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Abstract. By extending the frame bundle of a manifold admitting a spin
structure to a principal fibre bundle with group the super-Poincare group we
are able to derive the supergravity Lagrangian and its invariances under
supersymmetry and other transformations in a global form.

1. Introduction

Since geometric formulations have proved so successful in modern physics it was
natural that once the concept of supersymmetries had been accepted it would be
attempted to recast the component formulations [1] in terms of a more geometric
language. So far the closest way to achieve this aim has been the idea of superspace
[2]: the extension of space-time to include four extra fermionic dimensions
together with the differential geometry implied by the increased structure.

However, this approach suffers from various defects. First it seems that to
agree with the results derived by more direct methods it is necessary to abandon
the obvious generalization of the Levi-Civita connection and impose an ad hoc
torsion condition [3]. Second, the theory includes a large number of extraneous
fields whose interpretation poses difficulties. Third, no great simplification in
terms of concepts required or algebra needing to be done is achieved. Lastly, the
transformation used in superspace mix up the bosonic and fermionic variables
leading to difficulties in interpretation and in identification of the theory with the
seemingly bosonic space-time we actually inhabit.

In this paper we present a formulation of super-gravity in terms of fibre
bundles [4] which we claim overcomes the objections to the concept of super-
space. By considering a fibre bundle whose base space is space-time no difficulty
with nilpotent co-ordinates arises, the transformations corresponding to those in
superspace always acting in another space. The only fields arising are the vierbein
βα

μ and the spin 3/2 field \ρα

μ, with the connection ωα

μ being given by an obvious
generalisation of the normal Levi-Civita cof. The supergravity Lagrangian and its
invariance under local supersymmetry transformations can be quite easily derived.
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As the theory is best expressed in terms of fibre bundles and differential forms we
use this language throughout [5] though expressions in terms of a local co-
ordinate system are given at the end for those physicists not yet familiar with this
notation.

2. The Formalism and the Lagrangian

As is well known over any four dimensional manifold Μ there may exist many
principal fibre bundles with group the proper Lorentz group Η. In what follows we
may choose any one of these though naturally for physics we are interested in one
constructed from the frame bundle of Μ via some metric, that is in a bundle of
orthonormal frames with respect to that metric. Using such a bundle we wish to
construct a principal fibre bundle whose group is the extended Poincare group,
which we represent as the following set of 9 χ 9 matrices:

(2.1)

where Sab is an SL (2, C) matrix, R is the usual map from SL (2, C) to the Lorentz
group, ρ" is a four vector (the translation vector), λ" is an anticommuting spinor
and C is the charge conjugation matrix (Cy"= — y"TC, CT= — C). Letting the
matrix (2.1) be represented by (S, ρ", λ) it is easily seen that they form a group with
multiplication

(S, ρα, X)(U, q", θ) = (SU, f + (R(S)q)a + $XCfSe, Ξθ + λ). (2.2)

Further they can be thought of as being generated by the super-Poincare algebra.

n(S)ab [

0

, 0

~\XCyaS~]
Sab

0

b ρα

1

where
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with f7bc = diag(—1,1,1,1) and j a b the generators of the Lorentz group (before
exponentiating Qa must be multiplied by an anticommuting parameter).

To extend the Lorentz bundle we use the construction technique given in
Steenrod [6]. A fibre bundle can be constructed once its transition functions are
known that is if we are given a covering of the base manifold {L/J say and a set of
functions fij\UinUj-+G, G the group of interest, satisfying

fiM)fjk(x) = fik(x)> (2.5)

If G is a subgroup of G then the bundle can be extended to one with group G
simply by regarding the transition functions as taking values in G rather than G.
For our case the situation is slightly more complicated due to the fact to view the
Lorentz group as a subgroup of the super-Poincare we must construct an inverse
to R, but as this is a 2 to 1 mapping this may not be possible globally. However, we
may certainly do this if Μ, the base space, admits a spin structure [7], so from now
on we assume this is so. It is possible that the use of generalized spin structures [8]
may allow us to proceed further if the second Stieffel-Whitney class of Μ does not
vanish. Having extended the ftj to take values in the super-Poincare group we
construct a new bundle (£, π, Μ) with that as its group.

