the surface (2.3) can be obtained from the value on the
surface (2.1) by means of the multiplication on ¢(K)BerK. [Here
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o(K)=sgndetK,; where K,, is the transformation of commuting variables
induced by K.]

Really, a function A on the superspace of quadratic surfaces can be interpreted
as a function A(M®, L, T3,) depending on the coefficients in (2.1). If the function 4
entering into (1.1) is obtained in such a way from the function on the superspace of
quadratic surfaces satisfying the conditions above, then the integral (1.1) does not
depend on the choice of the parametrization of the submanifold I.

We will assume that the density is an algebraic function on the space 7.

The supergroup 2 of all transformations of the superspace &N can be
considered as a supergroup acting in the superspace < : the map f: 6N —&M-N
transforms the surface (2.1) into the surface

XB=M"B+ LEYR+ITEYRYS,
where

i
ox¢

1B B, /B afB C 7B
M?P=f% M), Ly=-¢ Lz, Trs=

aZfB
= Trs+
Xy ks

——= LSLD.
. aXCaXD R™S

M

The transformations of the space ./ generate as usual transformations of the
functions on . In particular, the transformation of & generates the transfor-
mation of (m, n)-densities. The subgroup of & consisting of transformations leaving
invariant the density 4 will be denoted by 2,. The density will be called perfect if
every density A’ satisfying 2,C2,. has the form A'=14 where A is a constant
factor. The action functional corresponding to the perfect density will be called
perfect too.

Let o be a subgroup of the supergroup 2. If there exists a unique (up to a
constant multiplier) s#-invariant density then this density is perfect. We say that
this density is perfect with respect to the group .

Let us consider the complex superspace ™" of complex dimension (m, n). The
commuting coordinates in ¥ will be denoted by x?,...,x™, and anticommuting
ones will be denoted by 6%,...,0" The supergroup consisting of supervolume
preserving analytic transformations of ¢ will be denoted by .. In other words the
transformations belonging to % have the form

{x"—ni"(x, 0) 26)

0= p7(x, )

[the right hand sides in (2.6) do not depend on X,8]. The transformation (2.6) is
supervolume preserving if BerD=1 where

oAk o)k
oxt o0

D= e o | 2.7
ox?  06°

We will study the #-invariant (r, s)-densities in the case r =m, s=2n, n>1. The
Y-invariant (r,s)-density can be characterized as a function on the space &/ of
(r,s)-dimensional quadratic surfaces satisfying (1.2), where ¥=% x# and for
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(Z,1)e % the function a(/,r) is defined as o(r) Berr if r is a linear reparametrization ;
if r is a quadratic reparametrization than a(Z,r)=1.
At first we will study the action of the group ¥ x % on the space /.

Lemma 2.1. Almost arbitrary (m, 2n)-dimensional quadratic surface in the space
@™" can be transformed in the quadratic surface having the form

{x" =&k il

= (2.8)
Ly=Thas

by means of reparametrizations and transformations belonging to the group % .

In (2.8) &%, ...,&™ are real commuting coordinates and v!,...,v" are complex
anticommuting coordinates. The surface (2.8) will be called canonical.

To prove the lemma we consider the arbitrary (m, 2n)-dimensional quadratic
surface

Xx=x,+ A+ Bv+ Cv+quadratic terms
0=0,+a&+bv+cv+quadratic terms.

Without loss of generality we can assume that x, =0, 0, =0 (if x, %0, or 0, +0 we
must perform the transformation x—x+x,, 0—0+ 0, belonging to the group .%).
First, making the linear reparametrization

{5_’5 } (2.9)
al+bv+cv-v,
we transform this surface into the surface
x=A,&+B,v+C,V+quadratic terms
. (2.10)
0=v+ quadratic terms.

[This is possible only in the case when the reparametrization (2.9) is nonde-
generate. However this condition is fulfilled for almost arbitrary quadratic surface.]
If the matrix A, is invertible we can make a linear transformation belonging to
the group

x—Ax
0—-10
At=detA,,

and the reparametrization

{5—*5
VoAV,

Then the surface (2.10) will be transformed in the surface

x=<¢4 B,v+ C,v+ quadratic terms
0 =v+ quadratic terms.
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Now using the transformation
x—x+B,0+C,0
{9—>9,
belonging to % and the reparametrization
{€—>€+C_‘2v-C25
Vo,
we obtain that almost every quadratic surface can be transformed in the surface

having the form
{x = ¢+ quadratic terms (2.11a)

0=v+ quadratic terms. (2.11b)

Further we use nonlinear transformations belonging to .#. Let us consider the
transformation
{x—wc + quadratic terms+ ...

