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Abstract. We prove that the expansion in powers of the temperature T of the
correlation functions and the free energy of the plane rotator model on a
d-dimensional lattice is asymptotic to all orders in T. The leading term in the
expansion is the spin wave approximation and the higher powers are obtained
by the usual perturbation series. We also prove the inverse power decay of the
pair correlation at low temperatures for d = 3.

I. Introduction

We investigate the low temperature properties of the classical plane rotator model
described by the Hamiltonian:

-βH = β £ cos^-φ-), <ke[-π,π], (1)
<tj>

β is the inverse temperature T and <ΐj> are nearest neighbor pairs of sites on the
d-dimensional simple cubic lattice Zd.

It has been known for a long time that the SO (2) symmetry of this model is
only broken in d^3 where there is a spontaneous magnetization at low
temperatures [8, 13]. These results provide a qualitative justification of the spin
wave picture. In this paper we prove that in any dimension d, the free energy and
the correlations have a low temperature expansion about the spin wave approxi-
mation valid to all orders in T. In particular we show how to get higher order
correction in T to the spontaneous magnetization (d ̂  3). The zeroth order value
for the spontaneous magnetization was obtained in [13].
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The formal expansion in Tis obtained [6,11] by making a change of variables,

Φi = l/Tφ'i, and then expanding the cosine into a power series so that up to a
constant,

-$π=-\ Σ(Φi-Φ'f+^τ Σ (#-Φ})4+..., Φ!^-^γβ^Vβ^
Z < U > 4! <i,j>

We see that there are two perturbations of the massless gaussian field (the spin
wave approximation): The first one is the power series in T for — βH and the other

one is the restriction of φ' to the interval |0'.|^π]/J3, i.e. the Gibbs factor
exp[ — βH~\ has to be multiplied by a product of the characteristic functions

χ(\Φ'i\ = π ]//?)• The first perturbation, at least when the series is truncated at a given
order, can be treated using methods developed in [3] (Part I of this series). The aim
of this paper is to get rid of the second one (and of the truncation of the power
series). This is done using infrared bounds [13]. We prove that the contribution of
this second perturbation is exponentially small in T (when T-*0) and therefore
does not appear in the power series expansion. In two dimensions the formal
perturbation theory is not defined for functions like the spontaneous magneti-
zation which vanishes. However we can compute asymptotics for all nonvanishing
correlations.

As in [3], our method does not give directly any results about the decay of the
correlations nor about analyticίty in T for TΦO. However, using ideas from [4]
and an improvement of the results in [25] we show, for instance, that the two point
function (smφ0sinφxy behaves exactly like jxp 1 for d = 3 whenever there is a
spontaneous magnetization.

The outline of the paper is as follows: In Sect. II we describe the model and
some of its known properties that are used later. In Sect. Ill we state and prove the
main result. In Sect. IV we give an alternative proof of a part of the theorem. In
Sect. V we study the decay of the two point correlation function.

II. Definition of the Model

Let HΛ be the Hamiltonian defined in (1) with periodic boundary conditions on a
parallelepiped A C Zd, centered on the origin. We also consider the Hamiltonian:

βHΛ.k = βHΛ-hΣ<x>*Φt (2)
ieΛ

A probability measure on [ —π,π] | y i | is defined (\Λ\= number of sites in A) by:

^,^zzleχp{^ Σ 008(^-0,.)+& Σcos<kl (3)
( (i,j>CΛ ieΛ J

We shall consider the correlations functions:

(cosmφyΛίh = $cosmφdμΛ>h(φ), (4)

where mφ= ]Γm(i)</>., and m:Zd-*Z is a function of compact support, and the
i

pressure P(T) defined by:
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It is easy to show that P(T) exists. Using the Lee- Yang theorem [20, 9], we can
also show that the thermodynamic limit of the correlation functions exists for
h ΦO, and that the state obtained is clustering [12, 18, 23]. The " + " state is defined
by:

lim<cosm</>> f lΞΞ<cosm(/>>+ .
h i 0

The limit exists by Ginibre's inequalities. By symmetry, <sinm0> + =Q.
In d = 2, the uniqueness of the translation invariant equilibrium state [2]

implies :

d

In d = 3, it has been proven [13] that (cosφy+=m(β)>Q for β large. This is a
consequence of the infrared bounds which we now recall.

Notation. We let
σi = (σf, σ\) = (cos φi9 sin φ .) e R2 .

As in [3], the unit vectors along the coordinate axis are denoted by ea, α — 1, . . . , d.
Given a function / : Zd-»jR2 of compact support, we write

e α ,α= 1, . . . ,d ξ i

Lattice sites will sometimes also be denoted by x, y or z.

Infrared Bounds [13]

IR 1. Let ga : Zd-»jR2, α = 1, . . . , d be functions of compact support. Then

expσ
\ \ α = l

When feR2is such that ^ /(i) = 0, then g*(ϊ) =-Δ~lV*f is well defined. Applying
i

IR 1 to this particular ga(ί) we get [13] :

<exp σ(f)yAt h ̂  exp [(/, ( - zl ~ ̂ ĵS] .

