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Abstract. We solve explicitly and without approximation the problem of a
quantum-mechanical particle in R3 subjected to point interactions that are
periodic in R3 with periodicity of the type Z, Z2, and Z3. In the first case we get
a model of an infinite straight polymer, in the second case we get a model of a
monomolecular layer and in the third case we get a model of a crystal. In all
three cases the unit cell of the Bravais lattice is allowed to contain any finite
number of interaction sites (atomes), placed arbitrarily and with arbitrary
interaction strength. In the case: one interaction site per unit cell we find explicit
formulas for the resonance bands and energy bands and their corresponding
wavefunctions.

Introduction

The one-electron theory of solids is based on the study of a Schrodinger particle in
a periodic potential. This theory contains a large body of results that are obtained
by perturbation methods or by symmetry arguments. However, it has not been
possible up to now to check the perturbation results, which are necessarily only
approximate, against an explicitly solvable three-dimensional model.

A class of non-separable two- and three-dimensional generalization of the
Kronig-Penney model [1] has been solved in a recent paper by Sutherland [2].
The interactions in [2] are, however carried by lines (in two dimensions) or by
planes (in three dimensions) which do not have a direct physical interpretation.

However it has been known for quite a while that there exists a Schrodinger
operator with a point interaction in three dimensions. These operators and
relatives of them have a history going back several decades. Their study started
with Breit, Thomas, Wigner, and others as a model in nuclear physics for potential
with short range interactions [3]. They observed that potential scattering
converges in the low energy limit to scattering from a point interaction. In the late
fifties, Huang, Yang, Lee, Luttinger, and Wu studied multiparticle operators with
point interactions in low order perturbation theory [4].
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Beginning in the early sixties a series of papers by Danilov, Minlos and
Faddeev was published concerning three-body operators with two-body point
interactions [5]. The physical motivation was to compute the bound state of
tritium. A survey article by Flamand [6], covers this part very well.

The many-center point interaction in three dimensions was first studied by
Albeverio, Fenstad and H0egh-Krohn using methods of non standard analysis
[7]. Further work on the many-center situation is to be found in [8] and [9].

As we see the point interactions has a long and venerable history. What we do
in this article is to put the point interaction at work in the important field of solid
state physics. We show that it is possible to use the point interactions to construct
realistic models of solid states, models which may be built after specification. For
instance in the crystal we may specify the lattice, the number and positions of
atoms per lattice unite as well as their relative strength. With this input we
construct the corresponding Hamiltonian and give explicit formulas for the
resolvent kernel of the reduced Hamiltonian.

In Sect. 2 we give the general formula for a Hamiltonian with a potential with
support on a discrete subset of R2 and R*. We call such Hamiltonians,
Hamiltonians given by point interactions. It is worth mentioning that point
interactions exist only in dimensions, 1, 2, and 3.

In Sect. 3 we apply the results of Sect. 2 to construct models of polymers, i.e. we
consider point interactions in R3 which are periodic with only one period. We
compute the resolvent and scattering matrix explicitly up to the inversion of a n x n
matrix where n is the number of atoms per polymer unit. In the case of one atom
per polymer unite we get completely explicit formulas for the resonances and
energy bands.

In Sect. 4 we consider monomolecular layers, i.e. point interactions in R3 which
are periodic with two independent periods. Again we compute the resolvent and
the scattering matrix. The Bragg reflections come out of the scattering matrix in a
very explicit manner.

In Sect. 5 we consider the crystals, i.e. point interactions with three inde-
pendent periods. The resolvent kernel of the reduced Hamiltonian is given
explicitely up to the inversion of an n x n matrix where n is the number of atoms
per lattice unit. In the case of one atom per lattice unit we give the energy bands
and corresponding wavefunctions explicitely.

In Sect. 6 we consider the case of the grating or the linear interferometer. Again
we give explicit formulas for the energy bands and its corresponding wave
functions. There are also formulas for the reduced resolvent kernel and the
corresponding scattering matrix.

2. Point Interactions or Potentials with Discrete Support

Let Ybe a discrete subset of R3 such that the distance between any two points in Y
is greater than a positive number d. We want to consider Hamiltonians of the form
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In the Fourier transform representation (2.1) is given formally by the operator1

p2- Σ(2π)-3λ/y(1>"β). (2.2)
yeY

For finite subsets Y such Hamiltonians have been considered in [8]. The result of
this discussion is that (2.2) makes sense in R3 (and in R2) if λy is chosen suitably
infinitesimal. (For a discussion on this point see [7].) It is possible to extend these
results to infinite discrete subsets in the following way.

Let first Y be a finite subset of R3, then

H» = p2- ΣIKXKI, (2.3)
yεY

where
V£(p) - (2πΓ 3/2(λy(ω))1/2χω(p)^ , (2.4)

χω(p) = ί if |p| ̂ ω and zero if not, is a well defined self adjoint operator on L2(R3), if
we remark that |<><<|/ = (ψ?,f)ψ°.

