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Abstract. The finite-dimensional representations of the Lie superalgebra
osp(1.2) and the group with Grassmann structure OSP(1.2) have been studied.
The explicit expression of the projection operator of the superalgebra osp(1.2)
has been found. The operator permits an arbitrary finite-dimensional repre-
sentation to be expanded in the components multiple to the irreducible ones.
The Clebsch-Gordan coefficients for the tensor product of two arbitrary
irreducible representations have been obtained. The matrix elements of the
irreducible representations of the group UOSP(1.2) [the analoque of the
compact form of the group OSP(1.2)~] are studied. The explicit form of these
matrix elements, the differential equations satisfied by them, and the integral of
their product have been found.

1. Introduction

The Lie superalgebras and the Lie groups with Grassmann structure1 have been
extensively used since recently in physics. These objects appeared first in the
problems relevant to the secondary quantization of the fermion systems [5], then
in the dual model, and finally in the supergravity and the supersymmetric field
theory (see the review in [6]). The natural problem arises, therefore, to develop a
formalism of the theory of representation of the Lie superalgebras and groups with
Grassmann structure up to the extent as was achieved for some of the semisimple
Lie groups [14].

The present work studies in detail the finite-dimensional representations of the
Lie superalgebra osp(1.2) and the generated group with Grassmann structure
OSP(1.2). The representations of the Lie superalgebra osp(l,2) were studied earlier
in [8,10, 11].

In the first part of the present work, the projection operator method developed
earlier for the usual semisimple Lie algebras [1, 2] is applied to the superalgebra

1 Other names for these objects may be found elsewhere, namely supergroups or graded groups. The
terms used here seems to us to reflect better the essence of these mathematical objects
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osp(1.2). This technique has been used to obtain the explicit expressions of the
Clebsch-Gordan coefficients for the tensor product of the arbitrary irreducible
representations of the superalgebra osp(1.2).

Studied in the second part are the matrix elements of the irreducible
representations of the group U0SP(ί.2), i.e. the analogue of the compact form of
the group OSP(1.2). We shall find the explicit form of these matrix elements, the
differential equations satisfied by them, and the integrals of their product.

2. The Basis of Finite-Dimensional Representation
with the Highest Weight of the Superalgebra osp(1.2)

Let some of the known definitions be reminded [7]. A complex (or real) linear
space V is called Z2-graded if it is presented in the form of the direct sum of two
subspaces, i.e. V=VO@VV The elements Vo are called even, and those of Vί odd.
The elements that are either even or odd are called homogeneous. There exists a
parity function α defined on homogeneous elements by the formula:

«H°; l "I
The Lie superalgebra (or, which is the same, the Z2-graded Lie algebra) is the
Z2-graded space 9I = 5I o φ5ί 1 with bilinear operation (called commutator) satisfy-
ing the following axioms

[x,y] ( l ) [y,x],

( - l)α(x)α(z)[x, [y9z]] + {- l)α ( z ) α ω[z, [x, j;]] + ( - iγW'Mfy, [z, x]] = 0.

for all the homogeneous elements x, y, z. The commutator [x, y] will also be
designated [x,y]_ if α(x) = 0 or a(y) = 0 and [x,y]+ if α(x) = α(y) = l.

A representation of a superalgebra 2ί in a finite-dimensional graded vector
space V=V0®V1 is the realization of the algebra 2ί by the operators Tx in V
subject to the condition: if xe9I 0 then TXVOCVΦ TXV1CV1 and if xe^X1 then
TxVocVv TxVιQVQ>. We assume that there exists on V such a nondegenerate
bilinear Hermitian form (denoted by brackets < | » that Fo and V1 are orthogonal
with respect to this form, i.e.,

< 7 0 | 7 1 > = 0 . (2.3)

The elements L±, Lo, R± satisfying the conditions

[ L 0 , L ± ] _ = ±L± , [L + , L _ ] _ =2LO9 (2.4a)

[ £ o 9 K ± ] - = ± i K ± , lL*,R±-]-=RT9 [ L ± , Λ ± ] _ = 0 , (2.4b)

[Λ±,Λ±]+ = ±\L± , tR + ,R_-]+ = -\L0 (2.4c)

form the Cartan-Weyl basis of the superalgebra osp(12) [8]. The elements L ± , Lo

form the basis in the even subspace osp0(1.2)2, while R± form the basis in the odd
subspace ospι(12):

osp(ί .2) = 0^0(1.2)00^^1.2). (2.5)

2 osp0( 1.2) is the simple Lie algebra Aί
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The operators of the representation of the superalgebra osp(ί2) which
correspond to the basis elements L±, Lo, R±, will be denoted with the same letters.
These operators satisfy the conditions (2.4a, b, c), where [x, y] _ means the usual
commutator, and [x, j/] + anticommutator.