Using the fact that < >ft is ergodic, IR 1 has the following consequence:

IR2 [13]. For d^\ let ̂ .-^-<^>h, then

for any gf of compact support.
From IR2, one obtains the bound,

lm(β)-]2 = (cosφy2

+^l-I(d)T, (5)

where

ξ

As we shall see later, the r.h.s. of (5) are the first terms in the asymptotic expansion
ofm 2 .
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III. The Main Result

Theorem 1. For any d, the perturbation expansion in T for the "excess free energy"
Q(T) = P(T) — dβ — ̂ lnT and the correlation functions <(cosm</>>+ is asymptotic to
all orders in T.

i. Strategy of the Proof

The proof will be divided into two parts; we shall first prove the result for Q(T)
and for correlation functions of the type

a) <cosmφ>+ with ^]m(i) = m = 0,
i

and then for correlation functions of the type

b) <cosm(/>)+ with mφO

In some way, Parts a) and b) correspond to the cases {(FoΦ)2) an<^ ^Φo) °f [3]
For technical reasons, we are not able to generalize the proof given in [3] for <φo>
to Case b). Using however the existence of an asymptotic expansion for
<cos(</>0 — φx)y+ and the decay of the truncated two point function,
(cosφQcosφxy + — (cosφQyQ<c\x\~1, rf^3, which we get from IR bounds [4, 25],
we are able to generate an asymptotic expansion for <cosφ> + . Using reflection
positivity, we generalize our argument to any <cosmφ)+ with mφO. For d<3,
Part b) is trivial since by the Dobrushin-Schlosman theorem [8], <cosm(/>>+ ΞΞ()
for mφO.

To keep matters simple, we shall first consider in a) d ̂  3 and then indicate the
changes required for d = 2. In Sect. 4 we sketch an alternative proof of a) which
should also work for non nearest neighbor interactions. This proof uses cor-
relation inequalities.

2. Asymptotic Expansion for (cosmφ) with m =

Before giving the proof, we shall derive two technical lemmas from the infrared
bound IR2. Those are the key ingredients which will be used to deal with the
second perturbation of the free massless Gaussian field described in the in-

troduction, namely χ(\φj\^π]/β).
We introduce the periodic function a(φ) : R-» [ — π, π], s.t. a(φ + 2πn) = φ,neN.

Lemma 1. For d^3 there exists positive constants c1,c2 independent of T and h,
such that

Proof. We first prove <exp(2 ]/βa2(φ)/π2)y < oo. IR 2 with g = (- |//J<5ί0, °) implies

<exp[- l/^(cosφ-<cosφ>,)]>^exp[C00/2]^c/

2 (6)

with Cij = ( — A)~1(iJ) the covariance of the Gaussian measure corresponding to
the spin wave approximation. Taking the square root of (5) we obtain,

(7)
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with ε(T)— »1 when T-»0. The inequalities (6), (7) imply:

<exp( l/jϊ[(l - l/2I(d)Tε(T) - cos^])), ̂  c'2 ,

1 — cosφ^2/π202 for φe[ — π, π], so that

<exp(2 ]/M0)/π2)>h ̂  c'2 exp [l/2/(d) |/Tε(T)] ̂  4 . (8)

We now use again IR2 with σ(g)= j/βsinφ. Let us first remark that for any
k<π 3c>0 such that |x|^c|sinx| for \x\^k. This implies

exp ( j//?|x|/c) g exp [ ]β sin x] + exp [ - J/J8 sin x] for |x < fe . (9)

Defining μh(φ) by

J exp(l/)8|0|/c)dμΛ(ψ)= 7
-π -π/2

To estimate the first integral we use (9) :

π/2 π/2

J Qxp(l/β\φ\/c)dμh(φ}^ J (exp
-π/2 -π/2

π

^ J (exp |/j8 sin φ + exp - |/J8 sin φ)dμh(φ)
— π

^c3 uniformly in Tby IR 2.

To estimate the second integral, we use the Chebyshev's inequalities and (8) :

J exp(l/]8|φ|/c)dμh(φ)^(exp l/j8π/φh{0||φ| ^π/2}
|φ |>π/2

g (exp |/j8 π/c) exp ( - 2 ]/βπ2/π24)

uniformly in Γ for c> 2π.

Remark. Setting | 0 = φf Lemma 1 implies :

f exp (|φΊ/c)dμ'(φ')^ const

when dμ' is the measure obtained by the change of variables. But,

hence,

$\φ'\ndμ'(φ')^ const n!cn, (10)

where the const is T independent.

Lemma 2. For d^3, <<5(φ±π)>+ ^cί exp[ — c2j8
1/2], wterβ c1 απJ c2 αr^ positive

constants independent of T and δ is considered as a periodic δ-function.
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Proof. The proof will be based on Lemma 1 and the DLR equations [7, 17]. If μ is
the equilibrium measure corresponding to the " + " state, the DLR equations
[7,17] read:

where

F(φί...φ2d) =

d)F(φ1 ...

cos(φ-φi)

2d

ί= 1

• J δ(φ — π) exp

and {φi}?^ are the nearest neighbors of φ. Let

A = {Φ1 ...φ2d\\Φι\<a> >\Φ2d\<a}>

(a = π/32 for instance) and let us estimate the integral

f F(0! ...φ2d)dμ(φί ...φ2d)

2d

by finding a bound for
A

Γ π

.. Φ2d) = ί exP U8 Σ
L-π \ i=l

Γ α / 2J

^ ί exp (β Σ [cos(0/2-^)cos(φ/2)]

where d = 2d cos (3α/2) cos (0/2). To prove the result, we still have to estimate

j F(φ1 ...φ2d)dμ(φ1 ...φ2d)^μ(Ac)supF(φ1 ...φ2d).
Ac Ac

By Chebyshev and Lemma 1,

μ(Ac) ^ const exp [ - cβll2~] , (c> 0).