0— 0+ quadratic terms+ ..., (2.12)

where the omitted terms have order =3 with respect to x, 8. Of course the omitted
terms are inessential by the transformation of the quadratic surface (2.11) therefore
we can replace (2.12) by the quadratic transformation

X— X+ quadratic terms (2.13a)
0— 0+ quadratic terms. (2.13b)

We say that the quadratic transformation (2.13) belongs to . In other words we
say that the quadratic transformation belongs to . if one can obtain an element of
% adding higher order terms to this transformation. It is evident that for the
quadratic transformation belonging to ¥

o o
Ber D =Ber ox 09 =1+terms of order=2. (2.14)

on op

ox 00

Conversely every quadratic transformation (2.13) satisfying (2.14) belongs to Z. It
is important to note that the coefficients in (2.13a) are arbitrary ; in other words for
every coefficient in (2.13a), one can choose the coefficients in (2.13b) in such a way
that the requirement (2.14) is satisfied. Moreover, we can satisfy the requirement
(2.14) changing the coefficients by transformation of two variables only. Using the
quadratic transformations belonging to group .%, in Eq. (2.11a) we can exclude all
terms which are analytic with respect to & v. By means of quadratic repara-
metrization one can exclude in (2.11a) all real terms. These remarks permit to
exclude all terms except Ef;v*7. For example

Fvv+ G =(F + G)w+(Gv — Gvv), (2.15)

and we can exclude the first sum by means of quadratic transformations belonging
to # and the second sum by means of reparametrization. The expression E{;ﬂv”v"‘ is
real if Et; = Ej,. Excluding the real part of Ev¥ by means of reparametrization we



Supergravity and Field Space Democracy 515

obtain that the surface (2.11) can be transformed into the surface

{x" =& il

2.1
0% =v*+ quadratic terms, (2.16)

where Iy =1Ij;, >. Using quadratic reparametrization
Vv —V* 4 quadratic terms,

we see that every quadratic surface having the form (2.16) can be transformed in
(2.8). This completes the proof of Lemma 2.1.

Let us consider the case m=n?. It is convenient to represent the variable x by
means of (n x n)-matrix x*#. The variable ¢ parametrizing quadratic surface will be
considered as a Hermitian (n x n)-matrix &*. Slight modification of considerations
used by the proof of Lemma 2.1 permits us to check that almost arbitrary
quadratic surface can be transformed into the surface

X =P HIiESY
0*=v*
where E* = Ef* by means of reparametrizations and transformations belonging to
. It is easy to check that the transformation
x| APEBx"
0°— A0%,
{é“"—»lliinfié"‘

A A

(2.17)

(2.18a)

(2.18b)

where A"=(detE)-|A|?"*, transforms the surface (2.17) into the surface

{x”—é”+1v 4 (2.19)
0" =v*.
Here E is the operator in the space of matrices transforming f* into EX 7. The
surface (2.19) will be denoted by Q,. We see that almost every quadratic surface
can be obtained from the surface (2.19) with the aid of elements of the supergroup
L x A (i.e. by means of reparametrizations and transformations belonging to #).
It follows from this assertion that in the case under consideration the #-invariant
density is completely determined if the value of this density on the surface Q, is
known. In other words there exists at most one (up to a constant multiplier)
P-invariant density. To prove that a #-invariant density exists one must study
the isotropy subgroup # of ¥ x Z at the point of .« defined by the surface Q,,.
One can check that if the pair (/,7)e # and 7 is defined by the formula (2.6)

then
2%6(0,0)=0 *(0,0)=0 @ =0
s ] ,u > — Vo agy o -
A= Abe, (2.20)
bebl = A8 (2.21)

2 One can explain the important role of the form I;»#¥* in our considerations noting that this form
can be interpreted as the Levi form of the surface (2.16). In a forthcoming paper we will show how the
complex geometry can be applied to the study of supergravity
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Foied ou* .

a9, b= 07|, As before, we consider A% as a
linear operator A transforming the matrix f* into the matrix f* =A% The
condition (2.20) means that this operator transforms the Hermitian matrix f* to

the Hermitian : if f* = 7#* then f* =f”°‘.] If 7 is defined by (2.6) and (£, 7)e # then

the reparametrization r has the form

&0 (E,v, )

We use the notations A% =

_ (2.22)
va—)aa(éﬁ v’ V) 2
where
¢*%(0,0,0)=0,  ¢%0,0,0)=0; (2.23)
i 0 do*| 00| 0
o, = av|, °oeer|, x|,
(2.24)
000X oo*|  ou*| da*| _ ow
', 00"\, 0en|, ox?|,0  avfl, a0f|,
It follows from (2.21) that
det A =|deth|*", (2.25)
and from (2.14) that
detA=detbh. (2.26)
Combining (2.26) with (2.25) we see that
detA=|detb|=1. (2.27)

From (2.27) we obtain that the Berezinian of the linear part of the repara-
metrization (2.22) is equal to 1.