We consider Hω to be an approximation to the formal expression (2.2). Hence
the problem is to choose λy(ώ) such that Hω converges to some self adjoint
operator as ω— »oo. Since

yeY

is a bounded operator we have for complex E

(Hω-EΓ1=(p2-EΓll2Ll-(p2-EΓ1/2Vω(p2-EΓ1/2Γ\p2~EΓ1/2.(2.6)

Using now the fact that Vω is an operator of finite dimensional range we may
compute (2.6) explicitely in the following way. Set

A = (p2-EΓ1/2Vω(p2-EΓ1/2 (2.7)
then

Al = (p2-EΓ1/2Vω(p2-EΓ1 ...Vω(p2~EΓ1/2. (2.8)

Let

9^y = (^(P2-Er^y) (2.9)

then

p-i(x-y)p

J
ω —

(2.10)= λω)λ(ω)G%(x-y). (2.10)

Let gω be the nxn matrix with elements g™ y x,yeY, n = \Y\. Then (2.8) takes the
form

Al = (p2~EΓ1/2\ Σ tf-l)xy\ΨΪXψΐ\ (P2~EΓ112, (2.H)

1 In (2.2) and in similar formulae we use a hybrid notation; p2 is a multiplication operator, and
eι(p-q) an integral kernel
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where gl ~ 1 is the (/ — 1 )th power of the matrix gxy. From (2. 1 1 ) we get that if 1 is no t in
the spectrum of A then

2-£T1/2. (2.12)
yer

Hence by (2.6)

x,yeY

(2.13)

where [1 -#]"/ are the elements of the inverse w x n matrix of
Let now

P ~ j

then

(2.14)

hence

(#"•-£)- ̂ (p'-EΓ^ Σ [λ Hω^-GSίx-tfr'ICX^I, (2.15)
Λ.yeΓ

where [ ] ~ 1 stands for the inverse n x n matrix.
Let now λx(ω) be given by

A»-M2πΓ3 J ^+αx,
|p |^ωP

where αx is independent of ω. Then

(/T-E)-^2 -£)-'+ Σ [(«*-
χ , y e y L \

where

-y) = (2πΓ* J 2 -. Φ if x-^ΦO (2.17)
\p\£ω P —U

and G^(0) = 0. Let

β-i(x-y)p

dp if x-yΦO (2.18)^£VΛ yj — v**) j 2_

and G£(0) = 0. Then we see that for complex E (2.16) converge strongly as ω-> GO to

/ i]/E\ ~ 1-1

(Hα — E)"1 =(p2 — E)'1 -f Σ a^ —l^xy~G£(x —};)
x,yeY \ 4π /
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where α is a real function defined on Y such that a,(y) = (x,y, ye Y, and [ ]-1 is the
inverse nxn matrix n = |Y|.

The Fourier transform version of (2.19) is given by

x,yeYl

-GE(x-x)GE(y-y), (2.20)

where

1 ιγΈ\x-y\

and

GE(x) = GE(x) for x φ O and G(0) = 0.

Let now X be a discrete set and α(x) is function on X which is bounded below.
Let YcX be a finite subset ofX and αy the restriction of α to Y. Let now H% be

the self adjoint operator, the resolvent of which is given by (2.19). Since

(2.22)

is positive for ω large enough we see that

is a monotonically decreasing function from finite subsets of X into self adjoint
operators, i.e.

Y.CY^Hl^H^. (2.23)

This implies that the corresponding resolvents for large negative E are monotoni-
cally increasing, i.e. for E<E' we have

Y, C Y2=>(H^-ETl^(Hl*-EYl. (2.24)

Here E' depends on Y2. We shall see however that it is possible to pick E'
independent of Y2.

From (2.21) we have that for £<0 we have that GE(x — y) is the kernel of a
bounded operator on 12(X) which tends strongly to zero as £-» oo. We use here the
fact that A' is discrete and the fact that GE(x) tends exponentially to zero in x. Since
oί is bounded below we see that

(2.25)
4π

is positive as a self adjoint operator on 12(X) for E large negative. Let now E0 be
the largest negative value of £ such that (2.25) is still positive, or if there is no such
largest negative value we set E0 = 0. We observe that if (2.25) is positive as a kernel
on 12(X) it is also positive as a kernel on /2(Y) for any subset YcX.
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Let now Y be a finite subset of X: then

(Hβ

r-EΓ1=(p2-£Γ1+ I
x,yeY

pi(px-qy}

•'^K-GΛx-yf1

. Y4π

(2.26)

where [ ]y

 1 is the inverse kernel in 12(Y). It follows from (2.26) that the spectrum
of HΎ

a is the interval (0, oo) plus at most n = |7| negative eigenvalues Eγ

n where
E = EY are the points in (— oo,0) where (2.25) as a kernel on 12(Y) has eigenvalue
zero. From this we get that E0 is a uniform lower bound on the spectrum of HΎ

Λ for
all finite subsets X of Y. In particular, we get the uniform norm bound for E<E0

| |(tfα

γ_£)-i| |^p_£o)-i| (2.27)

for all finite subsets YcX. From this uniform bound and the monotonicity (2.24)
we get that the strong limit

- E) ~ l = strong lim (H J - E)
YCX

| y | < o o

(2.28)

over the filter of all finite subsets YcX exists. Since the strong limit of resolvents is
again a resolvent, (2.29) is the resolvent of a self adjoint operator H* which is
bounded below. From the strong convergence (2.28) and (2.26) it follows that the
resolvent (H* — E)~l is given by

•(2π .-3
e ί ( p χ - q y )

(p2_E](q2_Ey (2.29)

where [ ]x

 1 is the inverse as an operator on 12(X)> The sum in (2.29) is absolutely
convergent in the sense that if we integrate with respect to L2-functions of p and q
respectively, then the sum is absolutely convergent. Hence we have the following
theorem.