Hence

2rf)^ I j dφoκp( — 2dβ\ cos(
τ

)

[ dφexp( — 2dβ\sin

^ const j8.

Proof of Case a) for d = 3. We now prove that the expansion for <cos P^Φ) + is

asymptotic up to second order. The proof can be easily generalized to all orders
and to all correlation functions with m —0.
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Making the change of variables φ't = \/~βφtί

J Π^M/TI^Oexpto X
π j/ϊ ieΛ

ίeΛ,ξ ieΛ

N.B. We shall generally not indicate explicitly whether we are using the original
angle variable φ or the scaled φf as this should be clear from the context.

We now expand cosίj/TP^φ) up to second order

2 4 ! 6 !

where σ is fixed by Taylor's theorem. Clearly we have to expand <(Fo</>)2> UP to

order 1 and ((i7^)4) up to order 0. The third term

J |<(P0

eφ)6 cos σ>| ̂  ~ <(F0

e0)6> ̂  const T3

because of Lemma 1 (see Remark).
As noted in the introduction there are two perturbations of the massless

Gaussian lattice field : a power series in T for

and a characteristic function χ(|<^|<πjj8). The perturbation h £ cos ]/Tφ is

irrelevant because h will be set equal to zero.
As in [3] the expansion for <(Fo0)2> and <(^0)4> will be generated by a

regularized form of the integration by parts (IP.) formula that we now recall : if F
is a function of the Gaussian variables φ^ / = !, ...,n

ί ΨoίW,}^ ̂ AW = Σ Col™ \~ F({φM= Jdμ^
ίeΛ a(Pi

+ ™2ΣCt mΪΦiF({φlΓl=l)dμOΛ, (13)
ίeΛ

where dμ0yl is the Gaussian measure of the massless field with periodic boundary
conditions in a box Λ9 and C^m is the co variance of the massive Gaussian field
with periodic boundary conditions in the box A.

As in [3] m will be T-dependent Let us apply (13) to <(FoΦ)2> After

regrouping some terms, see [3, Eq. (9)], we obtain

+ - ]/Th Σ

(14)
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Taking lim lim in (14) we obtain the same equation in the limiting state < >
h— > 0 Λ~* oo

except that the term proportional to h has disappeared, because (]Vξφ[)Λ h is
uniformly bounded (see Remark after Lemma 1), thus

Σ Fo'CoK rSΦWΦ + π]/β) + δ(φ-π}/β)-] >. (15)

This equation is similar to Eq. (10) of [3] except for the presence of the last term of
the r.h.s. This term is the contribution to the expansion of the characteristic

functions χ(|0.|<^π ]//?). We shall use Lemmas 1 and 2 to prove that it is
exponentially small in T (as T-»0).

Choosing m = m(T) = exp[ — (InT)2], the first term on the r.s. of (15) gives the
0-th order of the expansion since

per/e/^m _ yer7e^m = Oι
cro^oo "o'o^oo l

(see [3, Appendix B]). The mass terms

m* Σ TO< W, > ̂  constm2m

because Σ\^coί\^Cm~^ see C3^ Appendix A].
i

By Lemma 1 \^Qφφty\ ^ const uniformly in T. So the mass term is bounded by
constm. By our choice of m it is exponentially small with T. The 4-th term of the
r.h.s. of (15) is bounded by

constm- l\(

but
(^φδ(φ±π\fβ}y^c1exp(-c2β

1>2) by Lemma 2.

Therefore this term is still exponentially small in T (as T->0). Applying Taylor's

theorem to sin(|/T(P.^φ)) and using ]T|Po^Q>i <constlnm, see [3, Appendix A],
i

the second term (the temperature term) is bounded by CTlnm|<PQφ(P^0)3>| and
hence by const T In m.

In general when we apply the integration by parts formula there appear 4
terms as in (15), the last two are exponentially small and they disappear from the
expansion. The second term called, the temperature term or Π-term is small
compared to the first term called the I-term.

To get the first order of the expansion of ((FoΦ)2)? we have to apply IP. once
more to the Π-term in (15). This yields after having applied Taylor's theorem to the
sin:

K=~Zj t,ξ
+ |r Σ rsrfest<rsφτ3(r?φ)s cosσ> .
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The second term above is bounded by const T3 In m and is small compared to T.
We now apply IP. to <P0

eφ(^φ)3> and then we apply repeatedly IP. to the
I-term produced by the preceding IP. until we have a purely Gaussian expectation
value. By what we have explained before all the remainder terms are small with
respect to the purely Gaussian expectation value. We apply the same procedure to
<(F0

e(/>)4> to get the 0-th order. So

<cos v*φy+ = i - <(F0

e0)2>s-

where < >£? is the expectation value in the massive Gaussian field. This yields

<cosP0

e(/)>+^l-T[C-0-C-e]

As already proved in [3, Appendix B], if

then

so

But C0 0-C0 e=— . So finally,

<cos F0

e0> + = 1 - Γ/2rf - 3 Γ2/8rf2 + 0(T2+e).