As we noted above the #-invariant density can be characterized as a function
on «f satisfying (1.2) for a particular choice of a function f. It follows from the
description of the group  that f(/,r)=1 for (¢/,r)es#. Using Lemma 1.2 we
obtain that a #-invariant density exists in the case under consideration.

The perfect Z-invariant density in the case m=n? has a larger symmetry group
than &. Let us consider the supergroup %, of analytic transformations of ¢™"
satisfying

BerD-BerD=1, (2.28)

where D is defined by (2.7). Really, we can repeat for the group %, all the
arguments used for the group . The only change is the following. We must
replace (2.26) by the weaker condition

|det A| = |detb],

which can be deduced from (2.28). However this condition is sufficient to check
(2.27). We obtain that a (n?,2n)-density exists which is perfect with respect to ;.
Of course this density coincides with the perfect #-invariant density.
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Let usnow study (m, 2n)-densities in ™" in the general case using Lemmas 1.3
and 2.1. We can identify the set of canonical surfaces with the space 4 of sequences
{r',...,I'™} of Hermitian (n x n)-matrices. In other words % can be considered as
the space of linear operators I acting from m-dimensional space ™ into
n*-dimensional space of Hermitian matrices .#. If T is a linear operator in 4" we
define an operator T in .4 as an operator transforming the Hermitian matrix M
into T*MT. For every pair (4, T) consisting of nondegenerate operators acting in
&™ and " respectively, we define a transformation z, 1, of # by the formula

T =TrA™*.

We obtain the group acting in 4 ; this group will be denoted by 2. The pairs
(4, T) where det A =det T form a subgroup of #". This subgroup will be denoted by
;. The subgroup of A~ consisting of pairs (4, T) where the operator T has a real
determinant will be denoted by %,

Lemma 2.2. There exists one-one correspondence between &L-invariant (m,2n)-
densities in €™" and the functions K(I') on % satisfying

K(TTA~Y)Y=K(I')|detA| ™!, (2.29)
for every pair (4, T)e A.

To prove this assertion we will use Lemma 1.3, taking §=«/, F =4,
G=F xR, # =H,. To check the conditions of Lemma 1.3 we must study the set
of pairs (£,7)e ¥ x & transforming one canonical surface into another canonical
surface. If the pair (/,r)e ¥ x % consisting of transformation (2.6) and the
reparametrization

{é"*@"(i, v, 9)

va—)aa(é’ v’ V)

transforms the quadratic surface (2.8) into the quadratic surface having the same
form then one can verify that

%0,0)=¢%0,0,0)=0,  1*0,0)=0%0,0,0)=0;

o o o Lo g
ool, ovl, W, @,

o _agy o oo o] 8o
|, " odly o, T odl, Pl T vy

In other words

k k _ k..n
X _)}- (x>9)_An X"+ "'i (230)
0" p(x, 0)=T;0" + Cix“+ ...,
k_y ok V)=A .
{é Q(é,v,\i) Py . (2.31)
Voo Gy =THv + CiE + .,

where the omitted terms have order =2 with respect to x, 0, &, v. The matrix

oAk

A'=57,
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is real and the matrix

o
T = —+
B ppB R
satisfies
detA=detT

[this follows from (2.14)].
The change of the coefficients in (2.8) by the transformations (2.30), (2.31) is
given by the formula

r'>T*ITA4™ Y,

or briefly

r-Tra-t.
Using those assertions and Lemma 1.3 we obtain the statement of Lemma 2.2.

Let us denote by Q. the isotropy subgroup of | at the point I;€ %, i.e. the

group of pairs (4, T)e A, satisfying

TrA='=T,. (2.32)
The isotropy subgroup of #; at I}, will be denoted by Q;,

Or,=Qr,NA.

If (4, T)e Q, then (|A]*4, AT) belongs to @y, too. If m#n/2 we can take

[A|*"det A=/"det T

and obtain from (4, T)e Q. a pair (4, T’=(|/1|2A,/1T)GQ}O. If K(I') satisfies (2.29)
and (A', T')e O}, then|det A’|=1. Noting that

detA’'=|A|*"detA=/"detT=detT",
we obtain that for (4, T)e Q,, m=#n/2 we have
[det A| = |det T|?™" . (2.33)

Lemma 2.3. If I, satisfies (2.32) for (A, T)eA,, K(I;)+0, and m=+n/2 then
KerI, =0 (i.e. the equation I';f =0 has only zero solution).

Let us suppose that KerIy=0. Then there exists such an operator C that
I,C=0, SpC#+0. If (4, T)e Qy, then (A+AC, T)eQy, for every A. It follows from
(2.33) that |[det(A4 + AC)| does not depend on A. Taking A=1, T=1 we obtain a
contradiction.

