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Abstract. We prove a variety of new correlation inequalities which bound
intermediate distance correlations from below by long distance correlations.
Typical is the following which holds for spin 1/2 nearest neighbor Ising
ferromagnets:

<5Λ> ^ Σ <SA><Vy>
δeB

where B is any subset of the lattice whose removal divides the lattice into pieces
with α, y in distinct components. We describe various applications, e.g. the
above inequality implies the critical exponent inequality η<l.

1. Introduction

This paper originated in my attempt to understand some results announced by
Dobrushin [7] in the summer of 1979. Dobrushin considers a class of model
systems including lattice gas models. Given two bounded regions AcΛ', he
considers the variation of a Gibbs state restricted to A as spins exterior to A' are
varied. Among other results, he proved that if this dependence falls off as the
inverse of a sufficiently high power of d(dA,dA'), then it automatically falls
exponentially. It was this kind of result that I wanted to understand. We will deal
with the related result that falloff of the two point function at a sufficiently fast
inverse power rate implies exponential decay. We will accomplish this by proving
various new correlation inequalities. Typical of the results we will prove is:

Theorem 1.1. Let <σασr) denote the two point function of a spin 1/2 nearest neighbor
(infinite volume, free boundary condition) Ising ferromagnet at at some fixed
temperature. Fix α, y and B, a set of spins whose removal breaks the lattice in such a
way that oc and y lie in distinct components. Then:

δeB
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Let us illustrate how (1.1) implies:

Theorem 1.2. Under the hypothesis of Theorem /./, suppose that

(σaσγ}SC\a-y\-^

with μ+l>d, the dimension of the lattice then

for some m>0.

Given (1.1), Theorem 1.2 clearly follows from the next result. Ideas of this genre
appear to be found first in Krinsky and Emergy [27] (see also Lebowitz [29]) who
obtained mass gaps from Griffiths third inequality [20] (see Sect. 4 below).

Theorem 1.3. Letf(oc — y) be a translation invariant non-negative bounded function of
α,yeZv. Suppose that for some subset B of Zv with .Bc{(5||<!>|̂ ,R} and all γ with
\γ\>R, we have that

δ), (1.2)
δeB

where 0 ̂  a(δ) and

ΣΦ) = A0<ί. (1.3)
δeB

Then

l/(y)l ^ ll/lloo exp(-m o f l r(y)), (1.4)

where

ll/L = sup|/(y)|
y

g(γ)=Rί\y\/Rl

with [x] = integral part of x, and

mo=-R-1\nAo. (1.5)

In particular, the ''mass gap" off

m = liminf[-|yΓ1ln/(y)] (1.6)
|y|->oo

is at least m, and, thus it is positive.

Proof Let ft = [|y|/#]. Then, by the translation invariance (12) may be interated n
times to yield

which is (1.4). Π

Remark. Translation invariance is inessential. All that is needed is that

). (1.7)
δeB
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While, Theorem 1.3 and its proof are the easiest way to get a mass gap from
(1.3), there are methods of getting better bounds than that given by (1.5). These are
based on the following abstraction of the Krinsky and Emery [27] argument:

Theorem 1.4. Let f obey (1.7) for |α-y|^jR. Suppose that (1.3) holds and that

ll/y II ex, = sup | / ( α , y)| < cx>
α

for some fixed y. Then

(i) the matrix A given by
A(ctiy) = a(<x — γ) if ot — yeB

= 0 if a-yφB

obeys (I — A) is invertible as a map on ί™.

(ii) |/(α,7)1^11/^ X (l-AΓ\δ,y).
\δ-y\<R

Remark. We do not require that Bc{y\\y\<R}. This makes the high temperature
result applicable to suitable infinite range interactions.