Let V{J) be the space of the finite-dimensional representation with the highest
weight J of the superalgebra osp(1.2). The basis in the space V(J) is constructed in
the reduction osp(12)DA1 =osp0(12). The highest vector will be denoted by the
symbol \Jλ}. The following equalities are valid for this vector

(2.6a)

09 (2.6b)

where λ means the parity of the highest vector \J)C). It follows from (2.6b) that the
highest vector exhibits a definite parity, i.e. it belongs to either even V0(J) or odd
subspace V^J).

The basis in the space V{J) will be constructed using the projection operator of
the algebra Av This operator is of the form [2,12]

oo

P= ΣCr(L0)Π_Π+, (2.7a)
r = 0

(-l)T(2L0

C'(L°}- r\Γ(2L0

where Γ( ) is the operator gamma-function. The main properties of the operator P
are

[ L o , P ] = 0 , P2 = P, (2.8a)

L + P = PL_=0. (2.8b)

Obviously, if the operator P acts on the vector with weight M = L (with respect to
the operator Lo), it will cut off a component of the vector which is highest relative
to the algebra Avlt will be assumed below that the operator P acts on the vector
with weight M = L. This fact will be reflected by denoting the operator as PL.

Let the spectral composition of the irreducible representations of the super-
algebra A1 be found in the representation J. In virtue of cyclicity of the
representation J, any vector \J\LM = L) highest relative to the subalgebra Aγ

may be presented as

\J;LM = L)=ΣCa, kL
a_ Rk_ \Jλ} (2.9)

a,k

where k, in virtue of (2.4c), may assume only the values 0, 1, and L = J — a — ̂ k.
Since L is known [14] to be non-negative integer or semi-integer, then J may also
assume just the same values. After the action of the operator PL on both parts of
the equality (2.9) and considering the property (2.8b) of the operator P L , we get

= N(L)PLRk_ \Jλ} = N(L)Rk_ \Jλ},
(2.10)

fc=0,l; L = J-±k,
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where N(L) is a certain (still indefinite) factor depending on the normalization
conditions. It can readily be seen that the vectors (2.10) at J ^ 1/2 differ from zero
and exhibit a definite parity λ + k.

Thus, we have obtained that the finite-dimensional representation with the
highest weight J of the superalgebra osp(l.2\ when being narrowed to the
subalgebra Av is expanded into the direct sum of two IR L = J and L = J —1/2.
The two representations exhibit multiplicity 1. The representation with J = 0 is
identical; in this case also L = 0. It follows from this result that any finite-
dimensional representation with highest weight J is an irreducible representation
(IR). The above conclusions coincide with the results of [8].

The actions of the lowering operators F_(M,L) of the algebra Ax

on the vectors (2.10) give the complete basis in the space V(J):

(2.12a)

where

F_ (M, L) = N(L)^_ (M, L)Rk_ ,
(2.12b)

fc = 0, l ; L = J-±k; M= - L , - L + l , . . . ,L.

It can readily be calculated that the dimension of the IR J is

dimJ = 4 J + l . (2.13)

Any IR of the superalgebra osp( 1.2) is known to be equivalent to the grade star
representation [10,11], i.e. there exists such Hermitian form < | > in the space V(J)
that, relative to it,

r Φ _ r r Φ _ r

* τ > ° °' (2.14)

RX=(-l)εR_, R*=(-l)ε+ίR+.

The operation Φ means the grade adjoint operation

<A*f\φ} = (-lT^ \f\Aφy (2.15)

for any homogeneous operator A of parity a(A) and for any homogeneous vectors
f,φe V(J) (λ is the parity of vector /) . There exist two classes of the grade star IR's
differing in the index ε = 0,1. The two classes differ essentially in only the parity
λ = 0,1 ascribed to the highest vector \Jλ). It can readily be shown that λ and c are
interrelated as

λ = ε+i. (2.16)

If IR J is grade star representation, then the basis (2.12a,b) is orthonormahzed at

N(L) =
42{J-L)Γ{2L+1)

Γ{2J+Ϊ)

1/2

(2.17)
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The explicit form of the basis vectors (2.12a, b), (2.17) makes it quite possible to
obtain the actions of the operators L+, Lo, R± on these vectors:

= 2(J-L)

=}/(LTM)(L±M+l)\J;LM±lλ + k>,
(2.18a)

(2.18b)

The expressions (2.18a, b) coincide with the results obtained in [8].

