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Abstract. A quantum analogue of the JV-positional Potts model is constructed.
The system is shown to possess an infinite set of involutory conservation laws
in the phase transition point.

1. Introduction

Most of exactly solvable two-dimensional spin models already known are related
to the eight-vertex model, analyzed by Baxter [4]. The unique feature of this
model is the existence of a complete set of conserved integrals commuting with
each other [6]. The transfer matrix of the original model is at the same time the
generating function of these integrals [4, 6]. These quantities can be considered as
quantum Hamiltonians describing different one-dimensional systems, one of
which coincides with the X ΓZ-model [5]. It is a natural question whether there
exist any other systems possessing a hidden symmetry of the same type.

In the present paper it will be shown that this hidden symmetry is indeed
present in a wide class of N-positional Potts models. However, conservation laws
exist for a certain relation between the original quantum Hamiltonian constants
which apparently corresponds to the phase transition point in statistical me-
chanics. Thus the only way to investigate the critical behaviour of the model is to
compute the correlation functions at the. phase transition point. To avoid
terminological misunderstanding it should be noted that the generating function
of conserved integrals in the quantum version of the Potts model cannot be
regarded as a transfer matrix of the classical lattice statistical Potts model [7] and
thus no exact relation between these models can be indicated.

We employ the representation of the Heisenberg motion equation using the
L — A pair which makes it possible to write down directly the generating functional
of conservation laws. We illustrate our method considering the Ising chain in
Sect. 2 and the anisotropic X ΓZ-model in Appendix A. In Sect. 3 we formulate the
quantum version of the Potts model in a way convenient for further developments.
In Sect. 4 the generating functional of motion integrals is written down, some of
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the first integrals are presented explicitly and the involutivity of all the integrals is
proved. Appendix B is dedicated to the question of locality of the conservation
laws.

2. L— A Pair Equation for the Ising Model

Consider an infinite one-dimensional quantum Ising chain having the
Hamiltonian

k=-oo

Here sk, sz

k and sy

k = isksk form the Pauli matrix algebra at the fe-th site and commute
at different sites. The operators

^+1/2 = ̂ +1 and sk = sk (2.2)

form the following algebra

~ > sksl = slsk(lή=k±l/2), (2.3)

where the indices k and / are integers and half-integers. The operators sk and sk+ 1/2

are contained in Hamiltonian (2.1) on the equal foot, therefore, the spectrum of the
former is a symmetric function of a and b, This corresponds to the well known
Kramers-Wannier symmetry [8] in the quantum language. The point a = b
corresponds to the phase transition point. The equation of motion takes the form

- isk = [JP, sj - ck(sk+ Il2sk- sksk_ 1/2) , (2.4)

where ck — a for half-integer and ck = b for integer k respectively.

We treat the question of conserved integrals representing the motion equations
in the L — A pair form :

— ιLk = Ak+1/2Lk — LkAk, (2.5)

where Lk and Ak are the local functions of the Hamiltonian density operators sk

and of some spectral parameter λ. The locality of Lk and Ak means that Lk depend
on sk at one site and Ak on sk at several neighbouring sites. The functions Lk and Ak

should be chosen in such a way that at any value of spectral parameter the L — A
pair Eq. (2.5) are true if, and only if, the equations of motion (2.4) are valid. Due to
(2.5) the quantity

&(λ) = ΓΪ LkW (2.6)
k- + oo

is conserved. The coefficients of the λ series expansion of (2.6) represent the motion
integrals. Assuming that the Hamiltonian is the first coefficient of expansion (2.6)
and that Lk depends on sk and λ only, one can find Lk and Ak using iterations. This
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method was proposed by A. M. Polyakov. Suppose
00

Lft = l + £ A » L < " > ,
n= 1

4k = Σ ^4n)> (2 ?)
n= 1

&=!+ £ λn^(n}.
n= 1

Then e^f(1) = ̂ ]^fc1) and it is natural to assume that L(

k

} — ck+ ι/2

5/c? where cfc are just
k

the same as in (2.4).
Expanding (2.5) into the λ series one can obtain

— iLk — Ak+ΐ/2 — Ak — #fr(sk-f ι/25k~ sk5k- 1/2) (2.8)

which yields A.(^ = absksk_l(2. The second iteration results in the following
expression