Proof. Let fa = \f{a,γ)\ and « β = | l / I L (if |α|<Λ) and = 0 (if |α |£R). Then (1.7)
becomes:

y

for all α including α with |α|<i^. Now, A is a bounded map on Z00 with norm

Σ φ - y ) = Λ 0 <l . Thus ί-A is invertible, \\An\\-*0 and ( l - ^ ) " 1

γ

Iterating (1.8) and using ||i4"||->0 we get

fa^ lim \Σ(1 + A + ... + A") (α, y)qy + Σ An+ \^y)fy\

which proves (ii). Q
The following when used in conjunction with Griffiths third inequality allows

one to recover the same mass falloff as Gross [23] obtains with Dobrushin
uniqueness methods (but Gross' results hold in much greater generality).

Theorem 1.5. Let ρ be a metric on Zv with

\
α [y

Then

Proof. By induction and the triangle inequality

D
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The strongest results on the rate of exponential falloff are obtained by going to
Fourier transforms; by Payley-Wiener the rate of exponential falloff of
(1 — A)~ x(α — y) is related to the region of analyticity of the Fourier transform. If a
has bounded support, this is determined by the point in momentum space closest
to 0 with a(k) = l. We illustrate with an example:

Example. In the two dimensional nearest neighbor Ising ferromagnet, (1.2) holds
with <σασy> = /(α-y) and

a(δ) = tanhβ \δ\ = ί

= 0 "|5|=Φ=1

by Griffiths t h i r d inequal i ty [ 2 0 ] . W e m i g h t define ρ by ρ(<x,β) = \cc1 — β1\. U s i n g
any of these ideas, we get a mass gap if 4 tanh β< 1. The mass gap using Fourier
transform is determined by

1/2(1 + 2 cosh m) = (4 tanh β)~x

and that by Theorems 1.4 and 1.5 by

1/2(1 +em) = {4 tanh β)'1

which is clearly worse.
The contents of the remainder of this paper are as follows: in Sect. 2, we prove

the inequalities (1.1) and generalizations for spin 1/2 Ising ferromagnets. In Sect. 3,
we prove related inequalities for fairly general one component models by using
Lebowitz' inequality. Since (1.1) is a kind of generalized third Griffiths inequality
and since Dreisler et al. [10] have used Lebowitz' inequality to extend a
consequence of Griffiths third inequality (absence of spontaneous magnetization
at large T), it is not surprising that Lebowitz inequality is useful here. In Sects. 4
and 5 we apply the inequalities of Sects. 2 and 3 and also some extensions of Lieb
which are described in Sect. 2 and proven in on accompanying paper of Lieb [30].
We note that in a second accompanying paper, Aizenman and Simon [2] describe
certain extensions to multicomponent rotors.

The methods of Theorems 1.2-1.5 provide a natural approach to exponential
falloff. Two important open questions are the following: (1) Can one recover the
results on mass gap in weak coupling {φ4)2 obtained by Glimm et al. [16,17] in a
simpler way by using these methods? (2) Does this method provide a useful
approach to the falloff of non-relativistic, especially atomic, wave functions (see
[33, 5, 1])?

Before closing this introduction, we should note that in models with reflection
positivity (see [11] and references therein) the inequalities of this paper are often
complementary to the consequences of reflection positivity. For example, in a
nearest neighbor simple cubic spin 1/2 ferromagnetic Ising model, with
/(α) = <σασ0>, reflection positivity implies that

while the methods of this paper imply (see Sect. 5):
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I am especially grateful to R. Israel whose remarks on Dobrushin's work put
me on the right track towards (1.1). Since then, I have benefited from discussions
with M. Aizenman, J. Bricmont, J. Lebowitz, E. Lieb, A. Sokal, and T. Spencer.

2. Graphical Methods

In this section, we will prove (1.1) and various generalizations using graphical
methods. Such methods were introduced by Griffiths in his original series [18-20]
and extended by Kelley and Sherman [25], Griffiths et al. [22], and Newman [32].
In particular, our proof has elements in common with Griffiths' proof of his third
inequality [20] and with Newman's proff of his inequality [32]. Our basic
presentation of the combinatories follows Sylvester [34].