If 7 is a linear subspace of .# we denote by %, the group of unimodular
linear operators in %" leaving the subspace J invariant. In other words Ue Z if
detU =1 and for every matrix Me 7 we have UM =U"MUeZ.If 7 is an image
of I''T'e # then Ue 2, if det U =1 and for every fe &™ one can find fe ™ in such a
way that UI'f =U*(I'f)U=TIf.
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If KerI'=0 then f is determined uniquely and one can consider a linear
operator A, in é™ transforming f into f. We see that Ue %, if there exists a
linear operator A in &™ satisfying

Ur=rA,.
If KerI' =0, m=n/2 we can consider for every Ue %,  a pair (4, T)e Q} where
A=*4y, T=2U, |A*"detAy=2".

It is easy to check that this correspondence between Qp and %, is an
isomorphism. We obtain

Lemma 2.4. If Ker'=0 and m=n/2 then Ry, is isomorphic to QF.

We will say that the pair (m, n) is perfect if there exists (m, 2n)-density in ™"
which is perfect with respect to the group . Taking into account Lemma 2.2 we
see that the pair (m, n) is perfect if and only if there exists a unique (up to a constant
multiplier) function K(I') on 4 satisfying (2.29) for every (4, T)e #,. We apply
Lemma 1.5 to list the perfect pairs (m, n). Using this lemma for § =%, 4 =4, and
noting that dim % =mn?, dim #, =m? +2n* — 2 we see that the pair (m, n) is perfect
if and only if

(m*+2n*—2)—mn* =dimQ} =mindimQy,
I'ex

and |det A|=1 for every (4, T)e Q}O. By means of Lemma 2.4 we obtain.
Lemma 2.5. If m==n/2 then the pair (m,n) is perfect if and only if
m(n*—m)=2n*> -2 —mindim#, =2n*>—2—dim%, , (2.34)
and |det Ay| =1 for every Ue R ;. (in (2.34) T runs over all m-dimensional subspaces
of M.)
It follows from (2.34) and Lemma 2.3 that for a perfect pair (m, n)
mn?—m)<2n? -2, (2.35)
n*zm. (2.36)
(If m>n?, then Ker I}, +0 for every I;;e # and we can conclude from Lemmas 2.3
and 2.2 that an Z-invariant density cannot exist.) It is easy to check that (2.35),
(2.36) can be satisfied for m=1, m=2, m=n>—-2, m=n*>—1, m=n? only. It is
proved above that in the case m =n?, the pair (m, n) is perfect. In the case m=1 the

space % can be considered as the space of Hermitian (n x n)-matrices. For n=2 the

function .

K(I')=|detI'|"-2 (2.37)
satisfies (2.29) for (4, T)e . [ This follows from relations
det(TTr)=det(T*TI'T)=|det T|* detI’

and detl’A=(A)"detI" where T is an (n xn)-matrix and A4 is a one-dimensional
matrix. ]
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The arbitrary positive Hermitian matrix I' can be represented in the form B* B,
det B>0. Hence in the case n=+2

r=Tr,A=*, (2.38)
where (4, T)e A, I, =1. [To verify (2.38) we must define as a one-dimensional
matrix )

A=(detB)2—"

1
and Tas (det B)>~"B.] We see that the group ¢, has open orbits in % (one of these
orbits is the set of positive matrices). We can conclude from Lemma 1.5 that all
algebraic functions on 4 satisfying (2.29) for (4, T)e #; coincide with (2.37) (up to
a constant multiplier) and therefore the pair (1, n) is perfect for n=2. To study the
case m=n?—1 we use the following assertion.

Lemma 2.6. If the pair (m,n) is perfect and m=+n/2, m=#n*—n/2 then the pair
(n* —m, n) is perfect too.

To prove this assertion we note that if Ue #, then U* e #,. (here 7 * denotes
the orthogonal complement of 4 in .#. The scalar product in .# is defined as

usual by the formula {E, E'> =Sp(EE’'). We see that one-one correspondence exists
between £, and £ ., hence

dimZ,=dimR . . (2.39)

Let us consider the operator Ue % and the corresponding operator Uin 4. We
choose the orthonormal bases E!, ..., E"” in such a way that E'‘e 7 for 1<i<m
where m=dimJ and E™*!, .., E"™ is the basis of 7. The subspace I C./ is
invariant with respect to U. Therefore the matrix of operator U in the basis under
consideration has the form
v
V21 V22 ’

where V), is the matrix of the operator 4 acting in 7 in the basis E', ..., E™. The
subspace Z * is invariant with respect to U U™ and therefore the matrlx of U™ has

the form
Wl 1 Wl 2
0 W,
where W,, is the matrix of Ay, in the basis E"*!, ..., E". It is easy to check that

the operators U and U™ are adjoint and therefore V11 Wi, V,, =W We see
that

detU=detV,, detV,, =detV,, det W}, =det A, det Ay .
From the other side
detU=(detUU*)y'=1