Theorem 2.1. Let Ybe a finite subset ofR3 and let ax be a function defined on Y. Let

GE(x)= -T-r-.e^W for x φ O and G£(0) = 0. Let Hω be the self adjoint operator in

J

// λy(ω)= αλ.+ ;r—2 ί/iew Hω converges in the strong resolvent sense, i.e.

(Hω — E)~l-+(Hl — E)~l strongly for complex £, where the limit operator is given
by

L2(R3) given by

x,yeY 4π Y (P

2-E)(q2-E)'

where [ ~]Y

 l is the inverse as an operator in 12(Y)
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Let X be a discrete subset of jR3 and ocx be a real function on X which is bounded
below. Let YcX be a finite subset: then 7-»(Hj — E)"1 is a monotonic Junction
for E^E0 where E0 is independent of Y. Moreover

(H^-EΓ1 = strong lim (HΎ

Λ -E)~l

YCX
| Y | < o o

exists and defines a self adjoint operator H* bounded below. The corresponding
resolvent is given by

[ / i λ F

(•.-

where [ ]̂  1 is the inverse as an operator in 12(X)- If we integrate with respect to
L2-functions in p and q the series is absolutely convergent.

There is an analog theorem in jR2, the proof of which is completely analogous
to Theorem 1.1.

Theorem 1.2. Let Ybe a finite subset of R2 and ocx be a function defined on Y. Let

R*P -J

for xφO αrcd G£(0) = 0. Let

for XE Y and let

ί
yeY

define a self adjoint operator in L2(R2). Then (Hω - E)~ *-+(H% - E)~ * strongly for
complex E where the limit operator is given by

v— α —' \* —/ ^_j i "x ^v ί Xy ϋ\ ^/ / 2 ι~ \ / 2 7->\
χ,^rL\ 2π / \γ (P ~E)(q2-E)

Let X be a discrete subset of R2 then the analog statement of Theorem 1.1
holds.

3. Infinite Straight Polymers

Let Λ1 = {an, nεZ}, αeK+ be a discrete subgroup of R. We consider Λ1 to be a
discrete subgroup of .R3 by the injection Λ1 CR^R2 x R. lίX is a finite subset of
R3 then Y=A^ +X is a discrete subset of #3 invariant under the group Λ±. If α is a
real function on Y which is invariant under the action of Λ^ i.e. ocλ + x = ocx for λeΛί

and xeX, then Ha = H* of Theorem 2.1 is invariant under the unitary group
λ-^Uλ9λeΛ1 where (Uλf)(x) = f(x — λ). We consider Hα to be the Hamiltonian for
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a model of an infinite straight polymer. The points y in Y are then the sites of the
atoms in the polymer while αy are the relative strengths of the interactions at the
site y. αy is actually the inverse scattering length of the atom at the site y. Since
UλHaU~1 =Ha we have that

HΛ=$HΛ(k)dk9 (3.1)

where A1 is the dual group of Λ1 and (3.1) is the direct integral over the spectrum
of the unitary representation λ^>Uλ, λeΛί. Λ1 is the circle of radius a~l or

{O Ί

— n,neZ\. By Theorem 1.1 we have

(Hα-£)-1=(p2-£)-1-(2π)-3 Σ
x,yeX

q2-E
(3.2)

We may now utilize the fact that what is inside the square bracket above is
translation invariant under λeΛ1 to simplify the expression (3.2). We recall that
[ ] ~1 means the inverse kernel in

and the method for simplification is to use Fourier analysis in /2(/t1). To compute
the Fourier transform of the square bracket in (3.2) we first compute for

π

a

hE(x — y,k) = y GE(x — y + λ)e~lλk, (3.3)
λeΛi

where we have identified ,—
a a

we have by the Poisson summation formula

hE(x-y,k)= £ GE(x-

= (2π)~3 £ J
λeΛi R2

=(2πΓ2 5 ί
Hence for x — yφΛv we have

with A1 by the mapping k^eiλk. For x — yφA1

hE(x-y,k)= X κo(y(γ + k)2-Ey(xl-y1)
2 + (x2-y2)

2)ei^k^-^. (3.4)
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For x — y = λeΛί we have that

eίλkhE(Q,k) (3.5)

while

A Φ O

Σ4πa n^0 \n

1

eiVΈa\n\e-iank

4πa

Hence

(0, k) - - ~~ In |>2l'Ωj/£ - 2 cos (αky0^ + 1] . (3.6)
4πα

In terms of hE(x — y, h) (3.2) now takes the form

,,,2 * δ(k-k'), (3.7)

where p3=γ + k, q3=f + kf, with 7,/eΓ1 and -- ^k, fc'^ — and [ J" 1 is the

inverse nxn matrix, n = \X\. Hence we get : the reduced Hamiltonian Ha(k) of (3.1)
is given by its resolvent kernel on L2(R2 x Γ ) by the following theorem

Theorem 3.1. Let Λl = {an, neZ}, ae R + , be a discrete subgroup ofR considered as a