Use will be made below of the matrices of the operators Ax = —(L++L_),

A2=\{L+—L_\ A3=—ίL0 and R± for representation J = l / 2 . If the highest
vector is considered to be odd (λ= 1), these matrices prove to be of the form

ι
2

0

0

0

0

0

1

0

1

0

0 0 0

0 0 - 1

(2.19a)

(2.19b)

3. The Projection Operator of the Superalgebra osp(1.2)

Let V be the space of the finite-dimensional representation of the superalgebra
osp{12). It will be set that

f = 0}. (3.1)

Let the projection operator F-> V+ be denoted φ. Obviously, this operator has to
satisfy the following requirements

[ L 0 , $ ] = 0 , R + Φ = 0, (3.2a)

$ 2 = φ, W = f if feV+. (3.2b)

We shall find the explicit expression of φ which will be sought to be of the form

where Cr(L0) are the unknown factors depending on the operator Lo. In such a
form, the operator ^ satisfies the first of the equalities (3.2a). The factors Cr(L0)
will be found from the remainder conditions (3.2a, b). By substituting the operator
(3.3) in the second equality of (3.2a), transposing the operator R+ with the
operators Rr_, combining R+ with Rr

+, and collecting the similar terms, we get

(3.4)
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Since the elements Rr_ R ++1 at various r are linearly independent, we obtain that
the equality (3.4) is valid if

l ( n + l ) C 2 n + 2 ( L o ) - C 2 π + 1 ( J L o ) = 0,

C 2 B + ! ( £ „ ) - C 2 l l ( L 0 ) = 0, « = 0,l,2,.. . .

The solution for this set of the operator equations at the boundary condition
CO(LO) = 1, which follows from the second equality of (3.2b), is

W ( 1 6 b )

where Γ( ) is the operator gamma-function.
Thus, we have obtained that the projection operator 3̂ of the superalgebra

osp( 1.2) may be presented in the form (3.3), where the factors Cr(L0) are given by
the formulae (3.6a, b). It can easily be verified that the obtained operator φ will
also satisfy the following equality:

ψL_=($R_=0. (3.7)

The Clebsch-Gordan coefficients will be conveniently calculated using another
form of the operator ^ :

9β = RP = PR, (3.8a)

where

$£$
P is the projection operator of the algebra Aι given by the formulae (2.7a, b). The
form (3.8a, b) can be obtained by substituting in (3.3), (3.6a, b) R2

+

n+k = (iL+)nRk

+,
R2_n+k = (-lL_)nRk_ (fc = 0,1) and by transposing the operators L\ and L"_ to the
right or left.

If the operator ?β acts in the subspace

" = .//} (3-9)

it will be denoted as ψJ.

4. Clebsch-Gordan Coefficients

Let V(J1)=V0{Jί)®V1(J1) and, corrispondingly, V{J2)=V0(J2)®Vί{J2) be the
spaces of two IR's J\ and, correspondingly, J2 with the bases

\Ji;L1Mίλί + kίy = F_(MίL1)\Jίλίy, (4.1a)

L 1 = J 1 , J 1 - | ; M ^ - L ^ - L i + l , . . . ^ ! , fe1 = 2(J 1 -L 1 ) (4.1b)
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and, correspondingly,

\J2;L2M2λ2 + k2}=F_(M2L2)\J2λ2} (4.2a)

L2 = J2,J2-%; M 2 = - L 2 , - L 2 + 1,...,L2; k2 = 2(J2-L2). (4.2b)

The space of representation of the tensor product J±®J2 will be denoted as

V(J1®J2) The vectors

| J 1 ; L 1 M 1 λ 1 + fe1>|J2;L2M2λ2 + fe2>

at all the admissible values of (4.1b), (4.2b) form the basis in the space V{J1®J2)
The operators L ± , Lo, and R± of representation J1®J2 are composed of the

operators

L ± = L ± ( 1 ) + L±(2),

LO=LO(1) + LO(2), (4.3)

R±=R±(ί) + R±(2).

It will be noted that

[Lm(l),Lπ(2)]_=0, ( m , n = + , 0 , - ) ,
(4.4)

[ JRp(l),R,(2)]+=0, ( ? , « = + , - ) .

At a fixed value of i, the operators L±(i), L0(i), R±(i) acts on the vectors of the
subspace F(J;). It should be borne in mind that

where, α is the parity of the operator Λ(2).
Consider the vector

ψF_(MίL1)\J1λ1}F_(M2L2)\J2λ2y (4.5)

where J = M1+M2. After substituting here the expressions L_(1) = L_ —L_(2),
R_(1) = R_— R_{2) in the lowering operator F^M^^) and considering the
equalities (3.7), we get

ψ\ J1 L1Mιλ1 + k1 >| J2 L2M2λ2 + k2}

^ φ J | J ^ i > I A ; ^ - ^ i ^ 2 + ̂ 2> (4.6a)

which immediately gives the admissible values of J

J1-J2^J^J1+J2. (4.6b)