We begin with some notation. We have a finite set of spins, α, y, δ,... and a
family of "allowed" pairs £ — (α, y),... which will be the pairs allowed to interact in
the basic Hamiltonian.

Definition. Given two spins α, γ, a path from α to γ is a sequence α 0,..., an of spins
with αo = α, ocn = y and each pair (αί?αf + 1) an allowed pair.

Definition. A set of spins B is said to separate α and y if every path from α to y
includes some spin in B as an intermediate spin.

Definition. A graph, Γ, is a numbered set of allowed pairs with a given pair allowed
to be repeated, n€ is the number of times a given pair / , occurs. The boundary dΓ, of

a graph is the set of those α with ^ n€ an odd integer. Given an analytic function,

/, of variables J^ one for each allowed / , we let dΓf denote dΣn* jY\ dΓ/ϊ evaluated at

Definition. Let Γ and G be graphs. We say that G is a subgraph of Γ and write

G C Γ, if G is a subset of Γ.lϊ H = Γ\G, we write Γ = G@H. The symbol, £ ,
G®H = Γ

stands for the sum over all subgraphs G of Γ.
Lebnitz' rule says that

dΓ(fg)= Σ (dGf)(SHg)- (2.1)
G®H = Γ

Remark. dG only depends on the n^G). The labelling of the lines of Γ, means that

the number of GcΓ with ne(G) = me is Π l yielding the requisite com-

binatorial factors in Lebnitz' rule.

Definition. Given two spins α, γ and a set B separating α and γ, we define the α-side
of B as follows. Consider all paths from α to y and look at the segment of the path
between α and the first hitting of B. The family of all links in all these segments is
the α-side of B.
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Thus, by construction, the α-side of B never includes any links between spins in
B. If B consists of those spins linked to α by a single allowed pair, then the α side of
B consists precisely of the pairs which include α.

Theorem 1.1 is a special case of the following theorem:

T h e o r e m 2 . 1 . Let H=— Σ Λ σ α σ y w^tn σ « a n Ising sP^n- Let < > 0 = Σ '> a s

£ = (cty) σa=±l

usual, and

<-> = <-e-H}0/Z; Z = < e -«> 0 .

Suppose J^O for all { let α, y be two fixed spins and let B separate a and y. Then:

<Vaσy>^ Σ <σ*σδ><σδσy>
δeB

Proof. Let

f(J,)=\Σ <Wse-H>o<Wye-H

[δeB

Since / is analytic, it suffices to show that

dΓf^0 (2.2)

for all graphs, Γ. If dΓΦ {α,y}, it is easy to see that dΓf = 0 since for δφλ:

n < W - H > 0 ] = <WA) (23)
with δ. . the Kronceker δ function on sets of spins.

Thus, consider a fixed graph Γ with dΓ = {oc,y}. An easy inductive argument
shows there exists a path P, from α to y which is a subgraph of Γ (although the
numbering of P as a subset of Γ and the numbering as a path may be distinct). Let
δoeB be such that δ0 is an intermediate spin on P. Let P o be the segment of P from
α to c)0. We will prove that

dΓl<σaσδoe-H)o(σyσδoe-H)o-<e-Hyo<σ«σye-H}ol=0 (2.4)

so that (2.2) follows from dΓ((σaσδe~Hyo(σδσγe~Hyo)^0 which is a consequence of
(2.1), (2.3). By this formula,

L H S θ f ( 2 . 4 ) = Σ δdGlt{*,δo)SdG2Λ*o,y)~~ Σ 'W.θ^tfa.ία.y}-
G Θ G Γ H®H Γ

We claim that the formulae, H1 = GίAP0, H2 = G2ΔP0 (A = symmetric difference
of subsets) set up a one-one correspondence between G1®G2=Γ and H1@H2 = Γ
so that, under this correspondence, there is a term-by-term cancelation between
the two sums in the last formulae. This proves (2.4) and so (2.2). •

Lieb [30] has extended the proof above to show

Theorem 2.2 [30]. Under the hypotheses of Theorem 2.1, let L be the oc side of B and

letH1-- Σ J,σaσr ( - ) 1 = (-e~Hlyo/Z1 etc. Then

< σ « σ y > ^ Σ <σ α σ ί >
1 <σ a σ y >.