{o "\
— n,neZ\ so that the
a J

dual group A1=R/Γ1. By k-*elkλ, λeΛ^ we identify Λ1 with the Brillouin zone

-- , — . Let X be a finite subset of R3 and set Y=X + Λ19 and let &x+λ = ttx be a

Λ^-invariant real function on Y. Then Ha = Hl of Theorem LI is invariant under Λ±
so that

Ha= j Ha(k)dk= T HΛ(k)dk9
AI —π/a

where we have identified Λl with \ , — . Let hE(x — y,k) be given by (3.4)-(3.6).
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Then the reduced Hamiltonίan Ha(k) is a self adjoint operator on the reduced Hilbert
space L2(R2 xΓ x ) with resolvent kernel given by

(Ha(k) — E}~1=(pl+pl + (γ + k)2 — E)~i

x,yeX
- i(qιyι

where [ j"1 stands for the inverse nxn matrix, n = |X].

Let Hx=p2 be the free Hamiltonian in L2(R3); then

Hx=\Hx(k)dk (3.8)

with

EΓ1 (3.9)

since H^ is invariant under the group of translation Λ^.Ύo prove that the wave
operators

W± (HΛ9 HJ = strong lim e ~ itH«eίtH - (3.10)
ί~* ±00

exist, it is enough to prove that the wave operators

W± (HΛ(k\ H^(k)) = strong lim e ~ itH^eίtH -(k} (3.11)
ί-> ±00

exist for almost all /c, since

^±(^α? # J = j W±(HΛ(k\ H^(k))dk . (3.12)

Since the scattering matrix Sffi^H^) is given by

S(HaHJ=W*(Ha,HjW_(HaHJ (3.13)

we get in the same way that

S(Ha,HJ= J SφMHJKftdk, (3.14)
Λί

so that the scattering matrix S(H Λ(k\ H ^(k)) for the reduced pair Ha(k\ H^k) is
actually the reduced scattering matrix and correspondingly for the wave
operators.

From the formula for the resolvent kernel of HΛ(k) in Theorem 3.1 we see that
the kernel (Ha(k) — E)~l is analytic in a neighborhood of the cut [/c2, oo) with
smooth boundary values on the cut from above and from below. This implies by
standard techniques that the reduced scattering matrix S(HΛ(k), H^k)) exists.
Hence we have the following theorem
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Theorem 3.2. Let H^ =p2 be the free Hamiltonian in L2(R3), and let Ha be as given
in Theorem 3.1. Then the wave operators

W± (#α, # J = strong lim e ~ ίtH«eitH ~
ί->±00

exist. The corresponding scattering matrix Sa = Wf W_ is given by

) = δ(Pl-ί

. eί[pιxι + P2X2 + (y + k)x3] tg-i[qιyι + ̂ 2^2 + (/ + k)y3]

• δ(k — kf)δ(pl + p2 + (y + k)2 — cfc — cfe — (yf + k')2),

Ί 17 2 , 2 , 2 , i / , I / v7 / r- J / I / ί π πlwhere E = p< +pί + pί, p^=y + k, q^ =γ +k with y , y eΓ< and /c,/c e , — .
1 3 3 3 \ ί a a\

hE+ί0(x — y,k) = hE(x — y,k) is given by (3.4)-(3.6), while hE_i0(x — y, k) is the
analytic continuation around the cut [/c2, oo). Hence for x — j

and h_λ,k) = e-ίλkh_(Q,k) with

-I o 4πα

For a qualitative understanding of the reduced scattering matrix
ήtH^k)) the resonances are important. We see from the formula of

Theorem 3.1 that the reduced resolvent kernel (HΛ(k) — E)~l is a meromorphic

function of yE on some covering Riemann surface. The structure of this Riemann
surface is quite complex and we see that there is actually a logarithmic branchcut
along each of the halftone [(y + fc), oo); recall that K0(x) has a logarithmic
singularity at zero. The resonances are the poles of this meromorphic function on
its Riemann surface and the eigenvalues of HΛ(k) are special cases of these poles for
which the corresponding wavefunctions are square integrable.

Let nowX consist of one point only and we may by translation in variance take
X = {0}. In this case we have from Theorem 3.1 that

(3.15)
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Hence (Ha(k) — E)~l has the same Riemann surface and the same poles as

-hE(0,k)\ \ (3.16)
4π

In particular the resonances are given by the equation

4π /l~"

which is equivalent to

p — 4παα Λa\ΓE «2ΐα|/F

or

Hence if z0(k) is a solution of

z2 — (2 cos (αfc) + e ~ 4παα)z +1=0 (3.19)

then

are all the solution of (3.17). If z0 is one solution of (3.19) then ZQ 1 is the other,
hence if z0(fe) is the solution in the upper half plane then

are all the solutions of (3.17).
There are two different cases

(i) 2cos(αfc) + έΓ4πflα>2 (3.22)

then (3.19) has two real solutions z0(fe) and z0(k)~1. Hence (3.21) is real only for
n = Q and we find only one value

a2

From (3.15) we have that the corresponding eigenfunction is

1
V>θ(Pl, P2» 7 5 *) = ^2 . ^2 . Λ. . ,Λ2 IT ΠΛ (3'24)

which is square integrable. The other solutions

E*(k)= ^-( + Πn(z0(fe)) + 2πn)2, n—1,2,... (3.25)

are complex resonances.
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The other case is

