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Resonances in the Stark Effect of Atomic Systems

S. Graffi and V. Grecchi*

Istituto Matematico, Universita di Modena, 1-41100 Modena, Italy

Abstract. Generalizing earlier results on the Hydrogen case it is proved,
through a dilation analyticity technique different from the canonical one,
that the action of a weak electric field shifts the isolated eigenvalues of any
atomic system into resonances of the Stark effect, uniquely determined by
the perturbation series through the Borel summation method.

I. Introduction

This paper represents a continuation of a preceding one [3] in which the existence
of resonances in the Hydrogen Stark effect and the Borel summability of the
divergent perturbation series were proved through the well known separability
of the problem in squared parabolic coordinates. These results have been in-
dependently and almost simultaneously obtained by Herbst [5] for a two-body
Stark operator with a dilation analytic potential of general type. Furthermore
Herbst and Simon [6] have announced a generalization [7] see also Hunziker [8]
of Herbst's results to a TV-body Schrόdinger operator of the type

H(F) = - Σ Δ•- Σ vi(ri) + Σ v-^i-rJ+Σzι (! !)
1 1 i<k 1

which includes the operator describing the Stark effect on any atomic system
obtained for F(r;) = Z/|rt-|, Vik = l/\ri — rk\, if Z is the atomic number, F the electric
field strength, and the electron charge is put equal to one.

The key argument of [5] is the discovery that the canonically dilated operator
— e~2φΔ+Feφz associated with — Δ+Fz is, when defined on D{ — Δ)nD(z\ a
holomorphic family of type A with empty spectrum for 0 < \lmφ\ < π/3. This allows
to extend the dilation analyticity technique [1,2] to the Stark problem, which is
not dilation analytic according to the usual notion of this concept (see e.g. Reed
and Simon [10, Sect. XIII.10]).
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Here on the contrary the basic argument is as in [3], although, of course, the
problem is no longer separable. It consists indeed in proving the relevant analytic-
ity statements by performing an anisotropic dilation on the squared parabolic
coordinates (Sect. II). In the Hydrogen case the separability implies that the
dilation analyticity in this sense is related to the well known analyticity of the
anharmonic oscillator operator family [12]. In the present iV-body case it has
to be explicitly proved. This procedure allows (Sect. Ill) to associate with the

'JV N

operator — Σ Λ + Σ z ΐ a holomorphic family of m-sectorial operators with com-
1 1

pact resolvents for suitable non real values of the dilation parameter. Then the
standard hypothesis that the potentials are dilation analytic makes the introduc-
tion of the Weinberg-Van Winter equation unnecessary and yields the com-
pactness of the resolvent of the dilated operator associated with H(F) by the
present procedure. The eigenvalues of this operator are identified with the re-
sonances of H(F). On the other hand (Sect. IV) the compactness and the sec-
toriality allow the application of the Weinberg-Van Winter equation to prove
the convergence of the resonances to the atomic bound states (at least those lying
below all thresholds) as F->0. Finally for any non degenerate bound state this
stability result will be strengthened to the Borel summability [4] of its Rayleigh-
Schrodinger perturbation expansion to the nearby resonance.

II. Parabolic Dilation Analyticity

The formal Schrodinger operator describing the motion of a particle of unit
charge and mass 1/2 under the action of a uniform electric field of strength F > 0
directed along the z axis is:

ho(F)=-Δ+Fz. (2.1)

ho(F) is essentially self-adjoint in L2(R3) if defined on C^(R3). Its unitary image
under the standard dilation map (x, y, z) + (eφx, eΦy, eφz), φeR, is

ho(F, φ)=-e-2φΔ= eφFz , D(ho(F, φ)) = C%(R3). (2.2)

The differential expression (2.2) can be formally continued to non real values oϊφ.
Its realization as an operator family in L2(R3) has been given by Herbst [5].
Denoting (throughout this section) by Wm the m-th Sobolev space on R3, and by
L2

S the weighted Hubert space with weight (l + |x|2) s / 2, his results can be stated
as follows:

Proposition 2.1. Let 0<|Inκ/>|<π/3, and ho(F, φ) be defined as an operator in L2

by the differential expression (2.2) with domain W2r\D{z). Then:
(i) ho(F, φ) is a holomorphic family of operators in L2 (of type A: see e.g.

[9,VII.l] for a definition).
(ii) σ(ho(F,φ)) = 0.

(iii) // Φ^ΦQGR, [ho(F, φ) — E~] 1-?[h0(F, φo) — E] \ uniformly on compacts
in E for R e £ < 0 , I m £ > 0 .

Our first aim in this section is to prove an analogous result when the dilation
is performed on a squared parabolic coordinate. To begin with, let us define the
transformation and prove its unitarity.
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Lemma 2.2. Let f(x9 y9 z) belong to L2. Let ΘeR, and t(θ):L2^L2 be defined as:

(t{θ)f) (x, y, z) = eι/2θlr(θ)/ry/2f(e1/2θx, e1/2θy, az + βr)
(2.3)

Then t(θ) is a unitary map of L2 onto itself

Proof We have of course t(θy1=t( — θ) with domain L2. Then the unitarity
follows just by remarking that the Jacobian of the transformation (x, y, z)—>(e1/2(?x,
e1/2θy, (xz + βr) is jφ) = eθ[r{θ)/r~\. This proves Lemma 2.2.

Remarks, (i) Introduce the squared parabolic coordinates (u9v,φ): x = uvcosφ,
y = uvsinφ, z = ̂ (u2 — v2); u2 = r + z, v2 = r — z, φ = arctg(y/x). Then r = j{u2 + υ2),
r(θ) = %u2 + e°v2), t(θ)u2t(-θ) = u2, t(θ)v2t(-θ) = e°v2. We thus see that the trans-
formation t(θ) amounts to a standard dilation performed only on the squared
parabolic coordinate υ.

(ii) Let f(θ)=[r(θ)/ry/2. Then the maximal multiplication operators by f(θ)
and f{θ)~ι represent bounded holomorphic families [9, VII.1.1] in L2 for all
complex θ in the strip |Im0| <π.

In order to obtain an explicit realization of the unitary image of the Laplace
operator under t(θ)9 let us first prove a lemma which will be of fundamental
importance in what follows.

Lemma 2.3. Let ho(θ) be the operator family in L2 defined as:

+ ±(l-e-2θ)d2/dz2-(l-e~θ)r(θyid/δz, (2.4)

: £ + 3 > ! : ) D{ho(θ))=W2.

Then for any ε, 0<ε<π/2, there is δ>0 such that ho(θ) represents a holomorphic
family (of type A) of m-sectorial operators for all complex θ in \θ\ <δ, with opening
angle not exceeding 2ε. The quadratic form domain of ho(θ) for any such θ is Wγ.

Proof First remark that there is (5>0 such that r(θ)~ι is holomorphic with
\r(θ)~ι\<2r~ι for |0 |<δ. Hence the operator (l-e~θ)r{θyιδ/dz is continuous
from W2 to L2 because d/dz is continuous from W2 to Wi and the multiplication
by r~ι is continuous from W{ to L2. Moreover we can always take δ such that
\{az + βr)rφyι\<2 for |0|<<5, and hence {(xz + βr)r{θ)~1d2/δz2 is continuous from
W2 to I}. Similar arguments apply to the other terms in C(θ) = ho(θ) + A. Therefore
by taking δ suitably small we see that C(θ) defined on W2 is relatively bounded,
with relative bound smaller than 1, with respect to —A both in the operator sense
as well as in the quadratic forms one. Hence a direct application of standard
perturbation arguments proves the lemma.