Having constructed our bundle we endow it with a connection, i.e. a one form
taking values in the super-Poincare algebra (2.4).

r = ̂ abJab + eaPa + W

aQa. (2.6)

Where we have expressed the connection as a sum of those generators of the
algebra which carry an immediate interpretation: Jab generate the SL (2, C)
subgroup, Ρα are the bosonic translations and Qc the fermionic ones. As noted
after Eq. (2.4) for Γ to lie in the algebra ψα must be an anticommuting spinor form
and from the multiplication law (2.2) θα is an even element of a Grassman algebra.
If σ is a section from subset U of Μ to Ε we may pull-back (2.6) to obtain

and we will later identify ωα

μ as the Levi-Civita connection, ea as the vierbein and
ψα

μ as the spin 3/2 field normally used in the construction of supergravity.
However, it should be noted that ψα

μ is not what one would normally think of as a
spinor field. Usually this is a cross-section of some spin bundle whereas our ψ field
is a connection form.

The curvature two-form A is, as usual, given by the structure equation

(2.8)

whence writing

a (2.9)
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we find

Τα = άθα + ωαο A θ£ + %ψ A Cyaxp, (2. ΙΟϋ)

^r« = dip" + \cohc A \obcxp). (2. lOiii)

Latin indices are raised and lowered using ηαϊ}. Finally, from the Bianchi identity

DA=0, (2.11)

where D is the horizontal exterior derivative we deduce

dQab + ωα€ A Qcb - Qac A cocb = 0 , (2.12i)

dTa + ωΛί: Λ T c - Qac A 6C + φ Λ Q a ^ = 0, (2.12U)

| c o b c Λ a{abc3T) - \Qhc A a{abcxp). (2.12iii)

To rewrite these in a more familiar notation we use the section σ previously
mentioned. Letting

= \Rfxdx^ A dxv, (2.13i)

σ*3Γα = ̂ νάχμ A dxv, (2.13iii)

it can be seen that (2.10) and (2.12) become / ^ means a cyclic sum over μ, ν,

and α

- coa

v

ccof, (2.14i

y ^ v > ( 2 1 4 i i

^ Χ + <c^fa - ω μ ^ > = 0, (2.15i)

+ ^ν°α + ω^Τ4 + VV<W.} =0, (2.15U)

, va - I VcdVVX + Κ V c d ^ J ) = 0 (2.15iii)

If the 4 χ 4 matrix βα

μ has an inverse, βμα say, so

« = ̂  (2.16)

(2.14//) c a n ^ e solved for of* giving

(2.17)
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A gauge transformation in this language is a different choice of section σ' from U to
Ε which is related to the original σ by

σ'(χ) = σ(χ)0(χ), (2.18)

where g is an element of the super-Poincare group. With g = (S, ρ, λ) and denoting
pull-backs with respect to σ' by primes, it is found that (R — R(S))

dR
^ -1-^, (2.19i)

ισοάλω°«, (2.19ii)

δλ 1 _,
— - + - S σ^Χω^ , (2.19m)

(2.20i)

' " V ^ , (2.20ii)

1
^~uv~S ^ν+Λ-^/ίν 1 ^ ^αί^ (2.20iii)

2

We now turn to the construction of a Lagrangian for the theory. For general
relativity one can view the Einstein lagrangian as arising from the requirement that
variations of it with respect to ωμ should lead to an equation stating that the torsion
is zero. With L being the lagrangian four-form the correct expression is

^« ω , ν . (2-21)

Using (2.10) and (2.12) with ψ-=^~ — 0 this may be integrated to give

L = eaAebA&\bcd (2.22)

whose pull-back yields a lagrangian density of

& = eR. (2.23)

jR being the scalar curvature and e = det βα

μ. To obtain the supergravity lagrangian
we need only to drop the condition that ψ = 0 whence the extra term \ψ A Cya\p in
the torsion tensor Τα lead.s to the expression

L = eaA6bA QcdEabcd - 2ψ A Cy5ybaefcoef A ψ A 0b. (2.24)