δeB



Decay of Correlations 117

Remarks. 1. By Griffiths' second inequality <σασ 5) 1 ^<(σασ(5), so Lieb's result is
always an improvement on Theorem 2.1.

2. If 5 consists of those spins directly linked to α, then <σασ(5>
1 =tanh J^ so that

Theorem 2.2 includes Griffiths' third inequality as a special case.
The following pair of results have proofs essentially identical to that of

Theorem 2.1.

Theorem 2.3. Let H, <( — ) be as in Theorem 2Λ. Let A, B, C be three sets, so that for

any oceA, yeC, B separates a and y. Let σD= Y\ σα. Then
aeD

DcB,

Remarks. 1. Theorem 2.2 has an analog of this form.
2. Given any graph G, with dG = AuC, we find easily a subgraph Po = union of

paths with dP0 = AuD, where each path has either both ends in A or one in A and
one in D. Note if A is even we must allow D = 0.

To extend to multispin interactions, we introduce the following extended
notation: (1) We have a set &? = {oc,γ,...} of spins and an allowed family si of
subsets of Sf. The Hamiltonian will have the form

-H= Σ JA°A\ JΛ^. (2.5)

(2) Graphs are just numbered subsets of si with repetitions allowed.
(3) Given subsets, A, CeS, a "path" is a graph Γ with dΓ = AuC.
(4) We say that $ C Sf separates A and C if any path, Γ, from A to C can be

written Γ = Pί@P2 with dPγ=A\jB, dP2 = BuC for some Be@.
(5) The set of allDesi which arises in the minimal P^s which occur in (4) are

the ,4-side of 38.

Theorem 2.4. Under the above notations with H given by (2.5) and ϊffl separating A
and C, we have that

Be®

Remark. In the above, one can replace (σΛσB} by (σΛσB}1. In particular, iϊA = {α},
if & = {Bua/Bu((x)estf}, and if any graph of {Bu{oc}\Be&} with empty boundary
has each n(Buoc) even, then

<<7ασ
c>:g Σ ( t a n h J ^ K σ V )

Be@

which is a generalized Griffiths' third inequality [20, 35].
By Griffiths' trick [21], one immediately has:

Theorem 2.5. Let each σα take the values - 2S, - 2S + 2,..., 2S and let H,( >, < >0,

be as in Theorem 2.1, except' that < > 0 = Σ ' Then
σx = - 2S,..., 2S

< σ α σ y > ^ Σ <Wd><<*o°y>'
δeB
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Proof. By Griffiths' method, we can find a spin 1/2 system, with spins
{Sβfl, ...,Sαk} with k = 2S so that

and < — >fl an analog ferromagnetic coupling with couplings between Sλp, Sμq with
(λμ) an allowed pair and Sλp, Sλq. If we let &a = {Sλp\λe J1}, we have

^ Σ < s . p s i Γ > β < s 4 r s M > β

^Σ< σ Λ><σ,σ y > (2.6)

when we have used Theorem 2.1 on the analog system. •

Remark. This result is not in a suitable form for going to the S-+co limit. In (2.6),
we have thrown something away since (SapSδr}a(SδtSγq)a with r + t have been
added. Some of this may be recovered [e.g. if S= 1, we could place a 1/2 in front of
(2.6)] but not enough to go to the S-> oo limit. In the next section we will obtain an
inequality in the S=oo which, while different from (1.1), is sufficient for most
application (namely those not using Lieb's improvement. Theorem 2.2).

