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Abstract. We prove an inequality for trace ideals which relates the difference of
two positive operators to the difference of their square roots. Inequalities
involving operator-monotone functions more general than the square root, are
considered as well.

1. Introduction

In practical work involving, for instance, the approach to an equilibrium in a
harmonic chain [1], or the elementary excitation spectrum of a random fer-
romagnet [2], the following problem shows up. One is given two positive bounded
operators whose difference is finite-dimensional, and one would like to prove that
the difference of the square roots is trace class [3]. So we are led to the question: If
A and B are positive bounded operators such that (4 — B) is trace class, when is it
true that the difference of their square roots is trace class as well? We cannot
expect that this is true in general. Simply take B=0 and A trace class; 4*2 is
Hilbert-Schmidt, but not necessarily trace class. So we need a supplementary
condition. In Sect. 2 (Proposition 2.1) we will meet such a condition and get an
estimate of the trace norm |42 — B'/?||| in terms of [[4 — B| ;. In connection with
this estimate we then may look for meaningful generalizations.

They are two natural ways of generalizing the above problem. We consider
them in turn. First we notice that the function f(1)=A1?is of a very special nature.
It has the property that for any positive 4 and B such that A<B we have
f(A)=< f(B). Such a function is called operator-monotone [4]. Is it true that
Proposition 2.1, when appropriately modified, also holds for operator-monotone
functions?

Next we observe that up to now we have singled out the trace norm. But what
can be said if we replace the trace norm, which is in fact an [*-norm, by an /P-norm
or, even more generally, by a symmetric norm [5, 6]? This question is considered
in Sect. 3. Operator-monotone functions are included in the analysis in Sect. 4.
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2. A Trace Class Inequality

It is worthwhile to consider the problem first in the simplest possible context. The
identity is denoted by 1.

Proposition 2.1. If A and B are positive bounded operators on a Hilbert space ), one
has for any p such that

AYV2 4 BY2 >4, 2.1)
the following inequality :

ulAY2—BY2||, <||A—Bll,, (2.2)
where | A, =tr|A|=tr(A*A)"'? is the trace norm.

Proof. We partly follow Powers and Stermer [7]. Denote the trace class by ., i.e.
Aisin £ ifand only if ||A|, < co. There is nothing to prove if (4 — B) is not in .#,,
so let us suppose that (4 — B) is trace class.

The compact operators form a closed two-sided ideal Comp ($) in B(9), the
bounded operators on $. Let n be the mapping from B($) onto the quotient space
B($)/Comp (9), a C*-algebra too [8]. .4, is contained in Comp (), so (4—B)
being in .4, implies

n(A) =n(B)=n(A)"? =n(B)!?=n(4"?) =n(B'/?), (2.3)

because m(A41/?) satisfies the requirement that n(A4'/?)? =n(A4) and the square root is
unique in a C*-algebra. Ergo, (4'/? — B'/?) is compact.
Define

S=(A1/2_B1/2) and T:(A1/2+B1/2)_ (2.4)

S is a compact self-adjoint operator having a complete orthonormal set of
eigenvectors {e;} in §; Se; =L, Notice moreover |Sle;=|//e;.
Evidently ST+ TS)=(A—B), and T=yl by (2.1). Thus we get

tr|A—B|=Y ie,|ST+ TS)e,)

i

2 Z%I(ei’ [ST+ TS]e,)

:Z|Ai|(ei7 Tei)
2 Z Wil =p Z (e; |S|€i)
=utr|AY?—B1?, (2.5)

i.e. the desired inequality (2.2). [

In particular, if A and B are strictly positive, with (4 — B) trace class, we get the
result we alluded to above: (412 —B/?) is trace class too. Phrased differently:
taking the square root is continuous on the interior of the positive cone of ;.
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3. Symmetric Norms

In this section the proof is given that Proposition 2.1 also holds if we replace the
trace norm by a more general norm. Let @ be a symmetric norm on sequences (see
[6]). Given a compact operator A, let {u,(A4)} be the singular values of 4 and

[Allg:=P({u,(A)}). (3.1)

For non-compact A we put ||4] 4= co.
For @ ({x,}): = Ix,/")""(1 £p< o) we use | Al|, instead of 14l g,

Lemma 3.1. If' S is compact and T = ul =0, then for any symmetric norm &

FITS+STpzp IS]o- 3.2)
Proof. Let S=Y 11,(5)(¢,, - )w, be the canonical decomposition of S, with ortho-
normal {¢,} and {y,}. Since S¢,=p (S)p, and S*p,=u(S)¢p,, we have (by [6],
Proposition 2.6; cf. also [5], Lemma 2.3.4)