Theorem 2.4. Let θeR, \θ\<δ9 and -A{θ)= -tφ^tφy1 be the unitary image of
the Laplace operator under the map t(θ):L2<r->L2. Then, as an operator identity:

) = f(θ)ho(θ)f(ΘΓι, (2.5)

where f(θ) is as in Remark (ii) above.
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Proof. Let us first check that the transformation f(θ)~1t(θ)xp, |0|<<5, leaves
W2 invariant. An easy computation shows that if ψeW2, — A(f(θ)~ιt(θ)xp)
=f(θ)~1t(θ)h0( — θ)ψ, ho( — θ) being given by the differential expression (2.4). Now
/io(- θ) has domain W2, t(θ) is unitary and/(0)~* is bounded, so that/(0)"1 t(θ)ψe W2.
The converse statement ψeW2 if f(θ)~1t(θ)ψ is in W2 is obtained by replacing
θ by -θ in the above argument. Hence D(A(θ)) = t(θ)W2 = f(θ)W2. By defini-
tion, D(f(Θ)ho(θ)f(θ)-1)={ueL2\f(θyίueW2} because f{θ) is bounded.
Hence D{f(θ)ho(θ)f(θ)~ί) = f{θ)W2 = D(Δ{θ)). Since one easily verifies that
-f(θ)ho(θ)f(θy1ψ = Δ(θ)ψ when ψeD(A(θ)) the theorem is proved.

It is now possible to characterize the holomorphic operator family associated
with — A by the analytic continuation of t(θ) to θ complex.

Corollary 2.5.Let θ be complex. Then there is δ>0 such that the operator family
— A(θ) defined for θeR can be continued to a holomorphic family of operators
in L2for all complex θ in \θ\<δ, and σ{A(θ)) = σ(ho(θ)).

Proof Since -A(θ)=f(θ)ho(θ)f(θ)~1 when θeR, it is enough to show that the
latter can be continued to a holomorphic family with non empty resolvent set
for |0| <δ. Then the assertion is a consequence of the unique continuation property
of the holomorphic families [9, VIT.1.2]. Now by Lemma 2.3 and Remark (ii) after
Lemma 2.2 f(θ)ho(θ)f(θyι defined on {ueL2\f{θyιue W2} is a closed operator
for all complex θ in |0| < δ and [/(0)Λo(0)/(0)"1 - E ] " ' =/(0)[Λ o (0)-E] '7(0)" 1

is a bounded holomorphic family for |0|<<5 when EφW(ho(θ)), the numerical
range of ho(θ). Hence f(θ)ho(θ)f(θ)~1 is a holomorphic family, and the assertion
on σ(A(θ)) is an immediate consequence of the above identity. This proves the
corollary.

The second step consists in analyzing the operator associated with — e~2φA
+ Feφz along the lines of the above treatment of the Laplace operator.

A first obvious remark is that t(θ)zt(θ)~ι =ocz + βr as a multiplication operator
in L2, so that this operator can be extended to θ complex. For O < I m 0 < π one
easily shows that the domain of the maximal multiplication operator by az + βr
is L\. Then we have:

Theorem 2.6. Let ho(y, θ) be the operator family in L2 defined as

ho(y, θ) = ho(0) + y(αz + βr), D(ho(γ, θ)) =W2n L\ . (2.6)

(i) For any fixed y in (|y| >0|0<arg(y)<:π} there are θ>0 and an open set M
contained in |0|<<5, δ as in Lemma 2.3, whose intersection with the imaginary θ
axis contains the open interval (0, θ), such that ho(y, θ) represents in M a holomorphic
family of type A of m-sectorial operators with compact resolvents.

(ii) When arg(y) = π/2, θeM, Re0 = 0, [ho(y9 Θ)-EYι^>\_-Δ + yz-E]~\
uniformly on compacts in E for R e £ < 0 , I m £ > 0 , as Im0->O, and to [ho(θ) — E]~1

as |7|->0, 0<arg(y)<π, θeM, with the same uniformity in E.

Remark. From now on, when referring to ho(y, θ) we shall always assume that the
conditions 0eM, 0<arg(y)<π, |y |>0 are fulfilled.

The proof of the above theorem is to be obtained through the following
lemmas, which are moreover of some relevance of their own in what follows.
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Lemma 2.7. Let ε, δ be as in Lemma 2.3. Then the numerical range W(ho(y, θ)) of
ho(γ, θ) is contained in a sector of opening angle strictly less than π. If arg(y) = π/2,
W(ho(γ9 Θ))={E\ -π/2 + lmθ^ arg(£)^π/2}.

Proof The numerical range of y(az + βr) is contained in {E\ — π = Im0 = arg(y)
^arg(£)^arg(y)} for all θeM, because in squared parabolic coordinates

az + βr = u2 — eθυ2. Since for |0|<<5 W(ho(θ)) is contained in a sector of opening
angle 2ε about the real axis the result is proved.

Lemma 2.8. Let θ and γ be complex, θeM, \y\>0,0< arg(y)<π. Then if ψe W2nL\
there are α>0, ft>0, c > 0 , independent of (7, θ) on compacts of the stated regions,
such that the following quadratic estimate holds:

\\{-A + y(az + βr)}ψ\\2+b\\ψ\\2^a{\\-Aψ\\2+c\\yrψ\\2}. (2.7)

Proof. Proceeding as in [5], let us write, as quadratic forms on W2nL\ ®W2r\l}x

(here p2 = — A, and p, pr, pz have their usual meaning): (p2+7(otz+βr)) (p2+y(otz+βr))
= P

4 + \oty\2z2 + \βy\2r2 + 2\y\2 Re(α^)rz+ Re(αγ) (zP

2+p2z)+ Re(^y) (rp2+p2r)
+ 2lm(ay)pz + 2lm{βy)pr = (remember that rp2+p2r = [_pr, [pr, r ] ] + 2 p (rp)
= 2p (rp), zp 2 +p 2 z-2p.(zp)) = p 4 + |α7|2z2 + |i5y|2r2+2|7|2 Re(αjβ)rz
. (zp) + 2Re(^7)p. (rp) + 2Im(α7)/?z + 2Im(i8y)pr = p4 + |αy| V + |)8y | 2 r 2

+ 2 (Re(α7)+ Re (βy)p (zp) + 2 Re (j8y)p (r ± z)p + 2 Im(αy)p» + 2
+ |αy I V + |/?yl V + 2|y|2Re(aβ)rz+2(Re(ay)+Re(^))p (zp)+2lm(ay)pz+2lm(βy)pr

Now for any ε, 0 < ε < 1 and any he R we have 2/cp (zp) ̂  — (1 — ε)(p4 + /c2(l — ε)" 2z 2),
so that: (p2 + 7(άz + ̂ r)) (p2 + y(az + βr))^εp4-(l - ε ) " 1 (Re(αy)- Re(jSy))2z2

Re(otβ)rz-b, for some positive constants η<ε
and ft which can be chosen independent of (7, θ) as required η can be taken
arbitrarily close to ε by taking ft large enough. Let now χ= arg(y), θ = θι+iθ2.

| 7 | { ( 2 ) 2}

A\y\2Rφβ) = \y\2 (l-e2θl). Hence

- 4(1 - ε)" 1e2 θ lcos2(χ + Θ2))z2 +17|2(1 = e2θl -2eθlcosθ2)r2 with 1 = e2Oί + 2
^ ( l + eθ l c o s θ 2 ) 2 ^ min(4e2 0 1 cos 2 θ 2 ,4cos 2 θ 2 ). Let now m < l , and choose ε such
that cos2 χ<m(l—ε). Hence there are mγ < 1 and θ2 such that (1 — ε) " 1 cos2(χ + θ2)
<m1 cos 2 θ 2 for all θ2 in 0 < θ 2 < θ 2 . Since in the same range of Θ2 one has

( l-cos0 2 )>O, we can always find θ^θ^ such that, for \θι\_<θu2\\-e2θλ\<{\+e2θi

-2eθί cosθ2). Since \z\^r this yields (p2+7(αz + j8r)) {p2 + y{az + βr))^ηp4r

+ |7|2g(l — cosθ2)r2, for some q>0, which proves the result.