(ii) |2cos(αk) + έΓ4πflα |^2, (3.26)

in which case (3.19) has a pair of complex conjugate solutions z0(fc) and z0(k) with
|z0(fc)| = |z0(k)| = 1. So that In(z0(fc)) is imaginary and (3.21) are all real solutions. If

- |argz0(fe)| = |zln(z0(fc))|<|fe| then again

£0(/c)=l(arg(z0(k)))2 (3.27)

is an eigenvalue of HΛ(k) with eigenfunction given by (3.24) if-| argz0(fe)| >|k| then

EQ(k) is a resonance. E*(k), n = 1, 2, ... given by (3.25) are all resonances imbedded
in the continuous spectrum [/c2, oo) of Ha(k). Hence we have

Theorem 3.3. Let X = {0}; then the essential spectrum of HΛ(k) is absolutely
continuous and is the half line [fc2, oo).

In addition Ha(k) has at most one simple eigenvalue E0(fc) which satisfies
EQ(k)<k2. Let z0 be one of the solutions of

z2 - (2 cos(α/c) + <T 4παα)z + 1 = 0 .

Then

and the corresponding eigenfunction is

If EQ(k) ^ k2 then E0(k) is a resonance imbedded in the continuous spectrum. The
other resonances are given by

These resonances are complex if 2 cos(ak) + e~
4πa<* > 2 and they are all real and on

the line [k2, oo) if |2cos(βk)-f-έΓ4πflα|^2.
We see that 2 cos (ak) + e~ 4πflα > 2 for all kiΐe" 4πflα > 4 or - 4παα > 2 In 2. Hence

if α< — - — In 2 we are in case (i) for all k. Hence we have
2πα

Theorem 3.4. Let X = {0}, then the spectrum of Ha is absolutely continuous and if

(i') α^ — - — In 2 then ^Ha = \_e^ , oo),

(ii) α<-- — In 2 ίften sp^-^o,^ ]u[0, oo),
zπα

where e < 0
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4. Monomolecular Layers

Let A2 = {nίaί+n2a2; (nvn2)eZ2} where ateR2, be a discrete subgroup of R2.
We shall identify A2 as a discrete subgroup of R3 by the standard injection of R2

into R3. Let X be a finite subset of R3 then Y=A2 +X is a discrete subset of R3

invariant under the group A2. Let α be a real function on Y which is invariant
under the action of A2 so that uλ + x = ax. Then HΎ

Λ of Theorem 1.1 is invariant
under the unitary group λ^>Uλ, λeA2, hence

Ha= [HΛ(k)dk, (4.1)
Λ2

where the dual group A2 = R2/Γ2 and Γ2 is the reciprocal lattice i.e.

Γ2 = {nίb1+n2b2,(n1,n2)eZ2} and ( a ί 9 b j ) = 2πδij. Let B2 be the corresponding
Brillouin zone i.e.

= {s1b1+s2b29 -i^s; ^i,i = l, (4.2)

As in Sect. 3 we start by computing

hE(x-y,k)=
λ

For x — y$Λ2 we have

(4.3)

Σ ί
λeΛ2 R3

= (2π)-1 Σ ί

-dp

ι - y i ) + (y2

Hence for x — yφA2 we have

hE(x-y,k) =

For

and

Hence

hE(Q,k)= lim(2π)
co-* oo

Ae/l 2

-3

2 -E \x3-y3\

(4.4)

(4.5)

-i/l/c

4π '
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Let now gE(x — y,k) = hE(x — y, k) if x — y Φ 0 and

- lim (2π)"
ω-> oo

\ Σ ί(Ύί+k1)
2 + (y2 + k2)

2-ET112-
I y + ̂  I — ω

. (4.6)

Theorem 4.1. Let Λ2 = {n1aΐ + n2a2; (nί9n2)εZ2}9 where al and a2 are two

independent vectors in R2. We consider Λ2CR2CR3 to be a discrete subgroup of
R3 by the standard injection of R2 into R3. Let X be a finite subset of R3 then
Y=Λ2 + X is a discrete subset of R3 invariant under Λ2. Let a be a real function
on Y which is invariant under the action of Λ2 so that uλ + x = oίx. Then Ha of Theorem
1.1 is invariant under Λ2 so that

Ha= ί Ha(k)dk,
Λ2

where Λ2 = R2/Γ2, Γ2 = {nibi+n2b2, (nί9 n2)eZ2}, (ai9 bj) = 2πδij. Let gE(x-y, k) be
given by (4.6); then the resolvent kernel of Ha(k) is

χ,yeX

ι + (γ2 + k2)x2 + P^XI]

i + (72

as a kernel on L2(Γ2 x R\ where [ ] ~ : is the inverse nxn matrix.
We may also compute the wave operators and the corresponding scattering

matrix as in the previous section, and we get

Theorem 4.2. Let H^ =p2 be the free Hamiltonian in L2(R3). and let H^ be given in
Theorem 4.1 then the wave operators

W±(Ha,HJ= strong \ime~ίtH«eίtH<
ί-> ±00

exist. The corresponding scattering matrix S^ = W^W^ is given by

s*(Pι>P2> Pi 4ι , 42» 43) =
 δ(Pι ~ 4ι)<5(P2 - ^δ(P3 ~ 43) ~ Σ

(y i + kί)xί + (y2 + k2)*2 + P3*3] . e ~ i[(y'ι + *i)3>i + (72 + k

, - k\}δ(k2 - k'2)δ((yί + k,)2 + (γ2 + k2)
2

where E = pl + p2

2 + pl p^y^ + k^ P2 = y2 + k2, q±=y\ + k\ and q2 = y'2 + k'2,
(y1?72)eΓ2 and (fe1? k2)EB2. gE-ίo(x — y, k) is defined by analytic continuation around
the cut [0, oo ].
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Let now X = {0} in this case eigenvalues and resonances are the solution of
a = gE(Q, k\ i.e.