3. Asymptotic Expansion of <cosmφ> with £m(ί) = 0 in d = 2
i

In two dimensions there is no breakdown of the SO (2) symmetry so the measure
dμ(φ) is not concentrated around φ = 0 and we do not expect Lemmas 1 and 2 to
be true. We shall however prove similar results for the difference variables (φx — φy)
even when |x — y|~exp[/?1/4]. In d = 29 < > will denote lim < >^ h=0.

Λ-> oo '

Lemma 3. For d = 2 let x,yeZ2 and |x-j;|-:0(exp^1/4) then

where c is T independent.

Proof. From IR 1, we have,

-j/l]^, (17)

where c1 and c2 are positive, T-independent constants, and we have used \x — y\
-0(expj81/4). Similarly,

(18)
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The bounds (17) and (18) imply

<exp {± 2β114 sin [_(φx + φy}/T) sin \_(φx - φy)/2]}

+ exp{ ± 2β1/4cos[(φx + φy)/2]sm[_(φx - 0y)/2]} ̂  c4,

which clearly gives:

<(exp [βl/4\sin(φx — φy)/2\']y ^ c4. (19)

The lemma then follows by noting that \a(φ)\/π^sinφ/2.

Remark. When \χ — y\ = 0(l), we obviously have

(c is T independent).

Lemma 4. For d = 2, let |x-x0| = cexp[^1/4]. Then

where c1 and c2 are positive, T -independent, constants.

Proof. The proof is similar to the one of Lemma 2 given Lemma 1. By the D.L.R.
equations [7, 17], if μ is the equilibrium measure corresponding to < > then:

where

2d

Σ
i = l

$dφxodφxexpβ Σ [cos^-^ + cos^-^)] , (21)

F=

where {φ.}?^ and {ι/?.}?f 1? are respectively the nearest neighbor variables to φXQ

and φx.
Let A = {φi9ψj Iφi-ψ^a, \ψj- ψf\<a, Iφ^φ^a and ij=l, ...,2d}. (α is

for instance π/32.)
Our proof is in 2 steps.
1) Estimate of

Using the double angle formula, the numerator of (21) is bounded by
exp[2/?cos(π/2— α/2)]. The denominator D of (21) obeys:

D^ f ^oexpfj8Σcos(Φo-0i)l ' ί
I^x 0 -Φi 0 l<« \ i / \Φx~ΨιQ\<a

where z0e{l, ...,2d}. V z , \φί — φίQ\<a because φ^φ^eA and therefore
\Φo-~Φi\<2a. So

^ a2 exp(j?2J2cos2α) ̂  α2



Lattice Systems with a Continuous Symmetry. Ill 555

Finally

sup F ̂  a ~ 2 exp ( - 2β( d - cos (π/2 - a/2))) ^ a ' 2 exp ( - cβ) . (22)
A

2) Estimate of j Fdμ.
Ac

ί Fdμ<\F\aμ(Ac).
Ac

By Chebyshev inequality and Lemma 3, μ(Ac)^exp( — β1/4α/π). To estimate IFI^
we note that

1*1 = fί exP (β Σ [cos (φxo ~ φt) + cos (φxo + π - Ψl)-]\ dφxo

[ \ i /

• [f exp Iβ £ [cos (φxo - φ,) + cos (φ, - 1/>£)] j d0Xo

^ sup [exp (jβ[cos (φ;co - (/>;) + cos (φxo + π - tp.)])

By compactness, 3φXQε[ — π,π] such that

S = exp //? Σ [cos (Φx — Φί) + cos(Φx + π — Ψί)]}
\ i ° I

] sin [(0X — φXQ)/2 + π/2 — ipj sin [((̂  — φXQ)/2 — n/2]\ dφ\ ~1

i

exp (-2j8|ψJ)dφJ"1< const j8,
\Φx\<β-ί

where the const is T-independent.
Given Lemmas 4 and 5, we shall perform the expansion in a way which is

similar to the case d = 2 of [3]. We still need an additional lemma:

Lemma 5. Let F(φQ9 ..., φN) be a periodic function of φQ9 ...,φN with period 2π and
such that

F(φ0 + c,...,φN + c) = F(φ0, . . ., φN) . (23)

Then

v ί F(Φo - •• ΦN}dΦQ ...dφN= π J v - ι ί ^ ° 9 ̂ i ' ' ̂ Wi > dφN.

Proof.

by periodicity. The result then follows from (23). As a direct consequence of
Lemma 5 we have :
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Corollary 1. // ]£m(i) = 0s then
i

<cos mφyΛίh = 0 = <cos mφyΛιh = 0,

where the <( X state is the state < ) with the restriction that φXQ = Q. The point XQ

can be chosen arbitrarily.