The last term in (2.24) is not invariant under a gauge transformation induced by an
element of SL(2, C) but we may make it so by adding the term
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— 4ψ A Cy5ybd\p A 0b, which will not effect the variational Eq. (2.21), leading to a
final expression

L = θα A 9b A Qc\hcd -ΑχρΑ Cy5yh3T Λ θ*. (2.25)

The pull-back of (2.25) then gives

y^ (2.26)

which is the supergravity lagrangian [9].
To show the invariance of the lagrangian under supersymmetry transfor-

mations we will later need to know what dL is. We find that

(6b A Qc\bcd + 2χρ A Cy5ya^). (2.27)\bcd

This can be verified by direct computation using (2.10) and (2.12), but it can also be
shown using more subtle ideas which will be of importance in deriving the
supersymmetry transformations themselves.

Having constructed our total space Ε we wish to consider the space
E/SL (2, C); that is we identify those points in Ε which are related by multipli-
cation by an SL (2, C) matrix. Now (Ε, pr, E/SL (2, C)), where pr is the obvious map
from Ε to E/SL (2, C) is a principal fibre bundle with group SL (2, C) and coab is a
connection form for it. In this bundle we denote the horizontal exterior derivative
by D.

Equations (2.10) and (2.12) can now be written as

Qab = Dcoab, (2.28i)

Τα = ϋθα + ±ψΑ Cyaxp, (2.28ii)

ΏΩ = 0, (2.29i)

D Τα = Qac A 0C - ψ A cya^r, (2.29ii)

Over this bundle L is, by construction, an horizontal four form invariant by right
multiplication of SL(2, C) and hence [5].

dL = DL = 2TaA (6b A Qc\hcd + 2χρ A Cy5ya3T). (2.30)

3. Invariances of the Lagrangian

To construct the supersymmetry transformations it is necessary to reduce the
bundle (Ε,π,Μ) to one whose group is SL(2, C). Although we started with a
bundle whose group was the Lorentz group and, by the assumption of the
existence of a spin structure, this could be extended to an SL (2, C) bundle, the
process is not circular as the final objects we consider inherit the richer structure
introduced in the construction of Ε. E/SL (2, C) can be thought of as an associated
bundle to Ε over Μ and by standard theorems the reduction of Ε to SL (2, C)
bundles are in one-one correspondence to cross-sections of this associated bundle.
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If σ is a cross section of (E/SL (2, C)J, Μ) the reduced bundle is a~lEcM*E
where a~iE = {(x,u)sX.a(x) = pv(u)} i.e. Fig. 1 is commutative.

>Ε

p2{x,u) — u

pl{x,u) = x

Μ >£/SL(2,C)
σ

Fig. 1.

We require a to be such that the forms coab and θα pulled back to σ~ ιΕ via ρ2

are an absolute parallelism [essentially this means the matrix (ea) has an inverse].
This is a reasonable assumption as to make contact with physics we will need to
identify βα

μ as the vierbein which implies the existence of its inverse. More
mathematically we have constructed a mapping from a Lorentz group bundle over
Μ to Ε and the above requirement is that the pull-back of θα under this map is the
canonical form of that bundle which, while being a restriction of the types of
connections on Ε we consider, is certainly possible.

As θα and coab form an absolute parallelism by the standard constructions we
can choose a new connection which is such that Τα = 0 on σ~ίΕ (we denote forms
on Ε and their pull-backs via ρ2:Μ

 χΕ->Ε by the same symbol) and we assume
that this has been done. Now Μ χ Ε has a natural group action by the super-
Poincare group, namely (x,u)-*(x,ug) and we consider the submanifolds Rga~1E
defined by (x,u)eRga~lE if, and only if, a(x) = pv(ug~i). Clearly Rea~1E = a~1E
and we claim that for each gRga~{E is a principal fibre bundle over Μ with
group SL (2, C). This is nearly obvious: we need only state that the group action is

Rh{x,O) = (x,Og-lhg) J?eSL(2,C)
for clearly

σ(χ) = pr (vg " χ ) = pr (vg ~1h) = pr (vg

so (χ, vg~ xhq) is in Rga~ ιΕ and the rest follows easily. Also obvious is the fact that
we thus have a set of maps between equivalent SL (2, C) bundles over Μ.