_ _ / / ( 2 ) _ / | ( i ) r U ) r ( i ) jίD .ίj^k "^/c+l/l^k ^k ^k ^

Substitution of yl[1} and L(

k

} gives

— Z'L =r

Hence,

Further iterations do not change the structure of Lk and Ak, i.e., Lk depends on sk

and Ak depends on sk and sk_ 1/2. Most general functions of the above variables are

Lk=l+ xksk
(2.10)

Ak = Uk*k + Vk$k - 1/2 + Wk5 A - 1 /2 >

where each of x, u, v, w takes only two values at integer and half-integer fe,
respectively. Inserting (2.10) into (2.5) one obtains the following equations for the
coefficients :

Ck+ί/2Xk CkXk+l/2
- ^ 1 _ V 2 ^TZT2 - »

1 ΛIL 1 •Λ't 4- 1 / 7

' _ _ (2.11)
~X)t+l/2W)c' Uk+l/2~Vk= ~XkWk+l/2

The easiest way to parametrize (2.11) is to introduce a parameter λ:

(2.12)
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The conservation laws obtained from (2.7) are non-local. In order to obtain
local conservation laws one should take a logarithm of the generating functional
&(λ) (2.6) and then expand it into a series. The theorem proved in appendix of
paper [6] states that the coefficient at λn in the log^f(λ) expansion is the local
integral ^n of the n-th order :

χλ", (2.13)
π= 1

where

Note that Cn(k) is a function of operators sk in no more than n points positioned
successively and Cn(k+l) is connected with Cn(k) by the unit translation of all
variables. The above mentioned theorem is formulated in Appendix B, where also
recurrent formulas for computing ̂  and the scheme of proof are given.

The system of integrals <$n is equivalent to a standard set of integrals [12] that
can be obtained by the Jordan-Wigner transformation. In our notations it can be
written in the following way

- 1/2 > k + 1/2 (2 14)

Here ιph and χk+ 1/2 (fe takes integer values only) are Clifford variables obeying the
following commutation relations

The equations of motion in terms of fermion variables are of the form

(215)

U k + l / 2 = %-fl%+l

The following quantities are found to be the integrals of these equations

V(

n

+} = Σ(ψkΨk + n + Xk+ll2Xk + n+U2)>

(2 16)

These integrals can be expressed in terms of initial variables using (2.14). It should
be noted that in the case of a finite chain with cyclic boundary conditions formulas
(2.7) and (2.13) do not yield integrals of motion. The difficulties arise from the fact
that the product of any finite number of Lk(λ) is not of a cyclic character, unlike
(2.7). Let the ordered product of Lk(λ) be defined as a product beginning in an
arbitrary point and ending in the neighbouring point. The coefficients at the λ
powers in the expansion of the logarithm of the above expression can be used to
obtain local integrals. For this purpose they must be corrected by introducing
additional terms to provide their cyclic character. In the present paper we restrict
ourselves by this observation as far as boundary conditions are concerned.
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3. Models with ZN Symmetry and the Quantum Potts Model

Consider a one-dimensional lattice model of a magnet in which there are N
possible and equivalent positions of a spin at each site. The direction of spin at the

fc-th site can be described by the complex variable σk, taking the values exp - ,

w = 0, 1, . . . ,ΛΓ — 1. Assuming the interaction to be local and dependent on relative
spin orientations only, the potential energy may be written in the form :

U = Σ^Λ*+ι), (3.1)
k

where V is the real function of its argument. The wave function of the system is a
function of the variables σk at all sites. It seems convenient to introduce diagonal
unitary operators σk acting upon |{σk}> as follows:

*ΓI{*J> = **I{**}> (3.2)
Obviously σk commute at different sites and

<7k~" = l. (3.3)

The operator of potential energy has the same form as (3.1) with the substitutions
σk~*σk and σΐ+ ι~*σkVV The kinetic energy is responsible for transition processes
between the states with different configurations {σj. Since the matrix elements of
the Hamiltonian between the states {σk} and {σk} depend only on the relative
orientations of σk and σ'k at every site it seems natural to introduce local unitary
shift operators sk :

5jΓI ,σ k _ 1 ,σ k ,σ k + 1 , . . .> = | . . .σ J k _ 1 ,ωσ k ,σ k + 1 , . . .>, (3.4)

where ω — exp — . It can be seen from the definition (3.4) that sΓ commute with
\N }

each other and with σf at different sites and

It follows from (3.2) and (3.4) that

σk sk = ωsk σk and σk sk + = ω*sk~
 + σ~ . (3.6)

The requirement for the kinetic energy to be local leads to the following
expression :

T = Σ7K~). (3.7)
k

where T(x) is a real function of its argument. The operators σk and sk have been
introduced earlier in [9].