£]-ι/2_4πω < (4j)

Since gE(09 fc)-> — oo as E-» — oo and gE(09 fc)-» + oo as E-+k2 we see that (4.7) as a
unique solution EQ(k) in the interval (— oo, /c2). E0(k) is obviously the bottom of the
spectrum oϊHΛ(k). E0(k) is the only real solution of (4.7) and it is an eigenvalue with
corresponding eigenfunction in L2(Γ2 x R)

1

The resonances are the complex solutions of (4.7).

Theorem 4.3. Let X = {Q] then the essential spectrum of HΛ(k) is absolutely
continuous and consists of the half line [k2, oo). In addition HΛ(k) has exactly one
simple eigenvalue E0(k) < k2 with corresponding eigenfunction

5. Crystals

Let Λ = {nίaί + n2a2 + n3a3'9 (n1,n2,n3)eZ3} where aί9 α2? α3 are three linearly
independent vectors in R3. A is then a discrete subgroup of R3 let X be a finite
subset of #3. Then Y = Λ+X is a discrete subset of K3 invariant under the lattice
group Λ. Let α be a real function on Y which is invariant under Λ, i.e. α:c + A = α^ for
λeA and xeJΓ. Then Ha of Theorem 1.1 is invariant under translations in Λ, i.e.
l/A/ίβ£7;1=Hβ,sothat

(5.1)

where Ha(k) is the reduced Hamiltonian for fixed lattice momentum keΛ =
where Γ is the reciprocal lattice, i.e.

with (ai,bj) = 2πδij. The projection R*-+R*/Γ = Λ is given by k-*eίkλ. It is
convenient to identify Λ with the Brillouin zone

by the identification k<r^>eίkλ. From Theorem 1.1 we have that
(Hα-£)-1=(p2-k2Γ1-(2π)-3 Σ Σ

4π / xy Λ Λ £V ' ' P

2-E

- ί(ιλ>
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1
where GE(x — y)= — -e

i]/Έ\x y| if x — y Φ θ and zero if not, and [ ] 1 is the
4π\x-y\

inverse kernel as operator on 12(X * Λ) = 12(X}®12(Λ}. As in the two previous
sections we compute

hE(x-y,k)=

If x — yφA we have that
hE(x-y,k)= Σ

p ί p ( x - y ) p ί ( p - k ) λ

*
λεΛ

which by the Poisson summation formula gives

_, ei(

hE(x — y,k) = (2π) 2^
yeΓ

For x—y=λeA we have

for x — yφΛ.

while

,fe)= Σ
λeA
λ Φ O

-lim (2π)~ Σ
dp

r (y+k)2-E

hence

Let now

hE(09k)= lim (2π)-3 Σ -4πω
4π

Then

0£(0,/c)=lim(2πΓ3

ij/E

— 4πω

= α -

which implies that (5.2) takes the form

- gε(x - y, fe)] - '

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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where p = γ + k and q = γ' + k' with γ,γ'eΓ and k and k in B and [ ]-1 is the
inverse n x n matrix. Hence we have proved

Theorem 5.1. Let

be a discrete lattice subgroup of R3,

Γ = {n1b1 + n2b2

the reciprocal lattice and

be the corresponding Brillouin zone. LetX be a finite set in R3 and Y = Λ+X and let
aχ+λ = ax be a A invariant real function on Y. Then Ha of Theorem 1.1 is translation
invariant under translations λeΛ hence

--
\ΰ\B

where we have identified the dual group Λ with B via the mapping k-*elλk. The
reduced Hamiltonian H^k) is a self adjoint operator on 12(Γ) given by its resolvent
kernel

where gE(x — y,k) is given by (5.7) and [ j"1 is the inverse nxn matrix n = \X\.

It is well known that if H is a Hamiltonian which is invariant under A then the
corresponding reduced Hamiltonian H(k) has discrete spectrum with eigenvalues
En(k) [10]. The functions En(k) over the forms A = R3/Γ are called the energy bands
of the Bloch Hamiltonian H. A detailed knowledge of the energy bands En(k) is of
considerable interest in the study of the solid state.