Μ ^ — > Μ
Fig. 2

It is, perhaps, worth emphasizing that we cannot define an action of G on the
cross-section σ. Although each reduction of the bundle Ε defines a cross-section of
(E,pr,E/H) equivalent bundles define the same cross-section. The difference
between σ~ ιΕ and Rgc

 ίΕ lies in the different action of Η or better in the different
representation of Η in G used.

If geSL(2,C) clearly Rga~1E = a~1E and any change in the forms is just a
gauge transformation which is not particularly interesting so we assume that the
group element g is either a bosonic or femionic translation i.e. generated by an
element of the subalgebra spanned by the Ρα and Qa of (2.4).
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It is not necessarily true that the torsion form of £, Τα, pulled back to Rga~ 1Ε
is zero, however, if g is chosen so that ωα& and θα on Rga~ γΕ still form an absolute
parallelism we can find a horizontal one form, 4>ab say, such that with respect to the
connection ω'α1? = ωα1} + φαϊ} the new torsion form is zero. The supersymmetry
transformations are then the pull backs from Rga~ ίΕ of ω/αί), θα, and ψα by Rg to
a-'E.

To find the infinitesimal form of these transformations let g = exptT. As g is
not in the SL(2, C) subgroup we have by definition of ω

ω(Γ) = 0. (3.1)

Let

Then the infinitesimal change in θα and ψα will be given by Lie differentiation by Τ
and as <fiab = 0 on σ~χΕ the first order change is ω, namely

l ab # tab l tab # tab tab

where L r denotes Lie differentiation. Using LT = d°iT+iT°d we find

= dpa + ϊ Γ ( Τ α - ω" A θ°- \ψ A Cya\p)

, (3.3)

δψα - LTxpa = d\pa{T) + iTdxpa

= dXa + iT(^a-±cobca(abcip))

= dXa + ±cobca(abcX), (3.4)

where we have used the fact that Τ is a vertical vector of Ε i.e. ιτ(Τα) = ιτ(^~α) = 0.
Calculation of ocoab is more complicated as we need LTd

ab which is not equal to
LTofb which is of course zero. In a co-ordinate form δωαΙ} may be calculated from
the co-ordinate expression for the change in βα

μ and ψα

μ to be derived below and Eq.
(2.17) with Τμν set equal to zero. For a co-ordinate-free expression we may use
LTd

ab = LT$
ab (Lrcoflb = 0) and the fact that φα1° is given by

(Τα can only be set equal to zero after the Lie differentiation has been performed)
where Xt are a dual set of vectors to θα, i.e.

= δ% (3.6)

Repeated applications of the formula

LTix = ixLT + i[TX] (3.7)
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and the use of the Bianchi identity (2.12U) leads to

δω<* = Y^mWx^ Pc + WxJ** Pc + Wxfikc Pc
k

- iXkix/Cy^-WxkXCyb^-iXaiXbXCyk^). (3.8)

It should be noted that (3.8), unlike (3.3) and (3.4) uses the fact that Τα = 0 on σ~ ιΕ.
Under a pull back to Μ ρα and λ become arbitrary functions, of even and odd
Grassman type respectively, of the physical co-ordinates of Μ, χμ say, giving

δλα

V=^r+i<>^), (3.ιο)

which are the usual expressions for the local supersymmetry transformations
without auxiliary fields. Equation (3.8) then gives

δ ω ΐ = Σ 2el(RaxrVce
Xhexk + R\c

xe
xkezapc + Rk£pce

Xbeza

k

- XCya3rkze
Xhexk - ICf'$\te

Mlexa - lCyk^kze
Xhexa). (3.11)

Turning to the effect on the lagrangian of these transformations we need to
know LTL' where the prime means that it is constructed using cofab. We find

3L = LTL' = diTL' + iTdL' = diTL
f + iTD'L

= diTL' + iT(2Ta(ebAQc%bcd + 2ip A Cy5ya<n)

= diTL' as Tfl = 0 on σ~ιΕ, (3.12)

i.e. the change in the lagrangian is a total divergence, and hence, if surface integrals
are ignored, the supersymmetry transformations are an invariance of the equa-
tions of motion [9].