Lemma 2.9. The quadratic estimate (2.7) remains valid if we replace —A by ho(θ),
i.e. with possibly different constants α>0, /z>0, c > 0 but with the same uniformities
for any ψe W2nL\ one has:

| | {M0)+7(^+Mvll 2 +^ll^l l 2 ^^{IIM^II 2 + ̂ lly^||2}. (2.8)

Proof As in Lemma 2.3, write ho(θ)= -A + C(θ\ where C(θ) is relatively bounded
with respect to — A with relative bound arbitrarily small for |0| suitably small.
Then, for ψe W2nL\: \\{ho(θ) + y{aιz + βr)}ψ\\ ^ \\{-Δ + γ(aιz + βr)}ψ\\ - \\C(θ)ψ\\

^ || { — A +7(αz + /?r)}φ|| —ει\\—Aψ\\—b1\\ψ\\. The quadratic estimate (2.7) implies
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that there are α2, b2, c2 such that ||{ — A + y(az + βr)}ψ\\ ^a2\\ — Δψ\\ + c2\\yrψ\\
— b2\\ψ\\. Since we can always find values of θ such that ε1 <a2, we get \\{ho(θ)
+ y{az + βr)}ψ\\ +{bι+b2)\\ψ\\^{a2-ει)\\ -Aψ\\ +c2\\γrψ\\, whence the result be-
cause, again, there are ε2, b3>0 such that ( l + ε 2 ) | | —Aψ\\ ̂ \\ho(θ)ψ\\ + fc3||v>||.

Proof of Theorem 2.6. We already know that Q(ho(θ))= Wί, and clearly one has
Q(y(az + βr)) = L\/2. If we choose ε< arg(y)<π —ε, 2ε the opening angle of Lem-
ma 2.3, both forms ei{π/2~aτg{y))h0(θ) and ei{π/2~argiy))γ(ocz + βr) are strictly sectorial
with numberical ranges contained in the right half-plane RQH ^ 0 . Hence we can
define the form sum ho(y, θ) oϊh0(θ) and y(ocz + βr) as the operator associated with
the sum of the two above forms. ho(γ, θ) is m-sectorial and Q(ho(γ, θ))=WίnL\/2.
Furthermore, ho{y,θ)Dho(y,θ). Now the quadratic estimate (2-8) implies that
ho(y, θ) is closed on W2nL\, which is dense in WίnL\l2 in the norm of Wίr\L\/2

and hence is a form core oϊh0(y, θ). Therefore (see e.g. [9, VI.2.1]) ho(y9 θ) = ho(y, θ).
Now by the closed graph theorem the operator [/zo(y, θ)~£]"*( — A + r+1) is
bounded for EφW(ho(y, θ)). Hence [ho(y, Θ)-Eyι = [ho(y, Θ)-E]~\-Δ +r + l)
( — z l + r + l ) " 1 is compact by the compactness of ( — z l + r + 1 ) " 1 . This proves
assertion (i). To see (ii), remark that the union over Im(0^O of W(ho(y,θ)) is
contained in the half-plane R e £ > 0 when arg(y) = π/2, |0|<<5. Hence [ho(y,θ)
— £ ] ~ 1 i s bounded uniformly over I m θ > 0 , Reθ = 0 when arg(y) = π/2 and thus
its strong convergence to ( — A + yz — E)'1 with the stated uniformality as Imθ->0
follows by a direct application of a known result [9, Theorem VIΠ.1.5] because
ho(y9 θ)u-*{-A+yz)u when Re0 = O, arg(y) = π/2, Imθ->0, for any ψeW2nL\
which is a core of — A+yz. Analogously, since the union over |y |^0 of
W(eίiπ/2-arg{y))h0(y,θ)) is contained in R e £ ^ 0 and ho(y,θ)u-+ho(θ)u as |y|->0
when ueC$ which is a core of ho(θ), lho(y,θ)-Ey1

Ί?tho{θ)-E']-1 as |y|-*0
with the stated uniformity. This proves Theorem 2.6.

From now on let us call a dilation analytic vector in the standard sense
a canonical dilation analytic vector. If ψeL2 is such that any scalar product
(t(θ)ψ,φ}ΞΞ(ψ(θ),φ), φeL2, defines an analytic function of θ in some strip
|Im0| <<59 δ >0, it will be called a parabolic dilation analytic vector. It is immediate
to check that, given δ > 0, there always is a dense set of parabolic dilation analytic
vectors.

Corollary 2.10. Let δ>0.
(i) // ψi, ψ2 are parabolic dilation analytic vectors for |Im0|<(5, then, for

arg(y) = π/2:
1 M 1 1 (2.9)

(ii) σ(ho{y9θ)) = 0 far
(iii) If ψι, ψ2 are jointly canonical and parabolic dilation analytic i.e. the scalar

products (t(θ)u(φ)ψί,ψy = (u(φ)t{θ)ψί,ψy, u(φ) being the canonical dilation,
are analytic functions of (θ,φ) in {(\Imθ\<δ)x(\Imφ\<η)}, η>0, we have, for
0<arg(Fe3φ)<π:

Proof (i) The operator family f(θ)[ho(y9 Θ) — E]~ιf(θ)~ι is of course holomorphic
in the same holomorphy region of [ho(γ,θ) — E']~1. On the other hand, the scalar
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products in the r.h.s. of (2.9) are independent of θ for θe M because [f(θ)ho(θ)f(θ) ~1

+ f(θ)γ{ocz + βr)f(θ)~ί-ET1=f(θ)lh0(y, Θ)-E]~ιf(θ)"' (which can be proved
exactly as in Theorem 2.4), the unitary equivalence between f(θ + θι)h0

•(yτθ + ΘJfφ + θ,)-1 and f{θ)ho{θ)fφyι for θxeR and the usual analyticity
argument. Hence (2.9) is simply a consequence of the strong convergence of
Theorem 2.6(ii). Assertion (ii) is a consequence of σ( — A+γz) = 0 [5, II. 1] and
of the compactness of [h0 (y, θ) — E] ~1 because (2.9) holds for any ψί9ψ2 belonging
to a dense set. Finally, (iii) is a consequence of (2.9) and of Herbst's result if we set
y = Fe3φ. This proves Corollary 2.10.

III. Resonances in the N-Boάγ Case

The formal Schrodinger operator in L2(R3N) describing the motion of AT particles
of mass 1/2 and unit charge under the action of a uniform electric field of strength
F > 0 directed along the z axis is

H 0 ( F ) = - £ J / + F£Z I., (3.1)
1 1

where ri = {xhyhzι) denotes the position of the f-th particle, and At the Laplace
operator with respect to (xh yh zt). If in addition the particles interact via two-
body potentials P^ (rt — r,-), and each particle interacts with a fixed centre via a
potential K( r λ w e a r e le(3 t 0 t n e formal Schrodinger operator for the N-body
Stark effect:

H{F)= -ΣΔi+ Σ V(τύ+ Σ Vijir -τjHFΣzi. (3.2)
1 1 i<j 1

We will now describe the realization of the various holomorphic families of
operators associated with H0(F) and (under suitable assumptions on the potentials
to be stated below) with H(F) by the analytic continuation of the unitary dilation,
formulated both in the canonical way as well as in terms of the squared parabolic
coordinates. Consider in L2(R3N) the essentially self-adjoint operator H0(F)
defined by (3.1) on CQ{R3N). Its unitary image under the dilation map (xhyhz^

1 1

with domain CQ (R3N). With φ is complex, we have a straightforward generalization
of Herbst's characterization of — e~2φΔ+ eφFz in the two-body case, which for
convenience is stated as a lemma, with proof of course omitted.

Lemma 3.1. Let 0 < arg(F) + 3 I m φ < π , and let T0(F, φ) be defined as an operator
ίnL2(R3N)by

T0(F,φ)=-e-2φΣAi + eφFΣzi, D(T0{F, φ))=W2(R3N)nD(Σ
1 2 \ 1

Then:
(i) T0(F9 φ) is a holomorphic family of type A of operators in L2(R3N) (in each

single variable, the other one being held fixed) with empty spectrum.
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(ii)
ly on compacts in E for Re£<0, Im£>0.

In order to introduce the parabolic dilation analyticity in the present N-body
case, let us first generalize the dilation operation of Lemma 2.2.