Similarly, it can be obtained that

φ J | J i L1M1λ1 + k1)\J2 L2M2λ2 + /c2>

^φ^ L j-jμ,^;)!^) (4.7a)

and

J2- (4 7b)
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By combining (4.6b) and (4.7b), we get

J2. (4.8)

After calculating the total number of the vectors of the form

F_{M,L)ψ\J\λty\J2;L2J- J\λ2 + k2y (4.9)

at all the admissible values of J, L, M we obtain

1) = (4 J x + 1)(4J2 +1) . (4.10)

The summation here has been made over all integer and semi-integer values of J
satisfying the inequalities (4.8). It can be seen that the number of the vectors (4.9) is
exactly the dimension of the representation J 1 ® J 2 , i.e. the vectors (4.9) form the
basis in the space F ( J 1 ® J 2 ) .

Thus, we have obtained that the space of representation V(J1®J2) can be
expanded into the direct sum of the subspaces

V(J1®J2)=®V(J). (4.11)
j

In each V(J) the IR of weight J is operative and the weight J takes on all the
integer and semi-integer values satisfying the inequalities (4.8). This conclusion
coincides with the results obtained in [8].

The coefficients interrelating two bases

\J;LMμ>

= ΣCi^iΛί ̂  + kl9 J2L2M2λ2 + k2\JLMμ)

. | J 2 ;L 1 M 1 A 1 + /c1>|J2;L2M2A2 + ̂ 2> (4.12)

are the Clebsch-Gordan coefficients (CGC) of the superalgebra osp(1.2). Here, μ
denotes the parity of the vector \J LMμ) which is determined by the parity of the
right part: μ = λx + λ2 + /c1 + k2. [It will be shown below that the right part of (4.12)
display a definite parity.]

The expressions of CGC are determined by a particular bilinear Hermitian
form set in the space V(J1®J2). We shall examine two cases.

(A) The IR's J\ and J 2 are the grade star representations of the same class
ε = 0,1. In the space V(Jί0J2) the form

<Λ®/ 2IΦi®Φ2>=(-l)α ( / 2 ) α ( φ i )</ilΦi></2lΦ2> (4-13)

is set, where fί,φ1eV(Jί), f2,φ2eV{J2) are the homogeneous elements (odd or
even); α( ) is function of parity on the spaces F(JX) and V(J2); </|φ> is the
Hermitian form on these spaces. It can readily be verified that the representation
J i ®J2 with respect to the form (4.13) is the grade star representation of the class ε.

The expression (4.9) can be used to find the formula for calculating CGC:

(J1L1M1λ1 + kv J2L2M2λ2 + k2\JLMμ)

'9L1M1λ1 + k1KJ2;L2M2λ2 + k2\

1λί>\J2;L2J-J1λ2 + k2y, (4.14a)
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1-1/2 (4.14b)

In the given case, it should be set that λί=λ2 = λ in (4.14a, b). The calculations
made using these formulas have shown that CGC of the superalgebra osp(ί.2) can
be factorized into two factors:

(J^Λ^V cl9J2L2M2λ2 + k2\JLMμ)

J

L2λ + k2 Lμt

-{L1M1L2M2\LM). (4.15)

The first factor ( || ) is independent of the projections M1 and M 2 and will be
called the scalar factor. The second factor (L 1 M 1 L 2 M 2 | |LM) is the known CGC of
the group SU(2). The explicit expressions of the scalar factors are presented in
Table A.

ΓableA. Scalar factors ί J l J l I J

\Lι?,+ k2 L2λ + k2\Lμ

{Jι+J2+J) integer (J1 = J2 + 3) semi-integer

= 3-\ μ=i L=J μ=l =J-i μ=0

J 1λ, J2A
Jt+J2+J + l

2J + 1
0

(-ir
23 2J + 1

J.-J2+J

2J

Jx+J2-J
23

It can readily be verified that the obtained scalar factors for the form (4.13) are
orthogonal and normalized, but only to ± 1:

Σ(-i)1

L2λ + k2 Lk1Λ-k2

L2λ + k2

J'

Lkx+k:

= +lδττ, (4.16)

The expressions of the scalar factors (Table A) coincide with the results
obtained in [11] by the other method.

Consider now the case
(B) In the space V(Jί®J2), the form

(4.17)
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is determined, where fvφ1eV(Jι) and f2,φ2eV(J2). If ViJ^ and V(J2) are the
Hubert spaces, then V(Jι®J2) is also the Hubert space. In this case, CGC are
calculated the formula (4.14a) where iV(L2>l /c.) should be replaced by the
expression

(4.18)

Here ( + ) denotes the Hermitian conjugation. The calculated scalar factors

h J2

1 1 1 - ^ 2 2 2

J

are presented in Table B.