Let us therefore consider the case |X| = 1, i.e. X = {0}. In this case Y = Λ and
α = α for all λeΛ. From Theorem 5.1 we have that

(510)

where

Σ (5.11)



Periodic Point Interactions 105

The eigenvalues of Ha(k) are the poles of (5.10). There are two possibilities for such
poles, first the zeros of α — 0£(0, fe) and then the zeros of (γ + k)2 — £, which are the
eigenvalues of the free Hamiltonian. Let us first consider the solutions of

) = 0. (5.12)

Since

dE

we see that E — gE(Q, k) is an increasing function everywhere on the real line, gE(Q, k)
has a positive pole of first order at the points |y + fc|2, yeΓ with a residue equal to
the number of points in Γ which are mapped into \y-\-k\2. Hence there is exactly
one solution of (5.12) in each of the bounded intervals In, n = l,2,... where

R-\Γ + k\2= 0 In (5.14)

and In are open intervals numbered in increasing order from left to right and 70 is
the unbounded interval to the left. Observing that gE(Q, /c)-> — oo as E-+ — oo, we
find that there is exactly one solution in the unbounded interval 70. All these
solutions are obviously first order poles of (77α(/c) — E) ~1 and are therefore simple
eigenvalues of Ha(k). The eigenvalue which is the solution of (5.12) in 70 is obviously
the bottom of the spectrum of Ha(k) and called EQ(k).

The other possible poles of (5.10) are the points E = (γ + k)2, yeΓ which are the
eigenvalues of the free Hamiltonian. It is easily seen that if (y0 + k)2 is a simple
eigenvalue of the free Hamiltonian i.e. if there is only one yeΓ such that (γ + /c)2

= (y0 + k)2 and that is y = y0, then E = (y + k)2 is not a pole of the resolvent (5.10)
because the poles in the first and in the second term in (5.10) exactly cancel each
other. If however (y0 + k)2 has multiplicity m + 1, i.e. there are exactly m + 1
different elements y0,..., ym in Γ such that (γ0 + k)2 = (yί + k)2 = (ym + /c)2, then (5.10)
has a pole at E = (y0 + k)2 and the corresponding eigenspace is m dimensional and
is spanned by the vectors

£χ. j=l,...,m, (5.15)

where {y0, ...,ym} is the inverse image of \y0 + k\2 under the map y-+\y + k\2.
Let now E0(k)^E1(k)^ ... be the eigenvalues of Ha(k). If En(k) is the unique

solution of (5.12) in an interval ln, then En is simple and from (5.10) we get that the
corresponding eigenfunction is ψ*(γ) = ((γ + k)2 — En(k))~1. Hence we have proved

Theorem 5.2. Let X consist of only one point, i.e. X = {0}. Then the corresponding
reduced Bloch Hamiltonian Ha(k) is given by its resolvent kernel on 12(Γ)

1

(y + k)2-E (γ' + E)2-E9



106 A. Grossmann, R. H0egh-Krohn, and M. Mebkhout

where

o
- — 4πω0E(0,/c)=lim(2π)

HJ(k) has a pure point spectrum and is bounded below. Let R — |Γ + fe|2— (J /*

where /* are open intervals, /0 unbounded. Then there is exactly one simple
eigenvalue En(k) in each l\ with corresponding eigenfunction
φjj('y) —((y-j-fe)2_ E^fc))"1. In addition fία(fc) has eigenvalues at the points |y + /c|2

for which the map Γ-+R+ given by y-»|y + fe|2 is not simple. The multiplicity of the
eigenvalue |y0 + /c|2 is one less than the multiplicity of the map y-»|y + fc|2 at the
point |y0 + fe|. The corresponding eigenspace is spanned by the vectors

ι _ ™ .=1

1 i = o

where {y0, ...,γm} is the inverse image of \y1 + /c|2 under y
We shall consider the eigenvalues En(k) of HΛ(k) of Theorem 5.2 to be periodic

functions over R3 with periods Γ, i.e. En(k + γ) = En(k) for yeΓ. From Theorem 5.2
we see that there is a natural correspondence between the elements yeΓ and the
eigenvalues (En(k)} of Hα(fc) i.e. y-+Ey(k) where £y(fe) is the largest eigenvalue
smaller or equal to |y + /c|2. Let y 'φy be such that |/ + fc|2 is a largest element in
\Γ + k\2 smaller or equal to |y + fe|2. If |y' + /c| 2<|y + /c|2 then

Ey(k)e (|/ + /c|2, |y + /c|2) and if |/ + /c|2 = \y + /c|2 then Ey(k) = \γ + k\2.
y^Ey(k) preserves multiplicity and Ey(k) = Eγ,(k) for y Φ y' if and only if there is

a y"eΓ different from 7 and y; such that |y + k\2 = |/ + /c|2 = ly" + fe|2. Since Ey(k) are
solutions of (5.12) they are different branches of one and the same analytic function
of k. There is a unique lowest band E0(k) which is smaller than all the points
|y + /c|2, yeΓ. All the other energy bands are connected.

To prove this let y be arbitrary in Γ such that Ey(0) is not the unique smallest
eigenvalue E0(0), and let Ey/(0) smallest eigenvalue of HΛ(0) larger or equal to Ey(0).

We want to prove that there is a /ceK3 such that Ey(k) = Eγ,(k). If £y(0) = E/(0)
we are finished and if not |y|2<£/(0)<|y'|2 and £y(0)^|y|2. Since £r(0)>£0(0)
there is a y'ΈΓ such that Eyf,(0) is a largest eigenvalue smaller or equal to Ey(Q), and

|y"|2^£y(0)^|y|2<£/(0)<|/|2. (5.16)

Moreover from the definition of E (k) we have that

(5.17)

in the neighborhood of zero where

(5.18)

By a theorem of Euclid there is a point in K3 such that

(5.19)
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in fact (5.19) defines a unique line in R3, namely the line through the centre of
the triangle (γ,γ',y") and orthogonal to this triangle. This line intersects the
neighborhood given by (5.18) and on this intersection we get from (5.17) that Ey(k)
= Ey,(k). Hence we have proved.