As in the case of the Ising model, it is convenient to introduce equivalent
operators sk+ 1/2 at the half-integer sites :

(3.8)
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It follows from the definition (3.8) and the algebra (3.3), (3.6) that s^+ 1/2 are unitary
and commute with each other and with every sf except for those at the
neighbouring sites. For the last case we have :

Sk+ί/2Sk ~ωSkSk+l/2> Sk+l/2Sk = ω Sk 5 f c + l / 2 > (1 Q\

Sk+lSk+l/2~ωSk+ll2Sk+l ' Sk+ίSk+l/2 = 0} Sk+ l/2Sk+ 1 '

and

Operators sj^ and sf+ 1/2 participate in algebraic relations in the same way. Having
introduced the index / acquiring both integer and half-integer values one can
construct a unified description of algebra (3.5), (3.9), (3.10):

sfsz~
 +=sf +sf = 1, 5^=1. (3.11)

Sl+l/2Sl =(DSl 5 / + l / 2 > Sl+ί/2Sl =0} Sl 5 / + l / 2 > Π 1 ?ϊ

The only reason for integer and half-integer points to be non-equivalent is the
Hamiltonian :

^ = Σ^k)+V(s-+ll2). (3.13)
fc

The functions T and Fare defined by AT parameters in conformity with (3.11).
Either the Fourier coefficients ίm,ί;m(m = 0, 1, ..., JV— 1)

or their own eigenvalues may be used to define these functions. The eigenvalues of
s~ are equal to ωm(m = 0, 1, ...,N— 1). Accordingly, there are N eigenvalues of
Γ(O and F(s~), namely T(ωm) and V(ωm) (m = 0, 1, . . ., N- 1), which are related to
the Fourier coefficients in an obvious way.

Already, for N = 3 the iterations analogous to those presented in Sect. 2 show
that the local L — A pair exists for the Hamiltonian with T(s~)= F(s~) and when
the last function is chosen in a special way.

It turns out that such a Hamiltonian possesses a local L — A pair in an
arbitrary model with ZN symmetry. Namely,

<3 14)

Since £ copn = Nδpt0, (p = 0, 1, ..., JV- 1) and by virtue of the algebra (3.11), (3.12)
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the density of the Hamiltonian chosen in such a way obeys the following relations:

H2

k=Hk, (3.15)

HkHk±l/2Hk=~Hk, (3.16)

H,H^//^(|/c-/|>l/2). (3.17)

The above properties (3.15)-(3.17) are sufficient to obtain L — A pair and a set of
motion integrals. Owing to (3.15) Hk is a projective operator and, as is seen from
(3.14) all its eigenvalues are equal to zero except for one equal to unity, which
corresponds to that eigenvector for which the sf eigenvalue is ω*mi.

Note that, since ml can be chosen arbitrarily at different points, the
Hamiltonian (3.14) may be regarded as inhomogeneous.

Since Hk is a projective operator with the only eigenvalue equal to unity, one
may naturally regard the model under consideration as a quantum version of the
N-positional lattice Potts model [7]. By analogy with the case of the Ising model
the present Hamiltonian can be considered as a particular version of a more
general Hamiltonian of the Potts model, corresponding to the phase transition
point of the latter.

4. L— A Pair of the N-Positional Potts Model Phase Transition Point:
Conservation Laws

Hamiltonian (3.14) involves integer and halfinteger points in an equivalent way,
With this in mind and to make further notations more convenient we extend the
scale by a factor of two and consequently in what follows k will acquire integer
values only

(4.1)
k

H2

k=Hk, (4.2)

HkHk±ίHk=~Hk, (4.3)

Hkί/J = .ίflHk(|fc -/|>1). (4.4)

The motion equations for Hk acquire the following form

- iΠk = Of, HJ = ίHk+ 1? HJ - [Hk, Hk_ J . (4.5)

The corresponding L — A pair is

Lk=l+λHk, (4.6)

^k~ ι _ι_ HkHk-ι ~λHk_ίHk, (4.7)

-iLk = Ak + 1Lk-LkAk. (4.8)
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Its form can be found by using iterations entirely analogous to those presented
in Sect. 2.