Table B. Scalar factors I _ / 2 .
\L1Λ1+kι

2λ2 + k2\Lμ

L2λ1+k1,L2λ2

( J 1 + J 2 + J ) integer Ji + J2 + J) semi-integer

= J-$,μ = λί+λ2 + l L=J μ = λi

1 1 ? 2 2

J1+J2+J + l

.2 J ,+2 J 2 2J1+2J2

— J, + J 2 + J
25 2 J + l

2 J 2J + 1

2J1+2J2

The normalization condition for the scalar factor is of the form

Σ i L2λ2

J

Lμ)\L1λ1

Jrk1 L2λ2 + k2 Lμ
= 1. (4.19)

It can be seen from Table B that the scalar factor (hence CGC) are not orthogonal
in the case of the form (4.17).

5. The Groups OSP(1.2) and UOSPil.2)

Let © be the complex Grassmann algebra with N generators ξί9 ξ2, ξ3,
(ξiξj + ξjξi = 0). N may be both finite and infinite. The element

n= Σ Σ
m > 0 ί1<ί2< ... <ίn

is called even if the addends with even m in (5.1) differ from zero and odd if the
addends with odd m differ from zero. The set of even elements will be denoted © 0,
and the set of odd elements ( ^ (© = ©00©!) . Both odd and even elements are
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called homogeneous. The parity function oc(η) is defined on homogeneous elements
by the formula:

<*-{?; I! Ill:
Let the Grassmann envelope of Lie superalgebra ^ί = 9ίo©9X1 be denoted
) = 9IO(©O)Θ9I1(©1). By definition, 2I(©) consists of formal linear com-

binations Σ^β;, where {et} is a basis of 2ί, f^e©; the elements β and η. at each

fixed i are of the same parity. The commutator of the arbitrary elements X = Σtffr'

Y= Σtffij is defined by formula
j

(5.3)

Here [ei5 ej] means the commutator in the Lie superalgebra 21. It can readily be
verified that 9I(©) is the usual Lie algebra.

Return now to the complex Lie superalgebra osp(l2). Let osp(1.2) be realized
by the third-order matrices with basis (2.19a, b). Obviously, the elements of the
algebra osp(1.2;©) = osp0(1.2;©0)©osp1(1.2;©1) will be the matrices of the form

23

(5.4)

at a11=0, a22= — α 3 3 . The elements atj are taken from © 0 and ηv η2 from dΰv

It will be required further that a semilinear mapping η ^ηπ be set in the
Grassmann algebra ©, with the properties

(5.5)

for homogeneous v, η and complex c. The operation (•) of such kind was treated
in [9] and exists explicitly at an even number of the generators N of the algebra ©
or at infinite N.

Let the grade adjoint operation ( + ) be introduced in the Lie superalgebra
osp(1.2) [10,11]. The operation (Φ) satisfies the following conditions

x*eosPi{l2) if xeosPί(12), i = {0,l}, (5.6a)

) * = C X X Φ + c 2 y φ , (5.6b)

[ x ^ ] Φ = ( - l ) β ( x ) β ( y ) [ y Φ ^ Φ ] J (5.6c)

(**)*=(-l)β<*>;c (5.6d)
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for all homogeneous elements x, y and complex cv c2. It is known that there exist
two such operations:

L%=Lτ, L*=L0, R*=(-lf+1R+, Rt=(-l)εR_ (5.7)

which differ in indices β = 0,1.
The operation (=t=), in combination with the operation (•) in the Grassmann

algebra ©, induces the adjoint operation ( + ) in the Lie algebra osp(1.2; ©)
through the formula

{η1x + η2y)+=η?x*+η?y*. (5.8)

It can readily be verified that

[X,Y]+ = [Y + ,X + ], X9Yeosp{ί2'9(S). (5.9)

If X is the third-order matrix of the form (5.4), then

(
ΠΏ yjΠ M D

α l l Ί2 Ίl

M D ΠU ΠΠ
— γ\l a22 α32

nπ au au
Ίl a2Z α33/

forε^O.

Let the "real" subalgebra

uosp(1.2;®)={Heosp(1.2;®)\H+ = -H} (5.11)

be singled out in the Lie algebra osp(1.2;©).

The arbitrary element H of this subalgebra is of the form

, (5.12a)

where

^ A2=±(L+-L_),

-Ai9 Λί=Λ_, Rt = -R+, (5.12b)

The subalgebra wosp(1.2;©) is the analogue of the compact real form of the Lie
algebra osp(1.2;(5). It may be shown that the very uosp(l2;(5) is the Grassmann
envelope of not a single Lie superalgebra.

The set of all nonsingular matrices of the form (5.4) (where the trace of matrice
X may differ from zero) will be denoted PL(12). This set forms the group with
conventional operation of matrix multiplication.