3. Lebowitz Inequality Methods

Definition. Let dμ be a measure on (— oo, oo). We say it is a Lebowitz measure, if it
is even and every pair interacting ferromagnet with a priori distributions dμ obeys
Lebowitz inequality [28]:

(σaσβσγσδy ^ (σaσβ} (σγσδ) + (σaσy} (σβ

+ <σaσδy(σβσyy. (3.1)

Remark. By results of Ellis et al. [9], if dμ(x) = e~v(x) dx with v even, C1, and υ'(x)
convex on (0, oo), then dμ is a Lebowitz measure this includes φ4 lattice field
theories and (as a limit) spins uniformly distribution on [— 1,1].

Theorem 3.1. Let < •> be the expectation for a pair interacting ferromagnet with an
a priori single spin measure which is a Lebowitz measure. Suppose the magnet is in
zero external field in finite volume (or a limit of such states). Let A, C be two
disjoint subsets whose union is all spins.

Let cue A, yeC. Then

(3.2)
δeA,
μeC

Remark. (1.1) is not suitable for general single spin distributions, since it is not
invariant under changing σα to Sσa. Since this change replaces Jaμ by S~2Jaμ, (3.2)
is invariant under such changes. Notice the other differences between (3.2) and
(1.1) the latter is an expansion in "intermediate sites", the former in "intermediate
bonds".
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Proof. Let < >ε denote the spin system obtained by replacing each Jδμ with δeA,
μeCby sJδμ.

T h e n < σ α σ y > ε = 0 = 0 s o

<Wy>=l~l<Wy>s¥s (3.3)

Now, by Lebowitz inequality

-JΓ<σασr>ε= Σ Jδμl<
σaσyσμσδ>e-(σ«σy>ε<σ

μ

σδ>e~l
U£ δsA,

μeC

^ Σ Jδμl<
σaσμ>ε<σyσδ>e + <σzσδ>e<σyσ

μ>ε~]
δeA,
μeC

^rhsof(3.2)

by the second GKS inequality which holds for even μ [13, 24]. Π
The above proof depended on two things:
(i) Lebowitz inequality which is known to hold for iV-component molds with

N = 2,3,4 [4,8].
(ii) The GKS II inequality which holds for two component models [13]. We

therefore have:

Theorem 3.2. (3.2) holds when σα is the first component of two component
ίsotropically coupling (plane rotor) ferromagnets.

In [2], Aizenman and Simon prove a strictly stronger inequality than (3.2) for
N = 2,3,4 component models.

4. Bounds on Critical Temperatures

In this section, we want to apply the methods of this paper to obtain upper bounds
on Tc, the critical temperatures, defined to be that temperature at which the two
point function no longer falls exponentially. While we will state results for spin 1/2
Ising (or plane rotor) ferromagnetic models, there are automatically results for
general interactions, since Kcrασp>J |^<σασ ί,>)J |, i.e. correlations increase if Jap is
replaced by |Jα p | . Also, since correlations go up if an even single spin measure on
[ —S,S] is replaced by δ(σ — S) + δ(σ + S) [36], we get bounds for general single
spin measures.

We begin by recalling the Krinsky-Emery result [27].

Theorem 4.1. [27]. If H= — y
free b.c. state, if

£tanhJ a 0<l

and if {a|JaOφO} is bounded, then

— Λt- y = O> tf < ' ) l 5 t n e infinite volume

for some m > 0 .
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Proof. By Griffiths' third inequality

Now use Theorem 1.3. •
In [2] Aizenman and Simon prove new inequalities and then use these ideas to

prove the following "mean-field" bounds:

Theorem 4.2 [2]. // σα are N component unit spins, if H=— ΣΛ/VV
J = J α ^0, if <•) is an infinite volume periodic b.c. state, if

Σ (4.1)

and if {<x|JαOφO} is bounded, then

<σβ σ,>gβ-"l«-"

for some m>0.