Most use of the invariances (3.3) and (3.4) have focussed on the case pc = 0, the
common assumption being that the variation due to a non-zero pc is a gauge
transformation. That this is not so can be seen by comparing (2.19i), the gauge
transformation of ofh, with (3.11). Actually with λ = 0 ψ = 0, (3.9) and (3.11) give the
first order forms of an invariance of Einstein's equations independent of super-
symmetry considerations, the group now being extended from the Lorentz to the
Poincare groups, not the super-Poincare groups.

In fact from their construction one can easily see that neither the pc = 0 nor the
λ = 0 transformations can be thought of as gauge transformations and it is
therefore not surprising when techniques of quantization developed for gauge
theories, such as Fadeev-Popov ghosts, do not give reasonable results in the
context of super-gravity [10]. It has been thought that such problems arise
because the group generated by (3.3) and (3.4) is an infinite dimensional one. Using
auxiliary fields, which for matter-free gravity have no physical significance at the
classical level, it has implicitly been thought that the group has been reduced to
some finite dimensional one but this is not true. The closest algebra to achieve this
aim is the Stony Brook algebra [see 11] but this is also infinite dimensional due to
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the occurrence of the fields βα

μ and ψα

μ in the structure functions: a finite algebra
results only when the structure functions reduce to constants.

The above invariances are constructed using vertical vectors in ΤΕ and it is
then an obvious question to ask if there exist other invariances of the Lagrangian
generated by horizontal vectors. As these invariances are immediately applicable
to other gauge theories we may, for the present let (£, π, Μ) be a principal fibre
bundle over Μ with arbitrary group G. If L is a lagrangian for some theory based
on the bundle it is an horizontal four form of Τ*Ε invariant under the action of G
and therefore projecting uniquely to a four form, which we also call L, on Τ*Μ.
Effectively this means if we know L or a transformation of L at one point of a fibre
of Ε we know it at all points of that fibre.

Let ft be a one parameter family of diffeomorphisms of Μ generated by a
vector field X. Then, by standard theorems, there exists a one parameter family of
diffeomorphisms of Eft generated by the vector field X satisfying

X is the horizontal lift of X, (3.13ii)

i.e. ft "covers" ft and the tangent vectors to it are horizontal so Fig. 3 is a
commutative diagram.

Fig. 3

The invariance we are looking for is then

L->f*L in Ε (3.14i)

(note by construction f*L is a lagrangian form: that is it is horizontal and
invariant by Rg), or equivalently

L->/f*L i n M .

Clearly, since ft is a diffeomorphism

\f*L= J L=\L (3.15)
Μ ft(M) Μ

so the equations of motion are left unaltered by (3.14).
The interest of these transformations lies not so much in the co-ordinate free

expression but in the local co-ordinate changes of the fields. Suppose we have used
a section s to pull-back the connection one form ω so

8*ω = Αα

μάχμΤα, (3.16)

where Τα are the Lie algebra matrices. To find the change in Αμ we need to
calculate s*f*co. Now s°ft is again a section of the bundle but while s[/f(x)] and
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ft[_s(xj] are in the same fibre, by the construction of ft they need not necessarily be
the same point, that is Fig. 4 need not be a commutative diagram.

E-j-^E

Fig. 4.
Μ —

However, because s[ft{x)~] and ft[s{x)~] are in the same fibre there exists an element
gt of G such that

(3.17)

i.e.

ftos = Rgsoft (3.18)

and therefore

s*/f*w = / f*s*[adgf-^] (3.19)

leading to

Α'μ(χ)= ( f t '^ f t + i i r 1 ^ ) ^ , (3.20)

where x' = ft(x). To find gt we take the differential of (3.18) and use the Leibniz rule
to obtain

(3.21)

where gt is the tangent vector to the curve u-+Rgu. As we are working locally we
may assume a local product structure to Ε so the section s can be written as

s:x-*(x,h(x)) heg (3.22)

and

ω) - Λ " χ f(dfi$ + Α\γ\χ)άχ»). (3.23)