IMST+T8) 2 2({(p,, 5ST+ TS),)})
S S
— o[ {2 10,00+ #5210

Z - P({,(S)})

=p-|Sle. O (3.3)
Proposition 3.2. If 4, B=0 and AY? + B2 > y1 >0, then for any symmetric norm @
[A—Blgzu-|A"?—=B"?|g. (3.4)

In particular, for 1 <p <o,
|A— B,z u- A2~ B2, (3.5

Proof. Define S and T according to (2.4). If (4 — B) is compact, so is S. Then apply
Lemma 3.1. [

4. Operator-Monotone Functions

In what follows f(4) is always a function which is well-defined and real-valued for
all 1=0. The function f(A) is said to be operator-monotone if, for any bounded
(positive) self-adjoint 4 and B, the relation 4<B implies f(A)< f(B). It is a
celebrated theorem of Lowner (see [4]) that a function is operator-monotone if
and only if it belongs to the so-called Pick class. Then f has the unique integral
representation [4]

f(/l)zoc—i—ﬁ)»——of[

0

1 t

where « is real, § =0, and, in the present case, v is a positive Borel measure on

(0, 00) such that [(:2+1)~'dv(t) is finite. In Eq. (4.1) 4 ranges through the complex
0
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plane cut along the negative real axis. For instance,

Vim Tl - ]

V2 olt+i 241 E3

is a Pick function, equipped with the afore mentioned properties : well-defined and

real-valued for all 2=0. Moreover we notice that W is monotonically increasing
when 4 goes from O to co. This is generally true for any Pick function f(4) that is
considered here.

dt 4.2)

Proposition 4.1. Let A and B be positive. We assume A+ B2 ull with p>0. Then for
any operator-monotone function f(A) and any symmetric norm @,

1(3)-s0
)= 180 2| 25— |14 Bl @

2
Proof. Let C=(A+ B)/2. Then Cg%ﬂ and (C— A)=(B— A)/2. The reason to

introduce the intermediate C will become apparent later on. The integral
representation (4.1) implies

flA)—f(CO)=p(A—-C)— Z [+ A) " =1+ C)~ ]dv(D). 4.4
Because

(H+A) =1+ O) ' =1+ A) " H{C-A) L+ C) 1, (4.5)
we get

IIf(A)—‘f(C)Hqéﬁ}IA—Cl|<p+E I(t1+4)" (A= C) (t1+C) ™ odv(1). (4.6)

We now have to estimate the integrand in (4.6). Thereto we notice that, since
(t1+A4)~* is invertible, (4 —C)(t1+C)~ (¢l + A)~ ! has precisely the same eigen-
values as (t1+ A4)~ 14— C)(t1+ C)~1; the latter is self-adjoint by (4.5). Thus ([6],
Theorem 1.19; cf. also [5], pp. 86, 89, and 97)

64 4) A= O e+ O)
SIA=Clollet+ O e a) =0 14 4) 1 1a=Cl, @

Here we used the inequality for C. And therefore
_1 u 1 1
1/(A) = fOllo=p™ A= Bllo 15 — [|—- 7|40 (4.8)

0 I
t+ =
2
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ie.

1A= 1O {1(5) = 10 14~ Bl @9
Analogously we find

O FBleu {1(5) - FO 14 Bl (@10

Then the triangle inequality,

/(=SB = 1/(4) = f(O)llp+ [ (C) = f(B)ll, (4.11)

implies the assertion (4.3). [

Plainly, there exists a ¢ such that 0<&<3u and [f(1/2) — f(0)1/Gr)= f'().
This suggests that, after all, the requirement x>0 is superfluous and we can take
the limit 4]0 so as to obtain the constant f'(0") in (4.3). Typical operator-
monotone functions are f(A)=A" with 0<m < 1. if m=1, f(0") does make sense in
(4.3). However, for the other values of m we mentioned, f/(0*)= + c0. So we have
to keep u>0 to get nontrivial results.

Corollary 4.2. If A,B=0 and A+ B= ul with u>0, then for any symmetric norm @,
and 0<m=1,

A" = B"o = (2/p)' ""IlA—Blg. (4.12)

Finally we return to our original problem where m=4 and AV2+ BY2>ul. If
AY? 4+ B2z ul, then

(A+B)'P2(4'2+ B2/ )/ 22 w/)/21, (4.13)
and hence
A+Bziu. (4.14)

By the previous corollary (u: =%u?)

|42 — B2, <2u" " |A—B|q, (4.15)
while Proposition 3.2 gives

42 =B <pu ' || A= Bl (4.16)

In fact, u=' is the “best” constant. To see this, take AY*=1uP,+uP, and
BY?=3uP, with P, and P, orthogonal projection operators (P, P, =0) such that
P,+P,=1and P, is one-dimensional.
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