In particular, if we look at two-dimensional, two component spins with
coupling β, we get from (4.1) the bound

/U0.5 (4.2)

(from 4β c^2) on the putative Kosterlitz-Thouless transition. Unfortunately, (4.2)
is off by more than a factor of two from the current best numerical bounds [26]
and Frohlich and Spencer [12] have used different methods to get βc^0.66 and.
Aizenman and Simon [3], using still different methods, have obtained βcΞξ0.88.

One of the more exciting consequences of the ideas of this paper is the
possibility of obtaining a sequence of lower bounds β{f> on βc so that each β{"] is
computable by a finite algorithm while one is guaranteed that

j imiT=& (4-5)

We describe the ideas for Ising models.

Theorem 4.3. Let A^n) be a sequence of increasing volumes, so that
(i) \JA{n) = Z\

(ii) Let

dΛ = {oceΛ \ some neighbor of α is in Zv/Λ}.

We suppose that \dΛ^n)\, the number of points in <M(π) is bounded by some power of
J(0,dΛin)), the distance of 0 from dΛ(n). Define β™ by:

Σ (W)<σOσα>j^U<»>= 1> ( 4 6 )
αsc?yl(M)

where ( }β>Λ is the free B.C. state of the nearest neighbor model at inverse
temperature β and volume A. Then β^ ^ βc the critical temperature (defined by loss
of exponential falloff) and (4.5) holds.

Remark. Since Σ^ σ o σ α)β ΛW ̂ S strictly monotone in β and is zero at β = 0 and
\dΛ(n)\ at β= oo, there is a unique β(

c

n) obeying (4.6).
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Proof. By Theorem 1.1, 1.2, and 2.2, β{?]ύβc. Let β<βc. Then, by definition
<\<τoσα)/? zv n a s exponential falloff, so

lim y 1 (o (7 s) '•— 0

and thus, since <croσα>/?^(n) ̂  {^oσa)β,z^ β{?]>β f° r w large. This proves (4.5). •
As for the choice of Λin\ the following seems to be a particularly good choice.

Let A{n) be the hypercube with volume (2n+ l) v centered at the origin. Let A{n) be
the union of Λin) and its nearest neighbor (see Fig. 1 for v = 2, n = 1 so that
dΛin) = Λ{n)\Λ{n)).

i

ί

> <

(k i

) {

) i

ί i

Ύ

>

a

Fig. 1

Do m?£ couple the spins in δ/ί(n) to each other. The extra complication of the
outside spins allows a rather cheap improvement since, e.g. in Fig. 1,

O (4.7)

for any δ φ α. In this case, one gets

= (2v)~1. (4.8)

Using high temperature expansions one sees that the right side of (4.6) for the
A{n) shown in Fig. 1 is

with

with α = tanhβ[ υ . One finds

^ (4.9)

While (4.9) is an improvement on the value 0.25 of (4.8) it is disappointing how far
it still is from the known exact value of t a n h / ^ 0 0 ^ 0.414 and from the bound of
Fisher [10] : t anh^ o o ) Ξ^0.38 in fact, with Fisher's method and virtually no work,
one can get tanh^ o o ) ^0.33 improving (4.9). Moreover, exact calculations for n^2
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or v ̂  3 n ̂  1 seem virtually impossible. Z in the above case is based on looking at
16 high temperature diagrams. For v = 2, n = 2 there are roughly 65,000 diagrams
and for v = 3, rc= 1 roughly 130,000 diagrams! In addition, the rate of convergence
will be very slow. Roughly speaking β^] will be about that inverse temperature at
which the correlation length is n so that β^ — β^ will converge as n to some
negative power. Since β{"] involves roughly an work, the rate of convergence is only
logarithmic.