The group 0SP(12) is determined to be the exponential mapping of the
Grassmann envelope osp(1.2;©) of the superalgebra osp(12) realized in the form
of matrices (5.4) to the group PL(1.2):

) = {expX|Xeosp(1.2;©)}. (5.13)
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The analogue of the compact form UOSP( 1.2) of the group OSP( 1.2) is given by
the condition

UOSP(L2) = {expH\Heuosp{1.2;®)}. (5.14)

Considered further will be the group U0SP(l.2). It follows from the general
theory [3] of the Lie groups with Grassmann structure that the arbitrary element
ge U0SP(ί.2) may be presented in the form of the product of the elements from the
one-parameter subgroups

g = uξ (5.15a)

u = exp{a1Aι)exτp(a2A2)exp(a3A3), (αP = α ;e@), (5.15b)

ξ = exp(ηaR++ηR_), (ηe®,). (5.15c)

Later on, we shall use the expansion

u = exp(φA3)Gxp(ΘAί)Gxp{ψA3)9 (5.16)

where

(5.17)

ψ = ψ0 + ψ = ιpπ , — 2π Sψ0 < 2π.

The parameters θ0, φ0, and ψ0 are the conventional Euler angles for the group
SU(2); θ9 φ, and ψ are the nilpotent even variables of the Grassmann algebra (5. It
may be shown that, if the parameters a1 and a2 in (5.15) are nilpotent, then the
expansion (5.16) is not always valid. However, the set of the elements, for which the
expansion (5.16) is not valid, are of a real dimension smaller than the dimension of
the entire group. Thus, disregarding this set, the arbitrary element geU0SP{1.2)
may be presented as

^ = exp(φ^3)exp(θ^[2)exρ(ι/;^3)exp(^Di^+ +ηR_). (5.18)

Substituting here the explicit expressions (2.19a, b) of the matrices Λv A3, R±, we
get

(5.19a)02i (Wi

031 (l~"8i

where

(5.19b)
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and the matrix \\upq\\ is of the form [13]:

/I 0 0

2 /

0 ί s i n ( θ / 2 ) e x p ( ^ ^ ) cos(0/2)exP(-

, (5.19c)

The formulae relating the Euler angles to the matrix elements

cosθ = 2w22w33 — 1 ,

sinθexp(iφ)= —2iu22u23, (5.20)

= —2ίu22u32

will be useful for further reasoning.

6. Representation of the Group UOSP(1.2)

Let V=V0(BV1 be the linear graded space representation of a certain Lie
superalgebra 9I = ̂ ί o ©2ί 1 K(δ)=K o (® o )07 1 (® 1 ) be the Grassmann envelope of
subspace V. [^(Cδf) be the linear envelope of V{ over ©..] The representation of the
Grassmann envelope 3ί(©) = 9ίo((5o)φ9ί 1(© 1) and the corresponding group with
Grassmann structure is the homomorphism of these objects to the set of linear
operators given in F(©). Here we see the complete analogy with the conventional
Lie group. It is clear that any finite-dimensional representation of the superalgebra
2! may be restored up to the representation of the corresponding Lie group with
Grassmann structure. If the representation of the Lie superalgebra is irreducible, it
will also be irreducible for the group.

Let T(g) be IR of the group UOSP(1.2) in the space, which is the Grassmann
envelope of space V(J),

V(J;®)=V0(J;($)0)®V1(J;(δί). (6.1)

Let the operator matrix T(g) be found in the basis \J LMλ + ky (L = J,J — \\
M=-L,...9L;k = 2(J-L))

T(g)\J;LMλ + k}= £ T¥M,LM{g)\J L'M'λ + k') . (6.2)
L'M'

Since

T(g) = T(u)T(ξ) (6.3)

[see the expansion (5.15)], we have

Tlλ

M',LM(Q)= Σ <J;L'M'λ + U\ΊXu)\J;L''M''λ + k?'>
L"M"

• <J \L"M"'λ + k"\T(ξ)\J LMλ + k} . (6.4)
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Considering that the matrix elements of the operator T(u) are diagonal in L, we
get

T^λ

M/ίLM(g)=ΣDL

M/Mf(uKJ;L'Mf'λ + k'\nξ)\J;LMλ + k), (6.5)
M"

where ||^M'M"(M)II *S t n e conventional matrix of finite rotations of IR L of the
group SU(2). This matrix is a function of the Grassmann variables φ, θ, ψ. The
second matrix element in (6.5) can readily be calculated. As a result, we get:

M{Ω), (6.6a)

(6.6c)

(6.6d)