Lemma 3.2. Let ΘeR, and U0(θ) be the operator in L2(R3N) defined as U0(θ)
N

= (X) ίf(0), where tt{θ) is the unitary operator in L2(R3) of Lemma 2.2. Then U(θ)
_i

= U0(θ) is a unitary map of L2(R3N) onto itself

N

Proof Let feL2{R3\ i=l,...,JV, and f=(g)feL2(R3N). Then \\U0(θ)f\\

= ||ί(0)/i ®t{θ)f2 ®...®t(θ)fN\\ = 11/11 = \\t{-θ)fγ ®t(-θ)f2 ®...®t(-θ)fN\\
N

= \\U0(-θ)f\\. Since UO(-Θ) = UO(Θ)-1 and L2(R3N)^ <g)L2(R% the lemma
1

is proved.
The generalization to the ΛΓ-body case of the relevant properties of the para-

bolic dilation analyticity is simple. Introducing for simplicity the notations

Σ Δ t = ΔN,Σz~zN, Wm(R3N)= Wm,L2

S(R3N) = L2

S, G(θ)= UMΘ)Jt(θ)=irι{θ)/rβ1'2,
1 1 1

i= 1,..., N, a simple tensor product argument yields:

Proposition 3.3. Let H0(θ) be the operator in L2 defined as the closure of the tensor
product ho(θ)®I...®I + I®ho(θ)®...®I + ...+I®...®ho{θ) where ho(θ) is the
operator in L2(R3) of Lemma 2.3. Let ΛN(Θ)= U(Θ)ANU(Θ)~1 be the unitary image
of the Laplace operator AN under U(θ), θeR. Then:

(i) For any ε, 0<ε<π/2, there is δ>0 such that H0(θ) has domain W2 and
is a holomorphic family of type A of m-sectorial operators with opening angle
not exceeding 2ε for all complex θ such that |0|<<5. The quadratic form of H0(θ)
isWx.

(ii) // ΘER the following operator identity holds:

-AN(θ) = G(θ)H0(θ)G(θyι. (3.3)

(iii) The operator —ΔN(Θ) can be continued to a holomorphic operator family
in I2 for all θ in \θ\ <δ, and σ(ΔN{θ)) = σ(H0(θ)).

Proposition 3.4. Let H0(y, θ) be the operator family in L2 defined as the closure of
N N

the operator H'Q(y, 0) = Ho(θ) + γ £ (αz4 + βrt) with domain (g)(W2(R3)nL\(R3)).
1 1

Then D(H0(y,θ))=W2nL\, and Theorem 2.6, Corollary 2.10 remain unchanged
under the replacements ho(y,θ)-+Ho{y,θ\ Wm(R3)-*Wm, L2

S(R3)->L2

S, -A+yz^
-AN + yzNfh0(θ)-+H0(θ\ -A+Fz^-AN + FzN.

Proof. H'0{y, θ) is closable because ho{y, θ) is a closed operator in L2(R3) and

H'0(γ9 θ) = ho(y, θ)®I®...®I + ...+I®I ®...®ho{y, θ). (3.4)
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Proceeding exactly as in Lemmas 2.8 and 2.9 (up to some simple modifications
to be omitted for brevity) one has the further quadratic estimate

^a \\\H'0(θ)ψ\ (3.5)

valid for any ψe (x)(W2(R3)nL2

1(R3)) under the same conditions and with the
1 N

same uniformities as in Lemma 2.9. Since (^(W2(R3)nL\(R3))^W2nL\,
1

a standard closure argument shows that H0(γ, θ) has domain W2nL\. To prove
the remaining part of the theorem, first remark that, by (3.5) and the fact that

N

(g)(W2{R3)nL\(R3)) is a core of H0(y,θ), we can replace ho(y,θ) by H0(y,θ) in
1

Lemma 2.7. Now, proceeding as in the proof of Theorem 2.6, taking the form sum
N

of H0(θ) and ^(αz^ + ̂ η) and applying the quadratic estimate (3.5) we conclude
1

that H0(y,θ) is m-sectorial. Again as in Theorem 2.6, we can use the quadratic
/ N Λ - l

estimate (3.5) and the compactness of — ΔN+ Σ r ί + 1 to prove the compactness
\ i /

of [_H0(y, θ)—£]-1 by the closed graph theorem. The strong convergence state-
ments of Theorem 2.6(ii) are proved in the present case by exactly the same
argument because ho(y,θ) can be replaced by H0(y,θ) in Lemma 2.7, and the
same is true for the assertions of Corollary 2.10 just by remarking that the dilation
analytic vectors, both in the canonical sense as well as in the parabolic one, are
now intended in L2(R3N). This proves Proposition 3.4.

Let us now specify our assumptions on the interparticle potentials.

Assumptions 3.5. Let V0:R
3^R be an arbitrary two-body potential 7f(rf) or

Vij(ri — Γy), i, j= 1,..., N. Then let us assume
(i) Vo belongs to the class Ca of dilation analytic potentials (see e.g. [10, XIII. 10]).

This means, let us recall, that the multiplication by Vo is compact if considered as an
operator from W2(R3) to L2(R3), and that V0(φ)=V0{eφx, eφy, eφz):W2(R3)^L2{R3)
admits a compact valued analytic continuation from R to the strip | I m 0 | < α .

(ii) // V0 = Vh for any φ in | Imφ|<αF 0 (φ) is dilation analytic with respect to
the transformation t(θ) for |0|<<5, i.e. the multiplication operator from W2(R3)
toL2(R3)\ t{θ)V0{φ)t{θyι=V0{θ, φ)=V0(eiθ + φ)x, e{θ + φ)y, eφ(l-eθ)r/2 + eφ(l+eθ)z/2)
admits a compact operator valued analytic continuation from θe RtoΘδ= {θ\ \θ\ < δ}.
If Vo = Vipfor any φ as above V0(φ) is dilation analytic with respect to the transforma-
tion U(θ) for \θ\<δ, i.e. the multiplication operator from W2 to L2 U(θ)V0(φ)U(θ)~~1

= V0{θ,φ)=V0{eiθ+φ)x,eiθ + φ)y,eφ{l-eθy/2 + eφ{l+eθ)z/2), r'-r^r^, admits a
bounded-operator valued analytic continuation from θeR to Θδ= {θ\ |0|<<5}.

(iii) Vi9 Vij are such that H(F) is essentially self-adjoint on CQ(R3N).

Remarks, (a) The class of two-body potentials satisfying the above assumptions is
not empty. For instance it includes the Yukawa and the Coulomb ones, which
yield the essential self-adjointness of H(F) on CQ(R3N) (see e.g. [10, X.5]).
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(b) Let V(θ, Φ) = Σ Wτ Φ)=Σ viβ> Φ) τ h e n v i s bounded as a map from
1 ^ i<j

W2 to L2 and, a fortiori, bounded as a map from W2nD(zN) and from W2nL\ to
I2 for all (0, φ) in Θό x ( - α, α).

We are now in position to define the two operator families in L2 associated
withH(F):

H(F, φ)= -e~2φΔN+V{φ) + eφFzN , D(H(F, φ))=W2nD(zN), (3.6)

H(F, θ, φ) = e~2φH0(e3φF, Θ)+V(θ, φ)

= e ~ 2φH0(θ) + V(θ, φ) + e*F Σ («** + βrd ,
1

,#=^nZ?1. (3.7)

The relevant properties of these operator families are summarized in the following
result.

Theorem 3.6. (i) // F and φ are real H(F, φ) is essentially self-adjoint.
(ii) If F and φ are complex, 0<arg(F) + 3 I m φ < π , H(F, φ) is a holomorphic

family of type A (in F at fixed φ, and in φ at fixed F).
(iii) // F, θ, φ are complex, θeM, 0 < arg (F) + 3 Im φ< π, H(F, θ, φ) is a holo-

morphic family of type A (in each single variable, the remaining two being held
fixed) of m-sectorial operators with compact resolvents.

(iv) // F is real, Imφ>0, there is Eo > — oo such that [H(F, φ) — E]~1 converges
strongly to [H(F, φo) — E']~1 when Imφ-+Q, Re0 = φ o , uniformly on compacts in E
forRQE<E0,lmE>0.