It follows from these equations that if |detAy|=1 then |detA4,.|=1. Using this
assertion, (2.39) and Lemmas 2.4, 2.5 we obtain the statement of the lemma.
It follows from Lemma 2.6 that the pair (n®>—1,n) is perfect for n=+2.
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Let us consider the case m=2. The element I'e # can be identified in this case
with the pair 7, I, of Hermitian matrices. If the matrices I, I, are diagonal then
the pair (A4, B) where A=1 and B is a diagonal matrix with elements b,,...,b
satisfying |b,|*=1, b,b, ...b,=1 belongs to Q7. We see that

tp=dimQl=n—1. (2.40)

n

For almost every pair of Hermitian matrices I, I, one can find such a matrix B
that the matrices I7=B*I}B and I, =B*I,B are diagonal. Using this assertion
and (2.40) we obtain

t=mint,Zn—1.

If the pair (2, n) is perfect then one can conclude from (2.34) that ¢ =2 and therefore
such a pair can be perfect only in the case n=<3.

In the case n=2, we consider the function E(4,I)=det(4,I+4,1;). The
function E(4,I') can be regarded as a quadratic form with respect to 4,,4,; the
determinant of this form will be denoted by &(I'). The change of &(I") by the
transformation (4, T)e ¢} is given by the formula

EM)=8TrA=-Y=¢&I)(det T)*(det A)~2=&(I') (det A)*.

We see that Z(I')=|&(I)|~ /2 satisfies (29) for (4, T)e A.

Let us study the case n=3. At first we construct the function satisfying (2.29)
for (A, T)eA,. As follows from Lemma 2.2, such a function determines an
Z-invariant density. The function

E(Z, I)=det(i,T; +2,1)

can be considered as a cubic form with respect to 1,,4,. The Hessian H(4,I") of
E(A,T') is a quadratic form

0*E 0E
0A%  0A, 04
HOD=| p g

00,04, 012

The change of the determinant D(I') of the quadratic form H(A,I') by the
transformation (4, T)e i is given by the formula

D(I)=D(TrA~Y)=D(I')(det T)(det 4) "¢ =D(I') (det A)>.

We see that K(I')=|D(I')|~*/* satisfies (2.29) for (4, T)e #,. To prove that every
function satisfying (2.29) is proportional to |[D(I')]”'/> we must check that
t=mindimZ,, where J runs over two-dimensional subspaces of .#, is equal to 2.
If I, is a positive matrix and I}, is an arbitrary Hermitian matrix then one can find
such a matrix B that I7=B*I}B=1 and I,=B*I,B is a diagonal matrix. It
follows from this assertion that it is sufficient to study the case when 7 is spanned
on the matrices I;=1 and I,=diag(4,,4,,4;) where A, >1,>1;. [We use the
notation diag(4,,...,4,) for a diagonal matrix with elements 4,,...,4,.] We will
prove that in this case dim%,=2. Let us consider the operator Te#,. This
operator transforms the matrix I; =1€ 7 into the matrix A=T"T, 4e 7. If the
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matrix 4 is not scalar then the space 7 is spanned on L, =1 and 4. The operator
T transforms 4eJ into the matrix T*AT=(T")?>T?e 7, hence

(T*?T?=aT T+pB-1. (2.41)

Conversely, if T satisfies (2.41) and det T'=1, then Te £, where J is spanned on 1
and T*T. The operator T is unimodular, therefore one can represent T in the
form T= US where S is a Hermitian matrix, U is a unitary matrix, detS=detU = 1.
Using this representation we obtain

U*S2U=0+pS"2, (2.42)
where S?2=T"*T=A. Noting that S’ 7 we obtain that S? is a diagonal matrix,
and the diagonal elements ¢,,0,,0; of S? can be represented in the form

o,=k+7/4;.

Therefore 6,>0, >0, or 6,<0,<0;. It follows from (2.42) that S* is unitarily
equivalent to BS~2+a. Hence for <0

(k+£A)=a+pk+£4,)""
(k+£2)=a+Pk+£A,)7" (2.43)
(k+242)=a+Plk+£45)7 1,
and for f>0
(k+22)=0+Plk+£4,)" "
(k+£4,)=0+PBk+£A,)"? (2.44)
(k+£A3)=a+Bk+£1,)"".
Adding to (2.43) and (2.44) the equation