Proof of Case a) for d = 2. We expand around a massive Gaussian field with mass
m(T} = e~(lnT}2 in a finite periodic cubical box A0CA with sides K(T) = exp [β1/4].
In expanding (cosmφy defined in Corollary 1 we shall choose x0 just outside of
ΛQ, but within A with φc0, Λ0) = 2. By Lemmas 4 and 5, VxCΛ. 0 , the "spin" at the
point x in our system in A will be with high probability in the same direction as the
one at x0. Writing HΛ = H^Q + H'A with

=4 Σ (Φt-Φj)2+m2(T)ΣΦ2+ϊΣ(Φt-Φi)2>
< ΐ j > C Λ o ieΛ0 iedΛ0

=Ϊ Σ (Φ,-Φj)2+Ί Σ (Φi-Φj)2-m2(T)
<iJKΛ < ί , j
ieAojeΛo

- τ Σ ( Φ i - Φ t ) 2 + Σ

where ϊ and i are nearest neighbor in A0 with periodic boundary conditions.
To expand <cos FQ</>> = <cos FO^)^ we make as before the change of variable

φ'= |/Tφ. We have to perform an expansion for <(FoΦ)2>' Let us first consider
the zeroth order of ((ί7^)2)' bv doing an integration by parts with respect to H^Q.
This yields for A\Z2,

(a)
r?φ)y (b)

ίeΛo
ξ

Σ ^c^^φ(^βyτsmyτ(φ^φif)y (c)
iedΛo

i-ϊ\ = l,i'eΛ\Λ0

+ Σ ?oCt

π)]>'. (f) (24)
ieΛo

Before considering each term in (24), let us express Lemmas 3 and 4 in the state
< X using Lemma 5. They are

<exp (βί/4\a(Φi ~ Φ Jl)> = <exp (^81/4|α(φ -)|)>' ̂  c ̂  oo , Vie Λ0 , (25a)

Vie Λ<^ - Φxo ± π)> - <<S(φ; ± π)>' ̂  c, exp ( - c2β^) , Vie Λ0 . (25b)

Using now Appendices A and B in [3] we show that the r.s. of (24) has the
following properties : (a) is the zeroth order term, (b) is estimated as in the case
d = 3 using (20), (c)-(f) are negligible, with our choice of m(T) and R(T) to all orders
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in T9 e.g.

(ί) ̂  const m^

To finish case a we still have to prove the result for the "free energy"

= P(T) ---- In T. This follows from the existence of an asymptotic expan-
T

sion for <cos V$φy and the formula

βχr)-δ»=ί-4
α M

when we take in both sides a—>0.

4) Asymptotic Expansion for <cosmφ> with ^^(0 + ̂
i

The method used here is somewhat indirect and consists of two steps:
- find a sequence of functions depending on {Vxφ} whose expectations values

approximate <cosm</>>, or a product of such expectations; this is basically a
clustering property of the state; for example, <cos(φ0 — φx)y converges to
<cos(/)0>

2 as |x|-»oo (see below).
- Define a new function of the temperature, by letting x depend on β above

such that the deviation from the desired function, for example <cos(φ0 —φj>
— <cosφ0>

2, is of order Tn and perform an asymptotic expression for this new
function up to order n.

We first carry out this proof for the magnetization, (a) and (b) below, and then
show that reflection positivity allows us to make an inductive argument for all
other functions <cosmφ>, with mΦθ, (c) below.

(a) We write

<cos φ0>
2 = <cos (φ0 - φj> - «cos (φ0 - φx)y - <cos φ0>

2) (26)

Using reflecting positivity, and the infrared bounds one shows [4] that
0^<cos(φ0 — φx)y~ (cosφo)2^^!"1 ln|x|. Using correlation inequalities one
may improve this to a |x|~ l bound [25]. (See also Sect. V for further discussion.) If
we want an asymptotic expansion up to order n we choose |x| to be of order βn +1

so that the second term in (26) is negligible and we have only to do the expansion
of <cos (φ0 — φx)y which now depends on β not only because of the measure, but
also via x.

(b) As before we expand cos j/T(00 — φx) into a power series and generate the
expansion of the terms in this series, e.g. <(φ0 — φx}

2kyτk, by integration by parts,
but with the rule that <(φ0 — φx)

2ky is expanded until order 2k(n +1/2) + n -f 1. One
estimates the remainder as before: when (φ0 — φx) is integrated by parts it
produces C0i — C0x (or VfCQi—VfCix) which one estimates by |x||FoC0ί| (or

\x\\FffiC0i). So at the end the remainder is multiplied by |χ|2* = j82fc(ll + 1). The terms
which were exponentially small are not affected by this factor. The only terms we
have to worry about are the temperature terms. Since <(φ0 — φx)

2ky is expanded
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until order 2k(n+ 1/2) + n + 1, these temperature terms have a factor

2k(n+ 1)_ ^n+ 1

and we are in the same situation as before: Tn+1(lnm)2n(π+1/2) is negligible with
respect to T".

All that is left to consider now are the Gaussian terms produced in the IP.
which depend on β via x. It is easy to see that each of these terms can be written as
a sum of Gaussian expectation involving only φ0 or only φx (and the latter do not
depend on x by translation invariance) and of terms mixing φQ and φx as for
example

V V^C ΓΊ VξlVξjC V^ CLi yxι^0xι 1 1 yxl

yxj^xίxj

yxι^xi'X
XL..XI (ιj)
ξl .ξl

or products of such terms.
For the terms involving only φ0 or φx, we use the estimates of Appendix B in

[3] to show that the difference between these terms and those with a massless
covariance is of order exp( —(In T)2). We now show that terms like (27) are small
compared to T":

Call the term (27) F(x) and G(x) = xF(x). Then

π ~ π d d ~
suρ|x||F(x)|^ f \G(p)\d*p= f Y — F ( p } d d p . (28)

-π / = i dpi

Now, by explicit computation F(p) is of the form

ι + i ), with y » = 2 / .
ξ

(28) is therefore bounded by In w(T)~(ln T)2 which implies that

|F(x)| ̂  |x| ~ Hln T)2 = Tn+ l(ln T)2

which is small compared to T".
This finishes the proof for the spontaneous magnetization. Its expansion (or

rather the square of it) will be given in terms of these graphs mentioned above
which involve only φ0 or only φx (with the massless covariance).