(v) // F is real, Imφ = π/6, there is E0>-oo such that [H(F,θ,φ)-Eγ1

converges strongly to [H(F, φ) — E~]~ι when Re0 = 0, Im0->O, uniformly on com-
pacts in E as above.

Proof, (i) H(F, φ) is essentially self-adjoint on C£ by Assumption 3.5 (iii) and the
unitary equivalence. Since W2nL2

1DC%>, H(F,φ) has the same closure and this
proves (i).

(ii) We have of course H(F, φ)=T0(F, φ)-\-V(φ), where T0(F, φ) is by Lemma
3.1 a holomorphic family with the stated properties. By our assumptions V(φ) is
bounded relative to T0(F,φ) with relative bound zero because D(T0(F,φ))
= W2nD(zN). Hence by a standard perturbation result H(F, φ) is closed and since
H(F, φ)u is of course a holomorphic vector function of (F, φ) for any ue W2nD(zN),
H(F, φ) is a holomorphic family of type A by definition.

(iii) is proved exactly as (ii) because of the properties of H0(y, θ) (with y = Fe3φ)
and V(θ, φ). Remark that the compactness of the resolvent is a consequence of
the compactness of \_H0(Fe3φ, Θ) — E~]~1 and the relative boundedness of V(θ, φ)
with respect to H0(Fe3φ,θ) with relative bound zero, in view of a well known
result (see e.g. [9, Theorem IV.3.17]).

(iv) The numerical range of e3φzN is the straight line through the origin with
angular coefficient 3 Imφ. Since V(φ) is relatively bounded with respect to — AN

with relative bound zero, given ε > 0 we can always find Eo<0 independent of ε
such that for 0 < I m φ < ε the numerical range of — ΔN + e2φV(φ) is contained in a
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sector of arbitrarily small opening angle and vertex Eo about the real axis. Hence
the region: {E\lmE>0\ReE<Eo} has positive distance from the union over
ε>lmφ>0 of W{e2φH(F, φ)) and therefore [_e2φH{F,φ)-E]~ι is bounded uni-
formly over I m φ > 0 . Hence it converges strongly to [e2φoH(F, φo) — E~]~ι with
the stated uniformity because e2φH(F, φ)u->e2φoH{F, φo)u, φ^φ0, for all ueCg*
which is a core of H(F, φ0).

(v) Again, given ε > 0 we have to control W(e2φH(F,θ,φ)) uniformly for
Re 0 = 0, O<Im0<£, Imφ = π/6. To do this, first remark that for lmφ = π/6 the

numerical range of Fe^^az^βr,) lies in {£|Re£ = 0}. Now e2φH(F,θ,φ)

and the numerical range of H0(θ)
1

+ e2φV(θ,φ) can be controlled exactly as above by the strict sectoriality (with
arbitrarily small opening angle) of H0(θ) and the relative boundedness (with
relative bound zero) of V with respect to H0(θ). Hence, again, the assertion follows
from the strong convergence H(F, 0, φ)u^H(F, φ)u as Im0->O, Re0 = O, taking
place for any ue W2nL\. This concludes the proof of Theorem 3.6.

Let us now verify that the eigenvalues of H(F, 0, φ) are resonances of H(F)
according to the standard notion of this concept (see e.g. [10, Sects. XII.6 and
XIII.10]).

Theorem 3.7. Let F be real, θ and φ complex, θeM,0<lmφ<π. Then:
(i) The eigenvalues of H(F, 0, φ), together with their (algebraic) multiplicities,

are independent of (0, φ).
(ii) All eigenvalues of H(F, 0, φ) lie in {£ |ImE^0} and are resonances of H(F)

in the following sense: if ψ\,ψ2

 a r e jointly canonical and parabolic dilation analytic
vectors for (0, lmφ)sΘδx (—α,α) then flt2(E) = (ψu(H(F) — Eyίψ2y has a mero-
morphic continuation from I m £ > 0 to the whole complex plane. The only poles
possible are at the eigenvalues of H(F, θ, φ). The set of singularities {E\flt2 has a
pole at E for some (ψι, ψ2)} coincides with σ(H(F, θ, φ)).

(iii) // Eeσ{H(F,θ, φ))nR then E is an eigenvalue of H(F).
(iv) H(F) has no singular continuous spectrum. σpp(H(F)) has no finite ac-

cumulation point.

Proof. The argument goes as in Corollary 2.10 and depends on the identity

IG(Θ)H(F, 0, φ)G(0)-ί-Eyί = G(0)[H{F, Θ,φ)-Eyι G(0)" ι (3.8)

which can be proved exactly as in Lemmas 2.3 and 2.4. (3.8) yields indeed the
independence of θ of the spectrum through the usual arguments. In addition the
dilation analyticity in φ for any fixed θ makes the spectrum independent also on φ.
Thus (i) holds and (ii) is an elementary consequence of (iv) and (v) of Theorem 3.6,
because_the dilation analyticity, first in θ and then in φ, makes the scalar products
(Ψl(θ, φ), G(Θ)[H(F, 0, φ)-E]-ιG(θ)-1ψ2(θ, φ)} independent of (0, φ) over 0eM,
O < I m 0 < π . [Remark that G(0), G ^ Γ ^ l as Im0^O, Re0 = 0.] Finally (iii) and
(iv) are well known consequences of the dilation analyticity, given the spectral
nature oϊ H(F, 0, φ). This proves Theorem 3.7.
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Remark. We do not attempt to prove the physically reasonable fact (and rigorously
proved in the two-body case: see e.g. [10, XIIL4]) that σ(H(F)) = σac(H(F))
= (—oo, + oo). We limit ourselves to remark that σ(H(F)) = (—oo, + oo). For, it is
an immediate consequence of the above result that if σ(H(F)) + ( — oo, + oo) then
it consists entirely of isolated eigenvalues of finite multiplicity, accumulating
possibly only at infinity. Then [ίϊ(F) — E]~ι would be compact and this is
impossible.

IV. Stability and Borel Summability

The Stark effect can be described by saying that the bound states of any atomic
system turn into resonances as soon as the electric field is turned on. We proceed
now to give a proof of this fact at least for the eigenvalues of the N-body Schrodinger

/ N N N \

operator -ΔN+vl-ΔN = ΣAi9V=ΣVi+Σ vΛ lying below all thresholds.
I1 1 i<jj

Moreover, if any such eigenvalue is simple, this stability assertion will be strength-
ened to the Borel summability of its perturbation expansion to the nearby res-
onance. The present stability result reads as a direct generalization of Theorem
III.2 of [5].

Theorem 4.1. Let H(0) be the Schrodinger operator in L2 defined by —AN-\-V on
W2, where any two-body potential satisfies assumptions 3.5 so that H(0) is self-
adjoint and bounded below. Let Eo be an eigenvalue of H(0) of multiplicity j lying
below all thresholds. Then for (θ, φ) complex, θeM,0<Imφ< π/3, F > 0, the operator
H(F, θ, φ) has exactly j eigenvalues (counted according their algebraic multiplicity)
near Eo for F small. These eigenvalue converge to Eo as F->0.

The proof is to be obtained through four preliminary lemmas. The basic
argument consists in taking advantage of the uniform strict sectoriality oϊH(F, θ, φ)
as well as of any cluster decomposition of it in order to obtain uniform bounds
on the resolvents for \F\ small and E near Eo through the Weinberg-Van Winter
equation.

Let us first reobtain within the present formalism Herbst's stability result in
the two-body case (JV= 1).

Lemma 4.2. Let the multiplication operator V:R3^>R be dilation analytic for
(0, lmφ)eΘδx( — oί,α), and define in L2(R3) the following operators:

/c(F, 0, φ, E) = V(θ, φ)(ho(F, θ,φ)-E)-\ k(θ, φ, E) = V(θ, φ)(ho(θ, φ)-E)~ι

, 0, 0 ) U = 1 =h{F, 0, φ) = ho(F, 0, φ)+V(θ, φ), D(h(.))=W2(R3)nL\(R3)

with \F\>09 0<arg(F) + 3Im(/><π, θeM, where h0ψ,φ) = e~2φh0(θ\ ho(F,θ,φ)
= e~2φh0(e3φF,θ). Then ||fe(F, )-k(-)\\->0 as |F|->0, uniformly on compacts with
respect to (θ,φ9E) for (0,Im<£)eMx(-α,α) and d(E9θ,φ)>0, where d(E9θ,φ)
is the distance between E and the union over \F\ ^ 0 of W(ho(F, •)).