Now, we shall find the character χj(g) of IR J of the group UOSP(12). It will be
reminded that the character χ(g) of the finite-dimensional linear representation
T(g) of the group G is the supertrace of the representation matrix: χ(g) = str T(g)
[3]. Similarly to the case of the conventional Lie groups, the representation
character χ(g) is completely determined by the eigenvalue of the Cartan subgroup
[exp(L43)> ίe(5 0 in our case]. In the case of IR J of the group U0SP(1.2\ the
character χj(g) is of the form

J J-l/2

M=-J M = J-1/2

the first and second sums to the right in (6.7a) are the characters χL(g) of IR's L = J,
J- 1/2 of the SU(2) group. We find eventually:

(6.7b)

= - ^

) y J 1 / 2 ( o ( ) t ; ,
COS ^ I

(te© 0).
Let 53 be the linear space of the Grassmann analytical functions f(g) [4] given

on the group U0SP(ί.2). The representation of the group U0SP(ί.2) is related to
the space 33 through the operators of the right and left shifts

T(g)f(g')=f(g-1g'), (6.8a)

T(g)f(g') = f(g'g), (6.8b)

g,g'eU0SP(l.2).

It may be shown that a two sides invariant measure dμ(g) exists on the group
U0SP(1.2) [3], i.e.

\f{g)dμ{g) = \f(g'g)dμ{g) = \f{gg')dμ{g) = \f[g~ ')dμ(g). (6.9)
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If 33 consists of the functions for which the integral If2{g)dμ(g) exists, then the
representation (6.8a) is called the left regular, and (6.8b) the right regular.

Let the density ρ(g) of the measure dμ(g) be calculated:

dμ(g) = ρ(φ, 0, ψ9 η
π, η)dφdθdψdηπdη. (6.10)

It is known [3] that the density ρ(g) of a Lie group with Grassmann structure is
closely associated with the invariant forms of the first-order on such group. Just as
in the case of the conventional Lie groups, the number of such forms is the same as
the number of the parameters in the group. All the independent first-order forms
ωk are related to the common invariant

ξ~1 (6.11)

where u and ξ are the elements (5.15b, c). The relationship (6.11) is of the form [3]

ωi = aildφ + ai2dθ -f ai3dψ, (i = 1,2,3), (6.12)

ώj = cndηπ + cj2dη, (j=l,2).

The density ρ(φ,θ,ψ,ηπ,η) is expressed through the determinants of the matrices

A =
α n α 1 2 α 1 3

α 2 1 α 2 2 α 2 3

by the formula

The calculations give the expression

ρ(φ,θ,ψ,ηΏ,η)=
Ώ η ) =

C =

det/4

C 2 2

4π

(6.13)

(6.14)

(6.15)

The factor — has been selected on the basis of the normalizing condition
4π

$dμ(g) = l. (6.16)

It can easily be verified that the matrix elements T[^M, LM(g) (6.6a-d) form the
orthonormalized set of the functions

( 6 ! 7 )= δJ, J'δL', L'δL, LδM'M'δMM '

Here the horizontal bar over T[^lLl^(g) means the operation (•) in the space of
the Grassmann analytical functions. It will be noted that the right part of (6.17)
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differs from the case of the group SU(2) by the absence of the factor 1/(2J+1)
where (2J+1) is the dimension of IR J of the group SU(2). It may be demonstrated
that T[,λ

M,>LM(g) form the complete set of basis functions in the space 23.

7. The Infinitesimal Operators of Regular Representations

Now, we shall find the infinitesimal operators of the left and right regular
representations.

Let ω(ί) be the one-parameter subgroup U0SP(1.2). The operators of the left
and right regular representations corresponding to the elements of this subgroup
will transform the functions f(g) into Ti(ω{t))'f(g) = f{ω~1(t)g) and Γ(ω(t)) f(g)
= f(gω(t)). Therefore, the infinitesimal operators of the representations T\g) and
T(g) corresponding to the one-parameter subgroup ω(ί) will transform the

function f(g) into the values —f(ω~1(t)g) and f{gco{t))— at ί = 0. Here, — and,
at at at

correspondingly, — denote that the left and, correspondingly, right derivatives are
at

taken. It will be reminded that, when the function f(g) is differentiated with respect
to even or odd variables, the right and left derivatives are respectively identical or
generally speaking different [4]. It is clear that the infinitesimal operators of the
representations T\g) and Tr(g) are determined, in any case, in the space of
infinitely differentiable functions on the group U0SP(1.2).