(k+2A)(k+2A,)(k+425)=1 (2.45)

which follows from detS?=1, we obtain two systems of equations for k,7,a, B.
These systems can have only a finite number of solutions; therefore there exists
only a finite number of matrices S2. If the matrix S? is known, then there exists at
most a two parameter family of matrices U satisfying (2.42). [The matrix U
transforms the vectors e; =(1,0,0), e,=(0, 1,0), e; =(0,0, 1) into the vectors u,e;,
u,e,, usey if f<0 and into the vectors v, e;, v,e,, vye; if f>0. Noting that |u]=1,
lv}=1, uu,uy;=1, v,v,0,=1 we obtain that the set of matrices U is at most two
dimensional. ]

We have considered such matrices Te %, that the matrix A=T" T is not
scalar, and proved that the set of these matrices is two-dimensional. To complete
the calculation of dim#, we must study matrices Te #, such that T* T is a
scalar matrix. Using that det T =1 we obtain det T+ T =1 and therefore T* T =1,
i.e. TeSU(3). The matrix T transforms the diagonal matrix

I, =diag(,, 45, A3)€ T

into the diagonal matrix T*I,T=T"'I,Te 7, hence T transforms eigenvectors
e;, 5,6, 0f Iy into uye, ), ue, 5, Use, ), and ¢ is an arbitrary permutation. We see
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that the set of matrices T under consideration is at most two-dimensional too. We
obtain dim#,=2 and therefore the pair (2,3) is perfect; by analogy one can
obtain that the pair (2,2) is perfect. The case m=n?—2 can be reduced to the case
m=2 by means of Lemma 2.6.

We have proved the main statement of present section.

Theorem 2.1. The pair (m,n) is perfect only in the cases m=n? n>1; m=1 or
m=n’>—1,n=3;m=2orm=7,n=3; m=2, n=2.
The supergroup % is imbedded in the supergroup %, of transformations
satisfying
Ber D(BerD)*=1

[here D is defined by (2.7)]. We have considered this supergroup in the case o= 1
above. It is easy to check that ¥, C.%, for a% —1.

We have proved above that the (n?, 2n)-density which is perfect with respect to
& is &, -invariant. This assertion can be generalized in the following way.

Theorem 2.2. Every -invariant (m,2n)-density in €™" is &, -invariant.
The proof of this theorem is based on the modification of Lemma 2.2.

Lemma 2.2. There exists one-one correspondence between ¥, -invariant (m,2n)-
densities in €™" and the functions K(I') of # satisfying

K(TTA=Y=K(I')det A]-|det T|~ 2= K(I')|det A| !,

for every pair (A, T)e A,. (We use here the notation A, for subgroup of A~ consisting
of elements satisfying |detA|=|detT|, A=A".)

The proof of Lemma 2.2’ is similar to the proof of Lemma 2.2.

If (4, T)e% then det 4 =exp(ip)det T=det T' where T'=exp(ip/n)T. Noting
that T'TA"'=TIr' A" for every I'e# and (4, T')e A, we obtain that every
function satisfying (2.29) for (A4, T)e .t satisfies (2.29) for (A, T)e #,. Using
Lemmas 2.2 and 2.2° we obtain that every %-invariant (m,2n)-density is
&, -invariant.

It follows from Theorem 2.2 that (m, 2n)-densities in ¥™" which are perfect with
respect to the supergroup ¥, for a#+ —1 coincide with perfect ¥-invariant
densities. One can check that the (m, 2n)-density which is perfect with respect to
&_, cannot exist if n>1.

3. Generalized Supergravity

In the present section we study the #-invariant (m, 2n)-density A(Q) in €™ " in the
case m=n® (as was shown earlier, the case m=4, n=2 corresponds to the
supergravity). First of all we will give an explicit expression for the density A(Q).
Let us normalize the density under consideration by the condition A(Q,)=1.
Here Q, as in Sect. 2 denotes the quadratic surface defined by the equation

{x"‘” — & 4 iy

o (3.1)
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(x*# and &% are even variables, 0* and v* are odd variables, &% = £f%). It is shown in
Sect. 2 that the density A(Q) is perfect, i.e. there exists a unique .#-invariant
(n*,2n)-density A(Q) satisfying the normalization condition A(Q,)=1.

The quadratic surface Q

x* =& +iEBVY
9& — va

where E2§ = Ef* can be transformed into Q,, with the aid of transformations (2.18).