Proof. By exactly the same argument of [5, Proposition ΠΙ.l(ii)], this norm con-
vergence holds if ho(F9 ), ho( ) are replaced by e~2φ( — A +e3φF(az + βr)) and
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— e~2φΔ, respectively [remark in this connection that [( — e~2φΔ — £ ) ~ \ αz + /?r]
2 -e-2φA-Ey1l Write:

.(ho(F,.)-£)-'.

By (2.8) and (ii) of Theorem 2.6, (-e-2φΔ + eφF{az + βr)+l)(h0(F, ^-E)'1 is
uniformly bounded over | F | > 0 and converges strongly to the bounded operator
(-e~2φA + I X / Z O O - ^ Γ 1 as |F|->0. Since the norm convergence

as |F|->0 takes place between compact operators, the lemma is proved.

Lemma 4.3. Theorem 4.1 holds for the two-body case N = 1.

Proof. If Eo<0 is an isolated eigenvalue of /ι(0,0,0)= — A + V, it is an isolated
eigenvalue also of Λ(0,0, <£) = — e~2φA + F(0) for |Im</>|<α. By the identity
{f(θ)h(09 0, φ)f(θ)~1-Ey1=f(θ)(h(0, 0, φ)-Ey1f{θy\ the analyticity in 0 and
the unitarity of t(θ) for 0 real, Eo is an isolated eigenvalue, with the same (algebraic)
multiplicity also of h(0, 0, φ) for (0, Imφ) in Θδx(—α,α). Hence, by Lemma 4.1, the
assertion follows by exactly the same argument of Herbst [5, Theorem III.3], if
we replace K(ε, 0, z\ K{θ, z), H(ε, 0), # 0 (ε, θ) by fe(F, θ, φ, £), k(θ, φ, E), h{F9 θ, φ\
ho(F9 θ, φ), respectively.

Remark. Let Eo < 0 belong to the open set ρ(h(0,0,0)). If as usual Eo is interpreted
as an eigenvalue of multiplicity 0, the above result implies that Eoeρ(h(F, θ, φ))
for \F\ suitably small, and that (h(F, Θ,φ) — E)~1 is bounded uniformly with respect
to F for all E such that \E — Eo\ is small (depending on F).

Let us now introduce the Weinberg disconnected and connected kernels
D(F, 0, φ9 E), D(θ9 φ, E)9 /(F, θ9 φ, E)91{θ9 φ9 E) corresponding to (H(F, Θ,φ)-E)~\
(H(0,θ9φ) — Ey1, respectively, defined as usual as the sum of all disconnected
and, respectively, barely connected diagrams in the geometric expansions:

(ff(F, 0, φ)-E)-ι=(H0{F, θ, φ)-Eyι{\ + V(.)(H0(F, 0, φ)-Eyιyι , (4.1)

,ώ)-Ey1=(Ho(0,θ,φ)-Ey1{l + V(.)(Ho(0,θ,φ)-Ey1}-1 (4.2)

for all values of E for which these expansions converge. (For these, and several
other notions freely used in what follows without further reference, see [10,
XIII.5].) Remark that under our assumptions on the potentials there is a con-
vergence region independent of F as long as 0eM, 0<arg(F) + 3 I m 0 < π .

Lemma 4.4. Let F, θ, φ be as in Theorem 4.1. Let G(F, θ, φ, E) be the operator cor-
responding to an arbitrary diagram in the geometric expansion (4.1), and G(0, φ, E)
the operator corresponding to the same diagram in the geometric expansion (4.2).
Then there is E' such that, uniformly on compacts in { £ | R e £ < £ / | I m £ > 0 } and in
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(θ, φ) as above one has:
(i) G(F, , E) is compact.

(ii) // the diagram is connected, G(,E) is compact.
(iii) // the diagram is disconnected, G(F, , £)->G( , E) as |F|->0.

(iv) // the diagram is barely connected, G(F, , £)—>G( , F) in norm as \F\—>0.

Proof. Let Vx{ ) be an arbitrary two-body potential satisfying (3.5). Then
^i( ) : W2-*L2 is bounded, and the immersion of W2r^L\ in L2 is compact. Thus
it is easy to see that Vι(-):W2nL\-+L2 is compact. Since D(H(F, •))= W2nL\, and
σ{HQ(F, )) = 09 Ki( ) ( ^ o ( ^ -)-E)~ίis compact for all E. Thus (i) is proved for all
E since one has G(F, 9E) = R(F9 ',E)Vι( )Gι( ) where R(F9 -,E) = (H0(F, • ) - £ ) " *
and G^ ) is bounded for all E with the stated uniformities, (iii) is trivial since
R{F9 -,E)-^R{0, -,E) = {Ho{0, -)-Eyι as |F|->0 by Theorem 3.6(v). (ii) holds if
G( , E) = R{09 , E)V1(-)...R(09 , E)VN{-) is compact for Vγ φ V2 φ ... Φ KN. The identi-
ty £(0, , E) = G(θ)(-e~2φΔN(θ)-E)-1G(θ)-\θeR9\lmφ\<a9 ΔN(θ)=U(θ)ΔNU(θy\
yields G(θ, φ, E)=G(θ)(-e-

2UN(θ)-EΓ1 V^θ, φ).. , ( - e " 2 ^ ^ J - E )
which is compact for θeR by the unitary equivalence of

(-e-2φΔN(θ)-EΓίVι(θ,φ)...(-e-2*ΔN(θ)-EΓ1VN(θ,φ)

with the compact operator G(0,φ,E). Since G(θ,φ,E) is holomorphic for
when |Imφ| <α, the assertion follows by a known result [10, XIII.5]. To show (iv),
consider first the N = 2 case. Since R(F, -,E)-^R(0, •,£), we have to prove only

the norm convergence, with the stated uniformities, of the compact operator
K(F,F)=R(F, ,E)V1( )R(Fr,E)V2( ) to K(0,0)=R(0, ,E)V1( )R(0, ,E)V2( ) which
is also compact. Write K(F, F) - K{0,0) = K(F9 F) - K(F9 0) + K(F9 0) - K(09 0), with
obvious meaning of K(F90). Since R(F9 9E) = R(F9'9E)(Ho(09 )-E)R(09 9E)9

\\K(F9O)-K(O9O)\\->O as |F|->0 with the stated uniformities because K(0,0) is
compact and R(F, ,E)(Ho(0, )-E)-^L To see that \\K(F9F)-K(F9 Q)\\-+09 by
the uniform boundedness_of R(FL , E)_{Ho{0, ) - E)it suffices || X(0, F)_- X(0,0) H O
or, taking the adjoints, \\V2{.)R(F, ,E)V^)R(0, • , £ ) - 72( )Λ(0, ,£)K1( )Λ(0, ,£) | |
- || K(0, FY - K{09 0)f || -*0. Now for \F\ ^ 0 we can always write Hoψ9 ) - H2{F9 )
®I + I®H'2(F, •), where the tensor product refers to the decomposition of L2(R6)
induced by that of R6 into the three coordinates of V2 and three independent ones.
Since H2(F, •) and H'2(F, •) are m-sectorial, if we denote by R2(F, , E), R'2(F, -,E)
the corresponding resolvents we have (see Reed and Simon [11]):

R(F, , JB) = (2πί)-1 ί ^ ί f , ,
r

Γ being the straight line Im (λ - £/2) = tgγ Re (A - £/2), - y= Im φ + arg (F) + Im 0/2.
By the independence of the variables 2 and 2' one easily shows that