(c) Now we give the general inductive argument which allows us to prove the
asymptotic expansion for all correlation functions (cosmφ), m = ̂ m(ΐ)^. This

uses heavily the known decay in W 1 of <cos φ0 cos φx> — <cosφ0>
2 and of

<sin0 0sinφ 0> [4, 25] and also Theorem 3 of [4] which gives a kind of "domi-
nation by the two point function" based on reflection positivity.

1. By symmetry we have only to consider m^O. We start with the case m= 1,
and write

<cos mφy = [<cos (mφ - φx)> - «cos (mφ - φx)y

- <cos mφ><cos

noting that by translation invariance <cosφ0> = <cosφjc>.
We already have the asymptotic expansion for <cosφ0> [it starts with

(1 + 0(7")] and can therefore be inverted); <cos(w(/> — φx)y is a function of the
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differences and can be treated as <cos((/>0 — φx)y above. So, all we have to show is
that cos(mφ — φx) — <cosmφ><cos</>0> is of order Tn for |x| increasing like some
power of β (actually here we take \x\ = β2n). We write cos(mφ — φx) = cosmφcosφx

+ smmφsinφ j c; and suppose for simplicity that x is along the e1 axis, that i1 <0
whenever m(z)φO. Using reflection positivity with respect to the plane perpendicu-
lar to the eί axis at zero, x->3c, then gives

where cm depends only on m. (This is similar to Theorem 3 in [4].) Since the r.s.
decays like M"1 [25], we get, with \x\~β2n,

|<sinw0 sinφx>| ̂

Similarly we write,

cosφ0) = <(cos

^cm<(cosφx-<cosφ0»(cos</)--<cos(/)0»>1/2

2. For general m, let us assume that we have done the proof of the expansion for
m ̂  k and let m = k + 1 and n = k. Let nx denote n translated by an amount x in the
positive ev direction, and y a point in the positive e2 direction, m is assumed to be
such that i± <0, z 2<0 if w(i)Φθ. We shall prove that (cos(mφ — nxφ — φy}y is close
to <cosra<5!>Xcosm/>><cos(/>0> with an error of order Tn if |x| and \y\ are of order
β2n. Then, since we know the expansion of <cosn</>>, <cosφ0) by our recursive
hypothesis, and can invert them, we obtain the expansion of <cosm</>> by the same
arguments as above.

To prove the cluster property, we write

cos (mφ — nxφ — φy) = cos (mφ — φy) cos nxφ + sin (mφ — φy) sin nxφ .

Now, by reflection positivity,

y

To bound (sinnxφsmnxφy we use the fact that, by reflection positivity,

<cos nxφco$ nxφy - <cos m/>>2 = l/2<(cos nxφ - <cos nxφy} (cos nxφ - <cos n

is positive and therefore

In the right hand side of this inequality, the first term can be expanded in powers of
T because it is a function of the differences and the second by assumption because
n = k. But the coefficients in this expansion cancel up to order n except for an error
of order T 2"lnT if \x\~β2n.

We apply the same argument to control the difference between
(cos(mφ — φy)cosnxφy and (cos(mφ — φy)y(cosnxφy and then between
(cos(mφ — φy)y and <cosm</>><(cos(/>0>.
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IV. An Alternative Proof of Part a) of Theorem 1

In this section, we carry out a proof of Part a) of the Theorem which does not use
the infrared bounds. It proceeds in three steps :

1. It follows from Ginibre's inequalities [14] that for any

Λ9Λ'cZd, <cosmφ>°,^<cosm</>>g<cosm</>> + , (30)

where < >°, is the Gibbs measure with free b.c. (i.e. no coupling with A'c) on Λ',
and < >^ is the Gibbs measure with 0 boundary condition (φ = OVze/l c). We
carry out the expansion of the right and left side of (30), where we let A and A

depend on the temperature in such a way, [e.g. \Λ\, |./4'|~exp (]//?)] tnat tne

coefficients of the asymptotic expansion of both sides of (30) are the same, giving
the expansion of (cosmφy.

2. We show (Proposition 2) that, if |/1|, \Λ'\ grow like exp(]/j?) then the left and
right hand side of (30) are exponentially close as β-+co to the corresponding
expectation values conditioned on the event: {φ. — φjl^η, η>0 for all nearest
neighbor pairs <i/>, with <i/>n/lφ0 or <z/>C/T.

3. We show that, for η<π/2, these conditioned expectation values are equal to
the ones where we let all φt run from — oo to +00 (Proposition 2 and Corollary 2).
Once this is done, we integrate by parts with respect to a massive Gaussian as
before.