Owing to (4.8) the generating functional of conservation laws is given by the
formula

= Π Lk(λ). (4.9)
k= + oo

The local conservation laws are obtained by the λ series expansion

logjS?(λ)= £ <enλ\ (4.10)
n= 1

It is rather convenient to employ the recurrent formulas for the density ^n (see
Appendix B)

Vl=ΣHk = tf, (4.11)
k

<^2=iΣC^+1,Ht]-^1, (4.12)

Now we formulate a theorem of involutίvίty of the motion integrals <^IJ. It is
sufficient to show the commutativity of the two generating functionals $£(K) and
JS?(μ) at arbitrary λ and μ.

[JSf(λ),JS?(μ)]=0, (4.14)

[logJS?(λ),logJSf(μ)]=0 (4.15)

then owing to (4.10) [#n,#k] = 0 at arbitrary n and fc. To prove that (4,14) is valid,
we write a two-parameter L — A pair equation for the nonlocal Hamίltonian JS?(μ)

[JSf (μ), Lk(;.)] - ̂ k+ !(A, μ)Lk(λ) - Lk(λ}Ak(λ, μ). (4.16)

Due to (4.4) the expression for commutator in the left-hand side of (4.16) may be
written in the following way

/ k+2 \
9Lk(λJ] = Π Ln(μ)}{tLk+i(μ\Lk(λ)-]Lk(μ)Lh_,(μ)

n = k-2

Now formula (4.17) can help to guess the form of Ak(λ,μ):

k+ί \ I - oo \

Π Ln(μ)}Bk(λ,μ)( fl Ln(μ)}, (4.18)
n = + o o / \n = k-2 I
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where Bk(λ9μ) depends on Hk and Hk_ί. Then, owing to (4.16)-(4.18), the following
relation takes place

+ Lk+1(μ)Lk(μ)lLk_l(μ)9Lk(λ) ]

= Bk+ tμ, μ)Lk_ ^)LkW-LkWLk + ,(μ}Bk(λ, μ) . (4.19)

The form o f B k ( λ , μ ) may be obtained using two-parameter iterations. The result is

Bk(λ,μ) = (4.20)

Thus, the existence of an infinite set of local involutive motion integrals for the
system under consideration has been proved. This fact allows one to hope that the
spectrum, eigenvectors and correlation functions of the system can be computed
exactly.

We are grateful to A. M. Polyakov under whose quidance the work has been
done.

Appendix A

Here the computation of an L — A pair for the anisotropic XYZ model is
considered applying the method used in Sect. 2 for computing an L — A pair of the
Ising model. The Heisenberg chain Hamiltonian has the form

where the operators σ^(ΐ=l,2, 3) form algebra of Pauli matrices on the fe-th site,
and they commute at different sites. The equations of motion can be given as
follows :

όΐ= Σ WK+i+^-iK1. (A.2)
l,m= 1

The iterative method just similar to that presented in Sect. 2 allows one to
conclude that the L — A pair has the following form

£ * = l + Σ « i * X + ι > (A.3)
ί = l

3

Λ= Σ [ftK+ι+4-ιK+^4+ι4-ι]
i= 1

3

+ ί Σ βi/mft4+lσίσk-l (A.3)

The equation

k-]^Ak+ΐLk-LkAk (A.4)
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yields a system of equations for the coefficients α f, βi9 yi9 ρt in (A.3). The following
equations are the consequence of the above system

cti + cijfί^λJi (A.5)

which holds for any permutation of three noncoincident indices z, fe, /= 1,2,3 and
where λ is a spectral parameter. The dependence of α£(Λ.) is defined by Eq. (A. 5).
The coefficients βi9 y.9 ρ. can be expressed by Eq. (A.5) in terms of α f(A) and /I

ft=^k+',2

(l-«?)

ρ j=^ιιu.(α2_(χ2_α2 + 1)) (A6)
At/1 *J ] ι ι <•)κ * /^,2 -,^£ -,^

where

J = ( α + α - f α — l)^ -f α2 —

and (i,fe,/) is an arbitrary interchange of three noncoincident indices (1,2,3).
As is known, there exists a matrix L — A pair for theXYZ model as well [5, 10].