Theorem 5.3. Let the assumptions be as in Theorem 5.2. The energy bands En(k) are
branches of an analytic function of fc, periodic over R3 with period Γ. There is a
unique simple lowest eigenvalue E0(k) which is the only eigenvalue smaller than
\Γ + k\2. Moreover E0(k)<En(k) for all nφO. There is a natural correspondence
y-*Ey(k\ yeΓ between Γ and spHa(k), where Ey(k) is the largest eigenvalue smaller
or equal to \y + k\2. y^Ey(k) preserves multiplicity in the sense that the multiplicity of
Ey(k) is the number of elements in the inverse image. Moreover if yΈΓ is so that
\y' + k\2 is a largest element in |Γ-ffc|2 smaller or equal to |y + fc|2 then \y' + k\ ^ E y ( k )
^|y + /c|2, and if |/ + /c| 2<|y + /c|2 then |y' + fc|2<Ey(fc)<|y + fc|2. All the energy
surfaces Ey(k) apart from the lowest E0(k) are connected, and Ey(k) is connected with
other surfaces along lines given by \y" + fc| = \y + k\ = \y' + k\ for y, /, and y" three
different points in Γ.

It follows from (5.11) and (5.12) that E0(k) takes its minimum at k = 0 and
maximum at k = k0 = (^b1^b2^b3). Moreover we see that the minimum E0(0)<0
and the maximum E0(k0) is negative if and only if α < α0 where

= 3 lim Σ 77TΊ7^~4πω

yeΓ
(5.20)

Hence we get the following theorem

Theorem 5.4. Let the assumptions be as in Theorem 5.2. Then the spectrum of #α is
absolutely continuous and

if α^α0 then spί/α = [£0(0), oo),

if α<α0 then sp//α = [£0(0),£0(/c0)]u[0, oo) with £0(/c0)<0,

where

^ 1

ω^ oo
~2 — 4πω

6. The Grating (the Linear Interferometer)

In this section we consider a potential with support on a set of equally spaced
parallel lines in the plane spanned by the second and the third axis in #3. We take
the lines to be parallel to the third axis and we want the potential to be translation
invariant along the lines and equally strong on each line. This is the potential of a
grating which is often used as an interferometer in spectroscopy. The correspond-
ing Hamiltonian is now translation invariant in the direction of the third axis, and
therefore the third component of the momenta is conserved. Hence the problem
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reduces to a problem in the plane orthogonal to the third axis, and the lines are
represented by a string of equally spaced points along the second axis in the plane
spanned by the first and the second axis.

Hence the problem of the grating is that of a Hamiltonian in R2 with a
potential with support on a discrete subgroup of the second axis and the potential
being translation invariant under this discrete subgroup.

Let Λί = {na, neZ}, aeR + and consider Λί as a subgroup of R2 which is a
subgroup of the second component of R xR = R2. Let Y=Λ1 and let α be a real
function on Y invariant under Λ19 i.e. uλ — α. The corresponding Hamiltonian HΛ is
given by Theorem 1.2 as

where

and GE(0) = 0.
Now set

pip(A-λ')

P2-E
-dp for Λφ/Γ

(6.1)

(6.2)

G(λ)e~ik

=(2*r2 Σ ί
H Φ O R2

-dp1dp2.

Hence

0,fc)= lim

2π

i Σ >--Mn(ω2-
4π

--ln(-£), (6.3)

where /^ = <j—n, neZ^. Since fία is translation invariant under Λ1 we have that

π/α

-π/α

Hx(k)dk, (6.4)

where A1 =R/Γl is identified with the interval

then have

π π
--,-. From (6.1) and (6.3) we

(6.5)

We have the following theorem
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Theorem 6.1. Let Λ1 = {na,neZ}, aeR + and consider Λ1 to be a subgroup of the
second component in R2 = R x R. Let a be a real function on Λ1 and invariant under
yi l 5 i.e. otλ = a. Then the corresponding Hamiltonian Ha = $Ha(k)dk where HJ(k) is a

self-adjoint operator on L2(R x/^), Γ± = <—n, neZ> with resolvent kernel

where

) = lim -2 Σ

Now on the interval (— oo,/c2) gE(Q,k) is a monotonic function of E with range
equal to R. Hence for any αe^ there is a unique solution E0(fc,α) of the equation

a = gE(Q,k) (6.6)

with E0(/c,α)</c2. It follows from the expression for the resolvent kernel in
Theorem 6.1 that £0(/c,α) is a simple eigenvalue of Ha(k) with corresponding
eigenfunction

We see that this is the only eigenvalue of Ha(k). Hence we have

Theorem 6.2. The essential spectrum of Ha(k) is absolutely continuous and equal to
[fe2,oo). Ha(k) has exactly one simple eigenvalue £0(fc,α) and this lies below the
continuous spectrum with corresponding eigenfunction

Remark. The scattering matrix may be computed in the same way as in Sect. 3 or 4.
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