If the new parameters of the elements ω~1{t)g and gω(t) are designated φ(t\
θ(t\ φ(t\ ηD(t), η(t) then the infinitesimal operators Aι

ω and Λr

ω corresponding to
the subgroup ω(t) are of the form

) + m +Ψ(0) + r f ( 0 ) ^ + m

for the left, and

h τ e h ^ k (7 2)

for the right regular representations. The operator Λι

ω acts on the function from
the left Aι

ω'f = (AιJ\ and Ar

ω from the right Ar

ω>f = (fAr

ω). The values φ'(0), 0'(O),
ψ'(0\ ηfO(0\ ηf(0) in (7.1) are the left-hand, and in (7.2) the right-hand, derivatives in
ί at ί = 0. Thus, it can be seen that the calculations of Aι

ω and, correspondingly, Ar

ω

reduce to calculations of the left and, correspondingly, right derivatives of φ'(t\
θ'(t\ ip'(ί), η'Ώ{t\ η(t) at ί = 0 for the element ω~λ(t)g and, correspondingly, gω(t).

The derivatives of the Euler angles φ'(t\ θ'{t\ ψ'{t) should be calculated using
the formulas (5.20), where φ, θ, ψ depend on t, while the matrices u are determined
from the expansion ω~1(t)g = uξ for the left, and gω(t) = uξ for the right regular
representations.

The explicit expressions of the infinitesimal operators Aι

v Aι

2, A\ correspond-
ing to the one-parameter subgroups exρ(ί^ ι) (ΐ=l,2,3) for the left regular
representation are the same as the corresponding operators for the group SU(2).
The only difference is that, in the case of the group UOSP(1.2) the Euler angles are
the Grassmann variables. The explicit expressions of the operators L+, Lι_, Lι

0 (see
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the equalities 5.12b) are

The subgroup ω(vπ,v) = exp(vDi?+ +vJR_) is in correspondence at once with two
infinitesimal operators R\ and Rι_ :

(7.4)

The calculations give the following expressions of R\ and R'_ :

)Lι

0

3 ^ (7.5)

R ι

+ =%(

u u

dΐj dΐj

where the matrix \\upq\\ is of the form (5.19c). It can readily be verified that the
operators (7.3), (7.5), (7.6) satisfy the commutational relations (2.4a, b, c).

The following expressions have been obtained for the infinitesimal operators of
the right regular representation:

+ + dηB

L2=W -~ηΏ,
dη

A(
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Here H\, Hr_, Hr

0 are the infinitesimal operators of the right regular repre-
sentation of the group SU(2) depending on the Grassmann variables φ, θ, ψ and
are set by the formulae (7.3) after the replacements φ-^ — xp, ψ-+ — φ, Lί-^Hί

(z = +, — ? 0). It can readily be verified the commutational relations (2.4a, b, c) are
also valid for the operators (7.7) considering that all the operators act on the
function f(g) from the right. In its turn, this means that [Lr

±,Lr

0~]= ±U0,
[Lr_,Lr

+] = 2Z/oetc.
The Laplace-Kazimir operator A of the superalgebra osp(ί.2) is of the form [8]

± 2 (7.8)

and commutates with all the elements of the superalgebra osp(12). The formula
(7.3)-(7.7) will be used to obtain the expression of A through the Grassmann
variables φ, θ9 ψ, ηπ, η. In this case, Ar = Aι = A i.e. just what should be expected.
The explicit form of the operator A is

.ληπη)j_-9 ( 7 9 a )

where

^SU(2) =

d2

 Λ d I ί d

sin2θ\(5φ2 δφδψ dip2 (7.9b)

is the Laplace-Kazimir operator of the group SU(2) when the Euler angles are the
Grassmann variables.

Similarly to the case of the group SU(2), the elements of the (LM)-column of
the operator matrix T(g), i.e. the functions

form the basis \J L'M'λ + fe'> = T[^_M,LM{g) {kf = 2{J - L')) of the left regular IR of
weight J of the group UOSP(1.2). Similarly, the elements of (LM)-line form the
basis of the right regular IR of weight J:\J; LMλ + k} = T[λ

M,LM{g\ {k = 2{J - L)\
The functions T^M,LM(g) are the eigenfunctions of the Laplace-Kazimir

operator A:

T£λ

M,,LM(g). (7.10)

Besides that,

< 7/^(0) = 0,

The explicit function Tj^j jj(g) may also be found by solving the Eqs. (7.10) and
(7.11). The rest matrix elements T[ϊM,LM{g) will be obtained by acting on Tj^JfJj(g)
by the powers of the lowering operators Rι_, Rr_.

If the Eqs. (2.18) are used, where the operators R± are substituted for Rι

± and
IJ L'M'λ + k'} = T[ϊ_M, LM(g) is of the form (6.6a-d), we shall obtain the recurrent
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relations for the functions DJ

M,M of the group SU(2). With this purpose, the factors
at ηπ, η, ηDη and the term which does not comprise these variables, should be
reparately equated to zero. One of such relations is

~ (7.12)

The relations of such kind are known to be the formulas of coupling of two
D-functions of the group SU(2) with moments J — \ and \.
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