We define < >^ and < >°^ as the expectation value < >^ or < >° con-
ditioned on the event that for all n.n. pairs, \φί — φj\^ηmod2π, that is

Φi.HZ^Γ'expC-/?//^) Π χ(\φi-φj\^ηmod2π) lldφί
< r , j > n y l Φ 0 ieΛ

with φj = 0 tfjφΛ and similarly for dμ^η.
Then we have:

Proposition 1. There exists constants cί9c2 such that, for all /?, A, η and for y = + or 0

Proof. The proof is the same for -f or 0 we write

XP(X)

X Φ 0

where the sum overZ runs over all subsets of {<(/> n A Φ0} (or {<(/>C^l} for free
b.c.). < yΛ>χ is the expectation value conditioned on the event that \φi — φ\
^mod2π for <i/>eJf and \φi-φj\^ηmoA2n for (ijyφX PQί) is the probability
of that event. Since χ g 1 we estimate

χ(\φi-φj\<ηmoά2π)
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by the contour estimates of [1]. Therefore

In the second step we use the fact that the sum runs over all subsets of
whose number is less than 2d\Λ\. In the last step we use

rg exp (nx) — l^nx exp (nx) , (x > 0) .

Proposition 2. Le£ Abe a hyper cube in Zd and let keZd be, either in A, or nearest
neighbor to some point in A. £({</>•}, φk\ where {φ.} is the set {φi}ieΛ' is any periodic
function (in Ll(\_ — π,π~]\A\}) of period 2π in each of its variables. Then for any
η<π/2 and any φke\_ — π, π],

(31)

<ϊj>CΛu{/c} ίeΛ
i φ k

ίeΛ
i φ k

Proof. In L we write

χ(\φί-φj\^ηmoά2π)= £

and expand the product over <i/>. We always write the subscripts ij in lexicag-
raphic order corresponding to a directed bond. This gives

+ π

k] ieΛ

In .R we write for each integral

4- oo 2πm + π

ί =.. = Σ ί ....
— oo meZ 2πm —π

After changing variables φi-^φί — 2πmi (which leaves B unchanged because of
periodicity) we get:

*= Σ ί B({Φt},Φύ Π χ(\Φi-φj + 2π(m;-mj)\^η)Yldψi (33)
{mi} -π <ij>C/Mfc) ίeΛ

m f e Z

(mfc = 0 in the above expression). All we have to show in order to prove the equality
of (32) and (33) is that each set {ntj} for which the integral does not vanish is such
that ntj can be written as nij = mi — mj for all oriented pairs <(/>. Given such a set
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{ntj} we define for all m, n, i , j , n.^n^. Since we may take mk = Q and since for any
7*e/l there exists always a path (fez1), ...,(inj) of n.n. connecting k and7 we may
define —nij = nkii~\-niii2+ ... +ninj. Then, of course wf j. = mf —m7 but the trouble
might be that two different paths may lead to two different definitions of πij. This
does not occur however if for each closed loop on the lattice ]Γ ntj = 0.

loop

For this to hold it is enough that £ ntj = 0 for each elementary square with 4
Sq.

n.n. pairs in the lattice. But ]Γ (φ. — φj) = 0 and we may write
Sq.

Zπ
Sq.

Sq.

by our condition on η and the fact that the integral in (32) vanishes unless
\2πnίj + φi — φj\ ̂ η. Since |XX7 | is a positive integer strictly less than one, it is zero.

We apply now Proposition 2 to the measures μy

A>η. Let A be a cube in Zd\
Λ = \_-L,U\d, / = (L,0, ...,0), fc = (L + l,0, ...,0), Λ' = /iu{k}. We define two mea-
sures on

1 Π
<ij>Cyl

d^lg^ΠdΦi, (34)
ieΛ

Π exp(j8 cosίψ,-^))
ΦCΛ

J.|^?7)Πexp(j5cos(/-ί)χ(|^|g^)Π^ί, (35)
ieS/l ίeΛ

where in Z ,̂ Z^} the integration runs from — oo to +00.

Corollary 2. For η<π/2 and any m with (suppm)cA and with m — ̂ jn(ί) = ̂

(cosmφ^^^^osmφ)^, (36)

<cosm0>χ^<cosmφ>^. (37)

Proof. For the free b.c. we first remark that, since we integrate in the numerator
and the denominator of the l.h.s. of (36) functions which are invariant under
rotations of all the spins in A', we may as well set φk = 0 since that integration is
redundant. Then we apply Proposition 2 to the N. and D. with φk = Q being the
spin fixed outside A and

in the D. and the same thing multiplied by cosmφ in the N.
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For the -fb.c. we apply also the identity (31) to the N. and D. including in B a
factor

Π Π exp(j8cos(/)/)χ(|(/>ί|^^mod2π) (38)
jφΛ ieΛ
j φ f c \i-j\ = l

(which is periodic). We have to do this because Proposition 2 only allows one spins
fixed outside of A (at site k). But now we have a periodic characteristic function
which is left. In order to get (37) (no periodic χ in μ(^}) we write

A\φi\^ηmod2π)= £ χ(| φt- 2nnt\ ^η)
n,eZ

and expand the product over i in (36) both in the N. and D. We shall see that only
the term where all n. = 0 contributes and this will prove (37). Let us go around dA
starting from / and let j be the first point where ΠjΦO. Then there is a fed A (just
before j) with [/— /| = 1, njf = 0. Since ( J f y c A , \φj — φjf ^η and since njt = 0, \φf\^η
(for the integrand not be zero). So \φj\^2η and 2π\nJ\^\2πnj — φj\+\φj\^η<2n
and so Πj = Q.