On applying ω to (3.21) we get a local differential equation for gt of the form

(3.24)

as

( 1 2 5 )
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For physical applications it is implicitly assumed that the constant section
x-+(x,e\ e the identity of G, has been chosen whence (3.24) becomes

£^+££_.
which integrates to

( 3 2 7 )

where Ρ is the path ordering operator and c is the curve from χ to χ'. Essentially
(3.24) is important if we wished to globally patch together the change in Αμ or if ft

were such that there did not exist a trivializing neighbourhood of the bundle
containing χ and χ', for then s could not be defined and we would have to work
from

a/ = /t*co. (3.28)

Such transformations as (3.20) have been considered by Jackiw [12] with ft being a
conformal transformation of a flat space-time. In the language of this paper Jackiw
was concerned with the difference between the invariances /f*s*, the usual way of
writing the conformal transformation of Αμ9 and s*^* which he constructed by
inspection (see Fig. 4). However, (3.28) gives a global definition of the invariance
whereas, as pointed out above, the definition f*s* can break down if ft is a "large"
enough transformation to take us outside the domain of s.

If L contains fields transforming under a representation Τ of G, i.e. cross-
sections of associated bundles, they transform as

Φ' = ΤύΓ%*Φ (3.29)

/ a —- where
ox

arbitrary functions of χμ. Then to first order (3.27) becomes

To get the infinitesimal forms of these transformations letX = / a — - where fa are
ox

9t = e-faAa (3.30)

and (3.20) is seen to give

< Η = / α ^ > (3 3 1)
where ¥αμ is the curvature form for Αμ. (3.29) now becomes

where Da is the appropriate gauge covariant derivative.
Specializing to the bundle (σ~1Ε,ρνΜ) for supergravity this implies the

following invariances of the Lagrangian [G is now SL(2,C)].

(3.33i)
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where / α can now be bosonic elements of a Grassmann algebra. For general
relativity (ψ = 0) (3.33) is seen to be equivalent to (3.9) and (3.11), using the Bianchi
identities with Τ£ν = 0 and setting fa = pcea

c, but this is no longer true for
supergravity as with λ = 0 δψ = 0 by (3.10) but δψ = 0 for the transformation (3.33).
The lagrangian remains invariant as the change in ω is different for the two
transformations due to extra terms in βΓμχ in the Bianchi identities. Hence (3.33)
are a new set of in variances for the supergravity lagrangian.

4. Conclusions

Using the notions of principal fibre bundles we have constructed the supergravity
lagrangian and three invariances of it namely (3.9) and (3.10) with either λ or pc

equal to zero and (3.33). The former are special to the extended theory of gravity,
depending on the existence of an absolute parallelism (i.e. the existence of an
inverse for βα

μ), the resultant choice of the torsion tensor to be zero and the fact that
the change in the lagrangian, up to a total divergence, is proportional to the
torsion tensor. The transformations (3.33) are a special case of a set of invariances
general to all gauge theories and, if the ψ field is not identically zero, are not
equivalent to the former. It should be noted that even if we start with ψ = 0 (3.10)
with a non-zero λ gives us a non-zero spin 3/2 field unlike (3.33). Most attention in
the literature has focussed only on the invariances (3.9) and 10 with pc = 0 but if
this is important for the theory and its quantization we can think of no reason why
the transformations with pc=h0 and the invariances (3.33) should not be of equal
importance.

Using the fibre bundle construction technique we are able to avoid the
conceptual difficulties of giving a meaning to the superspace translations that mix
up bosonic and fermionic co-ordinates. At the same time various properties of the
theory are made clear. First supersymmetry transformations are not gauge
transformations. Secondly the ψ field is not strictly speaking a spin 3/2 field in the
sense that it is part of a connection one form and should not be thought of as a
cross-section to an associated bundle. This implies some interesting topological
possibilities for the theory, to which we hope to return in a later publication.

Apart from global possibilities raised by the construction of the fibre bundle Ε
over Μ it remains to see how matter fields, which would presumably be cross-
sections of some associated bundle to £, fit into this language as well as the
problems of quantizing such theories. We feel, however, that the richness of
structure and the fact that previously obtained results fit so naturally into the fibre
bundle framework make this a promising line of approach to the problem of
reconciling quantum theory with general relativity.
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