K(0,FY = (2πi)~1 $ V2(-)R2(0, .9E-λ)®Rf

2(09 , λ)V,(• )R(0, 9E)dλ
r

+ (2πi)-1SB'2(F,E,λ){V2(-)R2(F,-,E-λ)®R'2(0,-,λ)-Vι(-)R2(0, ,E-λ)
Γ

®R'2(0, ,i)}K1( )#(0, '9E)dλ + (2πiΓiί {B'2(F,E,λ)-B2(0,E,λ)}
r

•{V2{.)R2(0, -,E-λ) ®R'2(0, , λ)Vx(
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where B'2(F,E,λ) = R2(F, , £)(H'2(0, )-A), | F | ^ 0 . Now the first integral js just
K(0,0)f, and the second_one vanishes in norm as |F|->0 because B'2(F,E,λ) is
uniformly bounded and V2(-)R2(F, , E — λ)^V2(-)R2(0, , E — λ) in norm, uniform-
ly over Γ, by Lemma 4.2. The third integral vanishes as |F|->0_in_norm since Jhe
integrand is norm convergent to 0, uniformly over Γ, because B'2(F, E, λ)^B'2(F, E, λ)

uniformly over Γ and V2(')R2{09'9E-λ)®R'2{09 ,λ)Vί{ )R(09'9E) is compact
[this is evident for 0 = 0 by the inequality {p2

2 +1)~ Hfri)2 + I ) " 1 ^(p2, +(p'2)
2 + 1 ) " 1

and extends by analyticity to all θe Θδ~\. Consider now the N = 3 case. Proceeding
as above, it is enough to prove ||K(09 F9 F) 1 - K(09 0,0)1" || —>0 as |F | -*0. For \F\ ^ 0
write H0(F, >) = H23(F, )®I + I ®H'23(F, •), where the tensor product refers to
the decomposition of L2(R9) according to the six coordinates in V2 and V3 and
three independent ones. Then, in the same notation as above, we have:

Γ Γ

®R'23(0, ;λ)R'23(0, , λ')Pi( )Λ(0, , E)dλdλ'

+ (2πi)-2 JJ [B'23(F,E,λ,λ )V3{.)R23{F,;E-λ)V2( )R23(F,;E-λ')
Γ Γ

®R'23(0, ,λ)R23(0, λ^V^RiO, ,£)}dldA' + (2π/)-2 J J {B'23(F,E,λ,λ')
Γ Γ

®R2 3(0, 9λ)R'23(0, -, λ'W

As above, the first term is X(0,0, Oy. The second term vanishes in norm as |F|—>0
by the uniform boundedness of

and the norm convergence valid for N = 2 the same is true for the third one since
Bf

23(F,E,λ,λ')-^I on a compact. Hence the result is proved for JV = 3 and there
is no difficulty to extend the proof to all N by iterating the argument.

Notice in this connection that the independent coordinates needed in the
above tensor product argument have to be chosen after performing the dilation
(xhyi,zi)^>(e0/2xί,e

θ/2yb(xzi + βri) which is to be kept fixed. Remark also that,
strictly speaking, when at least one potential is a Vip the above decomposition is
just a sum of two commuting operators without tensor products. Consequently
the above argument holds if the tensor product is replaced by the ordinary
operator product. This concludes the proof of Lemma 4.4.

Lemma 4.5. Let F,θ,φ be as in Theorem 4.1. Then there is E'<0 such that, if
S= {£ |Re£<jEΊIm£>0}, uniformly on compacts in (F, 0, φ) one has:

(i) D(F, 0, </>, £), J(F, 0, φ, E) are compact-operator valued holomorphic functions
of E from S to L2, and compact-operator valued meromorphic functions from CtoL2.

(ii) D(θ, φ, E) is a bounded-operator valued holomorphic function of E from S
to L2, and 7(0, φ, E) is a compact-operator valued holomorphic function of E from
S to I2.

(iii) As |F|->0, D(F9θ9φ9E)-^D(θ,φ,E), I(F9θ9φ9E)->I(θ9φ9E) in norm, uni-
formly with respect to E on compacts in S.
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Proof. As in Theorem 3.6 one easily shows that there is E < 0 such that the union
over |JF| ^ 0 of the numerical ranges of H(F, θ, φ) has a positive distance from S.
Hence (H(F,θ,φ)-Ey1 as well as (HD(F,θ,φ)-E)~1, where HD stands for an
arbitrary cluster decomposition of H, are holomorphic and uniformly bounded
over | F | ^ 0 for EeS. Now S and the convergence regions of the rearrangements
of the geometric expansions (4.1), (4.2) defining /(F, •), D(F, •), /(•), D( ), have of
course non empty intersection. Hence, by the known expression of the Weinberg
kernels in terms of the resolvents of the cluster decompositions HD of H, | F | ^ 0 ,
by the above Lemma all assertions are a direct consequence of the analytic con-
tinuation principle and of the Vitali convergence theorem. This proves Lemma 4.5.

Proof of Theorem 4.1. By the same argument of Lemma 4.3 [the identity now being
{G(θ)H(0,0,φ)G(θy1-E}-1 = G(θ)(H(0,θ,φ)-Ey1G{θy1'] Eo is an isolated
eigenvalue, with the same (algebraic) multiplicity, also of //(0, θ, </>), for (0, Imφ)
eΘδx( — α, α). Let us now adapt Herbst's argument [5, Theorem III.3] to the
present situation. Let η<&ΐg(F) + lmφ<π — η for some η>0. Then there is v>0
such that the disk Cv = {E\ \E- Eo\ < v} has the properties {Eo} = Cvnσ{H{09 θ, </>)),
dv > 0, where dv is the distance between Cv and the union over (F, θ, φ) of the
numerical ranges of H0(F,θ,φ). Consider first the three-body case JV = 2, and
write the Weinberg-Van Winter equations for (H(F9 θ,φ)-E)-\ (7/(0, Θ,φ)-Ef1:

(H(F, ^-Ey^DiF, .,E) + I(F, ,E)(H(F, ^-E)'1, (4.3)

1 (•, E)(H(09 )-E)~1 (4.4)

valid for all Eφσ(H(F, •)), Eφσ(H(0, •)), respectively. Let us prove that D(F, •) and
I(F, •) are holomorphic and bounded independently of F for EeCv. For N = 2
any cluster decomposition HD(F, •) of H(F, •) with at least two clusters can always
be written under the form

HD(F9 ) - h(F, ) ®I + / ®Λ0(F, ). (4.5)

Since h(F, •) and ho(F, •) are both m-sectorial in L2(R3), we can write (see Reed and
Simon [11]):

{HD(F, ) - £ ) - 1 - ( 2 π / ) - 1 f (Λ(F, ή-λ)'1 ®(ho(F, )-E + λyιdλ. (4.6)

Γ being the straight line Im(/l — E) = tgy(RQ(λ — E) — ε), where y = arg(F) + Inκ/>
+ Imθ/2, and β>0 is such that d(Γ,σ(/i(0, ))>v. By Lemma 4.3 (/z(F, •) —A)~x is
bounded uniformly with respect to F for λeΓ and |F | small, and the same is true
for (ho(F, •) — E + λy1, uniformly for EeCv, because — E + λ, EeCv, λeΓ, has a
positive distance from the union over | F | ^ 0 of the numerical ranges of ho(F, •).
In addition by the uniform strict sectoriality of both h(F, •), ho(F, •) there are
M ! > 0 , M 2 > 0 independent of F such that \\(h(F,.)-A)'11| < M l μ Γ 1 , | | ( M ^ )
— E + zl)"1!! < M 2 μ | ~ 1 as |>l|—>oo, /leΓ. Hence the r.h.s. of (4.6) is uniformly norm
convergent with respect to F and Ee Cv, and thus the l.h.s. is holomorphic for
Ee Cv and bounded independently of F as required. Therefore D(F, , £), 7(F, , E)
have the properties stated above, and by the Vitali theorem the convergence
regions of D{F, ,£), I(F,-,E) to £>(-,£), /(•,£), respectively, extend to Cv. In
addition by (4.4) (H(0, ) - £) ~x = (/ - /( , E)) ~1 D( , E) so that the above analyticity
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statement implies that (/ — /(•, E))'1 is holomorphic for EεdCv. By the norm con-
vergence I(F, .,£)-»/(.,£), uniform on Cv, there is Fv>0 such that (I-I(F, ? £))" 1

is holomorphic and uniformly bounded for EεdCv, 0 < | F | < F v . Since D(F, -,E) is
holomorphic on Cv and has the same uniform boundedness properties,
(H(F, -)-E)-1=(I-I(F, ,E))-1D(F7 , E) is holomorphic for EεdCv and bounded
uniformly over F, |F |<F V . Hence (see Kato [9, VIII.l]) the strong convergence
region of (H(F, •)-£)" * to (if(0, •)-E)~ * as \F\->0 contains dCv. Now set:

P(F, ) = (2πίΓ1 J {H(F,.)-EyιdE, P(0, ) = (2πi)-1 J (ff(0, ^-EΓ'dE

By (4.3), (4.4) and the analyticίty of D(F, , £), £>(-,£) on Cv we have:

P(F, )-/)(0> ) = (2πO"1 J {/(F, ,£)(H(F, )-£)^ 1 -/(-,£)(/ί(0, )-£Γ 1 }dE.