Nonetheless, we feel that it is an interesting matter of principle that one can
obtain βc in an algorithmic manner. Moreover, one can modify the above and
obtain bounds β{

c

n) which also converges to βc and which involves somewhat less
calculations. Here is one possibility which we find especially attractive: Let mn(β)
be the mass gap for a (2n+ l ) v ~ 1 transfer matrix. Determine β(n) by:

(2v)[ tanh^ ( " ) ]e" M m ( l-β" m )- ( v ~ 1 ) =:l . (4.10)

We claim that

Theorem 4.4. /N ̂  βc and lim /N = βc.
w-> oo

Proof. Let us show that the left side of (4.10) dominates £ <σ

α

σo> w i t n ^ ( " } t n a t

aedΛW

used in the above example. This implies the inequality. The limiting statement
follows as in Theorem 4.3 if one notes that mjβ) is always dominated from below
by the mass gap of the infinite volume theory. Let yedλn and let #(y) be the
number of points in 2Λn adjacent to y. Clearly # (y) is the number of distinct faces
of dΛn in which y lies. By (4.7):

= (2v)(tanh# X <σyσ0>
yeoneface

so we need to show that

Σ <σ/7 0 >^e- m "( l-έΓ m )- ( v -- 1 ) . (4.H)
•yeoneface

Given the fact that the two point function in An is bounded by that in a
(2n+iy~1x(— 00,00) "cylinder", (4.11) is a simple exercise in the use of transfer
matrices. •

As a final remark on exponential falloff at high temperatures: it is easy using
the results of Sect. 3 to show that a lattice λφ4 field theory at sufficiently large bare
mass has a mass gap. However, this also follows from simple correlation
inequalities.

5. Bounds on Critical Exponents and Related Quantities

In this final section, we want to use the basic inequalities of Sects. 2 and 3 to prove
various bounds on behaviour at or near the critical point. For simplicity, we state
things for nearest neighbor Ising models. Except for Theorem 5.3, which uses
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Lieb's improved inequality, one can accommodate fairly general single spin
distributions via the bounds of Sect. 3. Moreover, except for the few results that
require reflection positivity, general finite range ferromagnetic interactions can be
accommodated also. We begin by restating Theorem 1.2:

Theorem 5.1. The critical exponent η of the Ising model is at most 1.

Remarks. 1. η is defined by (σoσa)~C\oc\~( d~2+η) at the critical point. Notice to
define η, one needs to suppose power falloff at the critical points. The real point of
our inequalities is that one can say something independent of such assumptions. If

there is no mass gap, then £ <σoσα> ^ 1 for all "curves" B surrounding 0.
aeB

2. This improves the result η <2 of Glimm and Jaffe [15]. Their proof, unlike
ours, depends on reflection positivity and so will not hold for finite range Ising
models but our proof, at present, does not handle (continuum) field theories as
theirs does.

The bound η<l does not imply any bound at finite distances since the
constant C may be small but Theorem 1.1 does:

Theorem 5.2 (uses reflection positivity). For neZ, let f(n) = (σ(0 0)σ(n 0 0 )>.
Then

(i) m = lim —n~λ log/(n) exists.

(ii) e- m "^7(n)^(2r f )- 1 (2n+l)" ( d " 1 ) e- w n .

Proof. The existence of the limit and the upper bound on / are consequences of

reflection positivity. Let ρ(α, β) = sup (α — β.). The method of this paper implies
1 ^ί^d

that

But, by reflection positivity, the maximum <σασ0> among these α's is/(n). Clearly
there are at most (2n+ l) (d~υ(2d) such α's. •

Using Lieb's improved version of (1.1) (Theorem 2.2), we can find a new proof
of the McBryan-Rosen result [31] that the mass gap goes to zero at the critical
point:

Theorem 5.3 (uses reflection positivity and Lieb's improved inequality Theorem 2.2).
Consider the nearest neighbor d-dimension spin 1/2 Ising model at inverse tempera-
ture β and let m(β) be defined by Theorem 5.2. Suppose that m(β)>0. Then m(β')>0
so long as

δβ = β'-β<l/2(2n+l)-2d+1d-1(2dΓ\ (5.1)

where n is the smallest integer obeying

(5.2)

Remark. This result implies that m(β)^0 as β~>βc = mϊ{β\m(β) = 0}. There is a
critical exponent inequality implicit here which we do not make explicit since it is
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worse than that obtained using other methods [14, 15, 31]. The ideas here also
imply continuity of m(β).