Now it is easy to check that the measures (34) and (35) are log concave
perturbation of Gaussian ones: for \φi — φJ\<π/2 one can find a τ>0 such that
cos(φi — φj) + τ(φί — φj)

2 is concave [5].
Now we generate the asymptotic expansion of (cosraφ)^, <cosmφ>(^} by

integrating by parts as before. We let the radius of the box /I, #(T) = exp (]//?),
which grows sufficiently fast to show that the boundary terms are negligible

\_m(T)R(T) ~ exp — (logT)2exp(j/p)— >oo as T-»0]. Since our measures are log

concave perturbations of Gaussian ones, we can control the (Fφ')2", φ' = ]/~βφ and
the δ functions δ(\Vφ\ = η) by the Brascamp-Lieb inequalities [5]. We also control
the expectation values appearing in the mass term with these inequalities, because
<(/)2>^, i = l,2 is bounded by the corresponding Gaussian expectation which is

finite for J^3 and diverge like logA~ yβ for d = 2 [for d = \ one would have to
choose #(T) = exp(-3/2(lnT)2)] (see [3]).

Remark. 1. Since we do not use reflection positivity, the above proof works, in
principle, for ferromagnetic finite range interactions instead of nearest-neighbor
ones. One would have to check the Gaussian estimates of Appendices A and B of
[3] for non-nearest-neighbor Gaussian measures. The proof however only works
for <cosm0> with m = 0.

2. One could, with this method, perform directly the expansion for <cosmφ>
with ^m ΦO and, in particular show that <cosφ0> Φθ for T small enough if one
could prove one of the following statements, which are presumably true :

1. The difference \(cosmφy Λ — (cosmφy Λ η\ between the correlation functions
and the one conditioned on Iφi — φjl^η for all pairs <ίj> is exponentially small as
/?— »oo uniformly in A.

2. The expectation value (cosmφ)^ converge sufficiently fast to their infinite
volume limit. A convergence of order (logl/ll)"1 would suffice to prove the phase
transition.

3.The limit of <cosmφ>Λ as /ι|0 is fast enough; again (log/i)^1 would be
enough to prove the phase transition.
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Any of these statements would provide a proof of phase transition for three or
more dimensional rotator models without using reflection positivity.

V. On the Decay of the Two-Point Function

We show here that whenever there is a spontaneous magnetization, the transverse
two-point function of the plane rotator, (sin^sin^), behaves exactly like
β~* \x\~(d~2) for large \x\. This is what the Gaussian (spin-wave) approximation
would predict. The upper bound was proven in [25]. We prove here the lower
bound, which improves Goldstone theorem type of result (e.g. [19]) showing that

]Γ<sin00sin(/>x>
2 diverges. The proof relies on the infrared bound, the Mermin-

Λ;

Wagner argument and the correlation inequalities of [22, 24,15].

Theorem. For any rf^3, there exists constants c l 5c2 such that for all xeZd

c fh2 r

PI-I =β\x\d~2'

c2m
2 _ 2 cl

d
where m = <cosφ0> is the spontaneous magnetization and |x| = £ |xj.

e = l

Froo/ The upper bounds are proven in [25]. b) Follows from a), the Dunlop-
Newman inequality [9] and the inequality (cosφφcosφ^) — m 2rg<sinφ 0sinφ x>
proven in [10, 16]. Let us prove a) for d = 3 (the general case is similar). By the
infrared bounds and the Mermin-Wagner argument, (see e.g. [21]) S(p\ the
Fourier transform of {sinφosinφ^) satisfies the bounds,

c'M2 _ x ^ c',

Therefore, if fL(x) is the characteristic function of a cube A^Z3 centered at the
origin of volume L3 :

one has only to show that j p 2\f2(p}\2d3p~L5, see e.g. [4] .
V —π /

By positivity of (sin^sin^) and translation invariance, we have:

/ZΛ3

- Σ <sin φQ sin φxy ̂  ̂  <sin Φ* sin ̂ AMAC)7)
\ Z / xel/2Λ x,y

^c'[β-lL5 (40)
and

(L)3 Σ (sinφosin.φ^)^ ^ <sinφxsinφy>/L(x)/Ly)
xeΛ x,y

^β^L5, (41)

where kΛ is a cube of size (/cL)3 centered at the origin.
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Now we use the fact that, by correlation inequalities [22, 24, 15] <sin^0 sinφxy
reaches its maximum for x inside A at the corners of A and its maximum outside A

for x along the axis |χ| = — +1. (The minimum property is used in [25] for the

upper bound.) To get the lower bound, let

x=([!+l,0,...,0|.

Then

xekA
xφA

= ((kL)3-(L)3ΓΊΣ s n
xekA xeA

using inequalities (40) and (41). This proves the lower bound when x is along a
coordinate axis, if we choose k such that c"2k

2 ^25c'[ + 1 and c2 = 2(fc3 — 1)~ 1.
When x is not along a coordinate axis we use the result of [15] which says that

for given |x|= ]Γ |xj reaches its maximum along the coordinate

axis. This is proven in [15] for Ising models, but the same inequalities hold for the
plane rotator model : one has to use the fact that the state < > can be obtained as a
limit of Gibbs states in Λn for any increasing sequence Λn]Zd, [2, 23], so that we
can use all the inequalities of [22, 24, 15] at once.
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