Using Eq. (2.18), (2.29), and det(12E)= 22" detE we obtain

A(Q) =|det B/ —2m (3.2)

Let us consider now the quadratic surface Q defined by the equations
Xk =EF 4 iBEE + vk + 0" ek + [y
+ g8V VL E Al VE + df, £l (3.3)

0" =v*.
[The Greek indices run over the integers 1,2, ..., n. Latin letters denote the pairs of
Latin indices; for example k=(a, f).] If by =0, ¢*=0, 6% =0 then the surface (3.3)
can be transformed into the surface Q with

B =4+ 2

by means of quadratic transformations belonging to ¥ and quadratic repara-

metrizations. (This follows from arguments used by the proof of Lemma 2.1.) We
obtain that in this case

A(Q)=A(Qg)=Idet (3(e55 + )" 72", (34

If b5 =b}2, *f =5%* then the surface (3.3) can be transformed into the quadratic
surface with b=0, ¢=0, =0, with the aid of the linear transformation

x*—(1+ib)jx’ + 2ipt”[(1 —ib)~ 150} (3.5)
ga_)pea ,
and the linear reparametrization
{ik_)ék-"_lpvﬁ[( '—I'b) 1]&’@[} ll_)[(l +lb)_1]lédiv}, (3 6)
V= py* '

(here (1+ib)s=05%+ib%, p=[det(1 +ib)]*"™).
Using (3.5) and (3.6) we obtain that the value of the density A(Q) on the surface
(3.3) is given by the formula

A(Q)=[det(1 + b?)] " ~2"|det &/ 72, (3.7
where (1+b%)k=05+bkbY,
G =g+ Pl — Whght 245, A4ty
Eh=3e5+e), @ =Hel %y >
@:g o= o+ P55.0) d‘;fs’ 00 =335 ou 5y 50):
Aa=i[(1—ib)"" 1305,  my=—il(1+ib)™'T}o;
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Similar considerations permit us to calculate A(Q) for more general quadratic
surfaces.

Using the results above we can write the action functional for every (n?,2n)-
dimensional surface I in the space ¥">". Without essential loss of generality we
suppose that the parametric equation of the surface I' is represented in the form

xF=EE - iAME, v, V)
0!1 — vd ,
where #* = #"* At the point of I' corresponding to parameters &, v, we can
construct the tangential quadratic surface to I'; this surface can be defined by
Eq. (3.3) where
bp=0,#%, oi=04%, ok=04%, ei=0,0,4",
=30,0,%,  gts=30,0,%, f,=0,04*,

(3.8)

Y6 2
w’}y=6—y65%k, ds, =%0,0, 4",
0 = 0 0
VZW’ aY:W’ ag’:a—é[:

all derivatives are calculated at the point (&,, v,). The value of the density A(Q) on
the tangential quadratic surface can be calculated with the aid of (3.7). We obtain

that the value of the action functional on the surface (3.8) is given by
S(I) = dédvdv[det(1 + #2)]"? 39
[det(4, 3,907 et Gya, e,

where
(L+#?e=k+ A A,  H}f=0,4",
A,=0,+i0, A (1 —iA) 1%0,,
A,=—0,+i0, A1 +iA)" 10,
For m=4, n=2 the action functional (3.9) coincides with the action functional
in supergravity [2].
In a similar way one can calculate the value of the action functional on the
surface defined by the parametric equation

X*=FHE,v,7)=GX¢&, v, 9)+iH v, ),
{ by (3.10)
where GT =G, H" =H. We obtain
S(I') = dédvdi[det(G2 + H2)]~ Di2n=1
|det(GkA,  HY — HEA GO0 =20 (3.11)

where
(G*+H?);=G, G+ HyHY,
Gt=0,G*, H'=0,H*, F:=0,F",
Ay =0,05+0,F[(F) *170,0,,— 0,(F*Y[(F*)*170,0,
+O,(FT Yo, Fm[(F*) ™ MT(F~1).,0,0,.
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It is proved in Sect. 2 that the density under consideration is invariant with
respect to analytic transformations satisfying (2.28). We have denoted the super-
group consisting of these transformations by .#,. The transformations belonging
to ¥, can be considered as local symmetry transformations.

The group %, acts in natural way in the superspace of all surfaces. The action
functional S(I') is %, -invariant; in other words if an element of %, transforms the
surface I' into the surface I’ then the values of the action functional on I" and I
coincide.

In the case of supergravity (m =4, n=2) the surface Q, can be considered as flat
space or as classical vacuum (see [2, 1]). In a more general case one can interpret
0, in a similar way. The transformations belonging to ¥, and leaving invariant
the surface Q, can be interpreted as global symmetries ; the supergroup consisting
of these transformations will be denoted by £. (It is important to note that we do
not consider Q, as a quadratic surface here.) Let us list transformations belonging
to 2. For every unimodular (n x n)-matrix aj we can construct the transformation

x* - a%alix" + b
0*—>a30”,

(3.12)

where b** =bP* leaving invariant Q,. In the case of supergravity (n=2) the
transformations (3.12) can be identified with Poincaré transformations. Further,
the transformations

0*—0*+¢* (3.13)
belong to £ too. The supergroup & is generated by (3.12) and (3.13). In the case
n=2 we obtain that £ coincides with the Golfand-Likhtman supergroup.