Proof. By the argument in the last theorem, which uses reflection positivity,

/rr n \ <p~mδ\<x\
\σaσθ/β,oo=e >

where ('}β>k means the state at inverse temperature β and in a cube, Ck, of side
2/c + 1. By Griffiths inequalities, if ρ(a) = n:

(σaσoyPιnSe-mr

Moreover:

~Jo <σασ0> = Σ
α P γδnnin

Σ ί=(d)(2n+l)d.
yδnninCn

Thus

Σ <σaσ0>β.tn£(2d)(2n+iγ-1le-mn + (δβ)d(2n+m. (5.3)
ρ(α) = n

(5.2) implies that the first term in [...] contributes at most 1/2 to the right side of
(5.3) and then (5.1) implies that the sum is less than 1 which implies a mass

gap. D
The remaining bounds depend on studying the function

g{n)= ^ <σασ0>. (5.4)
αi —n

If we had a model with interactions between spins with |α x — βjrgr, then one
would replace the condition a.1 = n by α1 = n, n + 1 , ...,π + r— 1. We begin by
noting:

Theorem 5.4. Let m be given by Theorem 5.2. Then ifm>0, the sum in (5.4) exists
and

lim log g{n) = m. (5.5)
π->-α n

Proof. By the argument in Theorem 5.2

from which one finds that

which implies lim logg(n)) ^m. Since g(n)^.f(n)9 the lim is at most m so (5.5)

is proven.
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Remark. When reflection positivity fails, one should define m by (5.5) if one wants
the two theorems below to hold.

Theorem 5.5. Ifn, fc^O, then

g(n + k)Sg

In particular

g(n)^e~mn (5.7)

Proof Iϊβ1=n + k, then

O 0 ° > > ^ Σ <σ0σaXσaσβ>
a\—n

by Theorem 2.1. Summing over all β with β1=n + k,we obtain (5.6). Thus In g(n) is
subadditive so

limί-lngf(n)j =infί-lngf(n)J

which is (5.7). •

Theorem 5.6. Above the critical temperature, the susceptibility χ and the mass m are
related by:

ί^j (5.8)

Proof χ= Σ 9(n) s o t n a t (5-8) is obtained by just summing (5.7). •
n= — oo

Remarks. 1. Thus χ diverges at the critical point, a result obtained already by
Glimm and Jaffe [14].

2. (5.8) implies the bound y ^ v o n critical exponents.
In [14,15] Glimm and Jaffe defined a quantity Z as the weight of the pole at

k = m in a certain spectral weight function. They proved Z=f=O for a.e. but did not
obtain an explicit bound. (5.7) immediately implies our final results.

Theorem 5.7. The Z of [14, 15] obeys Z^sinh(m) for any nearest neighbor Ising
model.
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Note added in proof. In a series of papers, P. W. Kasteleyn and R. J. Boel [see Phys. Lett. 70A, 220
(1979), Commun. Math. Phys. 66, 167 (1979), and references therein] have found necessary and
sufficient conditions for a class of inequalities to hold for arbitrary spin half Ising ferromagnets with a
given set of "bonds" (basic interactions). The inequalities in Sect. 2 of the present paper are in the class
considered by these authors and thus they are special cases of their inequalities and can be proven by
their methods. Kasteleyn-Boel do not give applications of their inequalities.