Equation (A.4) are equivalent to (A.2), if Lk and Ak are defined in the following
way

(A-7)

\Γ^ r~ Ί / ΐ \ /' ί i ~ι

i= 1

3

Here τ' are auxiliary Pauli matrices and σj; are spin variables at the fc-th site as in
the previous case. The coefficients ai are related by the following conditions

where μ is the spectral parameter. Formula (A.8) permits expressing the coef-
ficients α explicitly

(z, /c, /) in formulas (A.8) and (A.9) is an arbitrary interchange of three non-
coincident indices (1,2,3). The coefficients b , cf and dt with regard to (A.8) are
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expressed by the formulas

Cf = - K%2 - af )2 - (ak + αΛ)2 - (a, -f α A)2] ,

-±

(A. 10)

-f α 4- - α2 + α3 ( - α -4- α -f

in formulas (A. 10).
The coefficients α and αί of the matrix (A.7) and scalar (A.3) L— A pairs,

respectively, are connected by simple transformation. It is convenient to introduce
projective coordinates in order to formulate the transformation :

a — (A. 11)

If αj. and αj are related in the following way

(A.12)

then the conditions (A.5) and (A.9) are equivalent. The first transformation of
(A. 12) (from α. to α f) was performed in papers [5,6] in terms of generating
functionals. The problem of conservation laws for theXYZ model was elaborated
in [6]. Their explicit form of motion integrals for the XXX model was obtained in
[13].

Appendix B

Here presented are both the scheme of the proof of locality of integrals ̂ n and the
recurrent formulas facilitating the computation of logJ^f(λ). The main theorems
are proved in papers [6,11].

Suppose there is a set of totally symmetric functions G^Tq, . . . , fc n ) which
arguments are integer valued and label the sites of a one-dimensional lattice. The
generating functional for the above functions using an arbitrary field J(fe) is
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defined by the following equation

H/H Σ Λ Σ Gί(/c1,...A)W '(U (B.i)
n=l nl klt...,kn

Theorem 1. The generating functional

Z{J}=exp(F{J}) (B.2)

is defined by the analogous formula

z(J}=Σ^ Σ Gπ(/c1,...A) '(fc1) '(υ, (B-3)
π = 0 nl kι,...,kn

where G0 = 1 and other functions Gn(kl9..., fej are expressed through G*n(kί9..., kn)
as follows

GB(fe1,...,kJ= Σ Λ Σ G'nι(A1)...GI

naι(AJ. (B.4)
m= j_ m.

over all possible
separations of (/q, . ,/cJ
into groups Λ t , , 4m

of the length
« j , ., »m, lespectively
/!} + . +nm = n

The above theorem connects the coefficients in the λ expansion of ^(λ) and
,). Namely, it is sufficient to put

J(k) = λ9 F{λ} = logJ5f(λ), Z{λ} = JS?(/l). (B.5)

In conformity with (B.1)-(B.3)

= Σ ί Σ Gn(ki9...9k,)9 (B.6)
π = 0 " fcι,...,fcn

= Σ ^r Σ Gί(k,,...,kΛ). (B.I)ί-j γ. I ^—ί n v 1' ' n/ v /

According to (4.10) and (B.7)

GI

n(kί, . ..,kπ) are expressed through Gn(kί9 ...,kπ) in accordance with (B.4). In the
case of the N-positional Potts model in the phase transition point the calculation
of Gn(fc1? . . .,kM) is trivial, namely

-JW= Σ Hkι...HknJ(k,}...J(kn).
ri< kίf...,kn kι>k2> ... >kn

If

«ίf(A)= Π AW and Lk(0)=ί
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and only the neighbouring Lk(λ) do not commute with each other which is true for
all models considered in the paper, then Gw(fe l 5 . . . , fe n ) possess the property of
breaking into parts. Namely, let (fe l 9 . . . , f e n ) break down into clusters Aly ...,Am

(m ̂  n) which are separated by intervals strictly exceeding unity, then

Gπ(Λ1J-^n) = Gn ι(X1)...Gn m(Xm) (B.9)

and[GJ40,Gnk04k)]=0.
The following theorem can be formulated on the basis of the property (B.9).

Theorem 2. Let Gn(kl9 . . . , f e w ) and G^(fe1? . . . ,/cJ be connected by formula (B.4) and
(B.9) be valid. Then the same conditions are sufficient for irreducibility of

The theorem can be proved by induction. It shows the locality of the integrals
%„ and together with formulas (B.4) and (B.8) gives the prescription for their
computation.
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