The action functional defined on (r, s)-dimensional surfaces can be considered
as an action functional on the boson and fermion fields depending on the point of
r-dimensional space (see [1]). Therefore a (n?,2n)-density in 4" determines a
field theory in n?-dimensional space. In such a way the densities under con-
sideration determine a field theory in physical four-dimensional space only in the
case n=2 (the supergravity). However one can think in certain cases that multi-
dimensional theory can be equivalent to a four-dimensional theory for low
energies. (To construct a quantum theory we must study a functional integral over
the space of (r, s)-dimensional surfaces of the theory as described by a (r, s)-density.
Let us consider surfaces lying in a small neighborhood of a (4,s)-dimensional
surface; these surfaces can be interpreted as tubes having small size in (r—4)
directions. It is possible that for low energies only such tubes are essential in the
functional integral ; then the multi-dimensional theory can be reduced to the four-
dimensional one. This reduction is similar to the spontaneous compactification
described in [5].) It is not easy to find cases when the multidimensional theory
admits dimensional reduction for low energies and to describe the reduced theory.
However we can use formal dimensional reduction as in [6]. Namely we fix a
subspace of the space of surfaces in such a way that the surfaces belonging to this
subspace can be characterized by means of functions depending on four even
variables. Then the action functional on this subspace generates a four-
dimensional field theory.

{x"‘” —x* 4+ 2i0%F + ie*e?
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Let us describe the dimensional reduction of %, -invariant (n?, 2n)-density 4(Q)
in €"". We will assume that n=2r and consider the (n?, 2n)-dimensional surfaces
having a parameter equation of the form

(3.14)

0" =v*.

{X""=é"‘”+ iA({rE, v, 7)

Here the symbol tré denotes (2 x 2)-matrix with matrix elements

r

(ﬁ.é)uv: Z 62X+u’2z+v9
x=1
where p,v=0,1.
It is convenient to represent the (2r x2r)-matrix ¢ as a (r xr)-matrix =
consisting of (2 x 2)-matrices 2™ (the matrix Z* has matrix elements 27 # 20+v
where 7, w=1, ...,#). Then fré can be considered as the trace of Z:

ré¢=5"4 ... +2".

The surface (3.14) is invariant by the translation x**—x* +b* where b* =p*?,
frb=0. One can replace the Eq. (3.14) by this invariance property.

The functions s#*#(fr £, v, ) depend on four even variables. Therefore one can
consider the (n?, 2n)-density A(Q) on (3.14) as a Lagrangian L, defined on the fields
in four-dimensional space. If the element of .#, transforms every surface of the
form (3.14) into the surface having the same form then this element can be
considered as a symmetry transformation of the Lagrangian L,. The supergroup
consisting of these elements will be denoted by .#’. It is easy to check that the
transformation

{x“”—»,l“ﬂ(x, ) (3.15)

0" — 1% (x, 6)
belongs to %’ when the functions u*(x, 6),

Mx,0)+ 17 (x, 0)

- ~ -2t
tr ReA(x, 0)= trf, ImA(x, 0)= M

2i

satisfy
px+b,0)=p"(x,0),
tr ReA(x + b, 0)=fr ReA(x, 0),
Im A(x +b, 0) =ImA(x, 6)

if p** =b%* frb=0 (in other words these functions must depend on fr Rex, Imx,
0, ...,0". The subgroup of #’ consisting of elements transforming every surface of
the form (3.14) into the same surface will be denoted by .#”. The group ¥’/¥" can
be considered as the group of local symmetries of the Lagrangian L,. The surface
Q, has the form (3.14); one can consider this surface as the classical vacuum of the
Lagrangian L,. The supergroup Zn%'/?n¥" can be interpreted as the group of
global symmetries of the Lagrangian L,. The transformation (3.13) belongs to



528 A. V. Gayduk, V. N. Romanov, and A. S. Schwarz

PnY'. The transformation (3.12) belongs to 2n.#" in the case when there exists
such a unitary (r xr)-matrix A, and unimodular (2 x 2)-matrix c* that

2t+HU _ AT a4
a2w+v_chv

for u,v=0,1; r,w=1,...,r [in other words the matrix aj can be considered as
(r xr)-matrix consisting of (2 x 2)-matrices A c]. The group N.¥" consists of
transformations

x> x4 b,

where b* =b%*, {rb=0. It follows from this description of Zn.%¢’ and ZN.Z" that
the Lie superalgebra of Z2n¥'/PnL" is a directed sum of the extended Golfand-
Likhtman algebra and Lie algebra of the group U(r).

We see that the global symmetry group of L, is similar to the global symmetry
group in extended supergravity. However the Lagrangian L, describes many fields
having spin 2 and fields having higher spins.
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