(4.7)

The norm convergence of I(F, , E) to /(•,£), uniform on Cv, is between compact
operators so that the strong convergence, uniform on δCv, of (H(F, •) —E)" 1 to
(^(O,.)-^)" 1 yields, as |F|->0, ||/(F, ,£)(H(F, O-^Γ^/ί-^Xi/ίO, ) - ^ ) " Ί H 0
with the stated uniformity in (0, φ) and uniformly for EεdCv. Substituting in (4.7)
we get ||P(F, -)-P(0, )\\-+0 as | F | ^ 0 . Hence for |F| suitably small (depending
on v) dimP(F, ) = dimP(0, •). Since P(F, •) characterizes the spectrum of H(F, 0, φ)
within Cv, and v>0 is arbitrary, the result is proved for N = 2. The proof for all
N can now be obtained recursively. By the remark after Lemma 4.3, which holds
in the N = 2 case as well, the resolvent of any cluster decomposition HD of /f,
N = 3, which can be expressed in terms of tensor products of H, N = 2, h, h0 if it
has at least two clusters, can be uniformly controlled through (4.6) with H, N = 2,
in place of h and ε> -inf(σ(h(0,0,0))-v). Hence D{F, ,£), I(F, ,£) are holo-
morphic for EeCv and bounded independently of F for JV = 3. Then we can
repeat the above argument for N = 3, and iterate it to conclude the proof for all N.

Corollary 4.6. Let dimP(0, -)=l, and let E0(F) be the eigenvalue of H{F, •) close
to Eo. Then there are B>0,η>0 such that EO(F) is analytic in the region

Theorem 4.7. Let E0(F) be as in Corollary 4.6, and Eo be the corresponding simple
eigenvalue of H(0, 0,0). Then the Rayleίgh-Schrδdinger perturbation expansion
00

Y^ckF
k (co = Eo) near Eo exists and is strongly asymptotic to E0(F) for all F in

o
{F|0<|F|<B|-π/2 + ε<arg(F)<3π/2-ε}, ε>0, i.e. there are A>0, A'>0 such
that, uniformly with respect to F as above:

<AΆN+1(N + 1)1\F\N+1 . (4.5)

Proof. For B small enough we can write E0(F) = N(F)/D(F), where

) = (2πiy1 J E<ψo(θ,φ),G(θ)lH(F,θ,φ)-Ey1G(ΘΓ1ψo(θ,φ)>dE

dCv - - (4.6)

= (2πiy1 J <ψo(θ,φ),G(θ)lH(F,θ,φ)-EyιG(ΘΓ1ψo(θ,φ)>dE.
dCv
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ψo(θ9 φ) being the eigenvector of /f(0, θ, φ) corresponding to Eo. Now, ψo(φ) being
the eigenvector of H(F,0,φ) corresponding to Eo, by Theorem 3.6 (v) one has

<ψo(θ, φ\ G(Θ)IH(F, θ, φ)-EyίG(ΘΓi

Ψo(θ, φ)}

The second Neumann expansion of [H(F, 0, φ) — E~\ * yields, formally:

, φ)-ET1 = [f/(0,0, φ)-Eγ 1\fj(eφFzN(H(0,0, φ)-E)~l)n

I o

iV=l,2

Let us now prove the bound \\(zN[H(0,0,φ)-E']~ί)nψ0(φ)\\<Af

ιA
n

1n\9 for some
A\ >0, A1 >0, uniformly with respect to EedCv, by means of a suitable modifica-
tion of Herbst's argument (Theorem III.3 of [5]). First remark that by the Combes-
Thomas theory (see e.g. [10, XIII.11]) ψo(φ)eD(eγr) for some y>0, r = \x\. It is
easily shown that the operators

are uniformly bounded for EedCv, φ as above. Therefore there are dί >0, d2>0
such that | |-R£ | |<di, \\B(β,E)\\<d2. Note also the obvious inequality \\zNe~βr\\
<{βe)-K Let now ψn-k = en~lkyr{zNRE)n-kψ0, fe = 0,. . . , n - 1 . The identity

yields \\ψn-k\\<(d1(eyyίn + d2(eγyί(n + l))\\ψn__k_ Jl, and since ψn = (zNRE)nψ0,we
have | | (z N ,R £ )> 0 | |^(β7)""( ί i 1 +(i 2 ) π (n + l)n | |^> 0 | |^y4 /

1yln

1fi ! for some AΊ>0,
^i=(£}>)~ 1(di+^2) Since [i/ίi7,0, φ) — E~]~ι is uniformly bounded for£eδC v in
the stated regions of F and φ, we have

for some positive Bγ and β 2 independent of E. Hence N(F) as well as D(F) satisfy
a strong asymptotic condition of the type (4.2). Since ψo(F,φ) + 0 for |F | small
enough, it follows (see e.g. [10, XII.6]) the existence of Ά,A>0 such that EO(F)
= N(F)/D(F) satisfies the strong asymptotic condition (4.2). This proves
Theorem 4.6.

Corollary 4.8. Let E0(F) be as above. Then the Rayleίgh-Schrόdίnger perturbation
expansion near Eo is Borel summable to E0(F) in the sector {F\0 < \F\ <B0\η <arg(F)
< π — η}, for some Bo>0,η>0.

Proof. A direct consequence of the Watson theorem (see e.g. [10, XII.6]) whose
conditions are verified by Corollary 4.6 and Theorem 4.7.

oo

Remarks, (i) The Borel transform B(F)=Σ ckF
k/k\ of E0(F) is analytic for \F\<B0

o
and has an analytic continuation to the sector |arg(F/z)| <η such that J e't\B(zt)\dt

o
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< oo for \F\ < Bo, |arg(F/ί)| <η. Hence the Borel sum of the series, given by definition
by the above integral, coincides with E0(F) for 0< |F |<2? 0 , \a,rg(F/i)\<η. The
analytic continuation of E0(F) for |F | small can be performed directly on the
expression of the Borel sum (see Sokal [13]), which can be written in the form:

00

EQ(F) = eiα f e-tei*B(Fteiα)dtϊoτ \F\<BQcos(x,η<α<π/2.
o

The last integral converges absolutely for \a.rg(eιαF/i)\<η, and hence defines
the analytic continuation of E0(F) for all F in 0 < | F | < £ 0 π/2 — α — η<aτg(F)
< π/2 + η — α. The real axis arg (F) = 0 is included if we take 0 < α < π/2 — η.

(ii) If, as in Theorem 9 of [8] lm E0(F), F real, is strictly negative, we can define
the resonance width Γ(F)= — 2Im£ 0 (F)>0, and the perturbation theory diverges.
If in addition, again as in Theorem 9 of [9], V( — zu ..., — zN)=V(zu ...,zN), since
the remaining assumptions of that result are verified by Corollaries 4.6 and 4.8,

R

we have: c 2 / c + 1 = 0 , all fc; clk=-π~ι J Γ(x)χ-{2k+1)dx + O{R-2k\ for /c->oo and
o

some R>0. In particular, Im2so(F) is o(Fk) for all k as F-+0.
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